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Abstract

This thesis consists of three essays on topics in financial time series with particular em-

phases on specification testing, structural breaks and long memory. The first essay develops

an asymptotically valid specification testing framework for the Realised GARCH model of

Hansen, Huang and Shek (2012). The misspecification tests account for the joint dependence

between return and the realised measure of volatility and thus extend the existing literature

for testing the adequacy of GARCH models. The testing procedure is constructed based on

the conditional moment principle and the first-order asymptotic theory. Our Monte Carlo

results reveal good finite sample size and power properties.

In the second essay, a Monte Carlo experiment is conducted to investigate the relative out-

of-sample predictive ability of a class of conditional variance models when either a structural

break or long memory is allowed. Our Monte Carlo results reveal that if the true volatility

process is stationary short memory and its persistence level is not too high, but is contami-

nated by a structural break, the presence of the structural break is of importance in choosing

a proper size of estimation window in the short-run forecast. If the persistence level is very

high, spurious long memory may often dominate the true structural break in the longer-run

forecast. For data generation processes without any structural break, the forecasting models,

which can characterise the properties of the true conditional variance process, are favourable.

In the last essay, we analyse the properties of the S&P 500 stock index return volatility

process using historical and realised measures of volatility. We investigate a true property

of the stochastic volatility processes by means of econometric tests, which may disentangle

true or spurious long memory. The realised variance and realised kernel of the US stock

market return exhibit true long memory. However, the historical volatility process shows

some evidence of spurious long memory. We examine relative out-of-sample performance of

one-day-ahead forecasts, with emphasis on the predictive content of structural changes and

long memory. A class of ARFIMA models consistently produces the best-performing forecasts

compared to a class of GARCH models. Among the GARCH models, it is shown that a rolling

window GARCH forecast and GARCH forecasts which account for breaks outperform the long

memory-based GARCH models even with the long memory proxy process.
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Chapter 1 Introduction

This thesis mainly concerns methodological issues on inference and prediction of conditional

variance models and their applications in financial time series analysis. One of the topics is

developing specification testing procedures for the parametric GARCHX type models when

the joint dependence between the realised measure of volatility and the squared error process

is allowed for the parametric conditional variance model specification. The other topics deal

with evaluating relative predictive ability and financial economic benefits of the conditional

volatility models with particular emphases on structural breaks and long memory properties.

In response to the increasing interest and need for analysis of the dynamics of financial

asset return volatility, sophisticated econometric tools and techniques have been developed

over several decades. As seminal studies, Engle (1982) introduced Autoregressive Conditional

Heteroskedasticity (ARCH), and Bollerslev (1986) made an extension of ARCH, the so-called

Generalised ARCH (GARCH). Both have made considerable contributions to the development

of parametric conditional volatility models. Within the ARCH and GARCH frameworks, in

general, a squared return series is used to measure a current level of volatility and predict

future behaviour of volatility. In both academic and practical purposes, a variant of GARCH

models has been widely utilised due to its simplicity in specification and its superiority for

estimating and forecasting volatility, relative to traditional time series models.

Andersen and Bollerslev (1998) reveal that, on the other hand, the forecasting performance

of the GARCH model can be improved using high frequency-based realised variance rather

than the squared return, which is a noisy proxy of the true conditional variance. Andersen,

Bollerslev, Diebold and Labys (2003) and Barndorff-Nielsen and Shephard (2002) introduced

a new concept of volatility measurement, so-called realised volatility, as an alternative mea-

sure of squared return-based historical volatility. A development of a computerised database
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system makes it possible to collect and store intraday price data effi ciently. Reducing sampling

horizons from daily to intradaily may allow realised volatility to possibly be more informative

than the squared return measure. In addition, Hansen and Lunde (2011) showed that the

so-called GARCHX model, where the basic GARCH model is augmented by including an ad-

ditional explanatory variable - in this case, the realised measure - outperforms the traditional

GARCH model. In particular, a class of GARCHX models have been proposed by jointly

specifying returns and realised measures of volatility, for example, the Multiplicative Error

(MEM) model of Engle and Gallo (2006), the High-Frequency-Based Volatility (HEAVY)

model of Shephard and Sheppard (2010) and the Realised GARCH model of Hansen, Huang

and Shek (2012), among others. It is generally known that joint dependence might exist

between financial asset return and realised measure of volatility. In this sense, approaches

for the inference of such a modified GARCH model with a realised measure of volatility may

vary depending on whether a model builder allows for such a dependence or not. If we allow

for the joint dependence between the realised volatility process and the return error process,

then the inference procedure would have to account for the joint dependence.

The second chapter of this thesis develops an asymptotically valid specification testing

framework for the Realised GARCH model of Hansen et al. (2012), which resembles the

GARCHX model for the conditional mean and variance equations but additionally captures

the joint dependence of the realised measure of volatility and return. The misspecification

tests proposed may thus extend the existing literature for testing the adequacy of GARCH

models such as Bollerslev (1986), Li and Mak (1994), Engle and Ng (1993), Lundbergh and

Teräsvirta (2002) and Halunga and Orme (2009).

The testing procedure extends the unifying framework of Halunga and Orme (2009) and

the first-order asymptotic theory, based on the conditional moment tests of Newey (1985) and

Tauchen (1985). Essentially, the test indicator for the correct specification of the conditional

variance equation contains an additional component that accounts for the joint dependence

between the realised measure and the error process. In addition, the recursive nature of

the conditional variance is also taken into consideration. Although, the testing framework is

designed to test the correct specification of the conditional variance equation, the unifying

framework can be employed to test the correct specification of the realised variance equation

as well. We propose test statistics for asymmetry in the Realised GARCH constructed based
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on an alternative the Realised Exponential GARCH models, where a leverage function is

explicitly specified in the conditional variance equation.

Our Monte Carlo experiment reveals that the proposed test statistics have good finite sam-

ple size properties and high degrees of power against alternative data generation processes. In

particular, the test statistic that accounts for the recursive nature of the conditional variance

appears to be a powerful tool in the detection of potential misspecifications of the null model

arising from asymmetry behaviour in financial asset returns. Along those lines, the empirical

application also supports that the test statistic with the recursive nature of the processes

works very well when the size of the asymmetry in the leverage effect is large enough. Specif-

ically, the asymmetry test rejects the null at any significance level for the stock returns with

a higher degree asymmetric volatility.

On the other hand, a large body of studies about long memory properties has been es-

tablished to improve predictability when modelling and forecasting financial time series. The

properties of long memory can be specified by dealing with slowly diminishing impacts of

shocks. The fractional integrated framework has well been established to characterise such

long memory properties.1

However, some studies have also pointed out that a non-linear specification which allows

for structural changes or regime switching could be considered to avoid spurious estimation of

a persistence parameter when a given time series process is not true long memory. As seminal

works, Rappoport and Reichlin (1989) and Perron (1989) demonstrated that misspecification

caused by overlooking shocks as structural breaks in the underlying deterministic trend might

induce the erroneous non-rejection of the unit root hypothesis. Also, Leybourne, Mills and

Newbold (1998) and Kim, Leybourne and Newbold (2000) have shown that if a time series

process has true multiple breaks but only one break is considered, then neglected breaks that

occurred earlier than the structural break taken into account would cause spurious rejection

of the null for unit root in the Dickey-Fuller and Perron tests. Further, it has been argued

that the interplay between long memory and structural breaks is very often observed in a

variant of economic and financial time series, and allowing for structural breaks in a true long

memory process can possibly reduce the persistence.2

1For further studies of long memory generation and related properties, see, for example, Granger (1980,
1981), Granger and Joyeux (1980), Geweke and Porter-Hudak (1983), Bollerslev and Engle (1993), Baillie
(1996), Granger and Ding (1996), and references therein.

2For more specific reviews about the relationship between long memory and structural breaks, see, for
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Some research have been developed to identify structural breaks and its relationship with

long memory in financial time series. A class of approaches dealing with long memory and

structural breaks has been specified by accounting for the changes in either mean or variance

parameters in given specifications. For the changes in mean, Granger and Hyung (2004) have

compared an occasional breaks model and a long memory I(d) model using absolute S&P

500 stock index returns. Their empirical results point out that long memory can be partially

caused by breaks even if the return forecasting performance of the break model is not better

off than the long memory models. In addition, for stock market volatility, Perron and Qu

(2010) have shown that the time series can generate highly similar properties to long memory

if a short memory process cannot account for structural breaks in the mean. An employed

semiparametric model using log-periodogram regression, and a random level shifts model,

outperforms the GARCH and the ARFIMA models. Choi and Zivot (2007) and Choi, Yu and

Zivot (2010) have also empirically found that structural breaks in the mean can be the part

of long memory in cases with a forward discount rate and realised volatility, respectively.

Regarding the changes in conditional variance, some theoretical and empirical results have

argued that the persistence in financial asset return volatility can be better characterised

by a stationary short memory process with structural breaks rather than long memory, in

terms of its in-sample and/or out-of-sample fit. Mikosch and Starica (2004) have documented

that long memory might be due to non-stationarity, and that integrated models such as

IGARCH could induce spurious estimation under the assumption of constant unconditional

variance. Starica and Granger (2005) have found that non-stationary model with structural

breaks in unconditional variance can perform relatively well in a longer horizon forecast.

For more specific analysis in terms of a GARCH volatility, Mikosch and Starica (2004) and

Hillebrand (2005) have demonstrated that neglecting structural breaks in GARCH parameters

can possibly lead to misleading estimations of persistence with upward biases in a GARCH

process. Moreover, Rapach and Strauss (2008) have revealed that allowing for the structural

breaks in the unconditional variance of exchange rate returns may often improve the in-sample

and out-of-sample performance of the GARCH volatility.

Along those lines, it might be desired to admit the fact that neglecting structural breaks

can infer spurious long memory when modelling and forecasting volatility. However, a choice

instance, Banerjee and Urga (2005), Perron (2006) and Andreou and Ghysels (2009).
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of long memory and structural break in a volatility process would still be quite arguable due to

the diffi culty in clearly distinguishing between long memory and structural breaks. Moreover,

a proper choice of forecasting model is important to contribute to an accurate prediction

because a misspecified econometric model is more likely to produce a poor in-sample or out-of-

sample fit. Nevertheless, there is still a lack of information which is provided with simulation-

based evidences on relative predictive ability of conditional variance forecasting models with

particular emphases on empirical contents and economic benefits in and between structural

break and long memory. In order to fill such a potential gap in the existing literature, we carry

out a Monte Carlo simulation experiment under the assumption that we already know true

properties under a wide variety of data generation processes. As a consequence, we may shed

light on the views of the empirical relationship between structural break and long memory in

terms of relative predictive ability of financial volatility models.

In the third chapter, a Monte Carlo experiment is conducted to investigate the relative out-

of-sample predictive ability of a class of parsimonious conditional variance models when either

a structural break or long-run dependence is allowed for a conditional variance process. We

consider GARCH with various estimation windows, FIGARCH and short and long memory

EWMA models to generate a model-based conditional variance forecast. Additionally, the

forecast combinations are utilised against the single model-based forecasts. The aggregate

average of Mean Squared Forecast Error and the Mean of Conditional Value at Risk loss

functions are adopted to measure forecasting performance. In the statistical evaluation for

the loss of multiple forecasts, we conduct the Reality Check test of White’s (2000) reality

check test and Hansen’s (2005) superior predictive ability test of Hansen (2005). Further, the

pairwise comparisons are accommodated across all of the generated forecasts, applying the

modified Diebold-Mariano test of Harvey, Leybourne and Newbold (1997) with the pooled

loss series.

In brief, our Monte Carlo results reveal that if the true process is short memory with a

structural break and the persistence level is not very high, the presence of structural breaks is

important to set a proper estimation window in order to achieve more accurate predictions of

the conditional variance in the short-run. If the persistence level is very high, spurious long

memory may often dominate the structural breaks in the longer-run forecast. For the data

generation process without any artificial structural break, the forecasting models which can
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characterise the properties of the true conditional variance process are generally favourable.

The econometric loss evaluation results support our findings fairly well.

In the fourth chapter, we analyse the properties of the S&P 500 stock index return volatility

processes which are realised measures of volatility and historical volatility. We first investigate

the true properties of given volatility measures by means of econometric tests which help us

disentangle true long memory and structural breaks. We examine the relative out-of-sample

performance of one-day-ahead forecasts, with emphasis on the predictive information content

of structural changes and long memory. The log-realised measures of volatility are estimated

and forecasted by means of a class of ARFIMA models. Also, a class of short and long

memory GARCH models are utilised for the historical volatility estimation and prediction.

The relative forecast performance is evaluated by accounting for some tests.

The main results of fourth chapter are as follows. The US stock market index, realised

variance and realised kernel processes exhibit true long memory. However, the historical

volatility process shows some evidence of spurious long memory subject to multiple structural

breaks corresponding to stock market events. Once the structural breaks are adjusted to the

squared daily return, the volatility process looks like a weak dependent stationary process,

rather than a persistent process. In terms of relative predictive accuracy, a class of ARFIMA

models consistently generates the best-performed forecasts relative to a class of GARCH

models. Among GARCH models, it is shown that rolling window GARCH forecasts and

GARCH forecasts which account for structural changes in their own specifications outperform

long memory-based GARCH models, even with the long memory proxy process. Also, the

sensitivity analysis of rolling window size for GARCH model supports that the appropriate

choice of the rolling window size for the GARCH model is important to achieve relatively

better predictive ability in the structural breaks even when the proxy of an actual volatility

exhibits long memory.
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Chapter 2 Misspecification Tests for

Realised GARCH Models

2.1 Introduction

Over the past few decades, the GARCH model of Bollerslev (1986) that uses the squared

daily (or lower frequency) returns has been popularly considered for modelling and forecasting

volatility. However, it has been shown that the GARCH model exhibits poor out-of-sample

fit (e.g. Jorion, 1995). Andersen and Bollerslev (1998) reveal that, on the other hand, the

forecasting performance of the GARCH model can be improved using high frequency-based

realised variance rather than the squared return, which is a noisy proxy of the true conditional

variance. In addition, Hansen and Lunde (2011) showed that the so-called GARCHX model,

where the basic GARCH model is augmented by including an additional explanatory variable

- in this case, the realised measure - outperforms the traditional GARCH model. Their

simulation analysis shows that it takes longer for the conditional variance within a standard

GARCH framework to catch up to a new level of volatility during times with rapid volatility

changes. Such models have been estimated by Engle (2002), Forsberg and Bollerslev (2002)

and Fleming, Kirby and Ostdiek (2008), among others.

In the GARCH-X framework, the additional covariate is generally treated as an exogenous

variable. However, a large body of empirical research, dealing with financial or macroeconomic

variables, has shown that there possibly exists dependence between an augmented covariate

and the original time series. In this sense, it would be less likely to obtain correct inference

of a given specification under such a strong restriction of exogeneity. Also, that assumption

might cause a lack of information for the interpretation of the conditional variance in practice.
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Recent models have been proposed by jointly specifying returns and various realised measures

of volatility such as the Multiplicative Error (MEM) model of Engle and Gallo (2006), the

High-Frequency-Based Volatility (HEAVY) model of Shephard and Sheppard (2010) and the

Realised GARCH model of Hansen et al. (2012), among others. The Realised GARCH model

resembles the GARCHX model for the conditional mean and variance equations but addition-

ally captures the joint dependence of the realised measure of volatility and return through a

measurement of the volatility equation.

As a consequence, approaches for the inference of these modified GARCH models may

vary depending on whether a model builder allows for such dependence or not. Under such

a strong exogeneity assumption, the parameters in the stationary GARCHX model can be

estimated without any consideration for the specification for the additional covariate because

the added regressor is simply predetermined and treated as an observed value. Therefore,

existing GARCH-based testing frameworks would be directly applicable, such as the score

type test for testing a GARCH model against a higher order GARCH model of Bollerslev

(1986), the portmanteau test statistic based on the null hypothesis of no autocorrelation for

the squared standardised error process of Li and Mak (1994), asymmetry and/or non-linearity

tests of Engle and Ng (1993) and Lundbergh and Teräsvirta (2002) or parametric constancy

tests of Lundbergh and Teräsvirta (2002). In addition, Halunga and Orme (2009) showed

that estimation effects from a conditional mean equation can be non-negligible when testing

for asymmetry and/or non-linearity in GARCH models, such that the asymmetry tests of

Engle and Ng (1993) and Lundbergh and Teräsvirta (2002) are asymptotically invalid. They

proposed asymptotically valid tests for asymmetry and/or non-linearity that can have also

improved power properties.

Nevertheless, if we allow for the joint dependence between the additional covariate and the

error process, then the inference procedure would have to account for the joint dependence.

However, there are no formal misspecification tests to check the adequacy of the GARCHX

type model under the joint dependence, to our best knowledge. Therefore, developing a

specification testing framework under the joint conditional density may bridge possible gaps

between traditional GARCH models and the GARCH with a realised measure of volatility.

This chapter proposes a framework for the construction and analysis of misspecification

tests in the Realised GARCH model of Hansen et al. (2012). The testing procedure extends
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the unifying framework developed by Halunga and Orme (2009) for pure GARCH models,

based on the conditional moment tests of Newey (1985) and Tauchen (1985) as well as the

first order asymptotic theory. Essentially, the test indicator for the correct specification of the

conditional variance equation contains an additional component which accounts for the joint

dependence of the realised measure and the error process. In addition, the recursive nature of

the conditional variance is also taken into consideration. The unifying framework can also be

employed to test the correct specification of the measurement equation. Moreover, we propose

tests for asymmetry in the Realised GARCH based on the alternative Realised Exponential

GARCH models of Hansen and Huang (2012) and Hansen, Lunde and Voev (2014), where a

leverage function is explicitly specified in the conditional variance equation.

This chapter is organised as follows. Section 2.2 describes the null Realised GARCH model

and the necessary assumptions for consistent estimation. In addition, the general framework

of Quasi-Maximum Likelihood estimation is discussed. In Section 2.3, the asymptotically valid

general misspecification testing framework of the Realised GARCH model is demonstrated.

Giving higher attention to testing for the misspecification of the conditional variance equation,

Section 2.4 details the new test statistics to test for the additional leverage effect with the

alternative specification. Section 2.5 reports several Monte Carlo evidences for empirical size

and size-adjusted power of the developed test statistics in support of principal theoretical

findings. In Section 2.6, we also report the results of empirical applications using various

financial asset returns and their realised volatility measures. Finally, the concluding remarks

of this study are discussed in Section 2.7.

2.2 The Null Model and Estimation Framework

2.2.1 Realised GARCH Model

The Realised GARCH model for the return variable, yt, is represented as

yt = f (yt−1;η) + εt,

where f (yt−1;η) is any Ft−1 measurable function which is also allowed to be linear or non-

linear, yt−1 = (1, yt−1, ..., yt−l)
′ ∈ Rl+1, and η is the parameter vector of the mean function
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above. The error process, {εt;Ft} is assumed to be a martingale difference sequence, where

Ft−1 = σ {yt−1, yt−2, ...} that is the σ-field of the past information up to and including time

index t− 1. The error process of yt is given by

εt =
√
htzt, (1)

for t = 1, . . . , T, where ht is the conditional variance process of εt, ht = E
(
ε2
t |Ft−1

)
and zt ∼

i.i.d. (0, 1). The general specification of the conditional variance and its realised measurement

are given by

log ht = ω +

p∑
i=1

βi log ht−i +

q∑
j=1

γj log xt−j , (2)

log xt = ξ + ϕ log ht + δ
′
a (zt) + ut, (3)

where xt is a realised measure of volatility, which is jointly dependent with the error process

εt. The realised measure of volatility, xt, may play a similar role as the squared error of return

series, ε2
t in the standard GARCH framework. As shown in Engle (2002) and Barndorff-Nielsen

and Shephard (2007), the squared lagged errors become insignificant once a realised measure

of volatility is included in the standard GARCH specification. Namely, the lagged variables

of xt in (2) characterise the impact of new information arrivals in the same way as the lagged

squared errors terms in the GARCH model. Therefore, the realised measurement equation

may explain the time-dependent behaviour of xt onto the conditional variance over the sample

period. Since the past realisations of the realised volatility measurement are observable, all

the past lags of xt are treated as predetermined variables as well as exogenous in the context of

GARCHX through estimation. For the stochastic error process in the measurement equation,

(3), it is assumed that ut ∼ i.i.d.
(
0, σ2

u

)
and ut is mutually independent of zt. Over the sample

period, the information set can be generalised as Ft = σ (εs, xs) for s ≤ t with the additional

information of the exogenous covariate. Thus, it is to say that ht is adapted to Ft−1 and xt

should be Ft measurable if γj is all non-zero. If ξ = 0 and ϕ = 1, xt is a unbiased measure

of ht. Otherwise, the realised measure of volatility is likely to be biased of the true daily

volatility. This is why a possible bias in high-frequency-based intradaily return data is subject

to market microstructure noise and non-trading hours. Moreover, the null specification allows
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for the leverage function. The leverage effects in the measurement equation can be captured

by a (zt) = (a1 (zt) , a2 (zt) , . . . , ak (zt))
′
, assuming E [a (zt)] = 0, without loss of generality.

Following the setting of Hansen et al. (2012), we consider Hermite polynomials of zt as a

leverage function in this study. It may follow the fact that better predictive power of the

GARCH model against competing GARCH-based models can be gained by allowing for the

asymmetric feature of the conditional variance as pointed out by Hansen and Lunde (2005).

In the null specification, the measurement equation captures the leverage effects jointly with

the conditional variance even if the GARCH equation itself does not explicitly contain any

term that can directly utilise the potential leverage effect. The positiveness condition for ht is

automatically satisfied with the log-linear specification of the null model. From Proposition

1 of Hansen et al. (2012), the level of conditional variance persistence can be explained by a

following parameter:

ρ =

p∑
i

βi + ϕ

q∑
j

γj .

The stationarity of log ht of the Realised GARCH(1, 1) is ensured if β1 + γ1ϕ1 ∈ (−1, 1) .

For simplification of notation, denote the parameter vector θ
′

=
(
η
′
,λ
′
,υ
′
, σ2

u

)
where λ

′
=(

ω,β
′
,γ
′
)
and υ

′
=
(
ξ, ϕ, δ

′
)
where β =

(
β1, . . . , βp

)′
,γ =

(
γ1, . . . , γq

)′
and δ = (δ1, δ2, . . . , δk)

′
.

Let ct−1 = (1, log ht−1, . . . , log ht−p, log xt−1, . . . , log xt−q)
′
and m

′
t =

(
1, log ht, a (zt)

′) , then
the GARCH and the realised measurement equations are re-expressed as

log ht = λ
′
ct−1,

log xt = υ
′
mt + ut,

respectively. The following assumptions ensure consistency and asymptotic normality of the

quasi-maximum likelihood estimators.

Assumption A.

1. The Θ is compact parameter space, and θ0 lies in the interior of Θ.

2. E |f (yt−1;η)− f (yt−1;η0)|2 > 0, for all η 6= η0.

3. The elements of yt are strictly stationary and ergodic, and f (yt−1;η) is at least twice

continuously differentiable in η and Ft−1 measurable for all η ∈ Θ.
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4. {εt, ht, xt} is stationary and ergodic with E (zt|Ft−1) = 0, E
(
z2
t |Ft−1

)
= 1, E (ut|Ft−1) =

0 and E
(
u2
t |Ft−1

)
= σ2

u.

5. E |zt|4+s <∞ and E |ut|4 <∞ for some s ≥ 0 and all t.

Assumption A.2-4 are general conditions to ensure stationarity and ergodicity of the condi-

tional mean, variance and the realised variance process. In particular for the QMLE estimation

with the Gaussian likelihood, Assumption A.4 is initially made by Hansen et al. (2012) for

the robustness of the QMLE which can be reflected by the weak assumptions that make the

score a martingale difference sequence. Without the rigorous derivation of stationarity and

ergodicity, in this sense, we simply follow the conjecture of Hansen et al. (2012) through this

study. Assumption A.5 implies that zt and ut have a finite fourth moment to ensure posi-

tive definiteness of the asymptotic covariance matrix of the score under the quadratic form

of the leverage function. If the leverage function, a (zt) , is more complicated, say it has a

higher order Hermite polynomial form, a finiteness condition for additional moments of zt is

inevitably required since the first and second order partial derivatives of ut with respect to

the null parameters depend on the functional form of a (zt).

Hansen et al. (2012) conjectured that the QML estimators of the Realised GARCH model

are asymptotically normal and consistent under the stationary assumption, adapting Theorem

7.1 of Straumann and Mikosch (2006). Since it is imposed that f (yt−1;η) = 0 in Hansen et al.

(2012), the conditional mean estimation effect can be simply assumed away in the estimation

of the conditional variance and its realised volatility. However, the null model, embodying

the general form of the conditional mean equation, exhibits a different specification from the

original Realised GARCH model. Further, it has been shown that the mean estimation effect

is important when constructing misspecification tests of the GARCH models as described in

Halunga and Orme (2009). In this sense, this study extends the framework for estimation of

the Realised GARCH model, also taking into account the analysis of the conditional mean

estimation effect.

Since no particular distribution for εt and ut is initially assumed, the quasi maximum

likelihood estimation (QMLE) framework should be applicable to produce the consistent es-

timators of true parameters. For the purpose of the estimation, we allow for a Gaussian

specification of the log-likelihood function for jointly distributed εt and ut, assuming that
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zt ∼ i.i.d. N (0, 1) and ut ∼ i.i.d. N
(
0, σ2

u

)
. The quasi log-likelihood function is given by

LT (θ) =
1

T

T∑
t=1

lt (θ) ,

where lt(θ) = −1
2

(
log ht +

ε2t
ht

+ log σ2
u +

u2t
σ2u

)
.

Before deriving the score and Hessian of the log-likelihood function, the first-order partial

derivatives of ht with respect to η and λ are provided by accounting for the recursive nature

of the conditional variance, in advance. For the starting values of the conditional variance,

Lemma 1 of Hansen et al. (2012) stated that ∂ log ht
∂λ = 0 for t ≤ 0, regardless of (h0, . . . , hp−1)

being treated as fixed or as a vector of unknown parameters. Indeed, all the past series of

xt is being treated as pre-determined, and the error process of the mean, εt, is omitted from

the conditional variance equation because it is less likely to be empirically significant in the

null model. Further, Halunga and Orme (2009) remarked that the unobserved sequence of

the conditional variance is of order small enough (in probability) in the sums of the partial

derivatives of ht with respect to the conditional variance parameters, which follow from Berkes,

Horváth and Kokoszka (2003) and Francq and Zakoian (2004). Based on the discussions above,

we here suppose that pre-sample observations are available and that ht = 0 for t ≤ 0, for the

sake of simplicity. Following this, define hηt = ∂ log ht
∂η and hλt = ∂ log ht

∂λ , then hηs = 0 and

hλs = 0, for s ≤ 0. By exploiting stochastic recursion of the conditional variance itself, we

are able to derive hηt and hλt:

hηt =

p∑
i=1

βi
∂ log ht−i

∂η

= B (L) hηt,

hλt = ct−1 +

p∑
i=1

βi
∂ log ht−i

∂λ

= ct−1 +B (L) hλt,

where B (L) = β1L + β2L
2 + . . . + βpL

p with a lag operator L. Then, hηt and hλt can be
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reformulated as

{1−B (L)}hηt = 0,

{1−B (L)}hλt = ct−1,

respectively. Now, let

{1−B (L)}−1
+ =

t−1∑
i=0

ψiL
i,

with ψ0 = 1, ψi > 0 and satisfying ψi =
∑p

j=1 βjψi−j with ψs = 0, s < 0, 0 <
∑t−1

i=0 ψi =(
1−

∑p
j=1 βj

)−1
< ∞. This shows that {1−B (L)}−1

+ must be non-zero and finite. Hence,

the first derivatives of ht with respect to the conditional mean and variance parameters are

finally specified as

hηt = 0,

hλt =
t−1∑
i=0

ψict−1−i

=
t−1∑
i=0

{B (L)∗}i ct−1−i,

where B (L)∗ = β1 + β2L+ . . .+ βpL
p−1, respectively. Particularly, for hηt = 0, this resulted

from the missing squared lagged error terms, ε2
t−j , from the GARCH equation. In effect, the

dynamics of the score and Hessian can be partly explained by the first derivatives of ht. Thus,

it is conjectured that hηt is possibly irrelevant to the dynamics of the moment of the score

and Hessian.

Assuming that LT (θ) is at least twice continuously differentiable in θ for any t and also

holding Assumptions A, the score vector of the log-likelihood function is defined as

SθT (θ) =
∂LT (θ)

∂θ
=

1

T

T∑
t=1

sθt (θ) ,

where sθt (θ) = ∂lt(θ)
∂θ , partitioned as sθt (θ) =

(
s
′
ηt, sλt

′
, sυt

′
, sσt

)′
, corresponding to the
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entire set of the parameters to be estimated. The individual score vector is given by

sθt (θ) = −1

2

{
−2εt
ht

ft,

(
1− z2

t +
2utu̇t
σ2
u

)
hλt,−

2ut
σ2
u

mt,
1

σ2
u

(
1− u2

t

σ2
u

)}′
,

where ft = ∂f(yt−1;η)
∂η and u̇t = ∂ut

∂ log ht
= −ϕ + 1

2δ
′
ztȧt with ȧt = ∂a(zt)

∂zt
. In addition, the

second-order derivative of the log-likelihood, ∂sθt(θ)

∂θ
′ , is given by



− 1
ht

ftf
′
t · 0 0

− εt
ht

fth
′
λt −1

2

(
1− z2

t + 2utu̇t
σ2u

)
∂hλt
∂λ
′ − 1

2

{
z2
t +

2(u̇2t+utüt)
σ2u

}
hλth

′
λt · ·

0 1
σ2u

(u̇tmt + utṁt) h
′
λt − 1

σ2u
mtm

′
t ·

0 utu̇t
σ4u

h
′
λt

ut
σ4u

m
′
t

(σ2u−2u2t )
2σ6u


,

(4)

where ṁt = ∂mt
∂ log ht

=
(

0, 1,−1
2ztȧ

′
t

)′
and üt = ∂2ut

∂ log h2t
= −1

4δ
′ (
ztȧt + z2

t ät
)
with ät = ∂2a(zt)

∂z2t
.

For example, if δ
′
a (zt) = δ1zt + δ2

(
z2
t − 1

)
then, u̇t = −ϕ+ 1

2δ1zt + δ2z
2
t , üt = −1

4δ1zt− δ2z
2
t

and ṁt =
(
0, 1,−1

2zt,−z
2
t

)′
.

The consistent estimator maximises the quasi-likelihood function such that

θ̂ = arg max
θ∈Θ

LT (θ) ,

so that it has to be satisfied with SθT

(
θ̂
)

= 0. The first-order Taylor expansion of the score,

about θ = θ0, yields

0 =
1√
T

T∑
t=1

sθt

(
θ̂
)

=
1√
T

T∑
t=1

sθt (θ0) +
1

T

T∑
t=1

∂sθt
(
θ
)

∂θ
′

√
T
(
θ̂ − θ0

)
,

where θ0 denotes a true parameter vector which lies in the interior of the parameter space

Θ, and θ is a mean value lying between θ̂ and θ0. Within stationary and ergodic conditional

variance process, Central Limit Theorem (CLT) for the martingale difference sequence with

a suitable Uniform Law of Large Numbers (ULLN) may yield that the score of the Gaussian

log-likelihood function has the limiting distribution:

√
TSθT (θ0)

d→ N (0,Jθθ) ,
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where Jθθ = 1
T

∑T
t=1E

[
sθt (θ) sθt (θ)

′
]
θ=θ0

=



E
(

1
ht

ftf
′
t

)
0 0 0

0 1
4E
(

1− z2
t + 2utu̇t

σ2u

)2
E
(
hλth

′
λt

)
· ·

0 − 1
σ2u
E
(
u̇tmth

′
λt

)
1
σ2u
E
(
mtm

′
t

)
·

0 −E(u3t )E(u̇t)

2σ6u
E
(
h
′
λt

)
E(u3t )

2σ6u
E
(
m
′
t

)
1

4σ4u
E
(

1− u2t
σ2u

)2


.

In the same manner, the moment of Hessian is derived as

− 1

T

T∑
t=1

∂sθt
(
θ
)

∂θ
′

p→ Iθθ,

where Iθθ = −E
[
∂Sθt(θ)

∂θ
′

]
θ=θ0

=



E
(

1
ht

ftf
′
t

)
0 0 0

0

{
1
2 +

E(u̇2t )
σ2u

}
E
(
hλth

′
λt

)
· 0

0 − 1
σ2u
E
{

(u̇tmt + utṁt) h
′
λt

}
1
σ2u
E
(
mtm

′
t

)
0

0 0 0 1
2σ4u


.

Given Assumption A. and with required conditions for Theorem 7.1 of Straumann and Mikosch

(2006), θ̂ is able to converge to θ0 in probability. Finally, this implies that

√
T
(
θ̂ − θ0

)
a→ N

(
0, I−1

θθ JθθI
−1
θθ

)
,

where both Iθθ and Jθθ are finite and positive definite. This asymptotic normality for the

QML estimators should be persistently employed for the construction of misspecification test

statistics.

2.2.2 Analysis of Estimation Effect

Within the framework of QML, the estimation effect arises from the property of asymptotic

correlations indicated in an information matrix. As studied in Engle (1982) and Boller-

slev (1986), the conditional mean and variance parameters in the standard GARCH model

can be separately estimated without loss of asymptotic effi ciency. This naturally works as
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a conditional expectation of the off-diagonal block of Hessian of the GARCH log-likelihood

is zero. Along these lines, the analysis of the estimation effects from the conditional mean

specification have often been ruled out in the inference of GARCH under the conditional

symmetry assumption of zt, i.e. E
(
z3
t

)
= 0, see Halunga and Orme (2009). However, the

Realised GARCH specification does not include the terms of squared lagged error process

in its GARCH equation. As well as this, the model allows for joint dependence between ht

and xt. Therefore, further statistical analysis of the estimation effect between the estimated

parameters will accommodate a distinctive contribution for estimating and testing the Re-

alised GARCH specification compared to the standard GARCH inference. In this sense, we

are willing to pay greater attention to identifying the properties of asymptotic independence

(or dependence) of the off-diagonal elements in the information matrix.

Given that the estimated conditional mean and variance parameters are asymptotically

orthogonal, since hηt = 0, as proved earlier, E
[
hλth

′
ηt

]
θ=θ0

is indeed zero, then the off-

diagonals that involve E
[
hλth

′
ηt

]
θ=θ0

in Jθθ and Iθθ should be zero as well. Namely, if

the conditional variance equation does not include squared lagged errors of the conditional

mean, ε2
t−j , in the specification, it automatically satisfies E

[
hλth

′
ηt

]
θ=θ0

= 0 without any

assumption of the conditional symmetry. Also, it can be shown that excluding the squared

lagged error term ensures the asymptotic orthogonality between the estimate parameters of

λ and η. With E (εt|Ft−1) = 0 and E
(
ε2
t |Ft−1

)
= ht, then

Iλη =
1

T

T∑
t=1

E

[
E

{
∂sλt
∂η′

∣∣∣∣Ft−1

}]
θ=θ0

= − 1

T

T∑
t=1

E

[
1

ht
fth
′
λtE (εt| Ft−1)

]
θ=θ0

= 0.

This implies that asymptotically, the conditional variance parameters can be estimated sep-

arately from the mean parameters within the null specification. Further, for the relation

between η and υ, the derivatives of sυt and sσt with respect to η are given by

∂sυt
∂η′

=
1

σ2
u

(
u̇thηtm

′
t + uthηtṁ

′
t

)
,

∂sσt
∂η′

=
utu̇t
σ4
u

hηt,

27



respectively. It is also automatically satisfied that the conditional mean parameters are as-

ymptotically orthogonal to the parameters in the measurement equation xt as hηt = 0, since

Iυη = E

[
∂SυT (θ)

∂η′

]
θ=θ0

= 0,

Iση = E

[
∂SσT (θ)

∂η′

]
θ=θ0

= 0.

On the other hand, as specified in Jθθ, allowing for the leverage function, a (zt) , can induce

the asymptotic correlation in estimated parameters of λ and υ, along with the nuisance

parameter of the stochastic innovation of xt such that σ2
u. Therefore, the estimation effects

of the specification xt on the GARCH equation, ht, is subject to the dependence between εt

and xt, regardless of the fact that the conditional mean specification has no impact on the

estimation of the conditional variance.

Overall, we have uncovered the properties of the asymptotic independence that are in-

volved in allowing for the conditional mean to the Realised GARCH model. Specifically, the

conditional mean specification has no asymptotic influences in the estimation of the condi-

tional variance and the realised measurement, regardless of particular conditions about the

moment property of standardised error processes of ht and xt. Moreover, we have demon-

strated the possible existence of an estimation effect between the realised measure of volatility

and the conditional variance. However, it would be still arguable whether or not the condi-

tional mean effects can be assumed away when testing for misspecification of the null model.

We deal with this matter in a later discussion.

2.3 A Generic Specification Test Statistic

In this section, the misspecification testing procedure for the Realised GARCH(p, q) model

is developed. We design a class of parametric test statistics to detect any potential mis-

specification of the conditional variance specification. The generic form of the test statistic

is obtained on the basis of the conditional moment (score) principle and limit distribution

theory that should be able to advocate the construction of asymptotically valid conditional

moment test statistics. The conditional moment testing framework can be established having

E [sθt (θ)| Ft−1]θ=θ0
= 0 in mind. In other words, the conditional expectation of the score
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vector ought to be zero when any measurable function of the past information set (σ-field) is

uncorrelated with any elements of the score vector under the assumption that {sθt (θ) ,Ft}

is a martingale difference vector sequence. In this context, the correct specification of the

Realised GARCH model implies that the following conditions are satisfied simultaneously:

E

(
ε2
t

ht
− 1

∣∣∣∣Ft−1

)
= 0, E (ut| Ft−1) = 0, and E

(
u2
t

σ2
u

− 1

∣∣∣∣Ft−1

)
= 0. (5)

The first condition infers that the squared standardised error process is serially uncorrelated

with its past history. In accordance with the conditional moment principle, this condition

is indeed the baseline property when constructing misspecification tests of typical GARCH-

nested conditional variance models. In addition, since the null model of this study is designed

to capture the dependence between ht and xt, the latter conditions which are presumed

as the distributional properties of ut should also be taken into account to detect potential

misspecification of the conditional variance equation that particularly arises from incorrect

specification of the realised measurement equation.

Let dλt = z2
t −1− 2utu̇t

σ2u
, where dλt is the typical element of the score function which corre-

sponds to the score contribution from the parameters of the GARCH equation, λ. Indeed, dλt

consists of two terms z2
t −1 and utu̇t, where u̇t is defined in (4). Thus, infringement of the con-

ditional moment condition for dλt may be driven by joint causes of potential misspecification

in log ht and log xt. More specifically, E
[
z2
t − 1

∣∣Ft−1

]
θ=θ0

= 0 and E [utu̇t| Ft−1]θ=θ0
= 0

have to be simultaneously satisfied if the null model is correctly specified. Otherwise, either

one or both of them could be non-zero. It implies that incorrect specification of log xt may

also cause misspecification of the conditional variance even if log ht has a correct specifica-

tion. Namely, it can be seen that a test indicator to be constructed for testing adequacy of

the Realised GARCH conditional variance is being tied onto the conditional moment condi-

tions, presented in (5). In accordance with the conditional moment principle for the score

contribution under the martingale difference sequence, the general form of the null hypothesis

to detect misspecification of the Realised GARCH model can be stated as

H0 : E [dλt| Ft−1]θ=θ0
= 0, (6)

where θ0 is a true parameter vector under the null. Simply, a failure in rejection of the
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null implies that there is no evidence of misspecification of the Realised GARCH model. A

conditional moment test can be constructed based on

E [dλtwt]θ=θ0
= 0,

wherewt is an Ft−1 measurable function and can be identified with test variables implicated in

any particular alternative conditional variance specification against the null. The test variable

in wt should be able to accommodate the relevant past history of the process ht. For example,

consider one alternative specification whose conditional variance equation, denoted as hat , is

specified with unknown parameter vector, π, of omitted variables. Then, the rejection of

H0 : π = 0 implies misspecification of the null model in terms of ht. In this light, testing

for (6) can be utilised by the following generic conditional moment test indicator with the

unknown parameter vector, π. It is defined as

SπT

(
θ̂
)

=
1

T

T∑
t=1

sπt

(
θ̂
)
, (7)

where sπt

(
θ̂
)

= d̂λtŵt and θ̂ is the consistent QML estimator of the null parameters. The test

indicator will be adapted to the construction of the generic form of the misspecification test

statistics for the Realised GARCH conditional variance. The first-order mean value expansion

of the test indicator about θ = θ0 yields

√
TSπT

(
θ̂
)

=
√
TSπT (θ0) +

∂SπT
(
θ
)

∂θ
′

√
T
(
θ̂ − θ0

)
,

where the mean value θ lies between θ̂ and θ0, so that θ = θ0+op (1) under the null hypothesis.

We devise Assumption B to ensure necessary moment conditions for wt, so as to satisfy the

finite sample variance-covariance matrix property of SπT

(
θ̂
)
, which is to be defined in the

following section.

Assumption B.

1. E supθ ‖wt‖ <∞ for all t.

2. E supθ ‖wt‖2 <∞ for all t.

3. E supθ
∥∥∂wt
∂θ

∥∥ <∞ for all t.
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Under Assumptions A and B, a suitable ULLN ensures that
∂SπT (θ)
∂θ
′ −E

[
∂SπT (θ)

∂θ
′

]
θ=θ0

p→

0. Then, exploiting a CLT, the limiting distribution of
√
TSπT

(
θ̂
)
can be derived as

√
TSπT

(
θ̂
)

d→ N (0,VT ) ,

where VT is a positive definite and finite matrix, given by

VT = ATJTA
′
T ,

with

AT =
[
−IπθI−1

θθ : Ir
]

and JT =

Jθθ J ′πθ
Jπθ Jππ

 ,

provided that, Jπθ = 1
T

∑T
t=1E

[
sπt (θ) sθt (θ)

′
]
θ=θ0

= [Jπη : Jπλ : Jπυ : Jπσ] with

Jπη = 0,

Jπλ =
1

2
E

{(
1− z2

t +
2utu̇t
σ2
u

)2
}
E
(
wth

′
λt

)
,

Jπυ = − 2

σ2
u

E
(
u̇twtm

′
t

)
,

Jπσ = − 1

σ6
u

E
(
u3
t

)
E (u̇twt) ,

and Jππ = 1
T

∑T
t=1E

[
sπt (θ) sπt (θ)

′
]
θ=θ0

,

= E

{(
1− z2

t +
2utu̇t
σ2
u

)2
}
E
(
wtw

′
t

)
,

and Iπθ = −E
[
∂Sπt(θ)

∂θ
′

]
θ=θ0

= [Iπη : Iπλ : Iπυ : Iπσ] with

Iπη = 0,

Iπλ = E

{(
1 +

2u̇2
t

σ2
u

)
wth

′
λt

}
,

Iπυ = − 2

σ2
u

E
(
u̇twtm

′
t + utwtṁ

′
t

)
,

Iπσ = 0,

31



and Ir is the identity matrix with r = rank (Jππ) . From the preceding results, the asymp-

totically valid generic conditional moment test statistic is constructed as

T × S
′
πT

(
θ̂
)
V̂−1
T SπT

(
θ̂
)
, (8)

which has a χ2
r limiting distribution under the null. V̂T is any consistent estimator of VT , i.e.

V̂T = VT + op (1) .

Against the frameworks of the asymmetry test of Engle and Ng (1993) and the non-

linearity test of Lundbergh and Teräsvirta (2002) for GARCH models, Halunga and Orme

(2009) showed that estimation effects from the conditional mean specification may not be

asymptotically negligible even under conditional symmetry of the standardised error process.

On the other hand, the Realised GARCH equation employs the realised measure of volatility

instead of lagged squared returns, to estimate and predict conditional variance. This au-

tomatically guarantees asymptotic orthogonality between η and either λ or υ in the QML

framework without any conditional symmetry assumptions, holding hηt = 0.Moreover, in the

construction of the generic misspecification test statistic, all the effects from the conditional

mean parameters are ruled out from the dynamics of variance matrix estimators in (8) under

the null, since Iπη = 0 and Jπη = 0 along with Iθη = 0 and Jθη = 0. Therefore, it can

be suggested that the test of the adequacy of the Realised GARCH will not be influenced by

the estimation of conditional mean parameter, η. Namely, potential misspecification of the

conditional mean can be automatically negligible in both the estimation and testing of the

conditional variance specification. However, the orthogonality in the conditional moments

between the parameters of omitted variables, π, and the conditional variance, λ, still needs

to be identified. In the previous section, we found that an estimation effect exists between the

parameters in ht and xt. Hence, this might suggest that the estimation effect of the variance

estimator of the test statistic with respect to λ and υ would be asymptotically non-negligible

under the joint dependence even if lagged variables of xt are still exogenous and observ-

able. Along these lines, the following section will propose the test statistic to test conditional

variance specifications with particular alternatives. Also, the dynamics of variance matrix

estimator in (8) is verified, incorporating the analysis of the estimation effect with respect to

λ and υ over π.
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2.4 Misspecification Tests for Conditional Variance

2.4.1 Test Indicator with Alternative Conditional Variance

In order to construct misspecification test statistics for potential misspecification in condi-

tional variance particularly, we here consider a possible alternative GARCH equation in which

additional stylised factors or some candidates of latent factors of the true conditional vari-

ance are also specified. Those additional variables that are not explicitly involved in the null

specification can be accommodated by the test variables in wt. In this sense, an alternative

specification should be able to achieve more accurate estimation and prediction by accounting

for some additional latent factors of volatility that are less likely to be captured by the null

specification.

Consider the error process of return series within the alternative:

εt = zt
√
hat ,

where hat is a conditional variance under the alternative. The log-linear specification of the

null model might suggest us to have the following specifications for hat in mind.

hat = htgt or hat = ht exp (gt) ,

where gt = g (vt−1;π) is any Ft−1 measurable linear or non-linear function that characterises

possible misspecification of the null model. vt−1 is the vector of omitted variables from ht. π

denotes the corresponding unknown parameter vector to vt−1. vt−1 could be derived from a

(quasi) score principle, and could be a latent volatility variable which particularly specified in

any alternative model. For example, asymmetry, non-linearity etc. The specific test variables

of vt−1 for the additional leverage effect in volatility will be detailed in the following section.

If vt−1 is specified with log-linear form in the alternative model, then it would prefer to take

the first form of hat . Otherwise, the latter could be more suitable than the former. With this

in mind, an alternative test for misspecification of the null specification is now constructed

with the following alternative specification in mind:
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log hat = λ
′
cat−1 + gt, (9)

log xat = υ
′
ma
t + ut, (10)

where cat−1 =
(
1, log hat−1, . . . , log hat−p, log xat−1, . . . , log xat−q

)′
and ma

t = (1, log hat , a (zt))
′
.

Hence, under the null such that

H0 : π = 0,

the test indicator is of the form (7) with the test variables that is constructed as

ŵt =

[
∂ log hat
∂π

]
π=0,θ=θ̂

.

For the sake of simplicity, suppose that gt has a form of a linear polynomial, i.e. gt = π
′
vt−1.

Denote haπt =
∂ log hat
∂π , then

haπt =
∂λ
′
cat−1

∂π
+
∂π
′
vt−1

∂π

= λ
′
caπt−1 + vt−1 + πv̇

′
t−1h

a
πt−1,

where caπt−1 =
∂cat−1
∂π =

(
0n×1,h

a
πt−1, ...,h

a
πt−p,0n×q

)′
is a (p+ q + 1) × n matrix, n is row

length of the unknown parameter vector π and v̇
′
t−1 =

∂v
′
t−1

∂ log hat−1
. Under the null, haπt can be

formulised with the recursion of the conditional variance as follows.

haπt = λ
′
caπt−1 + vt−1

=

p∑
i=1

βih
a
πt−i + vt−1

=

t−1∑
i=0

ψivt−1−i

=
t−1∑
i=0

{B (L)∗}i vt−1−i.

So as to detect misspecification of the conditional variance equation, the generic test variables
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therefore take the form with the recursive nature of the conditional variance as follows.

ŵt =

t−1∑
i=0

{
B̂ (L)∗

}i
vt−1−i, (11)

where B̂ (L)∗ = β̂1 + β̂2L + . . . + β̂pL
(p−1), and "hats" denotes the everything is evaluated

at the consistent null parameter estimator, θ̂. For example, the test variable for the null of

Realised GARCH(1, 1) is formed as

ŵt =

t−1∑
i=0

β̂
i
vt−1−i.

Because of the fact that the errors in time series are serially correlated in general, it is

expected that the test statistic with recursion can possibly improve testing performance in

terms of the size and power of the test against the one without recursion, vt−1. In accordance

with the null model, however, the lagged variables of the ex-post realised measure of volatility

are used to model conditional volatility instead of the squared past error process. In addition,

as noted earlier, the realised measurement is not necessarily an unbiased estimator of the

latent volatility. For these reasons, we hypothesise carefully that none of the two different

test variables shows strong dominance in testing performance.

2.4.2 Testing for Additional Asymmetry

In the case of the Realised GARCH(1, 1) model, once we replace log xt−1 in (2) with (3), the

leverage function that is able of capturing asymmetric behaviour of ht explicitly appears in

the conditional variance equation as follows:

log ht = ω1 + γ1ξ1 + (β1 + γ1ϕ1) log ht−1 + γ1δ
′
a (zt−1) + γ1ut−1.

The asymmetric dynamics of the conditional variance are explained by a leverage function

a (zt−1) that accommodates the dependence between the return at time t− 1 and the future

volatility at time t. Note that we consider a quadratic specification for the leverage function

which corresponds to the second order Hermite polynomial, δ
′
a (zt−1) = δ1zt−1+δ2

(
z2
t−1 − 1

)
,

in convenience for the construction of the test statistic. Then, it can be seen that the

transformed GARCH equation above resembles the specification of the Exponential GARCH
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(EGARCH) model of Nelson (1991). As noted earlier, δ
′
a (zt−1) may play a role to capture

leverage effects in the volatility process. Moreover, ut−1 utilises a stochastic volatility inno-

vation, since we do not know ut at time t− 1 whereas we know ut−1 at time t. The drawback

of the given transformed specification is that the same parameter γ1 is implicitly imposed

as a coeffi cient of both a (zt−1) and ut. In this case, the Realised GARCH specification has

a limitation to identify exact partial effects of each a (zt−1) and ut−1 onto the dynamics of

conditional volatility. Thus, if we assume that the null model is insuffi cient to capture the

leverage effect, then one particular alternative specification would be able to provide a better

guidance by detecting additional asymmetry which is potentially implemented into the true

volatility process.

In this chapter, the Realised Exponential GARCH (Realised EGARCH) of Hansen and

Huang (2012) is utilised as one of a special case of possible alternatives against the null

specification. The Realised EGARCH model is given by

log ht = ω̆ + β̆ log ht−1 + τ̆
′
a (zt−1) + γ̆ut−1, (12)

log xt = ξ̆ + ϕ̆ log ht + δ̆
′
a (zt) + ut, (13)

where τ̆
′
a (zt) = τ̆1zt + τ̆2

(
z2
t − 1

)
is a new leverage function that directly includes within

the GARCH equation. It is worth noting that γ̆ut−1 in (12) is the main channel by which

the realised measures drive expectations of future volatility movement. It would be also seen

that Realised GARCH(1, 1) is implicitly nested to Realised EGARCH with single realised

measure of volatility when τ̆
′
a (zt) = γ1δ

′
a (zt) . The empirical analysis conducted in Hansen

and Huang (2012) shows that holding equality of parameters between τ̆ and γ1δ is less likely

to be significant in estimation. Further, the Realised EGARCH has superiority to the Realised

GARCH in both the log-likelihood and the partial log-likelihood obtained throughout their

empirical results. In this sense, we are willing to take the Realised EGARCH model as an

alternative model against the null model. Moreover, before carrying out specification testing,

the parameter constraint for τ̆ 6= γ1δ is presumed based on the discussions above. Then,

we may believe that the Realised GARCH and the Realised EGARCH models have different

specification each other.

As the alternative specification of conditional variance to be tested, we employ the Realised
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EGARCH model for market returns of Hansen et al. (2014), rather than the more general

Realised EGARCH specification given in (12) and (13). In the GARCH equation of (12),

the dependence between ht and xt can be captured by allowing for ut−1, the one-step past

stochastic innovation of xt. However, it is natural to restrict that τ̆ 6= γ1δ,as noted earlier.

Then, the null specification is not nested in the given specification of (12), in general. In this

sense, keeping existing variables and parameters in the null model, the alternative specification

for testing additional asymmetry in the conditional variance is given by

log hat = λ
′
cat−1 + π1zt−1 + π2

(
z2
t−1 − 1

)
, (14)

log xat = υ
′
ma
t + ut.

Indeed, gt = π
′
vt−1 should be a quadratic function of zt that implicitly capture additional

asymmetric feature of volatility. Taking recursion to the conditional variance, the test variable

can be derived as

ŵt =
t−1∑
i=0

{
B̂ (L)∗

}i zt−1−i

z2
t−1−i − 1

 . (15)

2.4.2.1 Orthogonality in Variance Estimator

Following the generic testing procedures, demonstrating orthogonality in Iπθ across the given

parameters plays a role to explain potential asymptotically non-negligible estimation effect in

the variance estimator of the test statistic, (8). Since it has been turned out that the estimation

effect from the conditional mean parameters onto the other parameters can be automatically

ignorable within the null specification, we pay greater attention to verify whether the esti-

mation effect over either the conditional variance parameter, λ or the realised measurement

parameter, υ is asymptotically negligible or not, under the alternative for the construction of

a variance estimator, by investigating Iπλ and Iπυ. As noted earlier, we take the quardratic

form of the leverage function in the alternative specification, δ
′
a (zt) = δ1zt + δ2

(
z2
t − 1

)
.

Then, denote that u̇t = −ϕ+ 1
2δ1zt + δ2z

2
t .

With respect to conditional variance parameters, Iπλ is derived as

E

(1 +
2u̇2

t

σ2
u

) t−1∑
i=0

t−1∑
j=0

ψiψj

 zt−1−i

z2
t−1−i − 1

 c
′
t−1−j


θ=θ0

. (16)
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As
∣∣∣∑t−1

i=0

∑t−1
j=0 ψiψj

∣∣∣ =
∣∣∣∑t−1

i=0 ψ
2
i

∣∣∣ ≤ (∑t−1
i=0 |ψi|

)2
<∞, the typical expectation of (16) exists

obviously, and is given by

E

(1 +
2u̇2

t

σ2
u

) zt−l

z2
t−l − 1

 c
′
t−m


θ=θ0

, (17)

for all l,m < t, where ct−m = (1, log ht−m, . . . , log ht−p−m+1, log xt−m, . . . , log xt−q−m+1)
′
. It

is worth noting that xt−k, k = 1, . . . , t − 1, is initially set to be predetermined through the

estimation. Depending on the size of l and m, some of elements in ct−m are counted as

either random or non-random, when taking the conditional expectation given Ft−l−1. Hence,

the typical expectation, (17), can be examined for the cases of l = m, l < m and l > m,

respectively. Indeed, those of the random component in ct−m are only subject to the dynamics

of the conditional variance over given lags l and m. However, by initial setting of the error

process, zt is conditionally and unconditionally uncorrelated with ht, for any time t, if the null

model is correctly specified. Therefore, it can be said that none of the random elements in

ct−m is asymptotically correlated with zt−l, regardless of the size of m against l. Furthermore,

u̇t is a function of zt whose lagged process is assumed to be independent itself, thus, u̇t and

zt−l must be asymptotically uncorrelated.

Conditioning on Ft−l−1, the typical expectation the above can be expressed as

E

E

(

1 +
2u̇2

t

σ2
u

) zt−l

z2
t−l − 1

 c
′
t−m

∣∣∣∣∣∣∣Ft−l−1



θ=θ0

, (18)

which is zero if the conditional expectation given Ft−l−1 is zero. The latter can be naturally

established by the discussions noted above. Specifically, it is always valid that

E


 zt−l

z2
t−l − 1

 (log ht−m, log ht−m−1, . . . , log ht−p−m+1)

∣∣∣∣∣∣∣Ft−l−1


θ=θ0

= 0,

under Assumption A.4, since E [zt−l| Ft−l−1]θ=θ0
and E

[
z2
t−l − 1

∣∣Ft−l−1

]
θ=θ0

are zero. Also,

there is no asymptotic correlation between zt and zt−l. Finally, it brings us to show that the

terms in the typical expectation are asymptotically zero, in general. As a consequence, the

estimation effect of the conditional variance equation may be asymptotically negligible when
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testing for additional asymmetry in the conditional variance of the null, say Iπλ = 0, a.s., in

general.

On the other hand, we investigate whether estimation effects from the realised measure-

ment equation parameters, υ, are negligible or not. With the alternative model for additional

leverage effect, Iπυ is given by

− 2

σ2
u

E

 t−1∑
i=0

ψi

 zt−1−i

z2
t−1−i − 1

(u̇tm′
t + utṁ

′
t

)
θ=θ0

.

Since 0 <
∑t−1

i=0 ψi <∞, the typical expectation is given by

E


 zt−l

z2
t−l − 1

(u̇tm′
t + utṁ

′
t

)
θ=θ0

= E

E

 zt−l

z2
t−l − 1

(u̇tm′
t + utṁ

′
t

)∣∣∣∣∣∣∣Ft−l−1



θ=θ0

,

which is zero if the conditional expectation given Ft−l−1 is zero. Recallmt =
(
1, log ht, zt, z

2
t − 1

)′
and ṁt =

(
0, 1,−1

2zt,−z
2
t

)′
. In addition, we initially assumed that ut and zt are mutually in-

dependent over time t. Therefore, since E [zt−l| Ft−l−1]θ=θ0
and E

[
z2
t−l − 1

∣∣Ft−l−1

]
θ=θ0

are

zero, it can be shown that the conditional expectation given Ft−l−1 is asymptotically zero, in

general. Consequently, the estimation effect of the parameters in the realised measurement

equation onto the variance estimator can be asymptotically negligible in this context.

Based on all these discussions that Iπλ = 0 and Iπυ = 0, the asymptotically valid test

statistic for additional asymmetry can be constructed as

TA = T × S
′
πT

(
θ̂
)
V̂−1
ATSπT

(
θ̂
)
, (19)

which is asymptotically distributed as χ2 with r degrees of freedom that is dim (vt−1) = 2 in

the case. The variance estimator, V̂AT , can be specified by taking the diagonal elements only

from V̂T , given in the generic form of the misspecification test statistic.

39



2.5 Monte Carlo Evidences

In this section, the Monte Carlo simulation evidence is presented with the evaluation results

of the finite sample size and size-adjusted power performance of the proposed misspecification

tests for the Realised GARCH models. Over all of the experiments considered, the data

generation process (DGP) has the following specification:

yt = εt,

εt =
√
htzt.

Specifically, we do not take into account lagged dependent regressors in the return equation

because the conditional mean effects on estimation and specification testing are asymptotically

negligible. Further, for the simplification of the analysis, the (conditional and unconditional)

mean of return series is set to be zero. In addition, through the experiment, we assume that

there is no misspecification in the realised measurement equation for the generation of the

synthetic error process of the return as well as realised measure of volatility process itself. We

generate artificial series of standardised error process, zt and stochastic innovation term of re-

alised measure of volatility, ut, independently. We assume that the standardised error process

of the return series follows zt ∼ N (0, 1) , or zt ∼ t (v) , standardised student t-distribution

with v degrees of freedom with v ∈ {12, 10, 7} . The stochastic innovation of the realised mea-

surement equation is assumed to be ut ∼ N
(
0, σ2

u

)
, where the unconditional variance of ut is

set to 0.15 over all the DGPs generated, without loss of generality. For each DGP, a series of

initial 5000 realisations is randomly produced via GAUSS12. The first 3000 realisations are

discarded in order to remove initialisation effects, which leaves a total of 2000 observations to

be used. The Monte Carlo simulations are performed using 1000 replications. The null genera-

tion model is given by the Realised GARCH(1, 1) specification, assuming that a measurement

equation is correctly specified. The Realised GARCH(1, 1) model is estimated by QML. The

test statistic for the detection of potential misspecification of the additional asymmetry is

specified with two different types of test variables. One is that ŵt =
(
zt−1, z

2
t−1 − 1

)′
, with-

out taking recursive nature of the elements in ŵt into account. Then, this statistic is denoted

as T nA . The other is TA of (19) with ŵt =
∑t−1

i=0

{
B̂ (L)∗

}i (
zt−i−1, z

2
t−i−1 − 1

)′
. It is worthy to

note that some test statistics for detecting leverage effect or non-linearity within the context
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of the conventional GARCH models are not adopted here for the comparison purpose, because

the null model does not specify squared lagged error process in the conditional variance equa-

tion. Instead, we adopt specification-free testing frameworks, such as the Ljung-Box (LB)

test statistic of Ljung and Box (1978) and Lagrange Multiplier (LM) test statistic of Engle

(1982), to test for autocorrelations and remaining ARCH effects in the squared standardised

residuals, respectively, with 20 lags. With these settings for the experiment, we investigate

the empirical size and size-adjusted power of the given misspecification test statistic at 5%

significance level.

2.5.1 Finite Sample Size of the Test

In order to check the empirical size of the test statistic, firstly, we arbitrarily choose the para-

meter values of generating processes. The DGPs could be generally classified by accounting

for different levels of persistence and leverage effect. As described earlier, the level of persis-

tence is determined by ρ = β1 + γ1ϕ1, when p = 1 and q = 1. We impose a restriction that

ϕ1 ' 1, reasoning the fact that a realised measure of volatility is proportional to logarithmi-

cally transformed quantity of conditional volatility. In this setting, the persistence level now

depends on the estimated values of β1 and γ1. Considering four levels of ρ, each L (0.85),M1

(0.90) ,M2 (0.95) and H (0.99) yields low-, medium-low-, medium-high- and high-persistent

dynamics of conditional variance, respectively. The value in the bracket corresponds to the

size of ρ. The data generation processes for the conditional variance and realised measurement

equations are:

L :
log ht = 0.10 + 0.50 log ht−1 + 0.35 log xt−1

log xt = −0.20 + 1.01 log ht + δ
′
a (zt−1) + ut

,

M1 :
log ht = 0.05 + 0.50 log ht−1 + 0.40 log xt−1

log xt = −0.20 + 1.01 log ht + δ
′
a (zt−1) + ut

,

M2 :
log ht = 0.04 + 0.60 log ht−1 + 0.35 log xt−1

log xt = −0.10 + 1.01 log ht + δ
′
a (zt−1) + ut

,
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H :
log ht = 0.02 + 0.60 log ht−1 + 0.40 log xt−1

log xt = −0.10 + 0.99 log ht + δ
′
a (zt−1) + ut

.

To specify level of asymmetry across the DGPs considered, we now introduce the news

impact curve (NIC) of the null specification from Hansen et al. (2012).

NIC = γ1δ
′
a (z) ,

where the leverage function is set to be δ
′
a (z) = δ1z+δ2

(
z2 − 1

)
. Controlling the parameters

of the leverage function under the baseline DGPs above, if γ1 is fixed, δ1 and δ2 would allow

the DGPs to exhibit different levels of asymmetry. Plugging the following leverage functions

into the baseline DGPs finally yields twelve data generation processes, in total.

A1 : −0.02zt + 0.07
(
z2
t − 1

)
,

A2 : −0.05zt + 0.08
(
z2
t − 1

)
,

A3 : −0.08zt + 0.09
(
z2
t − 1

)
.

For example, implied news impact curves for the A1, A2 and A3 are drawn in Figure 1,

exhibiting relative leverage effects, when restricting γ1 = 0.35. It can be seen that A3 is less

symmetric about zero than that of A1 or A2. Therefore, A1 is subject to weak asymmetry

relative to the others. A2 and A3 are treated as the cases that stand for the mid- and

high-level relative leverage effects, respectively.

Table 1 reports the actual rejection frequency under the true null. When zt ∼ N (0, 1) ,

the empirical sizes for T nA and TA are close to the nominal size of 5%. More specifically, T nA
reveals better empirical size than TA for the strong asymmetric DGPs (A3), regardless of

the level of persistence. T nA also results in relatively good empirical size, compared to TA for

higher persistence DGPs (H). When both persistence and asymmetry levels are medium, the

empirical sizes of TA get closer to the nominal size (M1/M2-A2). Further, TA is slightly

oversized for the low leverage models (A1), but is undersized for the high leverage models

(A3). On the other hand, for zt ∼ t (v) , both T nA and TA are undersized, in general, as
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the degrees of freedom decrease. When zt ∼ t (12) , it is not easy to find any evidence that

there is a significant difference of the empirical size of T nA and TA from the case of normal

distribution. For t (10) or t (7), the lower persistent DGPs (L, M1) report quite poor-sized

fits against a 5% nominal size. The case of the more persistent DGPs (M2, H) show better

empirical sizes compared to the former case. In addition, for every distribution considered

in the experiment, the empirical size appears to decrease in most cases of T nA and TA, as the

magnitude of asymmetry increases.

Figure 1. News Impact Curve

Additionally, the experiment evaluates the empirical size of the synthetic data processes,

generated by the parameters that are estimated from several real data used in Hansen et al.

(2012). We estimate the Realised GARCH(1, 1) model with open-to-close returns and realised

kernel series of twelve NYSE stocks. The estimates for Realised GARCH(1, 1) are presented

in Table 7, which can be found in the Appendix. Table 2 illustrates the simulation results

for the empirical size of the test statistic for this case. When zt ∼ N (0, 1) and t (12), the

empirical sizes for T nA and TA are closed to the nominal size. For t (10) and t (7) , it can be

seen that T nA and TA are significantly undersized against the nominal 5% size. For t (10) , the

empirical size of TA is worse than T nA . In reverse, the empirical size of TA is better than T nA ,

for t (7) . In general, it reveals consistent outcomes with the former arbitrary DGP case.
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2.5.2 Finite Sample Power of the Test

In checking the empirical size-adjusted power of the test statistic, we utilise the alternative

specification, provided in (14), against the null of the Realised GARCH(1, 1) model. As shown

in Hansen and Huang (2012), imposing zero mean restriction reveals better performance in

both the in-sample and out-of-sample fit of the Realised EGARCH model. In this sense, we

shall impose that the expectation of return is zero for the entire set of alternative DGPs. The

alternative data generating process is given by

log ht = ω + β log ht−1 + γ log xt−1 + π1zt−1 + π2

(
z2
t−1 − 1

)
, (20)

log xt = ξ + ϕ log ht + δ1zt + δ2

(
z2
t − 1

)
+ ut.

In order to demonstrate the effects of asymmetry in terms of the empirical power, we firstly

consider the following five baseline DGPs: A(DIS), B(KO), C(CAT), D(MRK), F(SPY),

where the parameter values are from the estimates of the Realised GARCH(1, 1) model with

open-to-close returns and realised kernel series, presented in Table 7. The choice of stocks

relies on the persistence level of the estimated conditional volatility. For the parameters of the

omitted variables, we arbitrarily take two pairs of π such that (π1, π2) = (−0.03, 0.01) and

(−0.01, 0.01) , which are denoted as G1 and G2, respectively. We expect that the alternative

DGP generated by G1 involves in a conditional volatility process with a greater magnitude of

leverage effect against the null process. The alternative DGP with G2 exhibits the volatility

process with low asymmetry relative to G1. Combining additional leverage functions with

the estimated null model, additional asymmetric volatility components are explicitly specified

into every single alternative DGP. The results for assessing the size-adjusted power of the

test are displayed in Table 3, with a nominal size of 5%. At any distribution of zt, the test

statistic performs very well in the case of G1, regardless of the level of persistence. In the

case of a smaller size of leverage effect, we confirm that the power of the test is much weaker

than before. Moreover, it is also seen that TA generally dominates T nA over the alternative

DGPs. Particularly, when the level of asymmetry is lower, TA would be remarkably effective

to detect misspecification of the null model.

We also evaluate the size-adjusted power of the test statistic based on the parameters

estimated using real data. To decide the parameter values of the DGP, we take the estimates
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for the Realised EGARCH with single realised measure of volatility (realised kernel), reported

in Hansen and Huang (2012, Table 3). However, the alternative specification is not exactly

the same as the specification of Hansen and Huang (2012). Instead, we employ the Realised

EGARCH specification of Hansen et al. (2014) as described in (20). Hence, it is inevitably

needed to recalculate the parameter values of (20) using the estimates from Hansen and Huang

(2012), assuming the estimates of the realised measurement equations remains the same in

both cases. Additionally, in order to verify the consistency of the estimates between the

two different EGARCH specifications, we also estimate (20) using the same real stock return

and realised kernel data and compare the estimates with the recalculated values. Then, it is

confirmed that there is no significant difference between them.3

Table 8 presents the recalculated parameters for our alternative specification with the

persistence level, which can be found in the Appendix. As discussed in Hansen and Huang

(2012), a degree of asymmetry in the leverage effect of the conditional variance can be roughly

captured by the coeffi cient of zt. A higher (less negative) valued π1 may stand for a lower

degree of asymmetry of volatility for returns, and vice versa. In our case, three data processes

generated using the estimates from KO, MCD and MRK should represent lower-asymmetry

synthetic return series.

In Table 4, we can observe that the DGPs that exhibit a relatively low degree of asymmetry

with a smaller value of coeffi cient π1 appear to have weaker power of performance in the tests

by T nA . However, the empirical power of TA for those DGPs reveals better properties than

that of T nA . Overall, the results of the Monte Carlo experiments confirm that the new test

statistics, T nA and TA, have fairly good size properties and very good power to detect strong

asymmetry. We may also suggest that T nA is often less effective in terms of its testing power, if

the return series follows the student t-distribution with a relatively small number of degrees of

freedom. Thus, it can be said that TA - the test statistic with stochastic recursion in the test

variable - should be more applicable to test for potential misspecification of the null model,

which could arise from strong asymmetric latent volatility.

3The results of the estimates for the Realised EGARCH used in Hansen, Lunde and Voev (2014) are available
from authors upon request.
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2.6 Empirical Applications

We carry out some empirical analysis for the log-linear Realised GARCH(1, 1) model as well.

In the simulation experiment, we assumed that the specification of the realised measurement

equation is correct to generate the series of εt and xt. In this sense, the empirical analysis helps

us check the validity of the constructed test statistic when detecting potential misspecification

of the conditional variance process, relaxing the assumption of the correct specification of xt.

Several real financial data taken from Hansen et al. (2012) and Shephard and Sheppard (2010)

are used to examine the test statistic for detecting any misspecification in leverage effects of

conditional volatility.

Table 5: p-values of Hansen et al. (2012)

TnA TA LB LM

BAC 0.000 0.000 0.972 1.000

CVX 0.000 0.000 0.242 0.999

DIS 0.000 0.001 0.027 0.000

GE 0.000 0.000 0.974 1.000

GM 0.000 0.000 0.217 0.817

IBM 0.000 0.000 0.450 1.000

KO 0.167 0.036 0.617 0.946

MCD 0.000 0.034 0.444 0.874

MMM 0.000 0.000 0.491 1.000

MRK 0.067 0.038 0.000 0.000

PG 0.000 0.000 0.214 0.347

SPY 0.000 0.000 0.095 1.000

First, Table 5 reports the p-values of the test statistic for the twelve stock and portfolio

returns with realised kernel data which are the same as what we analysed in the simulation

experiment. For every return process, TA rejects the null hypothesis that there is no additional

leverage effect, at 5% significance level. While, T nA is not rejected for KO and MRK at the

same significance level. As discussed earlier, we realised the fact that the estimated coeffi cients

for zt in the alternative GARCH equation for KO and MRK are not bigger than the others. In

this respect, it would be natural to conjecture that the KO and MRK stock return volatility

processes exhibit a low level of asymmetry relative to the other stock return volatility. In

addition, T nA presents relatively weak performance power when the true volatility is subject

to weak asymmetry in the leverage effect of the returns, according to the experiment results.

In this light, we can see that the test statistic can perform well to detect additional asymmetry
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in leverage effects that is not captured by the orginal Realised GARCH specification.

Since the realised measure of volatility is indeed treated as a noise proxy of the true

conditional volatility, we would like to empirically examine whether the test statistic is still

working properly across the different types of the realised measurement. In this part, the

log-linear Realised GARCH(1, 1) model is estimated for some stock market index and foreign

exchange rate returns with two popularly used realised measures such as realised variance

(RV) and realised kernel (RK). We briefly look at the differences in the estimates of Realised

GARCH volatility and report the estimated parameter values in Table 9, which can be found

in the Appendix.

Table 6: p-values of Shephard and Sheppard (2010)

xt = RV xt = RK

TnA TA LB LM TnA TA LB LM

DJI 0.000 0.000 0.495 1.000 0.000 0.000 0.487 1.000

IXIC 0.000 0.000 0.000 0.752 0.000 0.000 0.000 0.512

SPX 0.000 0.000 0.097 0.999 0.000 0.000 0.138 0.999

FTSE 0.000 0.000 0.247 0.986 0.000 0.000 0.259 0.981

N225 0.000 0.000 0.016 1.000 0.000 0.000 0.002 1.000

GBP 0.000 0.000 0.475 0.693 0.000 0.000 0.312 0.798

EUR 0.000 0.000 0.518 0.997 0.000 0.000 0.369 0.998

CHF 0.000 0.000 0.476 0.040 0.000 0.000 0.397 0.148

JPY 0.000 0.000 0.166 0.839 0.000 0.000 0.212 0.987

For the same return series, but with different realised measures of volatility, a relatively

large difference in estimates is often found in the intercept terms, ω and ξ. It is conjectured

that such a difference might come from the different level of unconditional variance of ut

between RV and RK. However, it would be diffi cult to say that such a difference is significantly

great on average. In the result of the misspecification test, both T nA and TA infer strong

evidences for the rejection of the null hypothesis at any significance level, as shown in Table

6. Namely, the Realised GARCH(1, 1) model is not well specified to capture the leverage

effect properly. However, it is hard to see any discrepancy between RV and RK in terms

of the statistical decision made by the test. Thus, we may be able to suggest that the

test statistic produces empirically consistent performance for testing additional asymmetry of

Realised GARCH volatility, regardless of the type of realised volatility measurement.
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2.7 Concluding Remarks

In this chapter, we provide a unifying and generic class of misspecification testing frameworks

for the Realised GARCH(p, q) model. The proposed test statistics are constructed based on

the conditional moment principle, having an asymptotic chi-square distribution under the

null. The misspecification test procedures can be simply applicable in practice without fur-

ther bootstrapping procedures etc., and help reduce the cost of time and computation load.

In addition, our analysis of the conditional mean effect in estimation and testing has provided

theoretical soundness for the test statistic to make it robust to the conditional heteroskedas-

ticity of the return process. As shown in a series of seminal studies, the conditional mean

specification might be asymptotically non-negligible when testing the specification of conven-

tional GARCH models. However, we have shown that the conditional mean parameter effects

in the estimation and testing for the Realised GARCH are effectively negligible in the absence

of the squared error process in the GARCHX specification. Therefore, the Realised GARCH

model with various types of mean specifications can be tested using the proposed generic

framework without any loss of generality.

Our Monte Carlo experiment reveals that the proposed test statistics have good finite

sample size properties and high degrees of power against alternative DGPs. In particular, the

test statistic that accounts for the recursive nature of the conditional variance appears to be a

powerful tool in the detection of the potential misspecification of the null model arising from

asymmetry behaviour in financial asset returns. The empirical application also supports that

the test statistic with the recursive nature of the processes works very well when the size of

the asymmetry in the leverage effect is large enough. Specifically, the asymmetry test rejects

the null at any significance level for the stock returns with a higher degree of asymmetry.

In the Realised GARCH process, including the squared error term would not be significant

empirically, as shown in Engle (2002) and Barndorff-Nielsen and Shephard (2007). However,

the lagged squared error-term also has often played an important role in estimating the

current level of volatility, alongside additional variables that are significant for predicting

latent volatility. Han and Park (2013) showed that using the information provided by squared

returns, the realised measures and implied volatility performs the best in terms of the in-

sample fit in their analysis. Therefore, the unifying and generic framework proposed in this
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study can extensively be employed for the misspecification tests for more general GARCH-

type models, which include other components of latent volatility, such as the squared returns,

jump component, implied volatility and multiple realised measure of volatility etc. The further

discussions would be of interest, for example, to investigate the asymptotic properties of the

proposed misspecification tests of the Realised GARCH model. Moreover, the misspecification

testing framework can be extended to dealing with a non-stationary covariate case such as

long memory, as analysed in Han and Kristensen (2014).
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Appendix 2.1 Additional Tables

Table 7: Estimates for log-linear Realised GARCH model

ω β γ ξ ϕ δ1 δ2 σ2u β + γϕ

BAC -0.006 0.527 0.438 0.003 1.000 -0.041 0.077 0.177 0.965

CAT 0.071 0.646 0.289 -0.151 1.086 -0.027 0.092 0.145 0.960

CVX 0.041 0.570 0.290 -0.098 1.326 -0.077 0.079 0.152 0.954

DIS 0.026 0.644 0.307 -0.055 1.100 -0.043 0.090 0.170 0.982

GE -0.001 0.703 0.291 0.004 0.979 -0.003 0.080 0.171 0.988

GM 0.138 0.657 0.301 -0.318 1.021 -0.007 0.123 0.223 0.964

IBM 0.000 0.638 0.359 0.010 0.938 -0.039 0.082 0.152 0.975

KO -0.084 0.601 0.399 0.188 0.929 -0.019 0.075 0.149 0.972

MCD 0.015 0.718 0.262 -0.017 0.989 -0.046 0.111 0.204 0.977

MMM -0.008 0.563 0.380 0.025 0.972 -0.018 0.073 0.175 0.933

MRK 0.084 0.633 0.241 -0.230 1.283 0.007 0.068 0.229 0.943

PG -0.087 0.553 0.367 0.182 1.048 -0.051 0.081 0.173 0.938

SPY 0.061 0.550 0.410 -0.183 1.036 -0.067 0.073 0.146 0.975

Note: The entries are from the estimates for the Realised GARCH(1,1) model using
real data set provided by Hansen, Huang, and Shek (2012), while they report the
estimates of Realised GARCH(1,2) only.

Table 8: Estimates for alternative Realised EGARCH model

ω β γ π1 π2 ξ ϕ δ1 δ2 σ2u β + γϕ

BAC 0.007 0.591 0.397 -0.073 0.019 -0.016 0.972 -0.032 0.077 0.170 0.977

CVX 0.045 0.592 0.272 -0.034 0.026 -0.101 1.293 -0.078 0.073 0.145 0.944

DIS 0.023 0.643 0.306 -0.031 0.007 -0.040 1.097 -0.039 0.088 0.166 0.979

GE 0.002 0.719 0.264 -0.045 0.030 0.000 0.996 0.004 0.077 0.166 0.982

GM 0.110 0.732 0.230 -0.042 0.041 -0.321 1.050 -0.024 0.118 0.217 0.973

IBM -0.004 0.676 0.307 -0.058 0.019 0.022 0.960 -0.022 0.080 0.145 0.971

KO -0.063 0.633 0.356 -0.021 0.008 0.158 0.953 -0.012 0.076 0.151 0.972

MCD 0.015 0.712 0.264 -0.023 0.004 -0.010 0.993 -0.025 0.109 0.200 0.974

MMM -0.008 0.590 0.326 -0.052 0.004 0.036 1.062 -0.019 0.071 0.166 0.936

MRK 0.089 0.629 0.239 -0.023 -0.005 -0.256 1.340 -0.009 0.070 0.230 0.949

PG -0.078 0.600 0.319 -0.039 0.016 0.185 1.070 -0.032 0.078 0.168 0.941

SPY 0.029 0.671 0.272 -0.084 0.031 -0.161 1.096 -0.076 0.073 0.132 0.969

Note: The entries are recalculated values from the estimates for the Realised EGARCH with realised
kernel of Hansen and Huang (2012, Table 3).
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Table 9: Estimates for log-linear Realised GARCH model with RV and RK

ω β γ ξ ϕ δ1 δ2 σ2u β + γϕ

RV

DJI -0.033 0.587 0.383 -0.653 0.998 -0.135 0.065 0.225 0.969

IXIC -0.264 0.584 0.339 0.211 1.161 -0.166 0.051 0.238 0.978

SPX -0.221 0.599 0.348 -0.119 1.069 -0.152 0.052 0.244 0.971

FTSE 0.272 0.668 0.337 -1.237 0.940 -0.136 0.079 0.189 0.985

N225 0.082 0.648 0.325 -1.163 0.978 -0.072 0.071 0.235 0.966

GBP -0.199 0.715 0.267 0.228 1.018 -0.010 0.080 0.097 0.987

EUR -0.421 0.725 0.234 1.107 1.108 0.001 0.096 0.116 0.984

CHF -0.396 0.747 0.214 1.055 1.105 -0.020 0.085 0.110 0.983

JPY -0.915 0.596 0.315 1.262 1.122 -0.041 0.099 0.139 0.949

Average -0.233 0.652 0.307 0.077 1.055 -0.081 0.075 0.177 0.975

RK

DJI 0.045 0.574 0.403 -0.808 0.982 -0.135 0.057 0.207 0.970

IXIC -0.165 0.597 0.342 -0.094 1.112 -0.170 0.060 0.257 0.977

SPX -0.241 0.605 0.342 -0.050 1.072 -0.151 0.052 0.251 0.972

FTSE 0.209 0.672 0.327 -1.080 0.954 -0.140 0.085 0.203 0.984

N225 0.020 0.658 0.311 -1.032 0.988 -0.073 0.071 0.259 0.965

GBP -0.221 0.713 0.264 0.272 1.033 -0.007 0.092 0.117 0.986

EUR -0.414 0.726 0.230 0.999 1.111 0.005 0.109 0.146 0.982

CHF -0.415 0.764 0.192 1.133 1.130 -0.023 0.105 0.151 0.981

JPY -1.015 0.597 0.299 1.482 1.155 -0.039 0.110 0.173 0.942

Average -0.244 0.656 0.301 0.091 1.060 -0.081 0.082 0.196 0.973

Note: The entries are from the estimates for the Realised GARCH(1,1) model using
selected real data set from Shephard and Sheppard (2010).
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Appendix 2.2 Derivation of Jπθ and Iπθ

The score vector of the individual log-likelihood function, given by

sθt (θ) = −1
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Next we have defined Iπθ = −E
[
∂Sπt(θ)
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θ=θ0

= [Iπη : Iπλ : Iπυ : Iπσ] . The each of the
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Chapter 3 Structural Breaks versus Long

Memory on Relative Predictive Ability of

GARCH Models: A Simulation Study

3.1 Introduction

Over the past few decades, the properties of long-range dependence have been established

in a large body of econometric literature. Some approaches have also been suggested and

developed to model long memory conditional variance. In general, a long memory behaviour

of a time series can be explained by dealing with slowly diminishing impact of shocks which

may accommodate non-summable autocovariances of a time series process. Typically, the

hyperbolically decaying autocorrelation structure may reflect such a distinctive characteristic

of long memory against a short memory process. In this sense, allowing for a fractional differ-

encing parameter contributes to making it more convenient to capture long-range dependence

for traditional time series models. Naturally, it has also come along with the introduction

of long memory-based conditional heteroskedastic models and recently, a class of the frac-

tionally integrated conditional heteroskedasticity models has been widely used to model the

persistence of conditional variance (e.g. Baillie, Bollerslev and Mikkelsen, 1996; Bollerslev and

Mikkelsen, 1996; Davidson, 2004).

A growing literature suggests that long memory could be spurious due to neglected struc-

tural breaks present in the time series. Diebold (1986) and Lamoureux and Lastrapes (1990)

showed that neglected structural breaks may cause misleading inference of the persistence in

conditional variance. More recently, Mikosch and Starica (2004) showed that spurious long

59



memory dynamics might be presented due to the non-linearity of the conditional variance

process, and an integrated conditional heteroskedastic model could induce a spurious estima-

tion under the constant unconditional variance assumption. In terms of a predictive ability

comparison, Diebold and Inoue (2001) argued that long memory may be a useful descrip-

tion, even if the data generating process exhibits structural breaks and weak dependence.

In addition, Morana and Beltratti (2004) described that neglecting breaks could be trivial

in very short term forecasting, once it allowed for a long memory component in the volatil-

ity model. A superior forecast can be obtained at longer horizons by modelling both long

memory and structural changes. On the other hand, Starica and Granger (2005) found that

non-linear models particularly with structural breaks in unconditional variance can produce

better performance in longer horizon forecasts. For generalised autoregressive conditional het-

eroskedasticity (GARCH), Mikosch and Starica (2004) and Hillebrand (2005) demonstrated

that neglecting structural breaks in GARCH parameters possibly brings in a misleading es-

timation of persistence with upward biases in the GARCH process. Moreover, Rapach and

Strauss (2008) have revealed that allowing for the structural breaks in the unconditional vari-

ance of exchange rate returns may often improve the in-sample and out-of-sample performance

of the GARCH volatility.

As described in the discussions above, in general, some of theoretical and empirical results

support that the persistence in conditional variance can be better characterised by a short

memory process with structural breaks than stationary long memory process. Thus, it could

be admitted that neglecting structural breaks can infer spurious long memory when modelling

and forecasting volatility. However, a choice of long memory and structural break in condi-

tional variance modelling would still be quite arguable due to the diffi culty distinguishing

between long memory and structural breaks. Along these lines, it has been less likely to ob-

tain consistent and completed empirical results which deal with an issue of relative predictive

ability between long memory and structural break forecasting models. This empirical feature

is indeed involved in the fact that an interplay between long memory and breaks is obviously

present in time series as pointed out by Perron (2006). In this sense, we consider the following

competing arguments through this study: long memory in variance cannot be fully explained

by structural breaks, whilst the presence of structural breaks in the true conditional variance

process may also infer spurious long memory.
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A proper choice of forecasting models is important to obtain accurate predictions since a

misspecified econometric model is more likely to produce a poor in-sample or out-of-sample

fit. For this reason, empirical researchers or practitioners want to make a proper selection of

forecasting models when true properties of given time series data are uncovered by rigorous

statistical tests or reliable empirical evidences. Nevertheless, there is a lack of information

which is provided with comprehensive simulation-based evidence on the relative predictive

ability of GARCH-type forecasting models with particular emphases on confused arguments

in and between structural break and long memory. In this sense, we shed light on such a pre-

dictive content via a Monte Carlo simulation experiment with potentially misspecified short

or long memory conditional variance models. Specifically, this chapter aims to investigate rel-

ative forecasting performance across a class of parsimonious GARCH-based models under the

assumption that the true memory properties of the underlying volatility process are already

known.

The data generation process (DGP) is broadly categorised with respect to the memory

properties through the experiment. We consider error processes exhibiting stationary short

memory conditional heteroskedasticity with or without structural change. The other accounts

for stationary long memory without structural break. The standard GARCH(1, 1) model

of Bollerslev (1986) is adopted to generate a set of short memory DGPs with or without

structural breaks. We classify the GARCH-based DGPs as follows: lower/medium/higher

persistent stationary GARCH; lower/medium/higher persistent GARCH with the single break

in the intercept term; GARCH with the single break in the persistent parameter. Also,

the experiment accounts for three different locations of the single structural break, which

correspond to 30%, 50% and 70% of the in-sample period, respectively. The fractionally

integrated GARCH(1, d, 1) (FIGARCH) model of Baillie et al. (1996) is used to produce a

synthetic error series for the stationary long memory conditional heteroskedastic process. We

consider two stationary FIGARCH DGPs with two different persistence levels, which explicitly

stand for the different degrees of long-range dependence in conditional variance.

We utilise a class of parsimonious conditional variance models in the context of GARCH

and exponentially weighted moving average (EWMA). Specifically, the estimation models are

as follows: GARCH(1, 1) , FIGARCH(1, d, 1) , RiskMetrics EWMA of J.P. Morgan (1994)

and Long Memory EWMA of Zumbach (2006). Basically, the out-of-sample forecasts of these
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models are produced by means of a recursive window scheme. Particularly for the GARCH

forecast, we also apply the following estimation windows: a rolling window with one-half

and one-quarter lengths of the in-sample period and a post-break sample window. In addi-

tion, mean and trimmed-mean forecast combinations are utilised to compare with the single

model-based forecasts. We consider 1, 5 and 22-step-ahead forecast horizons. Each step size

may imply daily, weekly and monthly forecast of conditional volatility, respectively. The

evaluations for relative performance of forecasts are carried out by means of Mean Squared

Forecasting Error (MSFE) and the mean of conditional Value at Risk (MVaR) loss functions

across the employed forecasting models. The MSFE loss function is mainly used for further

econometric loss evaluations due to its convenience in computation. We investigate the re-

jection frequency using White’s (2000) reality check and Hansen’s (2005) superior predictive

ability. In addition, the pairwise comparisons are considered across the forecasting models

applying the modified Diebold and Mariano test statistic of Harvey, Leybourne and Newbold

(1997) with pooled loss series.

Our Monte Carlo experiment reveals some interesting findings with respect to the memory

property of DGP, the forecast horizon and the level of persistence. It has been shown that

the forecasting models which can capture the given properties of the true conditional variance

process are generally favourable in the absence of structural breaks. When an artificial break

is present in the DGP, in general, the presence of the break is important to set a proper

estimation window size for the short memory models in the shorter-run forecasting cases.

In the case of a high persistent short memory process with structural break, spurious long

memory may often dominate the structural breaks in the longer-run forecasts. When the

artificial break is located at a relatively close point of the end of the in-sample, it is hard to

find any consistent feature or pattern in terms of forecast superiority between spurious long

memory and true long memory. Nevertheless, it can be seen that long memory-based forecasts

are generally better off than the competing forecasts. On the other hand, it has also been

found that two combined forecasts work well in the presence of a structural break, regardless

of the forecast horizon and the level of persistence. The results of the econometric evaluation

for the MSFE loss may also support the findings fairly well.

The chapter is organised as follows. Section 3.2 describes the specification of the forecast-

ing models and forecasting methods. Section 3.3 covers a brief introduction to econometric
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evaluation tools and methods. In Section 3.4, we first detail a design of the Monte Carlo

simulation and specific settings for the experiment. Further, the full-sample estimation and

out-of sample forecasting results with their statistical evaluations are analysed. Finally, the

conclusion of this study is given in Section 3.5.

3.2 Forecasting Conditional Variance

Denote that yt is a time series process. Under the assumption that the conditional and

unconditional means of yt are zero,

yt = εt

εt =
√
htzt,

for t = 1, . . . , T, where zt ∼ N (0, 1) is the standardised error process of εt, and ht =

E
(
ε2
t

∣∣Ft−1

)
is the conditional variance of εt, where the conditioning set Ft−1 is the σ-field

of all available past information set, up to and including time t− 1.

A class of GARCH models are estimated using the Quasi-Maximum Likelihood (QML)

framework. The specifications of the parsimonious conditional variance models are briefly

introduced with their s-step ahead of the conditional variance forecast equations. Next, the

estimation windows for the forecasting models are specified, followed by the details of the

forecast combinations.

3.2.1 Conditional Volatility Models

3.2.1.1 GARCH(1, 1)

The GARCH(1, 1) model is given by

ht = ω + αε2
t−1 + βht−1.

The non-negativeness conditions are ω > 0, α ≥ 0 and β ≥ 0. α + β < 1 which also ensure

covariance stationarity of the GARCH conditional variance process. The persistence of condi-

tional variance is measured by α+β in GARCH. As α+β gets closer to the unity, the GARCH

process is more likely to exhibit high persistence. However, it is generally acknowledged that
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the sample autocorrelations of the GARCH process is decaying exponentially, so that the

model might characterise stationary short memory conditional volatility even better. Indeed,

ht = E
(
ε2
t

∣∣Ft−1

)
, so that ht is Ft−1 measurable. When ω = (1− α− β)σ2, where σ2 is an

unconditional variance of GARCH process, the s-step ahead forecast of the GARCH(1, 1) can

be therefore expressed as

E (ht+s| Ft−1) = σ2 + (α+ β)s
(
ht − σ2

)
.

3.2.1.2 FIGARCH(1, d, 1)

The main difference of the FIGARCH model from GARCH is that the model incorporates

a slow hyperbolic decay for the autocorrelation of lagged squared errors in the conditional

variance with the long memory parameter d. It may be able to explain the long-run dynamics

of past shocks to the current level of conditional variance. The ARMA representation of

FIGARCH(1, d, 1) is given by

ht = ω +
[
1− (1− βL)−1 (1− φL) (1− L)d

]
ε2
t ,

where L is lag operator4. As noted by Baillie et al. (1996), for 0 < d 6 1, the FIGARCH

process does not have a finite unconditional variance, and is not covariance stationary which

are a shared feature with the IGARCH process. However, by a direct extension of the corre-

sponding proof for the IGARCH model, they showed that ht may be also strictly stationary

and ergodic, but it all depends on the distribution of εt. If d = 0, the FIGARCH model re-

duces to the GARCH process. In addition, following Baillie et al. (1996), a suffi cient condition

for the non-negativity of the conditional variance for FIGARCH(1, d, 1) model is ω > 0 and

0 6 β < d < 1. The s-step ahead forecast of the FIGARCH(1, d, 1) conditional variance is

modelled as

E (ht+s| Ft−1) = ω +
[
1− (1− βL)−1 (1− φL) (1− L)d

]
ε2
t+s−1.

4The truncation lag is set at 2000 for all of the estimation and generation of forecasts followed in the
experiment.
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3.2.1.3 RiskMetrics EWMA

Given data available at time t, for t = 1, . . . , T, the one-step-ahead conditional volatility

forecast of the RiskMetrics EWMA model is given by

σ2
t+1|t = (1− λ)

∞∑
i=0

λiε2
t−i

= λσ2
t|t−1 + (1− λ) ε2

t ,

where λ is the decay factor, 0 < λ < 1 and set λ = 0.94 for daily financial asset return, as

is usually recommended. The weight λ decays geometrically and plays a role in generating a

short memory process. The larger value of λ implies the higher persistence in ht and the lower

response to a shock. It is worth to note that σ2
t denotes the exponentially weighted moving

average variance measurement at a given time t, but it does not hold the same conditional

variance assumption as the case of the GARCH model. "t + 1|t" is read "the time t + 1

forecast given information up to and including time t." Following J.P. Morgan (1994), based

on the idea that the variance forecasts for two consecutive periods are the same, the s-period

forecast is defined as

σ2
t+s|t =

s∑
k=1

E
(
σ2
t+k

∣∣Ft)
= s× E

(
σ2
t+1

∣∣Ft)
= s× σ2

t+1|t.

3.2.1.4 Long Memory EWMA

Zumbach (2006, 2011) considers a class of processes where the conditional variance is a linear

function of the past squared error series, σ2
t =

∑∞
i=0 λ (i) ε2

t−i, with
∑∞

i=0 λ (i) = 1 and

λ (i) > 0.5 The long memory conditional variance is defined as the weighted average of R

short memory EWMA processes, given by

σ2
t =

R∑
r=1

wrhr,t,

5λ (i) is the geometrical decay factor in the framework of the RiskMetrics EWMA of J.P. Morgan (1994),
yielding a short memory process.
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where σ2
r,t = µrσ

2
r,t−1 + (1− µr) ε2

t . The decay factor µr of the rth EWMA process is defined

as µr = exp (−1/τ r) , where a characteristic time structure, τ r = τ1ρ
r−1 for r = 1, · · · , R.

The value of ρ is set to
√

2 as recommended by Zumbach (2006). The logarithmically decayed

weights is computed by

wr =
1

C

(
1− ln (τ r)

ln (τ0)

)
,

where the normalisation constant, C, is defined as C = R −
∑R

r
ln(τr)
ln(τ0) such that

∑R
r wr = 1.

Zumbach (2006) sets the optimal parameter values of τ0 = 1560, τ1 = 4 and τR = 512,

respectively. This is equivalent to R = 15. Within this framework, 1-day ahead forecast of

conditional variance is defined as

σ2
t+1|t =

∞∑
i=0

R∑
r=1

wr (1− µr)µirε2
t−i.

Furthermore, the s-step-ahead cumulative (s-period) forecast can be derived as

σ2
t+s|t = s

T∑
i=0

λ (s, i) ε2
t−i,

where λ (s, i) = 1
s

∑R
r=1

∑s−1
j=1 wj,r

(1−µr)
1−µTr

µir in which wj,r is the rth element of vector wj =

w
′
(
M + (ι− µ)w

′
)j
, w = (w1, · · · , wR)

′
, µ is the vector of µr, M is the diagonal matrix

consisting of µr, and ι is a unit vector. As initially conditioned that
∑R

r wr = 1, it also

naturally satisfies that
∑T

i=0 λ (s, i) = 1.

3.2.2 Estimation Window

For out-of-sample forecasting, we firstly divide the generated synthetic error series into the

in-sample and the out-of-sample period. Denote that s is a forecast horizon and p is a size of

out-of-sample. T −p is the length of the in-sample period. For expanding window forecasting,

the in-sample observations are used to generate the first out-of-sample forecast. Namely, the

initial set of observations spans from the first realisation up to the (T − p)th observation.

Once we obtain a new forecast, we expand the estimation window by one observation to

forecast conditional variance for the next period, say the first observation through observation

T −p+ 1. By repeating this procedure up to the end of the available out-of-sample period, we

can finally obtain p numbers of out-of-sample forecasts for every single expanding window-

66



based models. GARCH(1, 1) , FIGARCH(1, d, 1) and two EWMA-based models are utilised

within the framework of expanding window forecasting. We note that the GARCH(1, 1)

expanding window forecast is treated as the benchmark for latter use in the evaluation of the

MSFE and MVaR loss functions.

We also consider two rolling window forecasts for the standard GARCH model. The

model is estimated with two different rolling window sizes that are one-half and one-quarter

the lengths of the in-sample period. Let v denote the rolling window size. Thus, v =

0.50 and 0.25 in our case. Then the initial sample size used for the estimation is from

round [(1− v)× (T − p)]+1 to T −p. Once we obtain a new forecast, we roll over the estima-

tion window by one observation to forecast conditional variance for the next period. Specifi-

cally, the new estimation window covers the observations from round [(1− v)× (T − p)]+2 to

T−p+1.We repeat this procedure up to the end of the available out-of-sample period. Corre-

sponding to the given window sizes, those of forecasting models are denoted as GARCH(0.50)

and GARCH(0.25), respectively. In using a shorter estimation window, the forecast model

has a relatively smaller number of observations available to estimate GARCH parameters,

but it is more likely to reduce an overlapping part in data between different regimes. Since

the experiment imposes some of GARCH DGPs to have three different locations of the single

artificial break point, we would anticipate that the rolling window models can show relatively

accurate predictive ability of conditional variance to the others when the regime change point

is quite close to the rolling window size. For example, GARCH with 0.50 rolling window could

be selected as the best-performing model when the artificial break is placed in the middle of

the in-sample period.

Additionally, this study takes a post-break estimation window into account for the GARCH

forecast. We adopt the framework used in Rapach and Strauss (2008) (henceforth, RS) which

is based on the CUSUM test statistic of Inclan and Tiao (1994) for the detection of multiple

structural breaks in unconditional variance against the stationary short memory process. In

fact, the asymptotic distribution of the test statistic is obtained under the assumption that

a time series follows a Gaussian i.i.d. process. However, the test statistic may suffer from

upward size distortions as the sample size increases, when a given sequence of observations

is a dependent process such as a GARCH process, as shown in Andreou and Ghysels (2002)

and Sansó, Aragó and Carrion (2004). To complement this drawback, we utilise the non-
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parametric-adjusted CUSUM statistic using the Bartlett kernel estimator to test the null

of a constant unconditional variance against the alternative that the structural breaks are

present in the unconditional variance, based on initial setting of the asymptotically valid test

statistic of Sansó et al. (2004). Denote Ck =
∑k

t=1 y
2
t which is the cumulative sum of the

squared return from 1 up to time k. By the assumption that E (εt| Ft−1) = 0, we test the null

hypothesis, using the following CUSUM test statistic:

QT (k) = sup
k

∣∣∣∣∣ 1√
λ̂

(
1√
T
Ck −

k

T
√
T
CT

)∣∣∣∣∣ ,
where λ̂ = γ̂0+2

∑m
l=1

[
1− l (m+ 1)−1

]
γ̂l, in which γ̂l = T−1

∑T
t=l+1

(
y2
i,t − σ̂2

)(
y2
i,t−l − σ̂

2
)
.

σ̂2 = T−1CT , is unconditional variance of the return. m is a lag truncation parameter that can

be determined using the procedure in Newey and West (1994). k is the estimate of variance

change point which can maximise the function in given statistic. The asymptotic distribution

of QT (k) is given by

QT (k)→ sup
k

∣∣W 0 (k)
∣∣ ,

whereW 0 (k) = W (k)−kW (1) is a Brownian Bridge andW (k) is standard Brownian Motion.

We use the same finite sample critical value as the one generated via simulation, provided

by Sansó et al. (2004). To test for multiple structural breaks in unconditional variance and

estimate the break points, the modified iterated Cumulative Sum of Squares (ICSS) algorithm

of Inclan and Tiao (1994) is applied to the QT (k) statistic at 5% significance level. Note that

the modified ICSS algorithm is applied to the in-sample period, not including out-of-sample

observations. If we can detect significant evidence of single or multiple structural breaks, the

last break point among all of the estimated break points is used to determine the estimation

window size for the GARCH with break forecasts. Specifically, the GARCH model could

be estimated using the part of the in-sample observations from kf + 1 up to T − p, where

kf is the final structural break point detected. Then, we can obtain the first out-of-sample

forecast. If no break is detected, the generated forecasts must be equivalent to the forecast

from the GARCH with expanding window. After that, the second out-of-sample forecast

can be generated using the observations from the new break point by the modified ICSS

to T − p + 1. By repeating the described procedure up to the end of the full-sample, we

finally obtain p number of out-of-sample forecasts which may account for the potential (final)
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structural breaks through the entire sample. We denote the forecasts produced by means

of this framework as GARCH with breaks or GARCH(break). However, GARCH(break) is

likely to suffer from an issue, related to the number of observations to be used for reasonably

reliable estimates of the GARCH parameters. Namely, if the detected break point is located

too close around the forecast date, then a short sample would be available for estimation.

3.2.3 Forecast Combination

It is generally known that determining the optimal estimation window size for forecasting

is not easy in the presence of unknown structural breaks. As emphasised by Pesaran and

Timmermann (2007) with a linear regression-based analysis, the trade-off between bias and

forecast error variance should be considered to properly select an estimation window size for

out-of-sample forecasting. If structural break points are unknown, it has to be concerned

whether size, timing and number of breaks are precisely estimated in order to optimally

exploit the bias-variance trade-off. Therefore, it would be ideal if we can well characterise those

uncertainty when selecting the optimal estimation window in forecasting. However, specifying

the structural breaks might inevitably require substantial cost in the simulation experiment,

and also it might be beyond the topic of this study, we would rather take an alternative

practical way, instead. Pesaran and Timmermann (2007) and Clark and McCracken (2009)

suggest one practical way that is combining individual forecasts, generated in various sizes of

estimation window. Delivering the Monte Carlo simulation for the linear regression model,

they showed that a forecast combination can outperform in the presence of structural breaks

relative to the single model-based forecast with the expanding window that may neglect the

potential effect of structural breaks. RS also conducted empirical analysis using exchange

rate return volatility that forecast combinations of GARCH models with various window sizes

can produce a better out-of-sample fit in the presence of structural breaks, particularly in a

longer-run forecast.

In this study, mean and trimmed mean forecast combination methods are utilised for

the entire set of individual forecasts. The mean combination can be obtained by taking an

average of every single model-based forecast in each step of the simulation replication. To

obtain trimmed mean combination, we discard each of the best and the worst forecasts from

a set of individual forecasts in each step of the replication, then we calculate the average.
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3.3 Forecasting Performance Measurement

3.3.1 Loss Functions

We investigate the forecast performance across employed conditional variance forecasting mod-

els based on two forecasting loss functions. We use the squared error process as a proxy of

the true underlying variance process, following Awartani and Corradi (2005). They demon-

strated that squared errors are allowed to be a valid proxy in assessing the relative predictive

performance of various asymmetric GARCH models, while the true volatility process is unob-

servable. For measuring forecasting accuracy, we utilise two loss functions, MSFE and MVaR,

to evaluate forecasting errors across the individual forecasts as well as their combinations.

As supported by the empirical investigation of Awartani and Corradi (2005) and Hansen

and Lunde (2006) amongst others, the MSFE loss function may produce a consistent empirical

ranking of forecasting models when squared errors are used as a proxy for the latent financial

asset volatility. Also, Patton (2011) showed that the MSFE is a robust loss function on

evaluating relative predictive accuracy of volatility models, so that it may provide a consistent

ranking among the competing forecasts. However, Andersen and Bollerslev (1998) argued

that the realised squared daily returns could be poor conditional volatility estimators in the

presence of large idiosyncratic noise for financial asset return. Therefore, the simpler form of

MSFE would be less preferred to the aggregated MSFE which allows users to partly offset

some of the idiosyncratic error in ε2
t by taking average. In this study, the aggregated version of

MSFE loss function used in Starica and Granger (2005) is applied here to measure forecasting

performance. It is given by

MSFEs =
1

n

T∑
t=T−p+s

(
ε̃2
t − h̃t|t−s

)2
,

where ε̃2
t =

∑s
j=1 ε

2
t−(j−1) and h̃t|t−s,i =

∑s
j=1 ĥt−(j−1)|t−s, n = p − s + 1, is the number

of forecasts, p is a number of out-of-sample observations, so that T − p corresponds to the

in-sample size, and s denotes the forecast horizon. A smaller MSFEs indicates a better out-

of-sample fit relative to other competing forecasts.

In addition to MSFE, we account for MVaR to evaluate the goodness-of-fit of the out-of-

sample forecasts. Specifically, the conditional VaR loss function of González-Rivera, Lee and
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Mishra (2004) is adopted for this study. The conditional quantile in the error distribution at

time t+ 1 is defined as

Pr
(
εt+1 ≤ VaRαt+1

∣∣Ft) = δ.

The one-step-ahead VaR at given conditional quantile δ can be estimated as

VaRδt+1 = ρt+1 + Φ−1
t+1 (δ)ht+1,

where Φt+1 is the forecast cumulative distribution function of the standardised error process,

ρt+1 = E (εt+1| Ft) is the conditional mean forecast, and ht+1 = E
(
ε2
t+1

∣∣Ft) is the one-
step ahead conditional variance forecast. Within these settings, the mean loss function of

the conditional VaR with δ quantile of the cumulative distributions for the cumulative error

process is given by

MVaRδs =
1

n

T∑
t=T−p+s

(
δ − Iδt

)(
ε̃t −VaRδt|t−s

)
,

where VaRδt|t−s is the forecast of the cumulative distribution function of ε̃t at δ quantile,

in which ε̃t =
∑s

j=1 εt−(j−1) is the cumulative error process, formed at time t − s. Iδt =

I
(
ε̃t < VaRδt|t−s

)
, where I is an indicator function that takes a value of unity when ε̃t <

VaRδt|t−s, otherwise zero. If ε̃t is less than VaRδt|t−s, the absolute value of weight to the

difference between ε̃t and VaRδt|t−s is 1 − δ. In contrast, a bigger value of ε̃t than VaRδt|t−s
is associated with much smaller weight, δ, to that difference. Thus, this kind of asymmetric

feature of MVaR may be driven by allowing for the indicator function for lager cumulative

losses. Besides, we expect that the mean loss of the conditional VaR may partly rule out a

potential effect from latent volatility which is often observed in macroeconomic and financial

time series variables. We consider 5% conditional quantile, δ = 0.05. With zt ∼ N (0, 1) , we

generate the single series of εt using the estimates of the conditional variance at each time of

forecast, then calculate ε̃t at a given time period. Replicating this procedure 2000 times, we

obtain the empirical distribution of ε̃t, then VaR0.05
t|t−s is collected at the 100th element in the

ordered sequence. In comparison analysis, a smaller MVaR stands for a better goodness-of-fit

for the out-of-sample forecasts to the actual series of yt.
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3.3.2 Forecasting Loss Evaluation

Although a forecasting model ranking based on a loss comparison could be informative in

a selection of the best-performing (the smallest loss) forecasting model, it does not mean

that the loss difference between forecasting models is statistically significant. Moreover, it

does not indicate whether such a rank order is consistently robust in a different sample. In

this sense, we briefly introduce several econometric tests to examine the MSFE loss of the

conditional variance forecast. Firstly, we apply the equality predictive ability test of Diebold

and Mariano (1995) and West (1996) (henceforth DMW) to analyse pairwise comparison of

the competing forecasting models. Within a generic framework of DMW, the null hypothesis

is H0 : E [dt] = 0,where dt = L
(
ht,i, ε

2
t

)
− L

(
ht,j , ε

2
t

)
, that is the MSFE loss differential

between forecasting model i and j for i 6= j. The original DMW test statistic is given by

TDMW = dV̂ −1/2, (21)

where dn is the sample mean of dt which is dn =
∑T

t=(T−p)+s dt/n. V̂ is the asymptotic

long-run variance of
√
ndn. The DM statistic is asymptotically distributed standard normal

for non-nested model comparison as shown in West (1996). Further, we also utilise the

modification version of (21) for improving finite sample performance, proposed by Harvey et

al. (1997). The modified DMW test statistic (henceforth MDM) is given by

TMDM =

[
n+ 1− 2s+ n−1s (s− 1)

n

]1/2

TDMW .

TMDM is evaluated against the critical values from the Student’s t distribution with (n− 1)

degrees of freedom, rather than from the standard normal distribution in the case of TDMW .

To save space, we only report the results of the MDM tests in this chapter. The rejection of the

null hypothesis indicates that the i model outperforms the j model when TMDM < 0, and vice

versa. However, the MDM has some drawbacks when it applies to a large set of competing

forecasting models. For example, White (2000) points out a data snooping problem, and

Hansen, Lunde and Nason (2011) concerns a high-dimensionality issue in the estimation of a

covariance matrix with a large number of competing forecasting models, amongst others.

Further, White’s (2000) reality check (henceforth RC) and Hansen’s (2005) superior pre-
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dictive ability (henceforth SPA) tests are conducted for the multiple comparison of competing

forecasts. As the general aspects of RC and SPA are identical, we are interested in the null hy-

pothesis that one particular model fixed as the benchmark is not worse than any of the compet-

ing forecasts in terms of expected loss. The null hypothesis is given by H0 : E [dt] ≤ 0,where

dt = (dt,1, . . . , dt,j) , in which dt,i = L
(
ht,0, ε

2
t

)
− L

(
ht,i, ε

2
t

)
, for i = 1, . . . , j, j is the number

of competing models (j = 8 in this study). Let dt,i denote the loss differential of forecast i

relative to the benchmark forecast. The RC and SPA test statistics are given by

TRC = max
i

(√
nd1, . . . ,

√
ndi
)

TSPA = max

[
max
i

√
ndi
σ̂i

, 0

]

respectively, where di =
∑T

t=(T−p)+s dt,i/n and σ̂
2
i is a consistent estimator of the asymptotic

variance of
√
ndi. In our applications, we set each of individual forecasts as the benchmark

and the rest of the others as an alternative for the comparison. The loss function for both RC

and SPA test statistics are derived using a simple mean squared error metric. The p-values of

the given test statistics are computed using the stationary bootstrap of Politis and Romano

(1994) with 1000 bootstrap replications.6 A high p-value implies that we cannot reject that

a benchmark model does not outperform competing models.

3.4 Monte Carlo Experiment

3.4.1 Simulation Design

We design the Monte Carlo simulation experiment with respect to the properties of the true

conditional variance data generation process: the level of persistence, the location of structural

breaks and the memory property. Each DGP is generated with 5600 observations from the

standard normal distribution with zero mean and unit variance.7 We discard the first 3000

observations to remove the initialisation effect, so that the total number of observations is

2600 for each replication. The forecasting models are estimated and replicated 1000 times.

The size of the out-of-sample forecasts is set to 100 observations. We generate 1-step, 5-step

and 22-step-ahead forecasts to compare the relative predictive accuracy with regard to the

6For SPA, we report the consistent p-value of TSPA.
7Random numbers are generated via GAUSS12.
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length of the forecast horizon.

The synthetic error process with stationary short memory conditional heteroskedasticity

is generated by the standard GARCH(1, 1) model. The level of persistence is determined by

a GARCH persistence parameter, α + β. Without any loss of generality, the unconditional

variance of εt is imposed to be the unity over the entire cases. Next, the GARCH with

structural break DGPs are produced by dealing with the level of unconditional variance or

persistence level. We set the single structural break at 30%, 50% and 70% of the in-sample

period. Each of the structural break points corresponds to 750th, 1250th and 1750th obser-

vation, respectively. Holding other parameter values fixed, the structural break is imposed

to the intercept or the persistence parameter of the GARCH(1, 1) model by changing the

value of ω or β, respectively. Particularly, for the change in ω, the magnitude of a change

in the unconditional variance is set to 5, equivalent to 2.24-standard deviation. Namely, the

unconditional variance of the post-break sample period is 5 times greater than the pre-break

sample period. For the GARCH DGP with structural break in persistence, we consider a

change in the value of the persistence parameter from 0.95 to 0.99 without any changes in the

intercept parameter. Overall, the level of the unconditional variance is bounded from 0.2 to

1.0 for all the GARCH-Break DGPs. On the other hand, for the generation of stationary long

memory process, we use the FIGARCH(1, d, 1) model, and account for two different degrees

of long memory parameter.8 The initial parameter values of the FIGARCH DGPs are taken

from Rapach and Strauss (2008) and Baillie et al. (1996). The parameter values used for the

data generation are presented in Table 10.

3.4.2 QML Estimates for GARCH and FIGARCH

The average of full-sample QML estimates for GARCH(1, 1) and FIGARCH(1, d, 1) models

are displayed in Table 11. We also report the average values of the stationarity and the

positiveness conditions for the GARCH and the FIGARCH models.9 For the short memory

stationary GARCH DGPs (LP, MP, HP), it can be seen that the average estimate of ω is

8 Indeed, the FIGARCH process may present a hyperbolic memory decaying feature, but its sum of the
autocovariance is finite. Strictly speaking, thus, the FIGARCH process is not a true long memory by definition.
In this paper, however, we admit the fact that the FIGARCH volatility can exhibit even "longer" memory
process relative to a stationary short memory volatility process, and we account for the FIGARCH process as
long memory in a wide sense, as generally represented in a variant of empirical studies.

9Although we report here the average values only, the result of the estimates for each of the individual
Monte Carlo replications is available from authors upon request.
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Table 10: Parameter values for data generation

GARCH FIGARCH GARCH-Break

LP MP HP LM1 LM2 LP-B MP-B HP-B BinP

ω0 0.20 0.05 0.01 0.10 0.02 0.04 0.01 0.002 0.01

ω1 0.20 0.05 0.01

α(φ) 0.05 0.05 0.05 0.25 0.10 0.05 0.05 0.05 0.05

β0 0.75 0.90 0.94 0.60 0.68 0.75 0.90 0.94 0.90

β1 0.94

d 0.45 0.65

α+ β 0.80 0.95 0.99 0.80 0.95 0.99 0.95/0.99

Note: LP, MP and HP indicate GARCH(1,1) with low, medium and high persistence, respec-
tively. LP-B, MP-B and HP-B allow the single artificial break in the intercept parameter ω of
GARCH(1,1) process. BinP has the break in the parameter β, exhibiting the structural break
in persistence level of GARCH(1,1). LM1 and LM2 are stationary FIGARCH(1,d,1) processes
with a different value of d.

slightly overestimated, whereas the average estimate of β is underestimated. Specifically, ω is

underestimated by 0.04 when the DGP exhibits lower persistent process. It may contribute

to the overestimation of β by 0.05 along with a decrease in persistent level by 0.04, compared

to the true parameter values. For the MP and HP, there is no big difference between the

estimated and the true parameter values. The average long memory parameter estimates, d,

for the FIGARCHmodel increases holding the stationarity condition, as the level of persistence

of the true short memory GARCH process goes up.

For the stationary long memory DGPs (LM1, LM2), it seems that the GARCH estimates

mirror a change in d of the true processes. Say, the persistent level of GARCH in LM1 is

slightly smaller than that in LM2, by 0.01. It can also be observed that the long memory

dynamics may lead to a rise in α, on average, rather than ω or β in the GARCH estimates,

holding the level of the unconditional variance equal. In this sense, we infer that the squared

lagged errors would show larger contributions to explain the dynamics of current GARCH

conditional variance in the stationary long memory environment compared to MP and HP.

For the FIGARCH estimates, on the other hand, we can find that the average of the estimated

intercept parameters for both of the stationary FIGARCH DGPs is slightly biased upwards.

In the case of the full-sample estimation for the GARCH-Break DGPs (LP-B, MP-B,

HP-B, BinP), the GARCH full-sample estimates generally assign extremely high persistence(
α+ β ≈ 1

)
with the large values of β, regardless of the locations of the artificial structural

break. We conjecture that such a large integration is spuriously driven by the presence of the

structural break. Given a change in the unconditional variance, ω is quite close to zero, and α
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is biased downwards by 20% in LP-B, whereas α is estimated around its true values inMP-

B and HP-B. The parameter of lagged conditional variance is considerably over-estimated

in LP-B and MP-B, similar to the empirical results of Mikosch and Starica (2004) and

Hillebrand (2005). Therefore, a substantial overestimation of β should stem from the presence

of a structural break in the unconditional variance, and may also cause a misleading result

of persistence level in GARCH estimation. On the other hand, it is less likely to have a clear

look for the effect of the structural change in the persistence level in the DGP of BinP. The

estimated coeffi cient for the lagged dependent variable is around its true parameter value of

the upper-variance (second) regime at 0.95. It implies that the GARCH model could be less

capable of distinguishing a type of structural break in the unconditional variance, in terms

of the break in either intercept or persistence parameter. In the results of the FIGARCH

estimates, we can observe that the degree of d is generally large relative to that of d in the

stationary short memory GARCH DGPs, regardless of the persistence level. It may arise

from allowing for the structural break in the unconditional variance. Since a short memory

GARCH process is contaminated by the structural break, it may suffer from spurious long

memory with a higher degree of the fractional integration.

To view clearly the effect of structural break on the GARCH estimates, we separately

estimate the standard GARCH model using a different part of the observations which belong

to the lower-variance (first) regime, and which belong to the upper-variance (second) regime,

respectively. As the most distinctive feature, in general, it can be seen that the persistence

levels of the estimated GARCH processes from both of the regimes are considerably lower

than the estimate from the full-sample. And also, the estimated persistence parameters are

similar with the true persistence level. In this sense, we can confirm spurious increases in

the magnitude of persistence in the full-sample GARCH estimation. In the case of the lower

regime, the estimated parameters are very similar with their true values used for the data

generation for MP-B and HP-B, regardless of the break location. For the same DGP,

however, it can be seen that ω tends to be overestimated, but β tends to be underestimated

in the second regime estimation, as the structural break point is getting closer to the end of

the in-sample period. In particular, α is biased downwards too, in the high persistent DGP

(HP-B). This would be due to the number of observations available in each regime to be used

for the estimation which varies depending on the location of the structural break. Namely, the
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undersized α or β represent relatively small contributions to the current conditional variance,

explained by the past information content in the dynamics of the return or the conditional

volatility. Thus, ω can possibly be overestimated to maintain the given level of unconditional

variance and persistence. As a consequence, the largest magnitude of misleading estimation

is observed in the most recent break DGP cases. For LP-B, the estimated GARCH process

seems not to mirror its true process well, viewing overestimation features in ω, βand α + β,

and even worse in the upper regime cases. Moreover, the effect of the structural break on the

persistence level has moderated in the estimated GARCH process of BinP, so that it cannot

clearly make up the regime differences in terms of persistence level. As a result, the estimated

levels of persistence in both regimes are around the average of the pre- and post-break levels.

3.4.3 Out-of-Sample Forecast Results

3.4.3.1 Non-Break DGPs

We evaluate the forecasting performance using the MSFE and the MVaR metric for the

stationary short memory GARCH DGPs and the stationary long memory FIGARCH DGPs.

We report the average MSFE and MVaR ratios to the benchmark GARCH(1, 1) expanding

window model in Table 12. First, for the stationary short memory cases, the benchmark

GARCH expanding window model is preferred to the competing models regardless of the

length of forecast horizon as well as the level of persistence. In the DGP with lower persistence

(LP), the benchmark is followed by either FIGARCH or GARCH with break forecast, even

though long memory or changes in regime are not presumed for the true data generation.

When the level of persistence is 0.99 (HP), it is seen that the forecast combinations outperform

the single model-based forecasts. Evaluating the MVaR loss function, a set of individual

forecasts which reveals poor MSFE performance remains inferior in each of the corresponding

DGPs. However, the best-performing individual forecasts in terms of MVaR are not exactly

matched with the MSFE results. For LP, the benchmark is still the most favourable in the

short forecast horizon. The FIGARCH forecast is chosen as the most superior in the longer-

run horizon. Further, we can see that the forecast combinations for MP and HP generate

more accurate forecasts than any other single model-based forecasts in terms of the MVaR

performance.

Over the long memory data generation processes, both the long memory-based forecast and
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combined forecasts generally show superiority relative to the other short memory GARCH-

based forecasts in terms of both the MSFE and MVaR loss measures. For the MSFE loss

ratio of LM1, the best forecast is generated by LM-EWMA over the entire forecast horizons,

followed by combined forecasts. In the results of MVaR, the forecast combinations are still

favourable relative to both the GARCH-based forecasts and the FIGARCH forecast. For

higher persistent DGP of LM2, on the other hand, it can be found that the combined forecasts

and FIGARCH forecasts are better off than the others in terms of MSFE and MVaR for

s = 1, whereas the performance of LM-EWMA forecast is even poorer than before. The

RiskMetrics EWMA model mostly dominates the other model-based forecasts in relatively

long-run forecasting in terms of MSFE, as partly evidenced by the empirical study of Harris

and Nguyen (2013). They showed that a class of EWMA models could be counted as the

proficient conditional variance model in the covariance forecasts of a financial asset portfolio.

On the average ratio of MVaR loss, it is observed that the most accurate forecast may be

generated by either FIGARCH or forecasting combination. Based on the results obtained

above, we can extrapolate that the model which mirrors properties of the true DGP seems to

offer superior predictive accuracy in terms of the average MSFE and MVaR ratios. Forecast

combinations are generally favourable, regardless of the property of the true data generation.

3.4.3.2 GARCH with Single Artificial Structural Break DGPs

We now turn to the analysis of forecasting performance when the artificial structural break is

allowed for the short memory GARCH process. The results of the average MSFE and MVaR

loss ratios are reported in Table 13 and 14, respectively. The analysis is followed up with

respect to the persistence level.

Lower-Level of Persistence with a Structural Break Considering the MSFE loss func-

tion, it can be seen that single model-based forecasts produced by GARCH rolling window

and GARCH with a break consistently preferred. The combined forecasts also take rela-

tively higher places in terms of the performance ranking, whereas the benchmark and two

EWMA-type models produce even poorer forecasts than other competing forecasts. The rela-

tive performance of the GARCH rolling window forecast depends on the size of the estimation

window under the structural break. Specifically, if the synthetic break is placed at earlier times
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such that 30% or 50% of the in-sample period, the GARCH with 0.50 rolling window model

reveals more accurate predictive ability. Otherwise, the GARCH with 0.25 rolling window

model produces substantially better forecasts in the latest break DGP (70%) . As analysed in

Sansó et al. (2004), the modified ICSS framework is more powerful and statistically reliable

for the detection of structural breaks in the unconditional variance when a GARCH process is

weakly persistent. In this sense, it can be explained why the GARCH with break model can

also beat the other individual forecasting models. It implies that effective testing for unknown

structural breaks should be able to lead to less biased forecasting errors in such a case.

In the evaluation of the MVaR loss function, on the other hand, a general feature of the

forecasting model ranking is quite similar with that of the MSFE evaluation, for s = 1, 5.

Further, it can be seen that the FIGARCH forecast is consistently counted as the best single

model-based forecast in the long-run, for s = 22, regardless of the location of the break. It is

however worth noting that the FIGARCH forecast has been treated as one of the less accurate

forecasts in terms of the MSFE ratio, even if it beats the benchmark. It is conjectured that

such a difference in relative performance could be driven by the different structure of given

loss functions. Specifically, the MSFE measure is directly computed by dealing with the

loss differential between the conditional variance forecasts and the squared errors. Unlike

the MSFE measure, the MVaR measure takes the loss of the error series which is indirectly

associated with the conditional variance forecast. Nevertheless, it could be still concluded

that the FIGARCH model may show relatively accurate predictability to the benchmark or

the EWMA-type models, although the structural break is allowed in the weakly persistent

GARCH process. This result is also consistent with the fact that the degrees of the estimated

GARCH persistence show a tendency toward spurious long memory in every GARCH-Break

DGPs, as noted by our QML estimates analysis.

Medium-Level of Persistence with a Structural Break It is observed that most fore-

casts except EWMA tend to outperform the benchmark, in general. By the MSFE evaluation,

the GARCH 0.50 rolling window is overall favourable to the competing single model-based

forecasts as well as the forecast combinations over the forecast horizons, only if the struc-

tural break is at either 30% or 50% point of the in-sample period. Although the rank of the

GARCH model with a break decreases slightly because of a weakened power in detection of
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the breaks as the persistence level increases, the GARCH with break forecast is still more

accurate than the benchmark in the shorter-run forecast. The forecast combinations are also

working effectively, dominating most individual model-based forecasts in terms of the MSFE

ratio. In the MVaR evaluation, the shorter-run forecasts of the GARCH 0.50 rolling window

reveal better accuracy beating the individual forecasting models in the earlier break DGPs.

When s = 22, it can be suggested that the long memory-based forecasts such as FIGARCH

and LM-EWMA may be favourable. We can also see that the forecast combinations perform

comparably with the best single model-based forecast.

Considering the latest structural break DGP, the most conflicting feature from the earlier

break DGP cases is that the best single model-based forecast, GARCH 0.50 rolling window,

is no longer effective enough to be chosen as the most accurate forecasts. This would be why

the rolling window size is not suitable to take any potential effects of the recent structural

break into account. Rather, the GARCH 0.25 rolling window model outperforms over the

forecast horizons in terms of MSFE. Overall, the forecast combinations are still working very

well here, more than offsetting losses from poorer forecasts. Further, it is viewed that the long

memory-based models are superior relative to the short memory models in the presence of the

recent structural break. On the other hand, the GARCH with break model gets worse in its

predictive ability for the latest break DGP. If the last structural break point detected is quite

near to the end of the in-sample period, a relatively small number of post-break observations

could be used to estimate the GARCH model for out-of-sample forecasting. In this respect,

the post-break sample is more likely to be less informative. As a result, it could happen to

result in misleading forecast outcomes in such cases.

Higher-Level of Persistence with a Structural Break The high persistence feature

of HP-B is mainly driven by a larger contribution of the lagged conditional variance to the

current volatility dynamics, as compared to LP-B and MP-B, regardless of the presence of

the structural break. In this respect, the relative predictive accuracy of FIGARCH and a class

of EWMA models seem to be slightly improved under the higher persistence environment,

whereas the GARCH with break model is ranked in the lowest overall, even when the structural

break is allowed. It is also worth noting that the forecast combinations show their superiority

consistently over the DGPs, regardless of the location of the break and the forecast horizon.
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In the evaluation of the single model-based forecasts, the GARCH 0.50 rolling window still

dominates the competing forecasts for s = 1, 5 in both the MSFE and the MVaR average

ratios when the artificial structural break is placed at either 30% or 50% point of the in-

sample period. The short memory EWMA model beats the benchmark as well, even though

it used to show the poorest performance for LP-B and MP-B. In the long-run forecasts,

we may advocate that the FIGARCH model may outperform the short memory GARCH-

based forecasts in the spurious long memory environment. In former DGP cases, it has

been addressed that modelling long memory would be beneficial in the longer-term forecast,

although the true structural break is possessed in the volatility process, particularly at an

earlier time of the in-sample period. A pattern in favour of a long memory-based model

under spurious long memory continuously appears in HP-B, as well. Specifically, it can

be viewed that either LM-EWMA or FIGARCH forecasts are favourable in terms of MSFE

and MVaR, following two combined forecasts, even when it comes to the shorter forecast

horizons. For s = 22, the FIGARCH model remains the most accurate, followed by the

forecast combinations. Unfortunately, the results of GARCH with break cannot be provided,

as the estimation was not feasible in some of the replications through the simulation.

Break in the Persistence Level In the DGPs analysed earlier, the structural break in

the unconditional variance is imposed by changing the intercept parameter of the GARCH

specification. For the purposes of comparison, we deal with the case that the break is formed

by the parameter change of the lagged dependent variable of the GARCH equation. We

assume the same magnitude and location of the break point as for the previous of a break in

the unconditional variance. Similar to the former cases, the forecast combinations consistently

perform very well in every break location and every forecast horizon. We can additionally

see that the GARCH with break forecast performs quite poorly. Such an outcome would be

natural because the change in the persistence is formed at relatively higher levels from 0.95 to

0.99. In turn, we now look up the performance of the single model-based forecasts when the

break is set at 30% of the in-sample period. The GARCH 0.50 rolling window forecast presents

superiority as compared to the competing individual forecasts for s = 1. However, the model

performance seems to get worse as the forecast horizon increases. In contrast, the FIGARCH

model consistently produces favourable forecasts relative to the single model-based forecasts
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in any lengths of the forecast horizon. This pattern maintains the case of the DGP with a

structural break at 50%. The FIGARCH predictive ability seems to be strengthened overall.

The relative performance of the GARCH rolling window forecast varies as if it depends on the

forecast horizon. On the other hand, we find that the GARCH 0.25 rolling window model is no

longer preferred when the true volatility process is subject to a recent change in persistence.

Rather, the benchmark GARCH expanding window model produces a comparable forecast

with the best-performing FIGARCH forecast in terms of the MSFE metric. The relative

accuracy of the two EWMA class models seem to be improved as well. However, it is less

likely to draw a strong tendency across the forecasts in terms of two different loss measures.

For example, completely controversial results are made in the comparison of GARCH and

FIGARCH for s = 1, 5.

3.4.4 MSFE Loss Evaluation

We examine the MSFE loss series particularly by means of some econometric tests. First of

all, we search how many times each of the competing forecasts beats the benchmark GARCH

expanding window model. The results are displayed in Table 15 and 16. Next, the RC and

SPA tests have been applied to every single replication through the simulation. We investigate

the rejection frequency of the null hypothesis that the benchmark forecast is not inferior to

any of the alternative forecasts. Each of the individual forecasts has been tested by taking

itself as a benchmark against other competing forecasts. By looking at the rejection rate of

the null, we expect to see that an individual forecast is relatively inferior to the others overall.

It is presumed that a certain individual forecast which reports greater rejection frequency

than any of the others is more likely to be selected as the most inferior one. In this sense, we

may utilise the results of RC and SPA to figure out whether the poorly performed forecast

in terms of the average MSFE metric can still be statistically inferior. The results of RC and

SPA are presented in Table 17 and 18. We also carry out a pairwise comparison across the

forecasts by means of the MDM test. The input data for MDM are obtained by pooling the

MSFE-based loss differentials produced in each of the replications. Due to space limitations,

we report the most superior forecast only among the entire pairwise comparison results in

Table 19, 20 and 21. A positive (negative) sign of the MDM test statistic implies that the

model in the column is better (worse) than the model in the row. Moreover, we only report
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the results for the model (in the row index) which is selected as the most superior forecast by

the pairwise comparison, not by the average MSFE performance. We apply 5% significance

level for all the tests employed.

3.4.4.1 Short Memory GARCH DGPs

When the DGP is stationary short memory, we find that some of the forecasts with poor MSFE

performance generally show relatively small amounts of the beating rates to more superior

forecasts. Also, the fact that most of the forecasts cannot gain a beating rate larger than 60%

may be evident to ensure the superiority of the benchmark model, which has consistently

presented the lowest average MSFE ratio at every forecast horizon and persistence level.

However, the GARCH with break forecast seems not to follow such a pattern. Although we

do not allow for structural breaks, the GARCH with break model has not been treated as one

of the candidates for the most inferior forecast. Nevertheless, it marks the smallest beating

frequency over LP and MP, and the second smallest in HP. This might be due to its large

dispersion in the average loss ratio with much lower density to a central tendency, as shown

in Figure 2.

Figure 2: Box-plot of the average MSFE ratios in MP for s = 1, 5, 22.

Note: FIG (FIGARCH), GR50 (GARCH 0.50 rolling), GR25 (GARCH 0.25 rolling), GB (GARCH w/break),

RM (EWMA), LM (Long Memory EWMA)
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In terms of the RC and the SPA tests, the highest rejection frequency is reported by either

EWMA or LM-EWMA for LP andMP. We recall that those models have had a larger average

MSFE ratio relative to the other competing models. However, the difference in the rejection

frequency does not seem to be big enough to clearly justify forecasting inferiority. For HP, it

can be generally seen that the rejection rate of the null is not such a big number, and also there

is just a small difference in the rejection rate among them. Despite, the pairwise comparison

of the MDM test shows that the GARCH expanding window forecast which gained the lowest

average MSFE ratio can be still considered as the most accurate forecast.

3.4.4.2 Long Memory FIGARCH DGPs

For LM1, the LM-EWMA forecast has had the smallest average MSFE loss ratio over the

forecast horizons. It also achieves a 66% beating rate over the replications, for s = 1, 5. For

s = 22, the beating rate of LM-EWMA is slightly lower than FIGARCH and the forecast

combinations, but the differences in the rate between them do not appear to be significantly

large. Both combined forecasts are comparable to the best model in the beating frequency

in any horizons, as are in the MSFE ratio evaluation. Overall, we can see that the long

memory-based models and the forecast combinations are generally better off than the short

memory-based models, similarly with the preceding discussions. Further, it seems that the

RC and SPA tests consistently support the MSFE-based evaluation results when s = 1, 5.

LM-EWMA, FIGARCH and forecast combinations are chosen as relatively accurate models

overall, whereas the short memory-based forecasts are inferior. In the MDM pairwise com-

parison, the FIGARCH forecast is mostly preferred. However, it would be diffi cult to say that

the FIGARCH model can gain strongly significant dominance against the comparable models

such as LM-EWMA and combined forecasts. For LM2, on the other hand, the statistical

evaluation results are generally similar with the case for LM1. The forecasts with relatively

smaller average MSFE ratios for s = 1, 5 show higher beating rates as well as lower rejection

frequencies in RC and SPA. Particularly for s = 22, the inferior model ranking of RC and

SPA seems not to follow a similar pattern which has been observed in LM1. Further, the

MDM reveals consistent results with the MSFE ratio for the selection of superior forecasts

such that the combination mean forecast for s = 1, 5 and LM-EWMA for s = 22.
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3.4.4.3 GARCH-Break DGPs

At a glance, in the presence of the true structural break, we can find one apparent rule that

a set of superior (inferior) forecasts in terms of the average MSFE ratio is consistently being

considered as the superior (inferior) one in the statistical evaluation. Two of the forecast

combinations and the best-performed individual forecasts may still admit their relative su-

periority with the highest beating rate, regardless of the level of persistence and the length

of forecast horizon. Further, a set of forecasts with poor MSFE performance generally has

had to bear high-level rejection frequency in the RC and the SPA evaluations. Specifically, a

class of the EWMA models and the benchmark GARCH model are commonly inferior when

the true volatility process exhibits lower- and medium-level persistence short memory with

a structural break. For HP-B or BinP, such a general pattern remains when s = 1, 5. If

s = 22, however, the RC and SPA tests are less likely to admit the same pattern because

the highest rate of rejection has been reported several times by the best MSFE forecast. In

the MDM pairwise comparison, one of the superior forecasts in terms of the average MSFE

ratio generally shows its dominance to the competing forecasts. When the break is located at

30% or 50% of the in-sample period, it turns out that the best-performing forecasts are still

significantly superior at a lower- and a medium-level persistence, over the forecast horizon.

For HP-B, the pairwise comparison suggests that the long memory-based forecasts are better

off when s = 22. In the shorter-run for s = 1, 5, the combined mean forecast is chosen as the

most accurate one. When the break point is located at the 70% of the in-sample period, it

seems that we are less likely to confirm whether the best-performed forecasts by the MSFE

evaluation are still significantly superior in the pairwise comparison. However, it can be seen

that the LM-EWMA forecast and the trimmed mean forecast are generally superior relative

to the others over the forecast horizons, except in the case of LP-B.

3.5 Concluding Remarks

In this chapter, we have investigated the relative predictive ability of a class of GARCH-based

parsimonious conditional variance models via the Monte Carlo simulation experiment. This

study has mainly aimed to evaluate and compare these models’ forecasting performance in

several different data generations of the synthetic error process, which are associated with the
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memory properties of the conditional variance. Specifically, the synthetic error processes are

generated by the stationary short memory GARCH, the short memory GARCH with the single

artificial structural break, and the stationary long memory FIGARCH. The simulations also

consider various different locations of the structural break and the persistence levels. Through

the simulation experiment, we expect that we can provide comprehensive and unified insights

into the economic benefits of the employed models in terms of volatility forecasting, even if

the forecasting models are potentially misspecified against the true volatility properties.

Our experiment results reveal some supporting evidence of the discussions of the existing

relevant literature. If the conditional variance process is stationary short or long memory

in the absence of a structural break, the forecasting models, which are allowed to capture

the properties of the true process are more favourable than any other misspecified models.

When the true short memory process is contaminated by the structural break, the detection

of the break may play an important role in choosing a proper window size for the short-run

forecasting. Further we have found that spurious long memory may strongly dominate the

true structural break in the long-run forecasting when the true short memory process is highly

persistent. However, it has not been easy to justify any consistent features or patterns in fore-

cast superiority among the individual forecasting models when the structural break is located

around the end of the in-sample period. Nevertheless, it can be seen that the long memory-

based forecasts are generally better off than the short memory-based competing forecasts in

the presence of the most recent break. On the other hand, two forecast combinations are

very favourable in the presence of a structural break, regardless of the forecast horizon and

the level of persistence. At a general point of view, the statistical tests have also provided

consistent and robust results, supporting the findings above.

The outcomes may also address some practical implications when modelling and fore-

casting macroeconomic or financial time series. Firstly, the standard GARCH model with

expanding window can be a candidate to produce a superior forecast when a volatility process

is stationary without any evidence of structural breaks or long memory. When true structural

breaks are specified, and their locations are not too close to the end of the in-sample period,

the GARCH rolling window can be a good forecast candidate if the persistence level is not

extremely high. We suggest that the size of rolling window is effectively determined using the

information of the last break point detected. Otherwise, the long memory-based forecasting
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models are more likely to generate superior forecasts in the following situations: (1) lack of

statistically significant evidence of the structural break; (2) longer-term forecasting under

spurious long memory; and (3) true stationary long memory process. Finally, it is worth not-

ing that forecast combinations can be better or very comparable alternatives for a volatility

process with a certain memory property which we have considered through this chapter.

A number of extensions would be possible, based on the limitations of this study. For

example, the baseline data generation processes considered in this study would be somewhat

restricted to dealing with structural break and long memory separately. Our simulation design

can be naturally extended to accounting for more general non-stationary volatility processes

which are subject to structural break and long memory simultaneously or other non-linearities.

Moreover, since we adopt for a class of parsimonious GARCH-type conditional volatility

models in the analysis, it would be more informative in a general sense if we additionally take

more various conditional volatility models such as stochastic volatility models and markov-

switching models into account, as analysed in Lux and Morales-Arias (2013).
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Chapter 4 Long Memory and Structural

Changes in Forecasting Daily Return

Variability of S&P 500 Stock Index with

Historical and Realised Measures of

Volatility

4.1 Introduction

It is generally acknowledged that financial asset return volatility is time-varying, and tends

to exhibit high persistent dynamics. Basically, such volatility dynamics of persistency can

be modelled well by taking long memory into account. Some financial econometric literature

has also assessed spurious long memory property, particularly associated with the analysis of

the effect of structural breaks on volatility persistence, and have pointed out that neglected

structural breaks can lead to spurious high persistence in conditional volatility, such as Lam-

oureux and Lastrapes (1990), Hamilton and Susmel (1994), Mikosch and Starica (2004) and

Hillebrand (2005), amongst others. Hence, a choice between long memory and spurious long

memory is important for modelling volatility in a variant of financial time series applications

such as risk management, asset allocation, option pricing etc.

There have been several studies which accommodate that either long memory or struc-

tural break does matter when evaluating relative volatility forecasting accuracy. As a recent

contribution with emphasis on structural break as a factor of spurious persistence, Starica and

Granger (2005) found that a non-stationary model with breaks in unconditional variance can

produce better performance in longer horizon forecasts. The empirical study of Rapach and

Strauss (2008) pointed out that the presence of structural breaks in the unconditional variance
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can reliably generate more accurate forecasts in real-time exchange rate return volatility in a

class of GARCH models. In contrast, there has been a competing argument in favour of long

memory in terms of forecasting performance as well. Diebold and Inoue (2001) argued that

long memory may be a useful description for a forecasting purpose even if the data generating

process exhibits structural breaks and weak dependence. In addition, Morana and Beltratti

(2004) showed that neglecting breaks is not important for very short term forecasting once it

allows for a long memory component in the model, whilst superior forecasts can be obtained

at longer horizons by modelling both long memory and structural changes. Choi et al. (2010)

found that the persistence of volatility can be partly explained by structural breaks in mean

of log-realised volatility, but the proposed long memory model can produce robust forecasting

even if the true volatility process is subject to structural changes. However, it is generally

known that structural changes and long memory are not easily disentangled, and even worse

it can often be seen that both are coexisting and interplaying.

The main problem for measuring volatility is that a true volatility process is not observed

and latent. Hence, it is inevitably required to model volatility using an underlying return

process. In this study, we consider typical measurements of volatility such as daily return-

based historical volatility and high-frequency intradaily return-based realised measures of

volatility. Although both the historical and the realised measurement are an unbiased esti-

mator of true volatility, it is acknowledged that the latter is more robust to noise potentially

existing in asset return. In this sense, the realised measures of volatility have been widely

accepted as a proxy of an actual volatility process, when evaluating volatility model perfor-

mance. In terms of identifying structural changes and long memory, on the other hand, a

variant of theoretical and empirical investigations has often resulted in controversial outcomes

between those measurements for the same underlying return series. Particularly for US stock

market index return volatility, it is evident that historical volatility processes contain struc-

tural breaks, and induce spurious increases in volatility persistence as discussed by Lu and

Perron (2010), Perron and Qu (2010) and McCloskey and Perron (2013) among others. For

realised measures of volatility, a large body of literature suggests that the realised variance

of the US stock market return can be effectively modelled with the apparent long memory

characteristic, as supported by the hyperbolic decay rate of its sample autocorrelations. For

instance, Martens and Zein (2004) and Koopman, Jungbacker and Hol (2005), amongst others.
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Along the same lines of the empirical findings above, we here suppose that different unbi-

ased volatility estimates from the same underlying return series can possibly hold inconsistent

memory properties in terms of long memory or spurious long memory. It also motivates us to

study whether explicitly distinguishing structural breaks and long memory can provide bene-

ficial information in terms of the predictive ability of different volatility measurements. In this

study, we analyse the properties of the S&P 500 stock index return volatility processes which

are realised measures of volatility (daily realised variance and realised kernel) and historical

volatility (squared daily return). Before modelling volatility, we first investigate the true mem-

ory properties of given volatility measures using the econometric tests of Qu (2011) and Baek

and Pipiras (2014), which help us to disentangle true long memory and structural breaks.

Further, if it is evident that a volatility process is subject to structural breaks, then some

tests could be applied to identify the number and locations of structural changes. Although

the memory properties are identified, it would be hard to say that the relative performance of

forecasting models is directly and entirely dependent upon the memory properties only. As a

further step, we examine the relative out-of-sample performance of one-day-ahead forecasts,

with emphasis on the predictive content of structural changes and long memory. We use re-

alised kernel series as the proxy of an unknown true volatility process, and realised variance,

realised kernel and squared returns are utilised for parametric or semi-parametric volatility

modelling. The log-realised measures of volatility are estimated and forecasted by means of

a class of ARFIMA models: ARFIMA(1, d, 1) and Markov-Switching ARFIMA(0, d, 0) mod-

els. Also, a class of short and long memory GARCH models, GARCH(1, 1) , EGARCH(1, 1) ,

FIGARCH(1, d, 1) , FIEGARCH(1, d, 1) , Adaptive-FIGARCH(1, d, 1, 1) , GARCHX(1, 1)and

Realised GARCH(1, 1) , are utilised for the historical volatility estimation and prediction.

The relative forecast performance is evaluated by accounting for some tests in terms of equal

predictive ability, superior predictive ability and model confidence set with respect to MSE,

MAE and QLIKE forecast loss functions.

The main results of this chapter are as follows. In a given sample period of the US

stock market index, realised variance and realised kernel processes exhibit true long memory.

However, the historical volatility process shows some evidence of spurious long memory subject

to multiple structural breaks corresponding to stock market events. Once the structural breaks

are adjusted to the squared daily return, the volatility process looks like a weak dependent
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stationary process rather than a persistent process. In terms of relative predictive accuracy, a

class of ARFIMA models consistently generates the best-performed forecasts relative to a class

of GARCH models over the loss functions under the realised kernel volatility proxy. Among

GARCH models, it is shown that a rolling window GARCH forecast and GARCH forecasts,

which account for structural changes in its own specification, outperform long memory-based

GARCH models even with the long memory proxy process. Also, the sensitivity analysis

of rolling window size for the GARCH model reveals that the appropriate choice of rolling

window size for the GARCH model is important to achieve relatively better predictive ability

in the structural breaks even when the proxy of an actual volatility exhibits long memory.

In addition, using some pre-break data can be an effective way when forecasting GARCH

volatility.

The rest of this chapter is organised as follows. Section 4.2 describes return, volatility

measures and their properties. We carry out tests to distinguish long memory and structural

breaks in Section 4.3. The structural breaks in the historical volatility process are detected

and our analysis of the effect of breaks is followed up in Section 4.4. Section 4.5 introduces the

forecasting methodology including the estimation model specification, the estimation window,

the loss functions and the loss evaluation criteria. The empirical results of the out-of sample

forecasting are presented with their statistical evaluations in Section 4.6. Section 4.7 concludes

this chapter.

4.2 Return, Volatility and Data Description

We consider the daily return series which is obtained by the logarithm difference of the S&P

500 index prices. The demeaned return model is given by

rt = σtzt,

for t = 1, . . . , T, where zt ∼ i.i.d. (0, 1), the standardised process of the daily return innovation

and σt is the latent volatility. Conditioning on Ft−1, the past information set up to t − 1,

then the conditional volatility is given by σ2
t = E

[
r2
t

∣∣Ft−1

]
. In a discrete time series model,

the conditional variance is usually estimated by means of modelling the squared innovation

of the return process.
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Indeed, true volatility is unobservable. Some volatility measures may provide an unbiased

estimate of latent volatility and are widely used to estimate and predict volatility. It is

generally known that realised volatility is used by means of a relatively accurate proxy of

true volatility to squared returns, as pointed out by Andersen and Bollerslev (1998). Since

a stochastic innovation of the return is unobservable, such a component would necessarily be

accounted for unbiased and consistent estimation when modelling and forecasting volatility.

Intradaily return can be counted as virtually observable. In the rationale of realised volatility,

Andersen et al. (2003) and Barndorff-Nielsen and Shephard (2002) noted that the daily realised

variance of intradaily return converges in probability to the true integrated (daily) volatility

under continuous semimartingale processes, such as diffusion processes. As a time interval

approaches zero, realised variance can be a model free measure of integrated volatility. In this

sense, the realised measure of volatility can be considered for being able to provide relatively

close approximation, controlling for such noise driven by an idiosyncractic error of the return.

Through this study, we particularly focus on realised variance and realised kernel to utilise

them as the proxies of actual daily return volatility.

Let pn,t denote the logarithmic intradaily price process, the intradaily return is defined as

rn,t = pn,t − pn−1,t,

for n = 1, . . . , N, where N denotes the number of intradaily returns in a trading day. Then,

realised variance can be obtained by summing up intra-daily squared returns.

RVt =
N∑
n=1

r2
n,t.

In addition, this study employs the realised kernel estimator introduced by Barndorff-Nielsen,

Hansen, Lunde and Shephard (2008). Realised kernel is considered as a more robust estima-

tor to the noise of market microstructure effects than realised variance. We utilise realised

kernel in a form of a heteroskedasticity and autocorrelation consistent (HAC) type estimator,

computing
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RKt =

H∑
h=−H

k

(
h

H + 1

)
γh,

γh =

N∑
n=|h|+1

rn,trn−|h|,t,

where H is the bandwidth of the kernel estimator. The precise choice of the bandwidth has

been made by referring to Barndorff-Nielsen, Hansen, Lunde and Shephard (2009). k (x) is

the Parzen kernel function:

k (x) =


1− 6x2 + 6x3 , 0 ≤ x < 1

2

2 (1− x)3 , 1
2 ≤ x < 1

0 , x ≥ 1

.

Figure 3: Daily return and volatility
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The sample data for the empirical research consists of S&P 500 stock index price quotes

during the period from 3 January 1996 to 27 February 2009 (2971 trading days). The original

realised volatility data are available at the database, "Oxford-Man Institute’s realized library",

produced by Heber, Lunde, Shephard and Sheppard (2009)10. The data employed in this

study is part of the cleaned data used in Shephard and Sheppard (2010)11. The daily realised

variance series is obtained using 5-minute intradaily returns with subsampling. The opening

and closing 15 minutes of the trading records are excluded from the original data set to control

for overnight effects. Consistently, we use open-to-close daily returns, ignoring overnight

effects. See Shephard and Sheppard (2010) and references therein for further details of the

data characteristics, if necessary.

The daily return and volatility series are displayed in Figure 3. We can observe several

negative shocks to S&P 500 daily return over the sample period. Particularly, two very large

peaks in volatility can be found at Fall 1997 and Fall 1998 which may be associated with the

Asian and Russian financial crisis, respectively. The effects from such large negative shocks

may lead to negative skewness and positive and strong skewness in the return and squared

return distribution, respectively. In addition, it seems that the US stock market return series

has also shown quite a volatile period, reflecting the Dot-com bubble and its collapse in the

early 2000s, towards the end of 2003. After that period, the US stock market has continued

moving in a relatively stable direction for a while. Around the end of the sample, the volatility

level slightly increases more than before.

Table 22: Summary statistics for returns and volatilities

Mean Median St.Dev. Skewness Kurtosis

rt 0.005 0.053 1.313 -0.258 11.025

rt,rv 0.130 0.079 1.396 0.268 3.235

rt,rk 0.127 0.078 1.372 0.248 3.308

r2t 1.723 0.385 5.457 11.152 178.778

RVt 0.964 0.491 2.089 10.976 202.195

RKt 1.003 0.515 2.141 10.406 180.991

log r2t -1.338 -0.954 2.473 -1.182 6.048

logRVt -0.657 -0.711 0.993 0.556 3.825

logRKt -0.621 -0.663 1.001 0.530 3.772

10See http://realized.oxford-man.ox.ac.uk/.
11The cleaned data are obtained from Journal of Applied Econometrics Data Archive, adopting daily return

and the realised covariance series which are already computed and provided by Shephard and Sheppard (2010).
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Table 22 contains the summary statistics of daily returns, daily standardised return, re-

alised variance, realised kernel and logarithmic transformed volatilities for the full-sample

period. The distribution of the daily return process is negatively skewed and strongly posi-

tively leptokurtic. The demeaned return series is standardised by the standard deviations of

the daily realised variance and the daily realised kernel, denoted as rt,rv and rt,rk, respectively.

Both of the standardised daily returns are approximately standard normal distribution12. The

raw series of the volatility measures commonly exhibit positive skewness and severely large

excess kurtosis which may be driven by the large shocks to return over the sample period.

The logarithmic transformed realised measures of volatility appear approximately Gaussian,

but with a slightly fatter tail to the left and positive leptokurticity. The log-squared return

series is negatively skewed and more leptokurtic than log-realised measures of volatility.

Table 23: Long memory tests and parameter estimation

H0: I(0) d̂

V/S HML GPH LW ELW 2ELW

r2t 0.000 0.000 0.336 0.311 0.311 0.314

RVt 0.000 0.000 0.484 0.473 0.472 0.477

RKt 0.000 0.000 0.487 0.476 0.475 0.479

log r2t 0.000 0.000 0.268 0.257 0.271 0.274

logRVt 0.000 0.000 0.538 0.519 0.518 0.530

logRKt 0.000 0.000 0.536 0.518 0.516 0.529

Note: The p-values of I(0) tests against I(d) are reported.

Further, we implement some tests to examine the persistence property of daily return

volatility processes in terms of short memory stationarity and long memory. In order of testing

I (0) against I (d), we employ the rescaled variance test statistic (V/S) of Giraitis, Kokoszka,

Leipus and Teyssière (2003) and the long-range autocovariance-based test statistic (HML)

of Harris, McCabe and Leybourne (2008). The p-values of the V/S statistic are analytically

calculated. The truncation parameter and the bandwidth truncation of the variance parameter

of HML are set to 1 and 0.66, respectively. The long-range dependence of the volatility series

is also investigated by means of the semiparametric long memory estimators. We employ

the narrow band log-periodogram (GPH) estimator of Geweke and Porter-Hudak (1983), the

12 It is worth noting that a financial asset return series standardised by realised volatility seems to exhibit
a weak volatility clustering feature as compared to its raw return series. And also, the distribution of the
standardised returns which are obtained by an one-day-ahead conditional variance estimate from a parametric
ARCH or stochastic volatility model is typically quite leptokurtic as discussed in Andersen, Bollerslev, Diebold
and Ebens (2001a); Andersen, Bollerslev, Diebold and Labys (2001b); Andersen et al. (2003).
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local Whittle (LW) Gaussian maximum likelihood estimator of Robinson (1995) and Kunsch

(1987), the exact local Whittle (ELW) estimators of Shimotsu and Phillips (2005). The ELW

offers a general-purpose estimation of long memory parameter over both stationary and non-

stationary regions of d, whereas the LW estimator is discontinuous at d = 3
4 and d = 1.

We also apply the two-step ELW estimator (2ELW) of Shimotsu (2010) which is allowed to

accommodate an unknown mean and a polynomial time trend for the ELW. For the estimation

of semiparametric long memory estimators, the size of the bandwidth is chosen to T 0.70 for

all of the estimators.

Figure 4: Autocorrelations for daily return volatility
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As displayed in Table 23, both V/S and HML strongly reject the null of the short mem-

ory stationarity for all of the daily variance processes at any significance levels. It might

conclude that none of the volatiliy series are a pure stationary short memory. The semi-

parametric analysis suggests that the persistence level of the raw and log-volatility series

are well-bounded within the stationarity condition, −1
2 < d < 1

2 , except logRVt and logRKt

which exhibit non-stationary long memory property, presenting higher persistent of d̂, slightly

over 1
2 . Interestingly, the (log-) squared return series exhibits shorter memory relative to the

(log-) realised measures of volatility. Moreover, it can be seen that a sample autocorrelation

function of the log-realised kernel series is decaying very slowly relative to others, as displayed

in Figure 4. The level of the sample autocorrelations for the log-squared return are much
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smaller than that for the log-realised kernel, even though it does not look like it is decaying

exponentially. The raw series of squared return and realised kernel show faster decaying auto-

correlations than their logarithmic transformed series. These features in the graphic can act

as supporting evidence for longer memory of the log-variance series, rather than stationary

short memory. Nevertheless, the sample autocorrelation function possibly exhibits a slow rate

of decay, and d̂ is likely to be biased away from 0 when the process is truly stationary short

memory, but is apparently subject to any significant non-linear component (spurious long

memory) such as regime changes, as pointed out in Diebold and Inoue (2001) and Granger

and Hyung (2004), amongst others.

4.3 True or Spurious Long Memory?

It is generally acknowledged that the structural changes and long memory are easily confused

and even diffi cult to clearly distinguish from each other when they are co-existing. Spurious

long memory is likely to be induced in the presence of true structural breaks. Otherwise,

spurious structural changes may also cause misleading inference of time series models to a

true long memory process. Also, it is therefore inevitable to verify a true property of a

volatility process in terms of memory property and the effect of structural breaks in order of a

correct choice of an estimation model or an estimation window for forecasting. In this sense,

we attempt to disentangle such a confusion in a given volatility series by applying a variant

of econometric tests which helps to uncover properties of the return variance. We apply some

tests to the log-volatility series since the raw volatility series itself such as r2
t , RVtand RKt

suffers from a non-negativity constraint. Also, there would be no significant loss relative to

using the raw variance in the identification of true or spurious long memory because log-

variance is a monotonic transformation, as stated in Lu and Perron (2010). Moreover, the

log-volatility process is even closer to being Gaussian distribution, so that the logarithmic

series are more appropriate than the raw series in terms of meeting the required conditions of

the applied test procedures.

Although the semiparametric long memory estimates present such a high persistent feature

in the log-volatility series, we cannot simply neglect potential structural changes. If struc-

tural breaks are evidently significant, neglected breaks could spuriously lead to an increase
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in an estimate of the long memory parameter. In order to statistically identify a true mem-

ory property of given volatility series, we implement the test for distinguishing long memory

against spurious long memory which is the local Whittle estimation-based test of Qu (2011)

(henceforth, Qu). The Qu test is based on the frequency domain and the derivatives of the

profiled local Whittle likelihood function in a degenerating neighbourhood of the origin. Its

test statistic can be implemented relaxing the Gaussianity assumption usually assumed in

other long memory tests. Say, it allows for non-Gaussianity or conditional heteroskedasticity

as well. Following the recommended trimming portion for financial data applications, a trim-

ming size is set to 2% in a large sample and the bandwidths for local Whittle estimator are

T 0.60 and T 0.70. The alternative hypothesis of Qu considers an I (0) short memory process but

is contaminated by level shifts or a smoothly varying trend. Therefore, a rejection of the null

hypothesis may address the fact that non-linearity possibly due to the presence of structural

breaks may strongly be present, rather than long memory. However, the rejection of the null

of the long memory test cannot directly accommodate whether a volatility process is only

subject to the structural changes. In order to obtain a clear clue in terms of structural breaks

among other possible alternatives, we additionally utilise Baek and Pipiras (2014) method

(henceforth, BaPi) for the null of I (0) with multiple structural breaks against the alternative

of stationary long memory, I (d). Depending on the test result, we expect that long memory

and structural breaks may be more clearly discriminated. Moreover, it might help rule out

any other possibilities of an alternative process such as a smooth trend or other omitted non-

linearity properties. The tests employed can play a role to distinguish between long memory

and structural breaks.

The test procedure of BaPi is based on the local Whittle estimation of the long memory

parameters from the residual series obtained by sequentially removing changes in mean. Then,

the proposed procedure evaluates and compares differences in the number of breaks estimated

from supF, least squares and CUSUM-based approaches with the local Whittle method. They

suggest that the size and significance of a difference in the number of breaks across the break

estimation approaches lead to a consistent and updated stopping rule which helps estimate the

changes in mean under the null and distinguish the structural changes and the long memory.

For the sake of simplicity, we account for the stationary bootstrap procedure proposed in

BaPi to obtain the p-value in a comparison of stopping rules between the CUSUM-based
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method and the LW method. The selection of the bandwidth of the LW estimator follows the

techniques suggested in Baek and Pipiras (2014)13.

Table 24: Distinguishing long memory and structural breaks

H0: I(d) I(0) + breaks

Qu (T 0.60) Qu (T 0.70) BaPi

log r2t 1.513 1.144 0.318

logRVt 0.357 0.607 0.000

logRKt 0.383 0.627 0.000

Note: The reported value for Qu is the test statistic, but
BaPi is the p-value, obtained by stationary block bootstrap.
The bandwidth for long memory estimator is indicated in the
parenthesis. Significance at 10% level or less is in bold.

We conduct these tests to distinguish long memory and spurious long memory (structural

breaks) in the level of log-volatility processes. Table 24 states the results of the tests, applied

to log-variance series of S&P 500 index return in terms of squared return, realised variance

and realised kernel. We report the test statistic of Qu14 and the bootstrap p-value of BaPi.

First, it confirms that both log-realised volatility series make consistent results in favour of

long memory over the test employed, rather than spurious long memory, including structural

breaks. In brief, we conclude that the log-realised volatility series may exhibit true long

memory property in its level, or at least, the long memory is powerful enough to dominate

any non-linearity. Martens and Zein (2004) and Koopman et al. (2005) documented that long

memory is generally present in the logarithmic processes of the realised measures of volatility

of the US stock market index return.

On the other hand, for the daily log-squared return series, the BaPi test does not reject

the null hypothesis of structural breaks for the same series. The stationary long memory

hypothesis of Qu is rejected at 5% level for T 0.60 and at 10% level for T 0.70, respectively.

Such a test result for structural breaks in daily return-based volatility process of the US

stock market index is evidently supported by a large body of literature. For example, the

test results of Perron and Qu (2010) showed the statistical evidences of short memory with

structural breaks for the S&P 500 stock index return volatility against stationary long memory

in the period from 1990 to 2002. Zhang, Gabrys and Kokoszka (2007) also found significant

structural breaks against long memory for the daily squared return series of the Dow-Jones

13Refer to detailed description at p.943 in Baek and Pipiras (2014).
14The critical value used is reported in Table 1 of Qu (2011, p.428).
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Industrial Average Index (DJIA) in the sample period from July 1998 through to June 2006.

A similar conclusion was reached by McCloskey and Perron (2013) for the log-absolute daily

return of the S&P 500 from July 1962 to March 2004 and of the DJIA from March 1957 to

October 2002. In the case of the recent sample period, Baek and Pipiras (2014) concluded

that the log-absolute daily return series of DJIA and S&P 500 from January 2004 to December

2013 are subject to multiple structural breaks, rather than a pure stationary long memory.

Based on such test results, we are willing to find the evidence of structural breaks and verify

the effect of structural breaks in log r2
t on to its persistence level.

4.4 Testing for the Presence of Structural Breaks

First, we carry out the procedure of Bai and Perron (1998, 2003) (henceforth, BP) within short

memory-based break models to detect structural changes in the mean level of the log-squared

return process. The break model of BP is defined as

yt = cj + ut,

for t = Tj−1 + 1, Tj−1 + 2, . . . , T, where j = 1, 2, . . . , k + 1. yt is the logarithmic squared

return, and cj is the mean of yt. The break points (T1, . . . , Tk) are assumed to be unknown.

ut is serially correlated and heteroskedastic. Let UDmax be the double maximum statistic,

defined as UDmax = max1≤l≤K [supFT (l)] , where supFT (l) denote the F statistic for the

null of no structural breaks against arbitrary number of breaks, and K is the maximum

number of breaks allowed. In this study, we set to K = 5. Denote WDmax to be the weighted

double maximum statistic, which is given by WDmax = max1≤l≤K [wl supFT (l)] , where wl is

the marginal p-values which are across values of l. supFT ( l + 1| l) is the test statistic that

sequentially tests the null of l changes against the alternative of l + 1 breaks. The trimming

value for K = 5 is set to 0.15. See Bai and Perron (1998, 2003) for more details of the test

procedures.

Since BP is supposed to test for I (0) with structural breaks in levels against stationary

short memory, we additionally implement the test of Berkes, Horváth, Kokoszka and Shao

(2006) (henceforth, BHKS) which tests the null of weak dependence with a single change

in mean at an unknown point against the alternative of long memory. The test statistic
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is based on the CUSUM-type statistics, where we calculate Pt,1 based on the observations

up to the time of the estimated single break point and Pt,2 based on the observations after

the time of the estimated single break point. Assuming a single break process, the test

statistic is defined as Mt,2 = max [Pt,1, Pt,2] which converges to a well-known distribution in

the presence of structural breaks, but diverges to infinity under the alternative. In order to

detect multiple structural breaks, we adopt a sequential procedure as proposed in BaPi until

the null hypothesis of k breaks is not rejected against k + 1 breaks alternative. Saying, if

Mt,k+1 = max [Pt,1, . . . , Pt,k+1] is less than its critical value at k + 1 break points through

the sequential procedure, then we may confirm the existence of k structural breaks against a

pure stationary long memory. Refer to Berkes et al. (2006) and Baek and Pipiras (2014) for

further details.

Table 25: Tests of structural changes for log r2t and r
2
t

BP Break date Regime mean

UDmax 154.54* T̂1 27/07/1998 ĉ1 -1.567

WDmax 154.54* T̂2 22/07/2003 ĉ2 -0.801

supFT (2|1) 46.20* ĉ3 -2.210

supFT (3|2) 7.46*

supFT (4|3) 0.78

supFT (5|4) 0.00

BHKS Break date Regime mean

M̂1 4.959* T̂1 20/01/1997 ĉ1 -2.094

M̂2 3.188* T̂2 27/07/1998 ĉ2 -1.197

M̂3 2.271* T̂3 25/04/2002 ĉ3 -0.920

M̂4 1.692** T̂4 11/11/2002 ĉ4 0.194

M̂5 1.868* T̂5 22/07/2003 ĉ5 -0.720

M̂6 1.548 ĉ6 -2.184

ICSS Break date

Ĉ1 1.387** T̂1 20/01/1997

Ĉ2 3.593** T̂2 09/10/2003

Note : * and ** indicate 1% and 5% significance, respectively. Date
format is dd/mm/yyyy.

In addition, we consider potential structural breaks in the raw squared return series for the

comparison purpose with the log-squared return. In doing so, the test statistic of Inclan and

Tiao (1994) is adopted for the detection of multiple structural breaks in unconditional variance

of the return, E
(
r2
t

)
, against the stationary short memory process. In fact, the asymptotic

distribution of the test statistic is obtained under the assumption that a given series of random

variables follows Gaussian i.i.d. processes. However, the test statistic may suffer from upward
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size distortions as sample size increases, when a given sequence of observations is dependent

on a process such as a GARCH process, as shown in Andreou and Ghysels (2002) and Sansó

et al. (2004). To complement this drawback, we utilise the non-parametric-adjusted CUSUM

statistic using the Bartlett kernel estimator to test the null of a homogenous unconditional

variance against the alternative that the structural breaks present in unconditional variance,

based on settings of the asymptotically valid test statistic of Sansó et al. (2004), denoting

as Ck. In order to estimate multiple structural breaks, the modified iterated cumulative sum

of squares algorithm (ICSS) of Inclan and Tiao (1994) is applied to the test statistic at 5%

significance level.

Figure 5: Structural breaks for log-squared return and unconditional variance of return
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Note: The plot above is the log-squared return series and regime means by BP and BHKS. The plot below

is the return series and its two-standard-deviation bands for the regimes by the modified ICSS algorithm.
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Table 25 reports the estimated break points, the break dates and the regime mean de-

pending on each of the break points. The applied test statistics provide strong evidence of

multiple structural breaks. The sequential procedure for the supF -based test of BP and

CUSUM-based test of BHKS confirms two and five structural breaks over the full-sample

period, respectively. The break locations detected by BP are exactly matched with some of

the locations by BHKS, one in July 1998 and another in July 2003. Such mean-level shifts

coincide with past stock market crises. The first break would be taken place by the Russian

Financial crisis. The largest size of downward regime change is observed in July 2003 which

might be around the end of a highly-volatile period, driven by the Dot-com bubble and the

stock market crash. Related to the Asian financial crisis, it seems that BHKS reacts more

sensitively than BP by additionally detecting the break at the beginning of 1997. BHKS has

kept updating the break information and catching up the mean-levels by July 1998 which is

the first break point located by BP. The modified ICSS has detected two structural changes

in the unconditional variance process of rt. The estimated break dates are 20 January 1997

and 9 October 2003. The first break point corresponds to the first break point of BHKS, and

the second is slightly after the last break detected by BP and BHKS. Figure 5 displays the

log-squared return series with regime changes by BP and BHKS, and the demeaned return

series with regime changes in unconditional standard deviation by the modified ICSS. Fur-

ther, it seems that we are less likely to find any existence of a strong time trend, rather than

structural breaks, as seen by the pattern of the mean shifts in the log r2
t process.

Table 26: Long memory tests and parameters for the break-adjusted log r2t

H0: I(0) d̂dm

V/S HML GPH LW ELW 2ELW 2ELWd

BP 0.221 0.121 0.179 0.171 0.170 0.173 0.172

BHKS 0.477 0.242 0.130 0.122 0.121 0.124 0.124

Note: We here report p-values of the V/S and HML tests. The bandwidth
for the semiparametric long memory estimators is set to T 0.70.

Based on the estimated regime means by BP and BHKS for log-squared return series,

we generate the break-adjusted series, subtracting the ĉj from yt = log r2
t . In turn, we now

conduct the V/S and HML tests for the null of stationary short memory against long memory,

and also estimate the long memory parameters for the break-adjusted series to compare with

d̂ from the original series. Let d̂dm denote the estimate of the semiparametric long memory
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estimator for the demeaned series. As reported in Table 26, once the effect of structural

breaks is eliminated, the estimated persistence levels for the every long memory estimators are

generally lying down between 0.12 and 0.15, decreasing by 0.1 point compared to d̂. Although

d̂dm are still bounded in the stationary long memory condition, it seems that the level of

persistence is considerably lower than a persistence level which is observed in a stationary

financial asset return volatility process, in general. Further, the V/S and HML tests suggest

that the break-adjusted series of log r2
t is stationary short memory process, rather than long

memory. None of the considerable difference can be seen in the estimated parameter values

between 2ELW and 2ELW with detrending (2ELWd). Therefore, we may conclude that the

log r2
t series is contaminated by a spurious long memory which is mainly induced by the

structural breaks, rather than a smooth time trend.

4.5 Forecasting Methodology

4.5.1 Volatility Models

We compare the relative predictive ability of a variant of econometric models which generates

conditional volatility forecasts. For realised measures of volatility, the ARFIMA(1, d, 1) model

is utilised to estimate and predict realised variance and realised kernel using their logarith-

mic transformed series as proposed by Andersen et al. (2003). Moreover, Martens, van Dijk

and de Pooter (2009) and Hillebrand and Medeiros (2015) suggest that the out-of-sample

fit of ARFIMA-type models can be improved by modelling long memory with non-linearity

when forecasting the realised volatility of US stock market index returns. In this respect,

we also adopt the Markov Switching-ARFIMA(0, d, 0) (MSFI) model which particularly takes

possible regime switching of the underlying volatility process into account. For the sake of

simplicity and accuracy in estimation, we allow for one regime switching in an intercept term

for MS-FI. In a discrete time process of the daily return volatility, we employ a variant of

GARCH-type models, which is designed to capture memory properties and/or non-linearity

in conditional variance process: GARCH(1, 1) of Bollerslev (1986), exponential GARCH(1, 1)

(EGARCH) of Nelson (1991), fractionally integrated GARCH(1, d, 1) (FIGARCH) of Baillie

et al. (1996), fractionally integrated exponential GARCH(1, d, 1) (FIEGARCH) of Boller-

slev and Mikkelsen (1996) and Adaptive-FIGARCH(1, d, 1, 1) (A-FIGARCH) of Baillie and
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Morana (2009). In brief, the short memory EGARCH model can capture asymmetric behav-

iour of financial asset volatility. FIGARCH and FIEGARCH processes may exhibit longer

memory properties than other competing short memory models. The A-FIGARCH specifica-

tion is designed to allow for a fractional integrated parameter to capture long memory and

a deterministic time-varying intercept that allows for structural breaks. We also consider a

class of joint models of daily return and a realised measure of volatility, where the realised

measure is additionally included as an exogenous variable to the standard GARCH specifi-

cation: GARCHX(1, 1) of Engle (2002) and Realised GARCH(1, 1) (RGARCH) of Hansen

et al. (2012).15 In a GARCHX framework, we treat the realised measure of volatility as a

strong exogenous variable, which is not dependent of the squared error process of the return.

The RGARCH model allows for joint dependence between the realised measure of volatility

and the return by specifying the realised measure equation in addition to the GARCH equa-

tion. All the GARCH-type conditional variance models are estimated by Quasi-Maximum

Likelihood method under Gaussianity assumption, with conventional parameter restrictions

for positiveness and stationarity of conditional variance process. The specification of the es-

timation models are described in Table 27. On the other hand, we additionally utilise a class

of exponentially weighted moving average (EWMA) models additionally for the comparison

purpose of out-of-sample forecasts, which are RiskMetrics EWMA (EWMA) of J.P. Morgan

(1994) and Long Memory EWMA (LM-EWMA) of Zumbach (2006).

4.5.2 Estimation Window

On out-of-sample forecasting, we firstly divide the generated synthetic error series into the

in-sample period and the out-of-sample period. Denote that p is the size of out-of-sample.

T − p is the length of the in-sample period. For the expanding window forecasting models,

the in-sample observations are used to generate the first out-of-sample forecast. Namely,

the initial set of observations spans from the first realisation up to (T − p)th observation.

Once we obtain a new forecast, then, we expand the estimation window by one observation to

forecast conditional variance for the next period, say the first observation through observation

T −p+ 1. By repeating this procedure up to the end of the available out-of-sample period, we

can finally obtain p numbers of out-of-sample forecasts for every single expanding window-

15We use Log-Realised GARCH model in this study, rather than the simple linear specification in empirical
study. It automatically ensures positivity of conditional variance.
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Table 27: ARFIMA and GARCH volatility model specifications

ARFIMA(1, d, 1) (1− φL)(1− L)d(xt − µ) = (1 + θL)εt

MS-ARFIMA(0, d, 0) (1− L)d(xt − µi) = εt

GARCH(1, 1) σ2t = ω + αr2t−1 + βσ2t−1

EGARCH(1, 1) log σ2t = ω + (1− βL)−1(1− αL){γzt + |zt| −
√

2/π}

FIGARCH(1, d, 1) σ2t = ω + [1− (1− βL)−1(1− αL)(1− L)d]r2t

FIEGARCH(1, d, 1) log σ2t = ω + (1− βL)−1(1− L)−d(1− αL){γzt + |zt| −
√

2/π}

Adaptive-FIGARCH(1, d, 1, 1) σ2t = ωt + [1− (1− βL)−1(1− αL)(1− L)d]r2t

ωt = ω + γ sin (2πt/T ) + δ cos (2πt/T )

GARCH-X(1, 1) σ2t = ω + αr2t−1 + βσ2t−1 + γxt−1

Log-Realised GARCH(1, 1) log σ2t = ω + β log σ2t−1 + γ log xt−1

log xt = ξ + ϕ log σ2t + τ1zt + τ2(z2t − 1) + ut

Note: xt represents a series of realised measure of volatility. Particularly, the ARFIMA models
utilise logarithmic realised measures of volatility to estimate and forecast conditional variance.

based model. Basically, the forecasts of the one-day-ahead conditional volatility are generated

by the framework of expanding window forecasting.

In addition to the expanding window, we consider two rolling window forecasts of the

standard GARCH model. The model is estimated with two different rolling window sizes

that are one-half and one-quarter lengths of the in-sample period. Let r denote the rolling

window size. Thus, r = 0.50 and 0.25 in our case. Then the initial sample size used for

the estimation is from round [(1− r)× (T − p)] + 1 to T − p. Once we obtain a new fore-

cast, we roll over the estimation window by one observation to forecast conditional variance

for the next period. Specifically, the new estimation window covers the observations from

round [(1− r)× (T − p)] + 2 to T − p + 1. Then, we repeat this procedure up to the end of

the available out-of-sample period. Corresponding to given window sizes, these forecasting

models are denoted as GARCH(0.50) and GARCH(0.25), respectively. In using a shorter es-

timation window, the forecast model has a relatively smaller number of observations available
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to estimate GARCH parameters, but it is more likely to reduce an overlapping part in data

between different regimes.

Also, we take a post-break sample estimation window into account for the GARCH fore-

cast. The detection of structural breaks is based on the modified ICSS framework, which

was discussed in the previous section. The last break point among all of the estimated break

points is used to determine the estimation window size for the GARCH forecasts. Specifically,

the GARCH model could be estimated using part of the in-sample observations from kf + 1

up to T −p, where kf is the final structural break point detected. We can then obtain the first

out-of-sample forecast. If no break is detected, the generated forecasts must be equivalent to

the forecast from the GARCH with expanding window. After that, the second out-of-sample

forecast can be generated using the observations from the new break point by the modified

ICSS to T − p+ 1. By repeating the described procedure up to the end of the full-sample, we

finally obtain p number of out-of-sample forecasts which may account for the potential (final)

structural breaks throughout the entire sample. We denote the forecasts produced by means

of this framework as GARCH(break). However, GARCH(break) is likely to suffer from an

issue, related to the number of observations to be used for reasonably reliable estimates of

the GARCH parameters. Namely, if the detected break point is located too close around the

forecast date, then a short sample would be available for estimation.

4.5.3 Loss Functions and Evaluation Criteria

We evaluate the forecast performance across employed conditional volatility models using a

range of statistical and econometric measurements. We consider realised kernel as the proxy

of actual volatility. As noted earlier, it is generally known that the realised measures are

more effi cient proxies than the squared return series. Moreover, the realised kernel is known

as more robust to the market microstructure noise than the realised variance. It is however

noted that the realised kernel is still a noisy proxy for the true underlying variance process.

We compare three different loss functions, instead of utilising the unique best criterion only

in terms of loss evaluation. For measuring forecasting accuracy, we adopt mean squared error

(MSE), mean absolute error (MAE) and QLIKE loss functions to evaluate forecasting errors

across the individual forecasts. The loss functions for one-step ahead forecast evaluation are

given by
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MSE1 =
1

p

T∑
t=T−p+1

(
σ̃2
t − σ̂2

t|t−1

)2
,

MSE2 =
1

p

T∑
t=T−p+1

(
σ̃t − σ̂t|t−1

)2
,

MAE1 =
1

p

T∑
t=T−p+1

∣∣∣σ̃2
t − σ̂2

t|t−1

∣∣∣ ,
MAE2 =

1

p

T∑
t=T−p+1

∣∣σ̃t − σ̂t|t−1

∣∣ ,
QLIKE =

1

p

T∑
t=T−p+1

(
log σ̂2

t|t−1 +
σ̃2
t

σ̂2
t|t−1

)
,

where σ̃2
t is the proxy of volatility, realised kernel, and σ̂

2
t|t−1 is the one-day ahead out-of-

sample forecast of volatility. Unlike MSE or MAE, QLIKE may be informative for the loss

implied by the Gaussian log-likelihood. Patton (2011) shows that the MSE1 and QLIKE

are robust when using an unbiased but noisy (imperfect) volatility proxy, and a forecasting

model ranking based on MSE1 and QLIKE would be preserved in use of various conditional

volatility forecasts. The MAE loss functions may not be robust to the noise of the proxy when

using the unobservable conditional volatility. In addition to the loss functions, we measure

the forecast bias and information content using the Mincer-Zarnowitz (MZ) regression, by

regressing realised kernel on the conditional volatility forecast, which is given by

σ̃2
t = β0 + β1σ̂

2
t|t−1 + et.

An accurate forecast is conditionally unbiased if and only if β0 = 0 and β1 = 1. Although a

forecasting model ranking based on a loss comparison could be informative in a selection of the

best-performing (the smallest loss) forecasting model, it does not mean that the loss difference

between forecasting models is statistically significant. Moreover, it does not indicate whether

such a rank order is consistently robust in a different sample. In this sense, the significance of

the difference in the forecast losses is evaluated by the equal predictive ability test of Diebold

and Mariano (1995) and West (1996) (DMW), the superior predictive ability (SPA) of Hansen

(2005) and the model confidence set (MCS) approach of Hansen et al. (2011). The DMW test
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is applied to the pairwise comparison of the MSE1 losses between the ARFIMA-type models

and some GARCH-based models which have low MSE1 relative to the others as well as the

entire GARCH-based models. The SPA and the MCS approaches are utilised to select the

best forecasting model against a multiple number of competing models over MSE1, MAE1

and QLIKE losses.

The null hypothesis of the DMW is to test for the equal predictive accuracy of different

forecasting models, given by H0 : E [dt,ij ] = 0, where dt,ij = L
(
σ̂2
t,i, σ̃

2
t

)
− L

(
σ̂2
t,j , σ̃

2
t

)
, for

i, j = 1, . . . , J , where J is the number of forecasting models. dt,ij is a relative loss differential

between model i and j for i 6= j. that is the loss differential between model i and j for i 6= j.

The DMW test statistic is given by

TDMW =

√
pdij

σ̂ij
,

where dij is the sample mean of dt,ij , that is p−1
∑T

t=T−p+1 dt,ij . σ̂
2
ij is the asymptotic long-

run variance of
√
pdij from a weighted sum of sample autocovariances. The DMW statistic

is asymptotically distributed standard normal for non-nested model comparison as shown

in West (1996). The rejection of the null hypothesis indicates that the i model outperforms

against the j model when TDMW < 0, and vice versa. However, the DMW has some drawbacks

when it applies to a large set of competing forecasting models. For example, White (2000)

points out a data snooping problem, and Hansen et al. (2011) concerns a high-dimensionality

issue in the estimation of a covariance matrix with a large number of competing forecasting

models, amongst others. Moreover, the SPA test and the MCS method are valid to both

nested and non-nested models in evaluation of relative forecasting performance.

The SPA test is conducted for the multiple comparison of competing forecasts. We are

interested in testing the null hypothesis that one particular model fixed as the benchmark is

not worse than any of the competing forecasts in terms of expected loss. The null hypothesis is

given by H0 : E [dt] ≤ 0,where dt = (dt,1, . . . , dt,J) , in which dt,i = L
(
σ̂2
t,0, σ̃

2
t

)
−L

(
σ̂2
t,i, σ̃

2
t

)
.

σ̂2
t,0 is a conditional variance forecast of a benchmark model, and σ̂

2
t,i is a conditional variance

forecast of i competing model. dt,i denotes the loss differential of forecast i relative to the

benchmark forecast. The SPA test statistic for a forecast sample size p is given by
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TSPA = max

[
max
i

√
pdi

σ̂i
, 0

]

respectively, where di = p−1
∑T

t=T−p+1 dt,i and σ̂
2
i is a consistent estimator of the asymptotic

variance of
√
pdi. In our applications, we set each of individual forecasts as the benchmark

and the rest of the others as an alternative for the comparison. The p-value of TSPA is

computed using the stationary bootstrap of Politis and Romano (1994) with 1000 bootstrap

replications16. A high p-value implies that we cannot reject that a benchmark model does

not outperform competing models. However, the SPA test would have somewhat limiting

attributes if a large number of competing models are considered. In brief, the SPA test needs

for a pre-specified benchmark model, and its information is restrictive to a benchmark model.

It requires a composite hypothesis to test. See more relevant details in Hansen et al. (2011).

As improvement of the DMW test and the SPA test, the MCS approach is not only

available for a large set of competing models, but it also does not require a benchmark model

and a composite hypothesis. Hansen et al. (2011) address that the MCS is a confidence

interval which contains the best forecast at a confidence level α. Let M0 be the initial set

of one-step-ahead forecast of volatility. The MCS is a subset of M0, denoted as Mα. M∗α
can be found by an 4-stage iterative testing framework by testing for the null hypothesis,

H0 : E [dt,ij ] = 0 for all i and j, where dt,ij = L
(
σ̂2
t,i, σ̃

2
t

)
− L

(
σ̂2
t,j , σ̃

2
t

)
. In the first stage,

the initial hypothesis being tested is that all forecasts inM0 exhibit equal predictive ability.

We calculate the loss differentials of the forecast models from the empirical data and the

bootstrapped loss differentials. Based on dt,ij , the bootstrapped loss differentials dt,b,ij are

generated for b = 1, . . . , B, where b is the number of bootstrap replication. Next, define

the average forecast losses of model i relative to model j from the empirical data and the

bootstrap samples as dij = p−1
∑T

t=T−p+1 dt,ij and db,ij = p−1
∑T

t=T−p+1 dt,b,ij , respectively.

Also, define the average losses of model i relative to all other competing models as di =

J−1
∑

j∈I dij and db,i = J−1
∑

j∈I db,ij . In addition, we estimate σ̂
2
b,ij = B−1

∑
b

(
db,ij − dij

)2
and σ̂2

b,i = B−1
∑

b

(
db,i − di

)2
. In the third stage of the MCS method, we test the null

hypothesis by applying the empirical and the bootstrapped range test statistics, given by

16For SPA, we report the consistent p-value of TSPAr .
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TMCS = max
i,j

∣∣dij∣∣
σ̂b,ij

,

TMCS
b = max

i,j

∣∣db,ij − dij∣∣
σ̂b,ij

.

The p-value of the test statistics is computed as

pMCS =
1

B

∑
I
{
TMCS
b > TMCS

}
,

where I is an indicator function, which equals to unity if TMCS
b > TMCS , otherwise zero.

If pMCS is greater than α, the null cannot be rejected and the MCS procedure stops. It

implies that all the models constitute the MCS,M0
α =M∗α, holding equal predictive ability.

Otherwise, if pMCS is smaller than α, the null of equal predictive ability is rejected, then we

move onto the final stage. The fourth stage determines a ranking of the competing forecasts,

by removing the worst forecast fromMα. The worst performing model can be identified as

i(−) = arg max
i

di
σ̂i
.

After a trimming of i(−) model, the MCS procedure goes back to the second stage and the

procedure is repeated until the null is not rejected or only one model remains inMα. Then,

the forecast models in Mα at the point where the procedure stops consist of M∗α. In the

applications to our study, following Hansen et al. (2011), we set the confidence interval and

the bootstrap sample size to α = 0.25 and B = 1, 000, respectively. A block bootstrapping

method is used to generate the bootstrap samples with 2 block length.

4.6 Empirical Results

For the forecasting analysis, we evaluate the relative forecasting performance of conditional

volatility models using realised measures of volatility and daily squared return volatility. We

have found statistical evidence that a source of the persistence of the (log-) squared return-

based volatility process for the S&P 500 stock index price neglects structural breaks, whereas

the realised variance and the realised kernel processes exhibit true long memory properties.
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Based on these findings, the evaluation focuses on the predictive accuracy comparisons be-

tween a set of the realised measurement-based ARFIMA-type models and a set of historical

measurement-based GARCH-type models. In addition, it is of particular interest to identify

whether the GARCH-type models, which account for structural changes in estimation and

forecasting, can generate more accurate forecasts than long memory-based GARCH models,

even though the proxy of volatility (RKt) follows a true long memory. For the generation of

the forecasts, the out-of-sample period is set to p = 502, so that the in-sample period is from 3

January 1996 to 30 December 2005 (2469 observations). A number of observations used to es-

timate rolling window GARCH(0.50) and GARCH(0.25) is 1235 and 617, respectively. Those

number of observations are fairly bigger than the suggested number of observations by Hwang

and Valls Pereira (2006), to reliably estimate the GARCH models.17 In the loss evaluation,

the log-volatility forecasts are transformed to the nominal value by taking exponent.

4.6.1 In-Sample Analysis

Since this study is mainly focusing on evaluating the relative predictive accuracy of the forecast

models, the MSE1 and the QLIKE loss functions are applied for a direct comparison of the

in-sample performance of all of the volatility models. The in-sample estimation results are

presented in Table 28 and 29, with the MSE1 and QLIKE goodness-of-fit statistics. We utilise

realised kernel as the proxy for true volatility. The fitted values are the series of the in-sample

forecasts of the conditional volatility models.

In general, the ARFIMA and MSFI models show better goodness-of-fit than the GARCH-

based models. This result is natural because the daily squared return might be a more noisy

estimator than the realised variance and realised kernel. In the models of the realised measures

of volatility, the regime switching model slightly outperforms in terms of MSE1 and QLIKE

for both logRVt and logRKt series, which are ascertained to be long memory by the Qu and

BaPi tests employed. The estimated persistence estimates of MSFI-RV and -RK are lower

than those of ARFIMA-RV and -RK, but the persistence levels of the conditional variance in

both models are quite high. As tested by V/S and HML in the earlier section, logRVt and

logRKt are not covariance stationary over the full-sample period, and their semiparametric

17Hwang and Valls Pereira (2006) propose that at least 250 observations are needed for ARCH(1) models
and 500 observations for GARCH(1, 1) models under the consideration of the size of biases and convergence
errors.
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Table 28: In-sample estimation for daily return volatility I

ARFIMA(1, d, 1) MS-ARFIMA(0, d, 0)

logRVt logRKt logRVt logRKt

µ1 -1.118 -1.075 -7.761 -7.971

(0.633) (0.630) (0.545) (0.511)

µ2 -0.780 -0.754

(0.456) (0.472)

φ 0.383 0.384

(0.103) (0.105)

θ 0.559 0.562

(0.132) (0.137)

d 0.581 0.581 0.444 0.443

(0.064) (0.066) (0.016) (0.016)

MSE1 0.255 0.252 0.247 0.244

QLIKE 0.221 0.231 0.187 0.194

Note: Standard errors in parentheses.

long memory estimates are outside the stationary long memory bound, slightly greater than

0.5. Therefore, it can be said that the in-sample ARFIMA and MSFI estimates for d̂ are

consistent with the full-sample property of the logarithmic series of the realised measures of

volatility. In the case of the GARCH-type model estimation, it can be seen that the models

which combine with the realised measure of volatility generally outperform, even if they do not

take either regime changes or long memory into account in their specification. The in-sample

forecast of GARCHX-RV has the smallest MSE1. RGARCH-RV and -RK exhibit the most

accurate fit to others in terms of QLIKE. The long memory FIEGARCH model follows those

of the combined models. Interestingly, we can see that the persistence size of FIEGARCH,

d̂ = 0.068 is quite low relative to that of FIGARCH, d̂ = 0.440 or GARCH, α̂+ β̂ = 0.993. In

this sense, we conjecture that the effects of structural changes driven by large negative shocks

to return might be better explained by those model specifications, rather than GARCH or

FIGARCH. Further, it could mean that the estimated persistence of GARCH and FIGARCH

models might be spurious. The A-FIGARCH model, which can simultaneously capture long

memory and structural change, does not seem to fit well relative to any other models, except

GARCH. The standard short memory GARCH model is chosen as the worst in its in-sample

fit for both loss measures.
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Table 29: In-sample estimation for daily return volatility II

GAR EGA FIG FIEG A-FIG GX-RV GX-RK RG-RV RG-RK

ω 0.013 0.005 0.093 0.002 0.181 0.105 0.110 0.226 0.210

(0.005) (0.003) (0.025) (0.001) (0.004) (0.029) (0.031) (0.017) (0.016)

α 0.077 0.108 0.109 0.086 0.077 0.019 0.010

(0.012) (0.019) (0.070) (0.015) (0.041) (0.013) (0.013)

β 0.916 0.980 0.487 0.989 0.323 0.693 0.668 0.637 0.640

(0.013) (0.006) (0.115) (0.003) (0.062) (0.069) (0.076) (0.021) (0.021)

d 0.440 0.068 0.287

(0.071) (0.022) (0.005)

γ -1.024 -1.189 0.191 0.289 0.323 0.296 0.292

(0.146) (0.169) (0.003) (0.075) (0.082) (0.018) (0.018)

δ 0.035

(0.002)

ξ -0.761 -0.714

(0.032) (0.033)

ϕ 1.125 1.132

(0.043) (0.044)

τ1 -0.161 -0.160

(0.010) (0.010)

τ2 0.047 0.047

(0.005) (0.005)

MSE1 0.845 0.534 0.836 0.428 0.710 0.376 0.377 0.413 0.413

QLIKE 1.580 1.307 1.311 1.190 1.340 1.081 1.053 0.934 0.934

Note: GAR (GARCH), EGA (EGARCH), FIG (FIGARCH), FIEG (FIEGARCH), A-FIG (A-
FIGARCH), GX-RV, RK (GARCHX with RVt, RKt), RG-RV, RK (Log-RGARCH with RVt, RKt).
Standard errors in parentheses.

4.6.2 Out-of-Sample Analysis

One-step-ahead conditional variance forecasts are constructed for realised measures of volatil-

ity and daily return-based volatility models, as described in Section 4.5. Table 30 presents the

forecast accuracy with respect to five loss functions. In terms of the out-of-sample predictive

accuracy for all the loss functions, the ARFIMA and the MSFI models using the realised

measures of volatility outperforms relative to the GARCH-type models which are based on

the conditional variance of the daily return. It is also diffi cult to find any big difference in the

losses from the ARFIMA and the MSFI models between the one-day-ahead forecasts of RVt

and RKt. In this respect, our finding may support the fact that the daily return conditional

variance is even noisier than realised variance or realised kernel, even though realised kernel

is a noisy proxy of a true volatility. In terms of MSE1 and QLIKE, the simple long memory-

based ARFIMA models present slightly better out-of-sample fit than the regime switching

MSFI models. In contrast, it is reported by two MAE losses that the MSFI models produce
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slightly smaller mean losses than ARFIMA. In a comparison between a variance-based forecast

loss and a standard deviation-based forecast loss, the mean losses from MSE2 and MAE2 look

to be quite comparable across the employed models, so that the standard deviation-based

losses is less likely to order the rank of the models than the variance-based loss functions.

Moreover, the out-of-sample fit between RVt and RKt is not quite distinguishable.

Table 30: Out-of-sample evalunation of the one-day-ahead forecasts

Loss functions MZ regression

MSE1 MSE2 MAE1 MAE2 QLIKE β0 β1 p-value

ARFIMA-RV 0.154 0.039 0.194 0.135 -0.049 -0.010 (0.039) 1.251 (0.140) 0.000

ARFIMA-RK 0.154 0.039 0.194 0.135 -0.049 -0.011 (0.039) 1.252 (0.141) 0.000

MSFI-RV 0.156 0.039 0.193 0.134 -0.052 -0.030 (0.040) 1.323 (0.145) 0.000

MSFI-RK 0.157 0.039 0.193 0.134 -0.052 -0.031 (0.040) 1.321 (0.145) 0.000

GARCH 0.327 0.113 0.414 0.276 0.103 -0.009 (0.038) 0.580 (0.067) 0.000

GARCH(0.50) 0.249 0.088 0.351 0.240 0.058 -0.013 (0.040) 0.677 (0.081) 0.000

GARCH(0.25) 0.213 0.074 0.316 0.223 0.036 -0.033 (0.045) 0.777 (0.095) 0.000

GARCH(break) 0.237 0.081 0.333 0.232 0.048 0.011 (0.041) 0.680 (0.086) 0.000

EGARCH 0.318 0.107 0.414 0.271 0.079 -0.034 (0.038) 0.598 (0.064) 0.000

FIGARCH 0.272 0.096 0.376 0.256 0.074 -0.036 (0.038) 0.651 (0.070) 0.000

FIEGARCH 0.289 0.098 0.393 0.260 0.064 -0.044 (0.037) 0.625 (0.063) 0.000

A-FIGARCH 0.233 0.088 0.354 0.249 0.071 -0.090 (0.043) 0.765 (0.080) 0.000

GARCHX-RV 0.250 0.103 0.407 0.288 0.129 -0.210 (0.059) 0.852 (0.094) 0.000

GARCHX-RK 0.241 0.098 0.394 0.280 0.117 -0.195 (0.059 0.852 (0.095) 0.000

RGARCH-RV 0.330 0.109 0.428 0.285 0.102 -0.039 (0.041) 0.593 (0.065) 0.000

RGARCH-RV 0.301 0.101 0.408 0.274 0.088 -0.043 (0.041) 0.619 (0.068) 0.000

EWMA 0.301 0.095 0.357 0.233 0.047 0.075 (0.037) 0.531(0.077) 0.000

LM-EWMA 0.233 0.081 0.330 0.227 0.038 -0.014 (0.037) 0.691 (0.077) 0.000

Note: p-values are for the F -test of the joint hypothesis of H0: β0 = 0 and β1 = 1. The standard errors of the
MZ regression coeffi cients are in parentheses.

Next, the predictive ability of the GARCH-type models varies overall, but some models

consistently keep their relative superiority in terms of loss rank. It can be seen that the

GARCH rolling window model with the size of 0.25 consistently generates the most accurate

forecasts in the entire loss functions. The LM-EWMA model also produces more accurate one-

day-ahead forecasts than other GARCH models, following the best-performed GARCH(0.25)

in terms of the model rank. However, the GARCH(break) and the A-FIGARCH forecasting

models, which can account for the effect of the structural breaks in their own specifications

perform better than the long memory-based GARCH models such as FIGARCH and FIE-

GARCH. As discussed in Section 4.4, we have verified that the log r2
t process exhibits spurious

long memory, and is contaminated by structural changes. Therefore, it can be said that the
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presence of structural changes is an issue when forecasting GARCH-type volatility by means

of the daily return volatility, even if the actual volatility is a true long memory. Further, when

we compare the out-of-sample fit between two different rolling window sizes for GARCH(0.25)

and GARCH(0.50), we realise that a proper choice of the size of rolling window is critical in

prediction accuracy under possible presence of structural breaks. Unlike the in-sample fit, the

recursive forecasts of the GARCH with realised measures cannot fit well to the true volatility

proxy.

Table 30 summarises the results of the Mincer-Zarnowitz regression of RKt on each of

individual forecasts. We report the estimate of the MZ coeffi cients and the p-values of the

joint test for the null of unbiasedness hypothesis. It can be ensured that all the generated

forecasts are statistically biased from the volatility proxy RKt, rejecting the null at any

significance level. On the other hand, it is also worthy to note that we have yet any clues

whether such loss differences by given loss functions are statistically significant to rank the

forecasts.

Table 31: DMW test results for the MSE1 loss I

ARFIMA-RV ARFIMA-RK MSFI-RV MSFI-RV GARCH(0.25)

ARFIMA-RK -1.931

(0.054)

MSFI-RV -1.125 -0.922

(0.261) (0.356)

MSFI-RK -1.242 -1.071 -1.416

(0.214) (0.284) (0.157)

GARCH(0.25) -3.725 -3.684 -3.387 -3.359

(0.000) (0.000) (0.001) (0.001)

LM-EWMA -3.884 -3.849 -3.591 -3.567 -3.108

(0.000) (0.000) (0.000) (0.000) (0.002)

Note: p-values in parentheses. A minus (plus) sign indicates that the model in the column
has smaller (greater) MSE1 than the model in the row.

The equal predictive ability test for the MSE1 losses is conducted utilising DMW. Since

the MSE1 for the ARFIMA-type models are considerably smaller than the one for the GARCH

models, we firstly carry out pairwise comparisons for the ARFIMA-type models with GARCH(0.25)

and LM-EWMA. The pairwise comparison result of the test is described in Table 31. If the

sign of the DMW test statistic is negative, it implies that a forecast model in the column

produces more accurate forecasts than a model in the row, and vice versa. The DMW results
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in that the MSE1 of the ARFIMA-RV forecasts is smaller than that of ARFIMA-RK with

5.4% significance. On the other hand, the MSE1 losses of GARCH(0.25) and LM-EWMA are

significantly larger than all of the ARFIMA and the MSFI models. However, it is still diffi cult

to determine the superiority of the relative predictive accuracy among other models which

fail to reject the null of the equality of the loss. On the other hand, we separately evaluate

the equal predictive accuracy only for the GARCH-type models, and the DMW outcomes are

displayed in Table 32. In the evaluation for the GARCH-type models, the pattern of forecast

model superiority by MSE1 keeps holding in the pairwise comparison by the DMW test. The

GARCH(0.25) forecasts are significantly less biased than all of the other competing forecasts.

It can be also seen that GARCH(break), A-FIGARCH and LM-EWMA are preferred relative

to the long memory-based models and the GARCHX and RGARCH models with the realised

measures. However, the significance of equal predictive accuracy are not always ensured for

some cases of comparison.

In turn, we now deliver further comparisons for a large set of multiple competing forecasts.

The results of forecasting have clearly addressed that the ARFIMA-type models with realised

measures of volatility produce better predictive accuracy than a class of GARCH forecasts.

And also, it has been shown that a class of GARCH forecasts, which may take structural

changes into account, can outperform the long memory-based model and the GARCHX and

the RGARCH models with realised measures of volatility. Nonetheless, it is obvious that these

results are obtained from the selected empirical data, particularly adopted for this study. In

this sense, we apply the SPA test and the MCS approach to assess whether we can obtain

similar outcomes for ensuring a consistent decision in terms of forecast superiority among

the employed models. As noted earlier, it can be seen that there is a large difference in

the losses between the ARFIMA and GARCH-type models. And also, the DMW test has

shown that the most accurate model selected among a class of the GARCH-type models still

performs worse than every ARFIMA-type model. Therefore, we deliver the SPA and the MCS

evaluations for these two types of models separately. In particular, for the SPA test, we set

each of the individual forecasting models as a benchmark, and set all the others in a given

class of models as a competing set. A high p-value in the SPA implies non-rejection of the

null that is a benchmark not outperformed. Thus, the model with the highest p-value can be

chosen as the best of the competing models. An implication of the high p-value for the MCS
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is similar with that of the SPA. Although the MCS approach does not require a benchmark,

the highest p-valued model is the best-performing forecast relative to the competing models

within a given model confidence set.

Table 33 presents the SPA and the MCS results for the MSE1, MAE1 and QLIKE losses.

For the ARFIMA-type models, the best-performing model varies between the SPA and the

MCS, being mismatched with the first ranked model with respect to each of the loss functions.

By the SPA loss evaluation criterion, ARFIMA-RV, MSFI-RV and MSFI-RK are chosen as

the best models with respect to MSE1, MAE1 and QLIKE, respectively. The MCS approach

chooses the MSFI-RK as the best in terms of MSE1 and MAE1. ARFIMA-RK outperforms

for QLIKE in the MCS criterion. Recalling forecasting results for loss functions, the ARFIMA

models have shown predictive accuracy relative to the MSFI models in terms of MSE1 and

QLIKE. In contrast, the MSFI models have had lower MAE1 than the ARFIMA models.

Comparing all these results above, it would be diffi cult to find certain consistent patterns of

forecast superiority across a class of ARFIMA-type models. Moreover, it is hard to identify

any particular preference between two different realised measurements either. Finally, these

results may indicate that each of the individual models does not produce significantly different

forecasts when an actual volatility exhibits a true long memory. On the other hand, for a class

of the GARCH-type models, the SPA and the MCS consistently report that GARCH(0.25)

is the most preferred model over the entire loss functions, followed by LM-EWMA and A-

FIGARCH. Unlike the loss function-based and DMW predictive ability, however, the GARCH

forecasting model with structural changes has no significant preference in terms of relative

predictive ability by the evaluation based on these loss criteria. The long memory-based

FIGARCH and FIEGARCH forecasts are inferior against the proxy process which is a long

memory. Finally, we may conclude that the GARCH rolling window forecast with a proper

estimation size can dominate the long memory GARCH forecasts, even if the return volatility

is spurious long memory which is mainly driven by the structural breaks, and also the proxy

of volatility exhibits a true long memory property.

4.6.3 Sensitivity Analysis of Rolling Window Size for GARCH Model

Based on the forecast evaluation, it has been found that the GARCH 0.25 rolling window

forecast is selected as the best-performing model among the class of GARCH-type models.
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Table 33: Results of SPA and MCS tests

SPA MCS

MSE1 MAE1 QLIKE MSE1 MAE1 QLIKE

ARFIMA-RV 1.000 0.189 0.094 0.201 0.180 0.820

ARFIMA-RK 0.046 0.058 0.102 0.201 0.180 1.000

MSFI-RV 0.240 1.000 0.686 0.201 0.180 0.297

MSFI-RK 0.154 0.032 1.000 1.000 1.000 0.297

SPA MCS

MSE1 MAE1 QLIKE MSE1 MAE1 QLIKE

GARCH 0.000 0.000 0.000 0.000 0.000 0.000

GARCH(0.50) 0.000 0.000 0.000 0.000 0.000 0.000

GARCH(0.25) 1.000 1.000 1.000 1.000 1.000 1.000

GARCH(break) 0.000 0.000 0.000 0.000 0.000 0.000

EGARCH 0.000 0.000 0.000 0.000 0.000 0.000

FIGARCH 0.000 0.000 0.000 0.000 0.000 0.000

FIEGARCH 0.006 0.000 0.000 0.000 0.000 0.000

A-FIGARCH 0.007 0.000 0.000 0.054 0.062 0.000

GARCHX-RV 0.000 0.000 0.000 0.000 0.000 0.000

GARCHX-RK 0.110 0.000 0.000 0.054 0.062 0.000

RGARCH-RV 0.000 0.000 0.000 0.000 0.000 0.000

RGARCH-RV 0.002 0.000 0.000 0.000 0.000 0.000

EWMA 0.000 0.000 0.146 0.000 0.000 0.355

LM-EWMA 0.004 0.002 0.767 0.054 0.062 0.756

Note: We reprot p-values of the SPA and the MCS. For the SPA test, the benchmark
corresponds to the model in the first column.

However, the GARCH 0.50 rolling window model cannot produce comparable forecasts against

the best model, even though GARCH(0.50) outperforms the long memory-based models. In

this respect, in the presence of structural breaks, we suspect here that the performance of

a rolling window GARCH forecast is quite sensitive to the size of rolling window, and the

forecasting performance can be improved when the rolling window size is about to reflect the

effect of change in return volatility. To assess this argument, we would further like to demon-

strate how the relative performance of the GARCH rolling window forecasting depends on a

certain rolling window size. In addition to 0.25 and 0.50, we consider three more estimation

sizes for rolling window forecasting which are 0.40, 0.60 and 0.75.

As displayed in Table 34, the first observation in an initial set of sub-sample data used to

produce the first out-of-sample forecast (denoted as ’Starting date’) is relatively close to the

last break point detected by BP, BHKS, and the modified ICSS. The GARCH(0.75)-starting

date is located around the first break point of BP and the modified ICSS. Overall, the starting

date determined by rolling window size is much closer to the break dates of log-squared return
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Table 34: Rolling window and structural changes

GARCH(0.25) GARCH(0.40) GARCH(0.50) GARCH(0.60) GARCH(0.75)

Rolling window size 617 988 1235 1481 1852

Starting date 16/07/2003 14/01/2002 03/01/2001 06/01/2000 13/07/1998

Close break (r2t ) 09/10/2003 20/01/1997

Close break (log r2t ) 22/07/2003 25/04/2002 27/07/1998

Note: Starting date indicates the date of the first observation in the initial estimation window which is used to
generate the first out-of-sample forecast. Refer to Table 4 for the detected break dates of r2t and log r2t . Date
format is dd/mm/yyyy.

series. The GARCH(0.50) and GARCH(0.60) cases have no corresponding structural change

points.

Next, we generate forecasts of those five rolling window models and calculate their mean

losses using the MSE1 and the QLIKE functions. The results are presented in Table 35. When

we consider 0.40 rolling window size, the mean loss is slightly smaller than the 0.25 rolling

window size in both MSE1 and QLIKE. It can be found that other rolling window forecasts

tend to get inferior in loss evaluation as the rolling window size increases. These outcomes

may imply that the last break point detected is more likely to be effective in order to improve

the predictive ability of the GARCH rolling window model, and an inclusion of the small

number of pre-break observations is also helpful to obtain more accurate forecasts, as pointed

out by Pesaran and Timmermann (2007) and Clark and McCracken (2009), amongst others.

Table 35: MSE1 and QLIKE losses and loss ratios, relative to GARCH(0.25)

GARCH(0.25) GARCH(0.40) GARCH(0.50) GARCH(0.60) GARCH(0.75)

MSE1 0.213 0.212 0.249 0.283 0.303

QLIKE 0.036 0.036 0.058 0.073 0.080

MSE1 ratio 1.000 0.995 1.172 1.330 1.427

QLIKE ratio 1.000 0.989 1.607 2.006 2.216

Note: Loss ratio is calculated by dividing loss of GARCH(0.25) into the loss of a competing rolling
window model.

To complete a comparison among the GARCH rolling window forecasting model, we apply

the conditional predictive ability test of Giacomini and White (2006), which is available to

check the significance of equal predictive ability for nested and non-nested rolling window-

based forecasting models. Giacomini and White (2006) propose a two-step procedure to

determine the best forecast at a certain point in the future, using current information. The

test is designed to provide a forecast decision rule in a case where equal (conditional) predictive
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ability is rejected. The null hypothesis is H0 : E [dt,ij | Ft−1] = 0 for all i and j, where

dt,ij = L
(
σ̂2
t,i, σ̃

2
t

)
− L

(
σ̂2
t,j , σ̃

2
t

)
. The conditional moment condition for the expectation of

loss differential can be derived as E [ftdt+1,ij ] = 0, where ft is a q × 1 vector of any Ft−1

measurable function. We use the test function ft = (1, dt,ij)
′
. As the first step of the CPA

procedure, we regress dt+1,ij on ft over the out-of-sample period and let ψ be the vector of

the regression coeffi cient.

dt+1,ij = ψ′ft + et.

In the context, ψ̂
′
ft ≈ E [dt,ij | Ft−1] , so that the original null can be tested by testing for

ψ = 0. The test statistic of the CPA is formed as a Wald-type test statistic, given by

TCPA = (p− 1)

 1

p− 1

T−1∑
t=T−p+1

ftdt+1,ij

′ Ω̂−1
p

 1

p− 1

T−1∑
t=T−p+1

ftdt+1,ij

 ,

where Ω̂p is defined as p−1
∑T−1

t=T−p+1 (ftdt+1,ij)
′
(ftdt+1,ij), which is a consistent estimate

of variance of ftdt+1,ij . The test statistic asymptotically converges to χ2
q with q degrees of

freedom. If we cannot reject the null hypothesis of equal predictive ability, both models would

have no statistically significant difference in terms of forecasting performance, conditioning

on the information used in the procedure. In contrast, a rejection of the null implies that ft

is statistically informative to identify which forecasting model is superior relative to the other

in a pairwise comparison, for the future date of interest. In case of a rejection, we proceed to

the second step. The decision rule in this step is to select σ̂2
t,i if ψ̂

′
ft > 0 as superior one on

interpreting the test results, otherwise select σ̂2
t,j if ψ̂

′
ft < 0.

The CPA test results are reported in Table 36. The critical value is obtained from χ2

distribution at 5% significance level. The upper triangular part of Table 36 is based on the

QLIKE loss series of a class of GARCH rolling window models. The lower triangular part

contains the test result based on the MSE1 losses. It is evident that the model superiority

by the loss functions is consistent with the model superiority by the CPA test. In effect, it

can be said that the loss differences across the GARCH rolling window models are statisti-

cally significant. Therefore, it has been empirically showed that the appropriate choice of

the rolling window size for the GARCH model is of importance to achieve relatively better

predictive ability in the structural breaks even when the proxy of an actual volatility exhibits
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Table 36: CPA test results for MSE1 and QLIKE losses

GARCH(0.25) GARCH(0.40) GARCH(0.50) GARCH(0.60) GARCH(0.75)

GARCH(0.25) -83.92 78.20 77.77 87.76

(0.000) (0.000) (0.000) (0.000)

GARCH(0.40) 31.72 60.42 72.82 91.15

(0.000) (0.000) (0.000) (0.000)

GARCH(0.50) -41.19 -35.42 104.45 85.05

(0.000) (0.000) (0.000) (0.000)

GARCH(0.60) -54.04 -46.74 -47.26 78.63

(0.000) (0.000) (0.000) (0.000)

GARCH(0.75) -47.68 -40.06 -32.63 -17.27

(0.000) (0.000) (0.000) (0.000)

Note: The CPA test outcomes are presented in the lower triangular part for MSE1, and in
the upper triangular part for QLIKE. p-values in parentheses. A minus (plus) sign indicates
that the model in the column outperforms (is outperformed by) the model in the row more
than 50% of the time, in terms of either MSE1 or QLIKE.

long memory. And also, our empirical result recommends to use some of pre-break data

when forecasting volatility by means of rolling window GARCH, as suggested in the relevant

literature.

4.7 Concluding Remarks

The memory properties of the historical and realised measures of volatility series have been

investigated. The baseline task of this study has been to identify whether the daily S&P 500

index return volatility process is long memory or spurious long memory, subject to structural

changes. Moreover, we have evaluated the relative performance of forecasting models and

have analysed the predictive content based on identified memory properties of the given data

generating volatility processes. Prior to the out-of-sample forecast analysis, we found that

two different unbiased volatility measures exhibit inconsistent memory properties for the same

underlying S&P 5000 stock index return series. As shown by the testing frameworks employed,

both realised variance and realised kernel volatility processes show long memory, while the

squared daily return process is stationary short memory contaminated by structural changes.

Through forecast performance evaluations, we found that a class of ARFIMA models with

realised measures of volatility have significantly outperformed the historical volatility-based

GARCH class models. The applied loss functions have made the consistent results in favour

of superiority of the realised measurement-based models for the realised kernel proxy. In a
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class of GARCH models, the rolling GARCH with 0.25 estimation window model apparently

generates more accurate forecasts relative to other historical volatility-based models. All

the statistical tests applied for evaluating forecast losses support those findings as well, in

terms of the pairwise comparison for equal predictive ability (DMW) and the multiple model

comparison for superior predictive ability (SPA) and model confidence set approach (MCS).

Moreover, it has been found that long memory-based FIGARCH and FIEGARCH models

are outperformed by some GARCH forecasts which can reflect the effects of the structural

breaks. In the context of GARCH volatility, it implies that the presence of structural breaks

in estimated volatility processes does matter, so that its effect should be accounted for when

forecasting volatility, even if the true volatility shows long memory properties. It has also been

revealed that the rolling window size is quite a sensitive factor in generating more accurate

forecasts of conditional volatility under the structural breaks to produce accurate forecast.

Our empirical findings may contribute to practitioners in a variety of field of financial appli-

cations when forecasting models need to be chosen amidst in a confusion regarding structural

breaks and long memory. Along the lines of the existing literature, the availability of high-

frequency-based realised measures of volatility still guarantees apparently relative superiority

of realised volatility measurement by means of long memory-based forecasting models. In the

level of lower-frequency daily squared return volatility, the presence of structural breaks is

critical to determine short-term forecasting model superiority even when the true volatility

generation is long memory. Our results also suggest the importance of choosing an proper

rolling window size when estimating and forecasting conditional volatility by means of the

GARCH model under structural breaks. However, the results illustrated in this chapter are

based on one-day-ahead forecast case only, so that our study can be extended by evaluating

the predictive content of even longer-term forecasts such as weekly or monthly forecasts. Fur-

ther, it would also be interesting to attempt a theoretical demonstration of possible causes

and effects of different memory properties across different volatility measures for the same

underlying return series.
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Chapter 5 Conclusion

The aim of this thesis is to contribute to better understanding of topics in financial time

series. We have introduced a new misspecification testing framework for the GARCH-based

parametric model under the joint dependence between the realised measure of volatility and

the squared error process. Moreover, this thesis has evaluated the relative predictive ability

and financial economic benefits of a variety of financial volatility models with particular

emphasis on structural breaks and long memory properties.

In the second chapter, we provide a unifying and generic class of misspecification testing

frameworks for the Realised GARCH(p, q) model. The proposed test statistics are constructed

based on the conditional moment principle, having an asymptotic chi-square distribution un-

der the null. The misspecification test procedures can be simply applicable in practice without

further bootstrapping procedures etc., and help reduce the cost of time and computation load.

In addition, our analysis of the conditional mean effect in estimation and testing has provided

theoretical soundness for the test statistic to make it robust to the conditional heteroskedas-

ticity of the return process. We have shown that the conditional mean parameter effects in the

estimation and testing for the Realised GARCH are effectively negligible in the absence of the

squared error process in the GARCHX specification. Therefore, the Realised GARCH model

with various types of mean specifications can be tested using the proposed generic framework

without any loss of generality. Our Monte Carlo experiment reveals that the proposed test

statistics have good finite sample size properties and high degrees of power against alternative

data generation process. In particular, the test statistic that accounts for the recursive nature

of the conditional variance appears to be a powerful tool in the detection of the potential mis-

specification of the null model arising from asymmetry behaviour in financial asset returns.

The empirical application also supports that the test statistic with the recursive nature of

the processes works very well when the size of the asymmetry in the leverage effect is large
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enough. Specifically, the asymmetry test rejects the null at any significance level for the stock

returns with a higher degree of asymmetric volatility. The further discussions would be of

interest, for example, to investigate the asymptotic properties of the proposed misspecification

tests of the Realised GARCH model. Moreover, the misspecification testing framework can

be extended to dealing with a non-stationary covariate case such as long memory.

In the third chapter, a Monte Carlo experiment is conducted to investigate the relative out-

of-sample predictive ability of a class of parsimonious conditional variance models when either

a structural break or long-run dependence is allowed for a conditional variance process. The

results of our experiment reveal some supporting evidence of the discussions of the existing

relevant literature. If the conditional variance process is stationary short or long memory in the

absence of a structural break, the forecasting models which are able to capture the properties

of the true process are more favourable than any other misspecified models. When the true

short memory process is contaminated by a structural break, the detection of the break may

play an important role in choosing a proper window size for the short-run forecasting. Further

we have found that spurious long memory may strongly dominate the true structural break in

long-run forecasting when the true short memory process is highly persistent. However, it has

not been easy to justify any consistent features or patterns in forecast superiority among the

individual forecasting models when the structural break is located around the end of the in-

sample period. It might be due to relatively small number of observations used for estimation.

Nevertheless, it can be seen that the long memory-based forecasts are generally better off than

the short memory-based competing forecasts in the presence of the most recent break. On

the other hand, two forecast combinations are very favourable in the presence of a structural

break, regardless of the forecast horizon and the level of persistence. A number of extensions

would be possible, based on the limitations of this study. For example, our simulation design

can be naturally extended to accounting for more general non-stationary volatility processes

which are subject to structural break and long memory simultaneously or other non-linearities.

Moreover, it would be more informative in a general sense if we additionally take more various

conditional volatility models such as stochastic volatility models and markov-switching models

into account.

In the fourth chapter, the memory properties of the historical and realised measures of

volatility series have been investigated. Moreover, we have evaluated the relative performance
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of forecasting models and have analysed the predictive content based on identified memory

properties of given data generating volatility processes. Prior to the out-of-sample forecast

analysis, we have found that two different unbiased volatility measures exhibit inconsistent

memory properties for the same underlying S&P 5000 stock index return series. As shown

by the several of the testing frameworks employed, both realised variance and realised kernel

volatility processes show long memory, while the squared daily return process is stationary

short memory contaminated by structural changes. Through forecast performance evalua-

tions, we found that a class of ARFIMA models with realised measures of volatility have sig-

nificantly outperformed the historical volatility-based GARCH class models. The applied loss

functions have made consistent results in favour of superiority of the realised measurement-

based models for the realised kernel proxy. In a class of GARCH models, the rolling GARCH

with 0.25 estimation window model apparently generates more accurate forecasts than the

other historical volatility-based models. In the context of GARCH volatility, this implies that

the presence of structural breaks in estimated volatility processes does matter, so that their

effects should be accounted for when forecasting volatility, even if the true volatility shows

long memory properties. And also, it has been revealed that the rolling window size is quite a

sensitive factor in generating more accurate forecasts of conditional volatility under structural

breaks to produce more accurate forecasts. The results illustrated in this chapter are based

on one-day-ahead forecast case only, so that our study can be extended by evaluating the

predictive content of even longer-term forecasts such as weekly or monthly forecasts. Fur-

ther, it would also be interesting to attempt a theoretical demonstration of possible causes

and effects of different memory properties across different volatility measures for the same

underlying return series.
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Codes, Programmes, and Sources

Chapter 2

For all the results, the codes are newly written by Author using GAUSS, based on the reference

sources for Realised GARCH of Hansen et al. (2012), which are written by OX and available

at Journal of Applied Econometrics Data Archive. The graphic is drawn using Excel.

Chapter 3

Based on the original work of Rapach and Strauss (2008), the main codes are considerably

revised by Author using GAUSS for the simulation experiment. The original source includes

all of the GARCH-based estimation and forecasting, VaR, MSFE, ICSS, DMW, RC and

SPA calculation. Original GAUSS procedure files are available at David Rapach’s Homepage:

http://sites.slu.edu/rapachde/home/research. For some other works, Author wrote some new

GAUSS codes for EWMA and LM-EWMA forecast. The graphic is drawn using MATLAB.

Chapter 4

Table 22: Time Series Modelling by James Davidson, University of Exeter.

Table 23, 26: V/S, HML, GPH, LW - Time Series Modelling; ELW, 2ELW, 2ELWd -

MATLAB code available at Katsumi Shimotsu’s Homepage:

http://shimotsu.web.fc2.com/Site/Matlab_Codes.html.

Table 24: Qu test - R code available at Zhongjun Qu’s Webpage:

http://people.bu.edu/qu/code.htm; BaPi test —R code available at Changryong Baek’s

Homepage: http://web.skku.edu/~crbaek/code.htm.
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Table 25: BP test —GAUSS code available at Pierre Perron’s Homepage:

http://people.bu.edu/perron/; BHKS test —R code available at Changryong Baek’s

Homepage: http://web.skku.edu/~crbaek/code.htm; ICSS test —GAUSS code available at

David Rapach’s Homepage: http://sites.slu.edu/rapachde/home/research.

Table 28: Time Series Modelling.

Table 29: GARCH, FIGARCH, GARCHX-RV(RK), RGARCH-RV(RK) —GAUSS

procedure written by Author; EGARCH, FIEGARCH —Time Series Modelling;

Adaptive-FIGARCH —GAUSS code slightly revised by Author, the original GAUSS

procedure is provided by Claudio Morana.

Table 30: MSE, MAE, QLIKE —Calculated using GAUSS by Author; MZ regression -

GAUSS code available at David Rapach’s Homepage:

http://sites.slu.edu/rapachde/home/research.

Table 32: DMW test - GAUSS code available at David Rapach’s Homepage:

http://sites.slu.edu/rapachde/home/research.

Table 33: SPA - GAUSS code available at David Rapach’s Homepage:

http://sites.slu.edu/rapachde/home/research; MCS —MATLAB code available at MFE

Toolbox by Kevin Sheppard: https://www.kevinsheppard.com/MFE_Toolbox.

Table 36: CPA —MATLAB code available at Runmycode:

http://www.runmycode.org/companion/view/88.

All the graphics in Chapter 4 are drawn using Time Series Modelling.

* All of the codes are available from Author upon request. Any remaining errors are my

own. The followings are the sample GAUSS codes for the finite empirical size of the test

(Chapter 2) and the Monte Carlo simulation experiment (Chapter 3).
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1   /****************************************************************************/
2   /****************  Chapter 2: Finite empirical size of test  ****************/
3   /****************************************************************************/
4   
5   new;
6   output file=C:\gauss12\procs\phd1\results\size_asy\SPY.out reset;
7   library cml;
8   cmlset;
9   _cml_MaxIters=3000;
10   _cml_Algorithm=4;
11   tim=hsec;
12   
13   /* general settings */
14   dist=1; @ 1: standard normal, otherwise: standardised student t @
15   nu=12; @ degrees of freedoms for t distribution @
16   lags=20; @ Ljung-Box and Engle's LM test lags @
17   
18   /* true parameter values for Realized GARCH(1,1) */
19   
20   h0=-0.333;
21   om= 0.061;
22   be= 0.550;
23   ga= 0.410;
24   xi=-0.183;
25   ph= 1.036;
26   t1=-0.067;
27   t2= 0.073;
28   vu= 0.146;
29   
30   v_param=om|be|ga|xi|ph|t1|t2|vu;
31   
32   /* DGP and simulation settings */
33   t=3000;
34   t_0=2000;
35   
36   seed1=1492037;
37   seed2=7518391;
38   replic=1000;
39   
40   /* output initialisation */
41   
42   v_par=zeros(replic,10);
43   testat1=zeros(replic,1);
44   pvalue1=zeros(replic,1);
45   testat2=zeros(replic,1);
46   pvalue2=zeros(replic,1);
47   testat3=zeros(replic,1);
48   pvalue3=zeros(replic,1);
49   testat4=zeros(replic,1);
50   pvalue4=zeros(replic,1);
51   
52   counter=1;
53   do until counter>replic;
54   
55   {et,xt}=genrgarch(h0,v_param,t_0,t,dist,nu);
56   d_et=et[1:rows(et),1];
57   s_et=d_et.^2;
58   //h1=meanc(s_et);           @ unconditional variance of squared return @
59   d_xt=xt[1:rows(xt),1];
60   
61   /* initialising the starting parameter values */
62   
63   startvalues=h0|v_param;
64   
65   {vp,fout,gout,vcv,ret,d_ht,d_zt}=cmlrgarch(d_et,d_xt,startvalues);
66   



67   /* testing */
68   
69   {stat1,pval1,stat2,pval2}=mtest(d_ht,d_xt,d_zt,vp);
70   
71   v_par[counter,1]=vp[1];
72   v_par[counter,2]=vp[2];
73   v_par[counter,3]=vp[3];
74   v_par[counter,4]=vp[4];
75   v_par[counter,5]=vp[5];
76   v_par[counter,6]=vp[6];
77   v_par[counter,7]=vp[7];
78   v_par[counter,8]=vp[8];
79   v_par[counter,9]=vp[9];
80   v_par[counter,10]=ret;
81   
82   s_zt=d_zt.^2;
83   
84   /* Ljung-Box Test */
85   {stat3,pval3}=lbqtest(s_zt,lags); @ squared standardised residuals @
86   /* Engle's LM Test */
87   {stat4,pval4}=lmtest(d_zt,lags); @ squared standardised residuals @
88   
89   testat1[counter,1]=stat1;
90   pvalue1[counter,1]=pval1;
91   testat2[counter,1]=stat2;
92   pvalue2[counter,1]=pval2;
93   testat3[counter,1]=stat3;
94   pvalue3[counter,1]=pval3;
95   testat4[counter,1]=stat4;
96   pvalue4[counter,1]=pval4;
97   
98   counter=counter+1;
99   endo;

100   
101   ind1=(pvalue1).<0.05;
102   ind2=(pvalue2).<0.05;
103   ind3=(pvalue3).<0.05;
104   ind4=(pvalue4).<0.05;
105   
106   afr1=meanc(ind1);
107   afr2=meanc(ind2);
108   afr3=meanc(ind3);
109   afr4=meanc(ind4);
110   
111   format 10,4;
112   "==========================================";
113   "True and Estimated Parameters";
114   "==========================================";
115   "Empirical Size: SPY";
116   "------------------------------------------";
117   if dist==1;
118   "Error Distribution  : Normal";
119   else;
120   "Error Distribution  : t(" nu ")";
121   endif;
122   "No. of Replications : " replic;
123   tim=(hsec-tim)/6000;
124   "Running Time        : " tim;
125   "------------------------------------------";
126   "omega  = " om~meanc(v_par[.,2]);
127   "beta   = " be~meanc(v_par[.,3]);
128   "gamma  = " ga~meanc(v_par[.,4]);
129   "xi     = " xi~meanc(v_par[.,5]);
130   "phi    = " ph~meanc(v_par[.,6]);
131   "tau1   = " t1~meanc(v_par[.,7]);
132   "tau2   = " t2~meanc(v_par[.,8]);



133   "var(u) = " vu~meanc(v_par[.,9]);
134   "==========================================";
135   "Actual Frequency of Rejection";
136   "Lags for LB and LM tests:" lags;
137   "==========================================";
138   "New test without recursion  = " 100*afr1;
139   "New test with recursion     = " 100*afr2;
140   "LB test                     = " 100*afr3;
141   "LM test                     = " 100*afr4;
142   "==========================================";
143   save path=c:\gauss12\procs\phd1\results\size_asy\SPY v_par;
144   save path=c:\gauss12\procs\phd1\results\size_asy\SPY testat1;
145   save path=c:\gauss12\procs\phd1\results\size_asy\SPY pvalue1;
146   save path=c:\gauss12\procs\phd1\results\size_asy\SPY testat2;
147   save path=c:\gauss12\procs\phd1\results\size_asy\SPY pvalue2;
148   save path=c:\gauss12\procs\phd1\results\size_asy\SPY testat3;
149   save path=c:\gauss12\procs\phd1\results\size_asy\SPY pvalue3;
150   save path=c:\gauss12\procs\phd1\results\size_asy\SPY testat4;
151   save path=c:\gauss12\procs\phd1\results\size_asy\SPY pvalue4;
152   
153   /************ Procedure Definition ************/
154   
155   /* data generation using Realized GARCH(1,1) model */
156   
157   proc(2)=genrgarch(h0,param,t_s,t_t,dist,dof);
158   local j,e,h,x,u,z,lnh,lnx,us;
159   local co0,co1,co2,me0,me1,me2,me3,vau;
160   
161   /* dimensions of variables */
162   e=zeros(t_s+t_t,1);
163   lnh=zeros(t_s+t_t,1);
164   lnx=zeros(t_s+t_t,1);
165   h=zeros(t_s+t_t,1);
166   x=zeros(t_s+t_t,1);
167   u=zeros(t_s+t_t,1);
168   z=rndns(t_s+t_t,1,seed1);
169   us=rndns(t_s+t_t,1,seed2);
170   
171   co0=param[1]; @ omega @
172   co1=param[2]; @ beta @
173   co2=param[3]; @ gamma @
174   me0=param[4]; @ xi @
175   me1=param[5]; @ phi @
176   me2=param[6]; @ tau1 @
177   me3=param[7]; @ tau2 @
178   vau=param[8]; @ var(u)@
179   
180   //lnh[1]=(co0+me0*co2)/(1-co1-me1*co2); @ initial logarithm conditional 

variance @
181   //h[1]=exp(lnh[1]);
182   
183   h[1]=exp(h0);
184   
185   if dist==1;
186   e[1]=sqrt(h[1])*z[1];
187   else;
188   e[1]=(sqrt((dof-2)/dof).*sqrt(h[1]).*rndns(1,1,seed1)./sqrt(sumc(rndns(dof

,1,seed1).^2)'./dof));
189   z[1]=e[1]./sqrt(h[1]);
190   endif;
191   
192   u[1]=sqrt(vau)*us[1];
193   lnx[1]=me0+me1*lnh[1]+me2*z[1]+me3*((z[1].^2)-1)+u[1];
194   x[1]=exp(lnx[1]);
195   
196   j=2;



197   do until j>t_s+t_t;
198   
199   lnh[j]=co0+co1*lnh[j-1]+co2*lnx[j-1];
200   h[j]=exp(lnh[j]);
201   
202   if dist==1;
203   e[j]=sqrt(h[j])*z[j];
204   else;
205   e[j]=(sqrt((dof-2)/dof).*sqrt(h[j]).*rndns(1,1,seed1)./sqrt(sumc(rndns(dof

,1,seed1).^2)'./dof));
206   z[j]=e[j]./sqrt(h[j]);
207   endif;
208   
209   u[j]=sqrt(vau)*us[j];
210   lnx[j]=me0+me1*lnh[j]+me2*z[j]+me3*((z[j].^2)-1)+u[j];
211   x[j]=exp(lnx[j]);
212   
213   j=j+1;
214   endo;
215   
216   et=e[t_s+1:t_s+t_t];
217   xt=x[t_s+1:t_s+t_t];
218   
219   retp(et,xt);
220   endp;
221   
222   @==========================================================@
223   /* constrained MLE for Realized GARCH(1,1) */
224   
225   proc(7)=cmlrgarch(dr,dm,startvalues);
226   local p,q,start,x,rt,rt_s,rt_m,xt,xt_m,xt1,ut,zt,lht,ht;
227   local h0l,h0h,oml,omh,bel,beh,gal,gah,xil,xih,phl,phh,t1l,t1h,t2l,t2h,vul,

vuh;
228   local parl,parh,parcons,b,f,g,vcv,ret;
229   local h0,c0,c1,c2;
230   
231   cmlset;
232   
233   x=dr~dm;
234   
235   /* parameter constraints */
236   h0l=-10; h0h=3;
237   oml=-3; omh=3;
238   bel=-1; beh=2;
239   gal=-1; gah=2;
240   xil=-10; xih=3;
241   phl=-0.5; phh=5;
242   t1l=-0.5; t1h=0.5;
243   t2l=-0.5; t2h=0.5;
244   vul=0.01; vuh=4;
245   
246   parl=h0l|oml|bel|gal|xil|phl|t1l|t2l|vul;
247   parh=h0h|omh|beh|gah|xih|phh|t1h|t2h|vuh;
248   parcons=parl~parh;
249   
250   _cml_ParNames="h0"|"omega"|"beta"|"gamma"|"xi"|"phi"|"tau1"|"tau2"|"var_u";
251   _cml_IneqProc=&cfunc;
252   _cml_Bounds=parcons;
253   __output=0;
254   
255   start=startvalues;
256   
257   {b,f,g,vcv,ret}=cml(x,0,&rgarchll,start);
258   
259   rt=x[.,1];
260   rt_s=rt.^2;



261   rt_m=meanc(rt_s);
262   
263   xt=x[.,2];
264   xt_m=meanc(xt);
265   xt1=shiftr(xt',1,xt_m)';
266   
267   h0=b[1];
268   c0=b[2];
269   c1=b[3];
270   c2=b[4];
271   
272   lht=recserar((c0+c2*ln(xt1)),h0,c1);
273   ht=exp(lht);
274   zt=rt./sqrt(ht);
275   
276   retp(b,f,g,vcv,ret,ht,zt);
277   endp;
278   
279   @==========================================================@
280   /* Log-Likelihood function of RGARCH(1,1) */
281   
282   proc rgarchll(b,x);
283   local inh,ome,bet,gam,xii,phi,ta1,ta2,vau;
284   local r_t,r_s,rs_m,x_t,xt_m,xt_1,z_t,lnh_t,h_t,u_t,lik;
285   
286   r_t=x[.,1];
287   r_s=r_t.^2;
288   rs_m=meanc(r_s);
289   
290   x_t=x[.,2];
291   xt_m=meanc(x_t);
292   xt_1=shiftr(x_t',1,xt_m)';
293   
294   inh=b[1];
295   ome=b[2];
296   bet=b[3];
297   gam=b[4];
298   xii=b[5];
299   phi=b[6];
300   ta1=b[7];
301   ta2=b[8];
302   vau=b[9];
303   
304   lnh_t=recserar((ome+gam*ln(xt_1)),inh,bet);
305   h_t=exp(lnh_t);
306   z_t=r_t./sqrt(h_t);
307   u_t=ln(x_t)-xii-phi*ln(h_t)-ta1*z_t-ta2*((z_t.^2)-1);
308   
309   lik=(-0.5)*(ln(h_t)+(r_s./h_t)+ln(vau)+((u_t.^2)/vau));
310   
311   retp(lik);
312   endp;
313   
314   @==========================================================@
315   /* persistent parameter constraint: nonlinear */
316   
317   proc cfunc(b);
318   local bc,gc,pc; /* bc: beta, gc: gamma, pc: phi */
319   
320   bc=0; gc=0; pc=1;
321   bc=b[3,1];
322   gc=b[4,1];
323   pc=b[6,1];
324   
325   retp(0.999999-abs(bc+pc*gc)); /* constraint: b+g*p is greater than or 

equal to 0. */



326   endp;
327   @==========================================================@
328   /* Testing */
329   
330   proc(4)=mtest(ht,xt,zt,par);
331   local cv1,cv2,cv3,rv1,rv2,rv3,rv4,vou;
332   local n,m,lh,lx,lhm,lxm,lh1,lx1,ut,ct,ict,ctd,ictd,hd,mt,ud,udd,dls;
333   local d_lam,s_lam,s_psi,s_sig,score,v_cov;
334   local md,e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13;
335   local it11,it12,it13,it21,it22,it23,it31,it32,it33,it,it_inv;
336   local jt11,jt12,jt13,jt21,jt22,jt23,jt31,jt32,jt33,jt;
337   local kt,kt11,kt12,kt13,mt11,vt1,pt11,pt21,pt31,pt1,at1;
338   local k,k11,k12,k13,m11,vt2,p11,p21,p31,pt2,at2,dl2;
339   local zt_m,zt1,zt_s,zts_m,zts_1,zt2,itv;
340   local diag_ut,diag_ud,diag_udd,diag_dls,vcv1,vcv2,inv_v1,inv_v2;
341   local dt,tv1,tv2,wt1,wt2,ts1,ts2,pv1,pv2;
342   
343   cv1=par[2,1];
344   cv2=par[3,1];
345   cv3=par[4,1];
346   rv1=par[5,1];
347   rv2=par[6,1];
348   rv3=par[7,1];
349   rv4=par[8,1];
350   vou=par[9,1];
351   
352   lh=ln(ht);
353   lhm=ln(meanc(ht));
354   lx=ln(xt);
355   lxm=ln(meanc(xt));
356   lh1=shiftr(lh',1,lhm)'; /* log ht-1 */
357   lx1=shiftr(lx',1,lxm)'; /* log xt-1 */
358   
359   n=rows(zt);
360   zt_s=zt.^2;
361   mt=(ones(n,1)~lh~zt~(zt_s-1)); /* n by 4 */
362   ut=lx-rv1-rv2*lh-rv3*zt-rv4*(zt_s-1);
363   ud=-rv2+0.5*rv3*zt+rv4*zt_s;
364   
365   /*** first deriv. of log ht wrt lamda ***/
366   ct=(ones(n,1)~lh1~lx1); /* n by 3 */
367   ict=1~lhm~lxm;
368   hd=recserar(ct,ict,cv2.*ones(1,3));
369   
370   d_lam=(1-(zt.^2)+(2/vou)*(ut.*ud));
371   
372   /*** analytical score ***/
373   
374   // s_lam=(-0.5)*(1/n)*(hd'd_lam);
375   // s_psi=(1/vou)*(1/n)*(mt'ut);
376   // s_sig=(-0.5)*((1/vou)^2)*meanc(vou-(ut.^2));
377   
378   // score=(s_lam|s_psi|s_sig);
379   // v_cov=(score'score)';
380   
381   zt_m=meanc(zt);
382   zt1=shiftr(zt',1,zt_m)'; /* z_t-1 */
383   zts_m=meanc(zt_s);
384   zts_1=shiftr(zt_s',1,zts_m)'; /* square of z_t-1 */
385   zt2=zts_1-1; /* (z_t-1)^2-1 */
386   
387   dt=-d_lam;
388   tv1=(zt1~zt2); /* test variable without 

recursion*/
389   wt1=(1/n)*tv1'dt; /* test indicator for tv1 : 2 

by 1 */



390   
391   m=cols(tv1);
392   itv=(meanc(zt1)~meanc(zt2));
393   tv2=recserar(tv1,itv,cv2.*ones(1,2)); /* test variable with recursion*/
394   wt2=(1/n)*tv2'dt; /* test indicator for tv2 : 2 

by 1 */
395   
396   /*** calculating variance matrix ***/
397   
398   /* I matrix */
399   md=(zeros(n,1)~ones(n,1)~(-0.5*zt)~(-zt_s));
400   e1=(1/n)*(ud'ud); /* E(ud^2) */
401   e2=(1/n)*(hd'hd); /* E(hdhd') */
402   diag_ud=diagrv(zeros(n,n),ud);
403   diag_ut=diagrv(zeros(n,n),ut);
404   e3=(1/n)*((mt'diag_ud+md'diag_ut)*hd); /* E((ud*mt+ut*md)*hd) */
405   e4=(1/n)*(mt'mt); /* E(mtmt')*/
406   
407   it11=(0.5+(e1/vou))*e2; /* 3 by 3 matrix */
408   it21=(-1/vou)*e3; /* 4 by 3 matrix */
409   it12=it21';
410   it22=(1/vou)*e4; /* 4 by 4 matrix */
411   it31=zeros(1,3);
412   it13=it31';
413   it32=zeros(1,4);
414   it23=it32';
415   it33=0.5/(vou^2);
416   
417   it=(it11~it12~it13)|(it21~it22~it23)|(it31~it32~it33); /* 8 by 8 matrix */
418   it_inv=invpd(it);
419   
420   /* J matrix */
421   e5=meanc(d_lam.^2); /* E(d_lam) */
422   e6=(1/n)*(mt'diag_ud*hd); /* E((ud*mt)'hd) */
423   e7=meanc(ut.^3);
424   e8=meanc(ud);
425   e9=((1/n)*sumc(hd))';
426   e10=((1/n)*sumc(mt))'; /* 1 by 4 */
427   e11=meanc((1-((ut.^2)/vou)).^2);
428   
429   jt11=0.25*e5*e2; /* 3 by 3 */
430   jt21=(-1/vou)*e6; /* 4 by 3 */
431   jt12=jt21';
432   jt22=it22; /* 4 by 4 */
433   jt31=(-0.5/(vou^3))*e7*e8*e9;
434   jt13=jt31';
435   jt32=(0.5/(vou^3))*e7*e10;
436   jt23=jt32';
437   jt33=(0.25/(vou^2))*e11;
438   
439   jt=(jt11~jt12~jt13)|(jt21~jt22~jt23)|(jt31~jt32~jt33); /* 8 by 8 matrix */
440   
441   /* Iphi matrix without recursion*/
442   pt11=zeros(3,m);
443   pt21=zeros(4,m);
444   pt31=zeros(1,m);
445   
446   pt1=(pt11|pt21|pt31);
447   
448   /* Iphi matrix with recursion*/
449   p11=zeros(3,m);
450   p21=zeros(4,m);
451   p31=zeros(1,m);
452   
453   pt2=(p11|p21|p31);
454   



455   /* K matrix without recursion */
456   dls=d_lam.^2;
457   diag_dls=diagrv(zeros(n,n),dls);
458   e12=(1/n)*(tv1'ud);
459   kt11=(1/n)*(0.5)*tv1'diag_dls*hd;
460   kt12=(1/n)*(-2/vou)*tv1'diag_ud*mt;
461   kt13=(-1/(vou^3))*e7*e12;
462   
463   kt=(kt11~kt12~kt13);
464   
465   /* K matrix with recursion */
466   e13=(1/n)*(tv2'ud);
467   k11=(1/n)*(0.5)*tv2'diag_dls*hd;
468   k12=(1/n)*(-2/vou)*tv2'diag_ud*mt;
469   k13=(-1/(vou^3))*e7*e13;
470   
471   k=(k11~k12~k13);
472   
473   /* M matrix without recursion */
474   mt11=(1/n)*tv1'diag_dls*tv1;
475   
476   /* M matrix with recursion */
477   m11=(1/n)*tv2'diag_dls*tv2;
478   
479   /* V matrix without recursion */
480   vt1=((jt~kt')|(kt~mt11));
481   
482   /* V matrix with recursion */
483   vt2=((jt~k')|(k~m11));
484   
485   /* A matrix without recursion */
486   at1=(((-pt1)'it_inv)~eye(m));
487   
488   /* A matrix with recursion */
489   at2=(((-pt2)'it_inv)~eye(m));
490   
491   /* Variance estimator without recursion */
492   vcv1=at1*vt1*at1';
493   inv_v1=invpd(vcv1);
494   
495   /* Variance estimator with recursion */
496   vcv2=at2*vt2*at2';
497   inv_v2=invpd(vcv2);
498   
499   ts1=n*wt1'inv_v1*wt1; @ test statistic without recursion @
500   pv1=cdfchic(ts1,m); @ p-value without recursion @
501   
502   ts2=n*wt2'inv_v2*wt2; @ test statistic with recursion @
503   pv2=cdfchic(ts2,m); @ p-value with recursion @
504   
505   retp(ts1,pv1,ts2,pv2);
506   endp;
507   @==========================================================@
508   /* Ljung Box Test */
509   proc(2)=lbqtest(data,lag);
510   local ac,sac,t,idx,q,stat,pval;
511   
512   ac=acf(data,lag,0);
513   sac=ac.^2;
514   t=rows(data);
515   idx=t-seqa(1,1,lag);
516   q=sac./idx;
517   stat=t*(t+2)*cumsumc(q);
518   
519   stat=stat[lag];
520   pval=cdfChic(stat,lag);



521   
522   retp(stat,pval);
523   endp;
524   @==========================================================@
525   /* Engle's LM test */
526   proc(2)=lmtest(data,lag);
527   local y,ylags,Tnew,b,sigma,rsq,stat,pval;
528   
529   y=(data-meanc(data)).^2;
530   ylags=shiftr((ones(1,lag).*.y)',seqa(1,1,lag),-exp(20))';
531   ylags=delif(ylags,ylags[.,cols(ylags)].==-exp(20));
532   Tnew=rows(ylags);
533   
534   y=y[rows(y)-Tnew+1:rows(y)];
535   ylags=ones(rows(ylags),1)~ylags;
536   b=inv(ylags'ylags)*ylags'*y;
537   sigma=(y-ylags*b)'(y-ylags*b)/rows(y);
538   rsq=1-sigma/((y-meanc(y))'(y-meanc(y))/rows(y));
539   
540   stat=rows(ylags)*rsq;
541   pval=cdfchic(stat,lag);
542   retp(stat,pval);
543   endp;



1   /****************************************************************************/
2   /****************  Chapter 3: Monte Carlo Simulation Sample  ****************/
3   /****************************************************************************/
4   
5   new;
6   format 12,6;
7   output file=C:\gauss12\procs\phd2\results_70\break_low_s22\break_low.out reset;
8   library cml;
9   cmlset;
10   _cml_MaxIters=3000;
11   _cml_Algorithm=4;
12   tim=hsec;
13   
14   #include c:\gauss12\src\icss.src;
15   #include c:\gauss12\src\variance.src;
16   
17   /* Simulation and Forecasting Settings */
18   numb=1; @ number of breaks (artificial) : 0 or 1 @
19   b_point=0.7; @ artificial break point in sample @
20   t=2600; @ total number of samples @
21   t0=3000; @ to remove initial effect of DGP @
22   p=100; @ number of out-of-sample observations @
23   s=22; @ forecast horizon @
24   cri=0|1|4; @ settings for break test @
25   replic=1000; @ number of replications @
26   nsim=2000; @ number of simulations for VAR forecast @
27   ploss=0.05; @ probability of loss for VAR forecast @
28   tl=2000; @ truncation lag for FIGARCH @
29   
30   /* GARCH Parameters: Setting single break in GARCH uncoditional variance */
31   omega=0.04; alpha=0.05; beta=0.75; shock_variance=5.0; @ shock to uncondition

variance (intercept) @
32   
33   /* FIGARCH Parameters (Starting values for estimation)*/
34   fi_omega=0.10; fi_phi=0.25; fi_beta=0.60; fi_d=0.45;
35   
36   /* GARCH estimation starting value */
37   start1=omega|alpha|beta;
38   /* FIGARCH estimation starting value */
39   start2=fi_omega|fi_phi|fi_beta|fi_d;
40   
41   seed1=1492038;
42   seed2=3941072;
43   
44   /***** Vector Initialisation *****/
45   
46   v_dgp=zeros(t,replic); @ DGP @
47   v_frt=zeros(p,replic); @ Returns for out-of-samples @
48   v_garch=zeros(replic,5); @ GARCH parameters estimated: omega, alpha,

beta, alpha+beta @
49   v_figarch=zeros(replic,7); @ FIGARCH parameters estimated: omega, phi,

beta, d, phi+d, 1-2*phi @
50   
51   /* for storing first ob used to estimate */
52   exga=zeros(p,1); exfi=zeros(p,1); ga50=zeros(p,1); ga25=zeros(p,1); gawb=zeros

(p,1);
53   
54   /* for storing parameters estimates */
55   p_exga=zeros(p,3); p_exfi=zeros(p,4); p_ga50=zeros(p,3); p_ga25=zeros(p,3);

p_gawb=zeros(p,3);
56   
57   /* for storing most recent h estimate */
58   h_exga=zeros(p,1); h_exfi=zeros(p,1); h_ga50=zeros(p,1); h_ga25=zeros(p,1);

h_gawb=zeros(p,1);
59   
60   /* for storing number of breaks detected */



61   nbr_detected=zeros(p,1); @ for out of forecasting @
62   v_nbr=zeros(replic,1); @ breaks detected for each replications @
63   
64   /* for storing return codes for GARCH estimations */
65   ret_exga=zeros(replic,p); ret_exfi=zeros(replic,p); ret_ga50=zeros(replic,p);
66   ret_ga25=zeros(replic,p); ret_gawb=zeros(replic,p);
67   
68   /* for storing single model forecasts */
69   f_exga=zeros(p-(s-1),s); f_exfi=zeros(p-(s-1),s); f_ga50=zeros(p-(s-1),s);
70   f_ga25=zeros(p-(s-1),s); f_gawb=zeros(p-(s-1),s); f_smrm=zeros(p-(s-1),s);
71   f_lmrm=zeros(p-(s-1),s); f_mean=zeros(p-(s-1),s); f_trim=zeros(p-(s-1),s);
72   
73   fc_exga=zeros(p-(s-1),s*replic); fc_exfi=zeros(p-(s-1),s*replic); fc_ga50=

zeros(p-(s-1),s*replic);
74   fc_ga25=zeros(p-(s-1),s*replic); fc_gawb=zeros(p-(s-1),s*replic); fc_smrm=

zeros(p-(s-1),s*replic);
75   fc_lmrm=zeros(p-(s-1),s*replic); fc_mean=zeros(p-(s-1),s*replic); fc_trim=

zeros(p-(s-1),s*replic);
76   
77   /* for storing single model VAR forecasts */
78   fv_exga=zeros(p-(s-1),1); fv_exfi=zeros(p-(s-1),1); fv_ga50=zeros(p-(s-1),1);
79   fv_ga25=zeros(p-(s-1),1); fv_gawb=zeros(p-(s-1),1); fv_smrm=zeros(p-(s-1),1);
80   fv_lmrm=zeros(p-(s-1),1); fv_mean=zeros(p-(s-1),1); fv_trim=zeros(p-(s-1),1);
81   
82   fcv_exga=zeros(p-(s-1),replic); fcv_exfi=zeros(p-(s-1),replic); fcv_ga50=zeros

(p-(s-1),replic);
83   fcv_ga25=zeros(p-(s-1),replic); fcv_gawb=zeros(p-(s-1),replic); fcv_smrm=zeros

(p-(s-1),replic);
84   fcv_lmrm=zeros(p-(s-1),replic); fcv_mean=zeros(p-(s-1),replic); fcv_trim=zeros

(p-(s-1),replic);
85   
86   /* average squared error loss function (loss series, mse and ratio) */
87   sim_loss_exga=zeros(p-(s-1),replic); sim_loss_exfi=zeros(p-(s-1),replic);

sim_loss_ga50=zeros(p-(s-1),replic);
88   sim_loss_ga25=zeros(p-(s-1),replic); sim_loss_gawb=zeros(p-(s-1),replic);

sim_loss_smrm=zeros(p-(s-1),replic);
89   sim_loss_lmrm=zeros(p-(s-1),replic); sim_loss_mean=zeros(p-(s-1),replic);

sim_loss_trim=zeros(p-(s-1),replic);
90   
91   sim_mse_exga=zeros(replic,1); sim_mse_exfi=zeros(replic,1); sim_mse_ga50=zeros

(replic,1);
92   sim_mse_ga25=zeros(replic,1); sim_mse_gawb=zeros(replic,1); sim_mse_smrm=zeros

(replic,1);
93   sim_mse_lmrm=zeros(replic,1); sim_mse_mean=zeros(replic,1); sim_mse_trim=zeros

(replic,1);
94   
95   sim_ratio_exga=zeros(replic,1); sim_ratio_exfi=zeros(replic,1); sim_ratio_ga50

=zeros(replic,1);
96   sim_ratio_ga25=zeros(replic,1); sim_ratio_gawb=zeros(replic,1); sim_ratio_smrm

=zeros(replic,1);
97   sim_ratio_lmrm=zeros(replic,1); sim_ratio_mean=zeros(replic,1); sim_ratio_trim

=zeros(replic,1);
98   
99   /* 5% VAR (average quantile, percentage) */

100   sim_avg_exga=zeros(replic,1); sim_avg_exfi=zeros(replic,1); sim_avg_ga50=zeros
(replic,1);

101   sim_avg_ga25=zeros(replic,1); sim_avg_gawb=zeros(replic,1); sim_avg_smrm=zeros
(replic,1);

102   sim_avg_lmrm=zeros(replic,1); sim_avg_mean=zeros(replic,1); sim_avg_trim=zeros
(replic,1);

103   
104   sim_per_exga=zeros(replic,1); sim_per_exfi=zeros(replic,1); sim_per_ga50=zeros

(replic,1);
105   sim_per_ga25=zeros(replic,1); sim_per_gawb=zeros(replic,1); sim_per_smrm=zeros

(replic,1);
106   sim_per_lmrm=zeros(replic,1); sim_per_mean=zeros(replic,1); sim_per_trim=zeros



(replic,1);
107   
108   /* 5% VAR loss (loss seires, mean and ratio) */
109   sim_vloss_exga=zeros(p-(s-1),replic); sim_vloss_exfi=zeros(p-(s-1),replic);

sim_vloss_ga50=zeros(p-(s-1),replic);
110   sim_vloss_ga25=zeros(p-(s-1),replic); sim_vloss_gawb=zeros(p-(s-1),replic);

sim_vloss_smrm=zeros(p-(s-1),replic);
111   sim_vloss_lmrm=zeros(p-(s-1),replic); sim_vloss_mean=zeros(p-(s-1),replic);

sim_vloss_trim=zeros(p-(s-1),replic);
112   
113   sim_mvar_exga=zeros(replic,1); sim_mvar_exfi=zeros(replic,1); sim_mvar_ga50=

zeros(replic,1);
114   sim_mvar_ga25=zeros(replic,1); sim_mvar_gawb=zeros(replic,1); sim_mvar_smrm=

zeros(replic,1);
115   sim_mvar_lmrm=zeros(replic,1); sim_mvar_mean=zeros(replic,1); sim_mvar_trim=

zeros(replic,1);
116   
117   sim_vratio_exga=zeros(replic,1); sim_vratio_exfi=zeros(replic,1);

sim_vratio_ga50=zeros(replic,1);
118   sim_vratio_ga25=zeros(replic,1); sim_vratio_gawb=zeros(replic,1);

sim_vratio_smrm=zeros(replic,1);
119   sim_vratio_lmrm=zeros(replic,1); sim_vratio_mean=zeros(replic,1);

sim_vratio_trim=zeros(replic,1);
120   
121   
122   /***** Starting simulation *****/
123   counter=1;
124   do until counter>replic;
125   
126   /* Generation of GARCH(1,1) DGP */
127   {rt,bp}=gengarch(t0,t,numb,p,b_point,omega,alpha,beta,shock_variance);
128   
129   {garch_par,xx,xx,xx,ret_garch,ht_garch}=garch(rt,start1);
130   
131   v_garch[counter,1]=garch_par[1];
132   v_garch[counter,2]=garch_par[2];
133   v_garch[counter,3]=garch_par[3];
134   v_garch[counter,4]=garch_par[2]+garch_par[3];
135   v_garch[counter,5]=ret_garch;
136   
137   {figarch_par,xx,xx,xx,ret_figarch,ht_figarch}=figarch(rt,start2);
138   
139   v_figarch[counter,1]=figarch_par[1]; @ omega @
140   v_figarch[counter,2]=figarch_par[2]; @ phi @
141   v_figarch[counter,3]=figarch_par[3]; @ beta @
142   v_figarch[counter,4]=figarch_par[4]; @ d @
143   v_figarch[counter,5]=figarch_par[2]+figarch_par[4]; @ phi+d @
144   v_figarch[counter,6]=1-2*figarch_par[2]; @ 1-2*phi @
145   v_figarch[counter,7]=ret_figarch;
146   
147   v_dgp[.,counter]=rt; /* vector of DGPs */
148   
149   numr=rows(rt);
150   r=numr-p; @ in-sample period @
151   
152   /* Parameter Estimation for Forecasting */
153   iter=0;
154   do until iter>p-1;
155   
156   /* Expanding GARCH */
157   {par1,xx,xx,xx,ret1,ht1}=garch(rt[1:r+iter],start1);
158   ret_exga[counter,iter+1]=ret1;
159   exga[iter+1]=1;
160   p_exga[iter+1,.]=par1';
161   h_exga[iter+1,.]=ht1[rows(ht1)];
162   



163   /* Expanding FIGARCH */
164   {par2,xx,xx,xx,ret2,ht2}=figarch(rt[1:r+iter],start2);
165   ret_exfi[counter,iter+1]=ret2;
166   exfi[iter+1]=1;
167   p_exfi[iter+1,.]=par2';
168   h_exfi[iter+1,.]=ht2[rows(ht2)];
169   
170   /* 0.50 Rolling GARCH */
171   ro50=round(0.50*r)+1; @ starting obs for 0.50 rolling window @
172   {par3,xx,xx,xx,ret3,ht3}=garch(rt[ro50+iter:r+iter],start1);
173   ret_ga50[counter,iter+1]=ret3;
174   ga50[iter+1]=ro50+iter;
175   p_ga50[iter+1,.]=par3';
176   h_ga50[iter+1,.]=ht3[rows(ht3)];
177   
178   /* 0.25 Rolling GARCH */
179   ro25=round(0.75*r)+1; @ starting obs for 0.25 rolling window @
180   {par4,xx,xx,xx,ret4,ht4}=garch(rt[ro25+iter:r+iter],start1);
181   ret_ga25[counter,iter+1]=ret4;
182   ga25[iter+1]=ro25+iter;
183   p_ga25[iter+1,.]=par4';
184   h_ga25[iter+1,.]=ht4[rows(ht4)];
185   
186   /* GARCH with Break */
187   
188   {cpr,nbr}=icss(rt[1:r+iter],2,cri);
189   if nbr==0;
190   nbr_detected[iter+1]=nbr;
191   p_gawb[iter+1,.]=p_exga[iter+1,.];
192   h_gawb[iter+1,.]=h_exga[iter+1];
193   else;
194   nbr_detected[iter+1]=nbr;
195   first_br=1+cpr[rows(cpr)-1]; /* The first observation after the last 

break point detected */
196   {par5,xx,xx,xx,ret5,ht5}=garch(rt[first_br:r+iter],start1);
197   ret_gawb[counter,iter+1]=ret5;
198   if par5[2]<0.00000000001;
199   p_gawb[iter+1,.]=meanc(rt[first_br:r+iter]^2)~0~0;
200   h_gawb[iter+1,.]=meanc(rt[first_br:r+iter]^2);
201   else;
202   p_gawb[iter+1,.]=par5';
203   h_gawb[iter+1,.]=ht5[rows(ht5)];
204   endif;
205   endif;
206   
207   iter=iter+1;
208   endo;
209   
210   /* Forecasting */
211   
212   it=0;
213   do until it>p-s;
214   
215   /* Expanding GARCH forecast */
216   p_garch_ex=p_exga[it+1,.]';
217   fc1=garch_fc(p_garch_ex,rt[r+it],h_exga[it+1],s);
218   f_exga[it+1,.]=fc1';
219   fv_exga[it+1]=garch_varfc(p_garch_ex,fc1[1],s,ploss,nsim);
220   
221   /* Expanding FIGARCH forecast */
222   p_garch_fi=p_exfi[it+1,.]';
223   fc2=figarch_fc(p_garch_fi,rt[1:(r+it)],h_exfi[it+1],s);
224   f_exfi[it+1,.]=fc2';
225   fv_exfi[it+1]=figarch_varfc(p_garch_fi,fc2[1],rt[exfi[it+1]:r+it],s,ploss,

nsim);
226   



227   /* 0.50 rolling GARCH forecast */
228   p_garch_50=p_ga50[it+1,.]';
229   fc3=garch_fc(p_garch_50,rt[r+it],h_ga50[it+1],s);
230   f_ga50[it+1,.]=fc3';
231   fv_ga50[it+1]=garch_varfc(p_garch_50,fc3[1],s,ploss,nsim);
232   
233   /* 0.25 rolling GARCH forecast */
234   p_garch_25=p_ga25[it+1,.]';
235   fc4=garch_fc(p_garch_25,rt[r+it],h_ga25[it+1],s);
236   f_ga25[it+1,.]=fc4';
237   fv_ga25[it+1]=garch_varfc(p_garch_25,fc4[1],s,ploss,nsim);
238   
239   /* GARCH w/breaks forecast */
240   p_garch_br=p_gawb[it+1,.]';
241   if p_garch_br[2]==0;
242   f_gawb[it+1,.]=p_garch_br[1]*ones(1,s);
243   fv_gawb[it+1]=cons_varfc(p_garch_br[1],s,ploss,nsim);
244   else;
245   fc5=garch_fc(p_garch_br,rt[r+it],h_gawb[it+1],s);
246   f_gawb[it+1,.]=fc5';
247   fv_gawb[it+1]=garch_varfc(p_garch_br,fc5[1],s,ploss,nsim);
248   endif;
249   
250   /* EWMA forecast */
251   lam=0.94;
252   rs=rt[1:r+it].^2;
253   rsr=rev(rs);
254   tau=seqa(0,1,rows(rs));
255   lamtau=lam^tau;
256   fc6=(1-lam)*lamtau'rsr*ones(s,1);
257   f_smrm[it+1,.]=fc6';
258   fv_smrm[it+1]=cons_varfc(fc6[1],s,ploss,nsim);
259   
260   /* Long Memory EWMA forecast */
261   tau0=1560;
262   tau1=4;
263   taumax=512;
264   rho=sqrt(2);
265   kmax=round(1+((ln(taumax)-ln(tau1))/ln(rho)));
266   kseq=seqa(1,1,kmax); /* k by 1 */
267   tauk=tau1*(rho^(kseq-ones(rows(kseq),1))); /* k by 1 */
268   muk=exp(-1/tauk); /* k by 1 */
269   
270   muktau=zeros(kmax,rows(rs)); /* k by T */
271   
272   i=1;
273   do until i>kmax;
274   muktau[i,.]=(muk[i]^tau)'; /* 1 by T */
275   i=i+1;
276   endo;
277   
278   hk=(1-muk).*(muktau*rsr); /* k by 1 */
279   c=kmax-sumc(ln(tauk)./ln(tau0));
280   wk=(1/c)*(1-(ln(tauk)./ln(tau0))); /* k by 1 */
281   fc7=wk'hk*ones(s,1);
282   f_lmrm[it+1,.]=fc7';
283   fv_lmrm[it+1]=cons_varfc(fc7[1],s,ploss,nsim);
284   
285   /* Combination forecasting: mean and trimmed mean*/
286   f_all=f_exga[it+1,.]|f_ga50[it+1,.]|f_ga25[it+1,.]|f_gawb[it+1,.];
287   f_mean[it+1,.]=(meanc(f_all))';
288   ftrim=(1/(rows(f_all)-2))*(sumc(f_all)-(minc(f_all)+maxc(f_all)));
289   f_trim[it+1,.]=ftrim';
290   
291   fv_all=fv_exga[it+1,.]|fv_ga50[it+1,.]|fv_ga25[it+1,.]|fv_gawb[it+1,.];
292   fv_mean[it+1,.]=(meanc(fv_all))';



293   fvtrim=(1/(rows(fv_all)-2))*(sumc(fv_all)-(minc(fv_all)+maxc(fv_all)));
294   fv_trim[it+1,.]=fvtrim';
295   
296   it=it+1;
297   endo;
298   
299   f_rt=rt[r+1:r+p];
300   frt_s=rt[r+1:r+p].^2;
301   v_frt[.,counter]=frt_s;
302   
303   /* MSE averaged loss, ratios */
304   {loss_exga,mse_exga}=loss_se_avg(f_exga,frt_s); {loss_exfi,mse_exfi}=

loss_se_avg(f_exfi,frt_s);
305   {loss_ga50,mse_ga50}=loss_se_avg(f_ga50,frt_s); {loss_ga25,mse_ga25}=

loss_se_avg(f_ga25,frt_s);
306   {loss_gawb,mse_gawb}=loss_se_avg(f_gawb,frt_s); {loss_smrm,mse_smrm}=

loss_se_avg(f_smrm,frt_s);
307   {loss_lmrm,mse_lmrm}=loss_se_avg(f_lmrm,frt_s); {loss_mean,mse_mean}=

loss_se_avg(f_mean,frt_s);
308   {loss_trim,mse_trim}=loss_se_avg(f_trim,frt_s);
309   
310   /************* 5% VAR ***************/
311   
312   /* average quantile, percentage, LR statistics and p-values */
313   {avg_exga,per_exga}=var_stats(fv_exga,f_rt,s);
314   {avg_exfi,per_exfi}=var_stats(fv_exfi,f_rt,s);
315   {avg_ga50,per_ga50}=var_stats(fv_ga50,f_rt,s);
316   {avg_ga25,per_ga25}=var_stats(fv_ga25,f_rt,s);
317   {avg_gawb,per_gawb}=var_stats(fv_gawb,f_rt,s);
318   {avg_smrm,per_smrm}=var_stats(fv_smrm,f_rt,s);
319   {avg_lmrm,per_lmrm}=var_stats(fv_lmrm,f_rt,s);
320   {avg_mean,per_mean}=var_stats(fv_mean,f_rt,s);
321   {avg_trim,per_trim}=var_stats(fv_trim,f_rt,s);
322   
323   {vloss_exga,mvar_exga}=loss_var(fv_exga,f_rt,s,ploss);
324   {vloss_exfi,mvar_exfi}=loss_var(fv_exfi,f_rt,s,ploss);
325   {vloss_ga50,mvar_ga50}=loss_var(fv_ga50,f_rt,s,ploss);
326   {vloss_ga25,mvar_ga25}=loss_var(fv_ga25,f_rt,s,ploss);
327   {vloss_gawb,mvar_gawb}=loss_var(fv_gawb,f_rt,s,ploss);
328   {vloss_smrm,mvar_smrm}=loss_var(fv_smrm,f_rt,s,ploss);
329   {vloss_lmrm,mvar_lmrm}=loss_var(fv_lmrm,f_rt,s,ploss);
330   {vloss_mean,mvar_mean}=loss_var(fv_mean,f_rt,s,ploss);
331   {vloss_trim,mvar_trim}=loss_var(fv_trim,f_rt,s,ploss);
332   
333   if nbr<1;
334   cpr="n/a";?;
335   else;
336   cpr=trimr(cpr,1,1);
337   endif;
338   
339   format 12,6;
340   "=====================================================";
341   "Counter No.        = " counter;
342   "Artificial break   = " bp;
343   "Break points       = " cpr';
344   "Number of breaks   = " nbr;
345   "=====================================================";
346   " Average Squared Loss Function (MSFE and Ratio)";
347   "=====================================================";
348   "Expanding GARCH    = " mse_exga~(mse_exga/mse_exga);
349   "0.50 Rolling GARCH = " mse_ga50~(mse_ga50/mse_exga);
350   "0.25 Rolling GARCH = " mse_ga25~(mse_ga25/mse_exga);
351   "GARCH w/breaks     = " mse_gawb~(mse_gawb/mse_exga);
352   "-----------------------------------------------------";
353   "Expanding FIGARCH  = " mse_exfi~(mse_exfi/mse_exga);
354   "Short Memory EWMA  = " mse_smrm~(mse_smrm/mse_exga);



355   "Long Memory EWMA   = " mse_lmrm~(mse_lmrm/mse_exga);
356   "-----------------------------------------------------";
357   "MSE GARCH Mean     = " mse_mean~(mse_mean/mse_exga);
358   "MSE GARCH Trimmed  = " mse_trim~(mse_trim/mse_exga);
359   "=====================================================";
360   " 5% VaR Loss Function (mean, ratio)";
361   "=====================================================";
362   "Expanding GARCH    = " mvar_exga~(mvar_exga/mvar_exga);
363   "0.50 Rolling GARCH = " mvar_ga50~(mvar_ga50/mvar_exga);
364   "0.25 Rolling GARCH = " mvar_ga25~(mvar_ga25/mvar_exga);
365   "GARCH w/breaks     = " mvar_gawb~(mvar_gawb/mvar_exga);
366   "-----------------------------------------------------";
367   "Expanding FIGARCH  = " mvar_exfi~(mvar_exfi/mvar_exga);
368   "Short Memory EWMA  = " mvar_smrm~(mvar_smrm/mvar_exga);
369   "Long Memory EWMA   = " mvar_lmrm~(mvar_lmrm/mvar_exga);
370   "-----------------------------------------------------";
371   "VaR GARCH Mean     = " mvar_mean~(mvar_mean/mvar_exga);
372   "VaR GARCH Trimmed  = " mvar_trim~(mvar_trim/mvar_exga);
373   "=====================================================";?;
374   
375   sr=s*(counter-1)+1;
376   er=s*counter;
377   fc_exga[.,sr:er]=f_exga; fc_exfi[.,sr:er]=f_exfi; fc_ga50[.,sr:er]=f_ga50;
378   fc_ga25[.,sr:er]=f_ga25; fc_gawb[.,sr:er]=f_gawb; fc_smrm[.,sr:er]=f_smrm;
379   fc_lmrm[.,sr:er]=f_lmrm; fc_mean[.,sr:er]=f_mean; fc_trim[.,sr:er]=f_trim;
380   
381   fcv_exga[.,counter]=fv_exga; fcv_exfi[.,counter]=fv_exfi; fcv_ga50[.,counter]=

fv_ga50;
382   fcv_ga25[.,counter]=fv_ga25; fcv_gawb[.,counter]=fv_gawb; fcv_smrm[.,counter]=

fv_smrm;
383   fcv_lmrm[.,counter]=fv_lmrm; fcv_mean[.,counter]=fv_mean; fcv_trim[.,counter]=

fv_trim;
384   
385   sim_loss_exga[.,counter]=loss_exga; sim_loss_exfi[.,counter]=loss_exfi;

sim_loss_ga50[.,counter]=loss_ga50;
386   sim_loss_ga25[.,counter]=loss_ga25; sim_loss_gawb[.,counter]=loss_gawb;

sim_loss_smrm[.,counter]=loss_smrm;
387   sim_loss_lmrm[.,counter]=loss_lmrm; sim_loss_mean[.,counter]=loss_mean;

sim_loss_trim[.,counter]=loss_trim;
388   
389   sim_mse_exga[counter,1]=mse_exga; sim_mse_exfi[counter,1]=mse_exfi;

sim_mse_ga50[counter,1]=mse_ga50;
390   sim_mse_ga25[counter,1]=mse_ga25; sim_mse_gawb[counter,1]=mse_gawb;

sim_mse_smrm[counter,1]=mse_smrm;
391   sim_mse_lmrm[counter,1]=mse_lmrm; sim_mse_mean[counter,1]=mse_mean;

sim_mse_trim[counter,1]=mse_trim;
392   
393   sim_ratio_exga[counter,1]=mse_exga/mse_exga; sim_ratio_exfi[counter,1]=

mse_exfi/mse_exga;
394   sim_ratio_ga50[counter,1]=mse_ga50/mse_exga; sim_ratio_ga25[counter,1]=

mse_ga25/mse_exga;
395   sim_ratio_gawb[counter,1]=mse_gawb/mse_exga; sim_ratio_smrm[counter,1]=

mse_smrm/mse_exga;
396   sim_ratio_lmrm[counter,1]=mse_lmrm/mse_exga; sim_ratio_mean[counter,1]=

mse_mean/mse_exga;
397   sim_ratio_trim[counter,1]=mse_trim/mse_exga;
398   
399   sim_avg_exga[counter,1]=avg_exga; sim_avg_exfi[counter,1]=avg_exfi;

sim_avg_ga50[counter,1]=avg_ga50;
400   sim_avg_ga25[counter,1]=avg_ga25; sim_avg_gawb[counter,1]=avg_gawb;

sim_avg_smrm[counter,1]=avg_smrm;
401   sim_avg_lmrm[counter,1]=avg_lmrm; sim_avg_mean[counter,1]=avg_mean;

sim_avg_trim[counter,1]=avg_trim;
402   
403   sim_per_exga[counter,1]=per_exga; sim_per_exfi[counter,1]=per_exfi;

sim_per_ga50[counter,1]=per_ga50;



404   sim_per_ga25[counter,1]=per_ga25; sim_per_gawb[counter,1]=per_gawb;
sim_per_smrm[counter,1]=per_smrm;

405   sim_per_lmrm[counter,1]=per_lmrm; sim_per_mean[counter,1]=per_mean;
sim_per_trim[counter,1]=per_trim;

406   
407   sim_vloss_exga[.,counter]=vloss_exga; sim_vloss_exfi[.,counter]=vloss_exfi;

sim_vloss_ga50[.,counter]=vloss_ga50;
408   sim_vloss_ga25[.,counter]=vloss_ga25; sim_vloss_gawb[.,counter]=vloss_gawb;

sim_vloss_smrm[.,counter]=vloss_smrm;
409   sim_vloss_lmrm[.,counter]=vloss_lmrm; sim_vloss_mean[.,counter]=vloss_mean;

sim_vloss_trim[.,counter]=vloss_trim;
410   
411   sim_mvar_exga[counter,1]=mvar_exga; sim_mvar_exfi[counter,1]=mvar_exfi;

sim_mvar_ga50[counter,1]=mvar_ga50;
412   sim_mvar_ga25[counter,1]=mvar_ga25; sim_mvar_gawb[counter,1]=mvar_gawb;

sim_mvar_smrm[counter,1]=mvar_smrm;
413   sim_mvar_lmrm[counter,1]=mvar_lmrm; sim_mvar_mean[counter,1]=mvar_mean;

sim_mvar_trim[counter,1]=mvar_trim;
414   
415   sim_vratio_exga[counter,1]=mvar_exga/mvar_exga; sim_vratio_exfi[counter,1]=

mvar_exfi/mvar_exga;
416   sim_vratio_ga50[counter,1]=mvar_ga50/mvar_exga; sim_vratio_ga25[counter,1]=

mvar_ga25/mvar_exga;
417   sim_vratio_gawb[counter,1]=mvar_gawb/mvar_exga; sim_vratio_smrm[counter,1]=

mvar_smrm/mvar_exga;
418   sim_vratio_lmrm[counter,1]=mvar_lmrm/mvar_exga; sim_vratio_mean[counter,1]=

mvar_mean/mvar_exga;
419   sim_vratio_trim[counter,1]=mvar_trim/mvar_exga;
420   
421   v_nbr[counter,1]=nbr;
422   
423   counter=counter+1;
424   endo;
425   
426   freq_fc=rows(selif(v_nbr,v_nbr[.,1] .gt 0));
427   
428   format 12,6;
429   "=====================================================";
430   "Simulation Result Summary";
431   "Number of Replications    : " replic;
432   "Frequency: break          : " freq_fc;
433   "-----------------------------------------------------";
434   "Total number of sample    : " numr;
435   "In-sample observations    : " r;
436   "Out-of-sample forecasts   : " p-(s-1);
437   "Forecast horizon          : " s;
438   "=====================================================";
439   " Average Squared Loss Function";
440   "=====================================================";
441   "Expanding GARCH    = " meanc(sim_mse_exga);
442   "0.50 Rolling GARCH = " meanc(sim_ratio_ga50);
443   "0.25 Rolling GARCH = " meanc(sim_ratio_ga25);
444   "GARCH w/breaks     = " meanc(sim_ratio_gawb);
445   "-----------------------------------------------------";
446   "Expanding FIGARCH  = " meanc(sim_ratio_exfi);
447   "Short Memory EWMA  = " meanc(sim_ratio_smrm);
448   "Long Memory EWMA   = " meanc(sim_ratio_lmrm);
449   "-----------------------------------------------------";
450   "MSE GARCH Mean     = " meanc(sim_ratio_mean);
451   "MSE GARCH Trimmed  = " meanc(sim_ratio_trim);
452   "=====================================================";
453   " 5% VAR Loss Function";
454   "=====================================================";
455   "Expanding GARCH    = " meanc(sim_mvar_exga);
456   "0.50 Rolling GARCH = " meanc(sim_vratio_ga50);
457   "0.25 Rolling GARCH = " meanc(sim_vratio_ga25);



458   "GARCH w/breaks     = " meanc(sim_vratio_gawb);
459   "-----------------------------------------------------";
460   "Expanding FIGARCH  = " meanc(sim_vratio_exfi);
461   "Short Memory EWMA  = " meanc(sim_vratio_smrm);
462   "Long Memory EWMA   = " meanc(sim_vratio_lmrm);
463   "-----------------------------------------------------";
464   "VAR GARCH Mean     = " meanc(sim_vratio_mean);
465   "VAR GARCH Trimmed  = " meanc(sim_vratio_trim);
466   "=====================================================";?;
467   
468   mse=sim_mse_exga~sim_mse_exfi~sim_mse_ga50~sim_mse_ga25~sim_mse_gawb
469   ~sim_mse_smrm~sim_mse_lmrm~sim_mse_mean~sim_mse_trim;
470   mse_ratio=sim_ratio_exga~sim_ratio_exfi~sim_ratio_ga50~sim_ratio_ga25~

sim_ratio_gawb
471   ~sim_ratio_smrm~sim_ratio_lmrm~sim_ratio_mean~sim_ratio_trim;
472   loss_series=sim_loss_exga|sim_loss_exfi|sim_loss_ga50|sim_loss_ga25|

sim_loss_gawb
473   |sim_loss_smrm|sim_loss_lmrm|sim_loss_mean|sim_loss_trim;
474   mvar=sim_mvar_exga~sim_mvar_exfi~sim_mvar_ga50~sim_mvar_ga25~sim_mvar_gawb
475   ~sim_mvar_smrm~sim_mvar_lmrm~sim_mvar_mean~sim_mvar_trim;
476   mvar_ratio=sim_vratio_exga~sim_vratio_exfi~sim_vratio_ga50~sim_vratio_ga25~

sim_vratio_gawb
477   ~sim_vratio_smrm~sim_vratio_lmrm~sim_vratio_mean~sim_vratio_trim;
478   vloss_series=sim_vloss_exga|sim_vloss_exfi|sim_vloss_ga50|sim_vloss_ga25|

sim_vloss_gawb
479   |sim_vloss_smrm|sim_vloss_lmrm|sim_vloss_mean|sim_vloss_trim;
480   avg_var=sim_avg_exga~sim_avg_exfi~sim_avg_ga50~sim_avg_ga25~sim_avg_gawb
481   ~sim_avg_smrm~sim_avg_lmrm~sim_avg_mean~sim_avg_trim;
482   per_var=sim_per_exga~sim_per_exfi~sim_per_ga50~sim_per_ga25~sim_per_gawb
483   ~sim_per_smrm~sim_per_lmrm~sim_per_mean~sim_per_trim;
484   
485   /* Saving results */
486   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 v_dgp;
487   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 v_frt;
488   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 v_garch;
489   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 v_figarch;
490   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fc_exga;
491   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fc_exfi;
492   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fc_ga50;
493   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fc_ga25;
494   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fc_gawb;
495   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fc_smrm;
496   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fc_lmrm;
497   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fc_mean;
498   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fc_trim;
499   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fcv_exga;
500   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fcv_exfi;
501   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fcv_ga50;
502   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fcv_ga25;
503   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fcv_gawb;
504   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fcv_smrm;
505   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fcv_lmrm;
506   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fcv_mean;
507   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 fcv_trim;
508   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 mse;
509   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 mse_ratio;
510   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 loss_series;
511   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 mvar;
512   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 mvar_ratio;
513   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 vloss_series;
514   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 avg_var;
515   save path=C:\gauss12\procs\phd2\results_70\break_low_s22 per_var;
516   
517   /*****************************************************************/
518   /************************   Procedures    ************************/
519   /*****************************************************************/



520   proc(2)=gengarch(t0,t,br,oos,bp,w,a,b,sv);
521   local eps,i,j,k,k0,h,zt,w1;
522   
523   h=zeros(t0+t,1);
524   eps=zeros(t0+t,1);
525   zt=rndns(t0+t,1,seed1);
526   w1=w*sv;
527   h[1]=(w/(1-a-b));
528   
529   j=2;
530   do until j>t0+t;
531   
532   if br<1;
533   eps[1]=sqrt(h[1])*zt[1];
534   h[j]=w+a*(eps[j-1].^2)+b*h[j-1];
535   eps[j]=sqrt(h[j])*zt[j];
536   else;
537   k0=round(bp*(t-oos)); @ artificial break point for in-sample

period @
538   eps[1]=sqrt(h[1])*zt[1];
539   h[j]=w*(j.<=t0+k0)+w1*(j.>t0+k0)+a*(eps[j-1].^2)+b*h[j-1];
540   eps[j]=sqrt(h[j])*zt[j];
541   endif;
542   j=j+1;
543   endo;
544   eps=eps[t0+1:t0+t];
545   
546   if br<1; k="n/a";
547   else; k=k0;
548   endif;
549   
550   retp(eps,k);
551   endp;
552   /*****************************************************************/
553   proc(6)=garch(e,startvalues);
554   local b,f,g,vcv,ret,hhat,_ww_;
555   
556   cmlset;
557   
558   _ww_={-1e250 1e250};
559   _cml_DirTol=0.001;
560   _cml_Bounds=ones(3,2).*_ww_;
561   _cml_Bounds[1,1]=0.0001;
562   _cml_Bounds[2:3,1]=zeros(2,1);
563   
564   _cml_C=zeros(1,3);
565   _cml_C[1,2:3]=-ones(1,2);
566   _cml_D=-0.99999;
567   
568   __output=0;
569   {b,f,g,vcv,ret}=cml(e,0,&garch11_loglike,startvalues);
570   _cml_covPar=3;
571   
572   hhat=garch11_hhat(b,e);
573   retp(b,f,g,vcv,ret,hhat);
574   endp;
575   /*****************************************************************/
576   proc garch11_loglike(b,e);
577   local es,esm,est1,omega,alpha,beta,h,lik;
578   
579   es=e.^2;
580   esm=meanc(es);
581   est1=shiftr(es',1,esm)';
582   
583   omega=b[1]; alpha=b[2]; beta=b[3];
584   



585   h=recserar((omega+alpha*est1),esm,beta);
586   h=substute(h,h.<1e-6,1e-6);
587   
588   lik=-0.5*ln(2*pi*h)-0.5*(e.^2)./h;
589   retp(lik);
590   endp;
591   /*****************************************************************/
592   proc garch11_hhat(b,e);
593   local t,es,esm,est1,omega,alpha,beta,h,lik;
594   
595   t=rows(e);
596   es=e.^2;
597   esm=meanc(es);
598   est1=shiftr(es',1,esm)';
599   
600   omega=b[1]; alpha=b[2]; beta=b[3];
601   
602   h=recserar((omega+alpha*est1),esm,beta);
603   h=substute(h,h.<1e-6,1e-6);
604   
605   retp(h);
606   endp;
607   /*****************************************************************/
608   proc(6)=figarch(e,startvalues);
609   local b,f,g,vcv,ret,hhat,_ww_;
610   cmlset;
611   
612   _ww_={-1e250 1e250};
613   _cml_DirTol=0.001;
614   _cml_Bounds=ones(4,2).*_ww_;
615   _cml_Bounds[1,1]=0.0001;
616   _cml_Bounds[2:4,1]=zeros(3,1);
617   
618   _cml_C=zeros(2,4);
619   _cml_C=(0~-2~0~-1)|(0~1~-1~1);
620   _cml_D=-0.99999|0;
621   
622   __output=0;
623   {b,f,g,vcv,ret}=cml(e,0,&figarch11_loglike,startvalues);
624   hhat=figarch11_hhat(b,e);
625   retp(b,f,g,vcv,ret,hhat);
626   endp;
627   /*****************************************************************/
628   proc figarch11_loglike(b,e);
629   local i,j,t,es,esm,est1,bclength,bcweight,seq_bcwe,backcast,aug_es,bc_es;
630   local omega,phi,beta,d,lambda,delta,tau,h,lik;
631   
632   t=rows(e);
633   es=e.^2;
634   esm=meanc(es);
635   est1=shiftr(es',1,esm)';
636   
637   omega=b[1]; phi=b[2]; beta=b[3]; d=b[4];
638   
639   lambda=zeros(tl,1);
640   delta=zeros(tl,1);
641   lambda[1]=phi-beta+d;
642   delta[1]=d;
643   
644   j=2;
645   do until j>tl;
646   delta[j]=((j-1-d)/j)*delta[j-1];
647   lambda[j]=beta*lambda[j-1]+(delta[j]-phi*delta[j-1]);
648   j=j+1;
649   endo;
650   



651   bclength=maxv(floor(sqrt(t)),1);
652   seq_bcwe=seqa(0,1,bclength+1)';
653   bcweight=0.05*(0.9.^seq_bcwe);
654   bcweight=bcweight/sumr(bcweight);
655   bc_es=es[1:bclength+1];
656   backcast=bcweight*bc_es;
657   
658   if backcast==0;
659   backcast=vcx(e);
660   endif;
661   
662   aug_es=zeros(tl,1)|es;
663   aug_es[1:tl]=ones(tl,1)*backcast;
664   
665   h=zeros(rows(aug_es),1);
666   
667   i=tl+1;
668   do until i>tl+t;
669   h[i]=omega+lambda'aug_es[i-1:i-tl];
670   i=i+1;
671   endo;
672   
673   h=h[tl+1:tl+t];
674   h=substute(h,h.<1e-6,1e-6);
675   
676   lik=-0.5*ln(2*pi*h)-0.5*(e.^2)./h;
677   
678   retp(lik);
679   endp;
680   /*****************************************************************/
681   proc figarch11_hhat(b,e);
682   local i,j,t,es,esm,est1,bclength,bcweight,seq_bcwe,backcast,aug_es,bc_es;
683   local omega,phi,beta,d,lambda,delta,tau,h,lik;
684   
685   t=rows(e);
686   es=e.^2;
687   esm=meanc(es);
688   est1=shiftr(es',1,esm)';
689   
690   omega=b[1]; phi=b[2]; beta=b[3]; d=b[4];
691   
692   lambda=zeros(tl,1);
693   delta=zeros(tl,1);
694   lambda[1]=phi-beta+d;
695   delta[1]=d;
696   
697   j=2;
698   do until j>tl;
699   delta[j]=((j-1-d)/j)*delta[j-1];
700   lambda[j]=beta*lambda[j-1]+(delta[j]-phi*delta[j-1]);
701   j=j+1;
702   endo;
703   
704   bclength=maxv(floor(sqrt(t)),1);
705   seq_bcwe=seqa(0,1,bclength+1)';
706   bcweight=0.05*(0.9.^seq_bcwe);
707   bcweight=bcweight/sumr(bcweight);
708   bc_es=es[1:bclength+1];
709   backcast=bcweight*bc_es;
710   
711   if backcast==0;
712   backcast=vcx(e);
713   endif;
714   
715   aug_es=zeros(tl,1)|es;
716   aug_es[1:tl]=ones(tl,1)*backcast;



717   
718   h=zeros(rows(aug_es),1);
719   
720   i=tl+1;
721   do until i>tl+t;
722   h[i]=omega+lambda'aug_es[i-1:i-tl];
723   i=i+1;
724   endo;
725   
726   h=h[tl+1:tl+t];
727   h=substute(h,h.<1e-6,1e-6);
728   
729   retp(h);
730   endp;
731   /****************************************************************/
732   proc(1)=garch_fc(theta,e,hhat,s);
733   local om,al,be,h_t1,h_ts,iter,sig2;
734   om=theta[1];
735   al=theta[2];
736   be=theta[3];
737   h_t1=om+al*e.^2+be*hhat;
738   h_ts=h_t1;
739   sig2=om/(1-al-be);
740   if s>1;
741   iter=2;
742   do until iter>s;
743   h_ts=h_ts|(sig2+(al+be)^(iter-1)*(h_t1-sig2));
744   iter=iter+1;
745   endo;
746   endif;
747   retp(h_ts);
748   endp;
749   
750   /****************************************************************/
751   proc(1)=figarch_fc(params,e,hhat,s);
752   local i,j,t,es,rs,r2,omega,phi,beta,d,lambda,delta,tau,h,fc;
753   
754   t=rows(e);
755   es=e.^2;
756   
757   omega=params[1]; phi=params[2]; beta=params[3]; d=params[4];
758   
759   lambda=zeros(tl,1);
760   delta=zeros(tl,1);
761   lambda[1]=phi-beta+d;
762   delta[1]=d;
763   
764   j=2;
765   do until j>tl;
766   delta[j]=(j-1-d)/j*delta[j-1];
767   lambda[j]=beta*lambda[j-1]+(delta[j]-phi*delta[j-1]);
768   j=j+1;
769   endo;
770   
771   fc=zeros(s,1);
772   h=hhat;
773   tau=rows(lambda);
774   
775   i=1;
776   do until i>s;
777   rs=es[t-(tau-i-1):t];
778   r2=rs|h;
779   fc[i]=omega+lambda'rev(r2);
780   h=h|fc[i];
781   i=i+1;
782   endo;



783   
784   retp(fc);
785   endp;
786   /*****************************************************************/
787   proc(2)=loss_se_avg(fc,a);
788   local n,p,fcavg,aavg,iter,l_series,l_mean;
789   n=rows(fc);
790   p=cols(fc);
791   fcavg=sumc(fc');
792   aavg=zeros(n,1);
793   iter=1;
794   do until iter>n;
795   aavg[iter]=sumc(a[iter:iter+(p-1)]);
796   iter=iter+1;
797   endo;
798   l_series=(fcavg-aavg)^2;
799   l_mean=meanc(l_series);
800   retp(l_series,l_mean);
801   endp;
802   /*****************************************************************
803   PROC: GARCH11_VAR_FC
804   
805   This procedure calculates a VaR quantile forecast for aggregate
806   returns for a GARCH(1,1) model at a horizon of s using a standard
807   normal distribution for the standardized residuals. The process is
808   assumed to have zero conditional and unconditional means.
809   
810   Format: varq=garch11_var_fc(b_garch,fc,s,alpha,sims);
811   
812   Intput:
813   
814   b_garch = 3-vector of GARCH(1,1) estimates (omega|alpha|beta)
815   fc      = one-step-ahead conditional variance forecast
816   s       = forecast horizon
817   alpha   = probability of loss
818   sims    = number of simulations
819   
820   Output:
821   
822   varq = VaR quantile forecast
823   *****************************************************************/
824   proc(1)=garch_varfc(b_garch,fc,s,alpha,sims);
825   local tretstar,itersims,zstar,hstar,estar,iters,alphai,varq;
826   tretstar=ones(sims,1);
827   itersims=1;
828   do until itersims>sims;
829   zstar=rndns(s,1,seed2);
830   if s>2;
831   hstar=fc|zeros(s-1,1);
832   else;
833   hstar=fc;
834   endif;
835   estar=zeros(s,1);
836   estar[1]=sqrt(hstar[1])*zstar[1];
837   if s>2;
838   iters=2;
839   do until iters>s;
840   hstar[iters]=b_garch[1]+b_garch[2]*estar[iters-1]^2
841   +b_garch[3]*hstar[iters-1];
842   estar[iters]=sqrt(hstar[iters])*zstar[iters];
843   iters=iters+1;
844   endo;
845   endif;
846   tretstar[itersims]=sumc(estar);
847   itersims=itersims+1;
848   endo;



849   alphai=round(alpha*sims);
850   tretstar=sortc(tretstar,1);
851   varq=tretstar[alphai];
852   retp(varq);
853   endp;
854   
855   /*****************************************************************
856   PROC: CONSTANT_VAR_FC
857   
858   This procedure calculates a VaR quantile forecast for aggregate
859   returns for a constant variance model at a horizon of s using a
860   standard normal distribution for the standardized residuals. The
861   process is assumed to have zero conditional and unconditional means.
862   
863   Format: varq=constant_var_fc(fc,s,alpha,sims);
864   
865   Intput:
866   
867   fc      = variance forecast
868   s       = forecast horizon
869   alpha   = probability of loss
870   sims    = number of simulations
871   
872   Output:
873   
874   varq = VaR quantile forecast
875   *****************************************************************/
876   proc(1)=cons_varfc(fc,s,alpha,sims);
877   local tretstar,itersims,estar,alphai,varq;
878   tretstar=ones(sims,1);
879   itersims=1;
880   do until itersims>sims;
881   estar=sqrt(fc)*rndns(s,1,seed2);
882   tretstar[itersims]=sumc(estar);
883   itersims=itersims+1;
884   endo;
885   alphai=round(alpha*sims);
886   tretstar=sortc(tretstar,1);
887   varq=tretstar[alphai];
888   retp(varq);
889   endp;
890   
891   /*****************************************************************
892   PROC: FIGARCH11_VAR_FC
893   
894   This procedure calculates a VaR quantile forecast for aggregate
895   returns for a FIGARCH(1,d,1) model at a horizon of s using a
896   standard normal distribution for the standardized residuals. The
897   process is assumed to have zero conditional and unconditional means.
898   
899   Format: varq=figarch11_var_fc(b_figarch,fc,e,s,alpha,sims);
900   
901   Intput:
902   
903   b_figarch = 4-vector of FIGARCH(1,d,1) estimates (omega|alpha|beta|d)
904   fc        = one-step-ahead conditional variance forecast
905   e         = T-vector of observations
906   s         = forecast horizon
907   alpha     = probability of loss
908   sims      = number of simulations
909   
910   Output:
911   
912   varq = VaR quantile forecast
913   *****************************************************************/
914   proc(1)=figarch_varfc(b_figarch,fc,e,s,alpha,sims);



915   local i,j,t,es,rs,e2,r2,omega,phi,beta,d,lambda,delta,tau;
916   local tretstar,itersims,zstar,estar,hstar,alphai,varq;
917   
918   t=rows(e);
919   es=e.^2;
920   omega=b_figarch[1]; phi=b_figarch[2]; beta=b_figarch[3]; d=b_figarch[4];
921   
922   lambda=zeros(tl,1);
923   delta=zeros(tl,1);
924   lambda[1]=phi-beta+d;
925   delta[1]=d;
926   
927   j=2;
928   do until j>tl;
929   delta[j]=((j-1-d)/j)*delta[j-1];
930   lambda[j]=beta*lambda[j-1]+(delta[j]-phi*delta[j-1]);
931   j=j+1;
932   endo;
933   
934   tau=rows(lambda);
935   tretstar=ones(sims,1);
936   
937   itersims=1;
938   do until itersims>sims;
939   zstar=rndns(s,1,seed2);
940   if s>2;
941   hstar=fc|zeros(s-1,1);
942   else;
943   hstar=fc;
944   endif;
945   estar=zeros(s,1);
946   estar[1]=sqrt(hstar[1])*zstar[1];
947   if s>1;
948   
949   i=2;
950   do until i>s;
951   rs=es[t-(tau-i-1):t];
952   e2=estar[1:i].^2;
953   r2=rs|e2;
954   hstar[i]=omega+lambda'rev(r2);
955   estar[i]=sqrt(hstar[i])*zstar[i];
956   i=i+1;
957   endo;
958   endif;
959   tretstar[itersims]=sumc(estar);
960   itersims=itersims+1;
961   endo;
962   
963   alphai=round(alpha*sims);
964   tretstar=sortc(tretstar,1);
965   varq=tretstar[alphai];
966   retp(varq);
967   endp;
968   /*****************************************************************
969   PROC: VAR_STATS
970   
971   This procedure calculates the average Value at Risk quantile
972   forecasts and the percentage of times the actual return is less
973   than the Value at Risk quantile forecast.
974   
975   Format: {varq_avg,varpercent}=var_stats(fc,a,s);
976   
977   Intput:
978   
979   fc = vector of VaR quantile forecasts
980   a  = vector of actual values for returns



981   s  = forecast horizon
982   
983   Output:
984   
985   varq_avg   = average VaR quantile forecast
986   varpercent = percent
987   *****************************************************************/
988   proc(2)=var_stats(fc,a,s);
989   local n,varq_avg,aagg,iter,varpercent;
990   n=rows(fc);
991   varq_avg=meanc(fc);
992   aagg=zeros(n,1);
993   iter=1;
994   do until iter>n;
995   aagg[iter]=sumc(a[iter:iter+(s-1)]);
996   iter=iter+1;
997   endo;
998   varpercent=sumc(aagg.<fc)/n;
999   retp(varq_avg,varpercent);
1000   endp;
1001   /*****************************************************************
1002   PROC: LOSS_VAR
1003   
1004   This procedure calculates values for the VaR-based loss
1005   function described in Section 4.3 of Gonzalez-Rivera et al.
1006   (2004) for aggregate returns. It also calculates the mean
1007   loss.
1008   
1009   Format: {loss_series,loss_average}=loss_var(fc,a,s,alpha);
1010   
1011   Intput:
1012   
1013   fc    = vector of VaR quantile forecasts
1014   a     = vector of actual values for one-period returns
1015   s     = forecast horizon
1016   alpha = probability of loss
1017   
1018   Output:
1019   
1020   loss_series  = vector of VaR-based loss function values
1021   loss_average = mean loss
1022   
1023   Reference
1024   
1025   G. Gonzalez-Rivera, T.-H. Lee, and S. Mishra (2004),
1026   "Forecasting Volatility: A Reality Check Based on Option
1027   Prcing, Utility Function, Value-at-Risk, and Predictive
1028   Likelihood," International Journal of Forecasting, 20(4),
1029   629-645
1030   *****************************************************************/
1031   proc(2)=loss_var(fc,a,s,alpha);
1032   local n,aagg,iter,d_alpha,loss_series,loss_average;
1033   n=rows(fc);
1034   aagg=zeros(n,1);
1035   iter=1;
1036   do until iter>n;
1037   aagg[iter]=sumc(a[iter:iter+(s-1)]);
1038   iter=iter+1;
1039   endo;
1040   d_alpha=aagg.<fc;
1041   loss_series=(alpha-d_alpha).*(aagg-fc);
1042   loss_average=meanc(loss_series);
1043   retp(loss_series,loss_average);
1044   endp;
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