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Abstract

This paper is concerned with the development of an adaptation structure which can be applied to conventional, super-twisting and
higher-order sliding mode schemes. The objective is to alter the modulation gains associated with these schemes in such a way
that they are as small as possible to mitigate chattering effects, but large enough to ensure that sliding can be maintained in the
presence of bounded and derivative bounded uncertainties. In all the proposed schemes, the equivalent control is used to drive
the adaptive mechanism. The approach is based on a novel dual layer nested adaptive methodology which is quite different to the
existing schemes proposed in the sliding mode literature. The new adaptive schemes do not require knowledge of the minimum and
maximum allowed values of the adaptive gain, and in their most general form, do not require information about the bound on the

disturbances and their derivatives.
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1. Introduction

The insensitivity and finite time convergence properties en-
joyed by sliding mode controllers make them a useful approach
for systems with significant uncertainties. However these ro-
bustness properties come at a cost, usually termed ‘chattering’,
resulting from high frequency switching of the control signal.
Higher order sliding mode control techniques (Shtessel et al.
(2013)) offer significant chattering mitigation through artifi-
cially increasing the input-output relative degree, and are ca-
pable of providing control signals which are continuous. Fami-
lies of higher order sliding mode controllers with specific ‘tem-
plates’ involving either recursive or nested structures have been
proposed (Levant (2003, 2006)). However, these control laws
all contain signum structures pre-multiplied by some bound on
the uncertainties (or bounds on the derivatives of the uncer-
tainty) and so chattering is not totally eliminated even by in-
creasing the relative degree. Usually during the design process,
conservative upper bounds on these quantities are used to guar-
antee that sliding will take place, but this conservatism exacer-
bates the chattering associated with the implementation. This
trade-off has motivated research in what could be described as
‘adaptive sliding mode control’ whereby the gains in the con-
troller, representing bounds on the uncertainty, attempt to adapt
to a level where they are as small as possible and yet guarantee
sliding is maintained. This research area has a long research
history and key papers in this area are (Huang et al. (2008);
Plestan et al. (2010)). A recent overview of this field is given
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in Utkin & Poznyak (2013a). The creation of new Lyapunov
functions for higher order sliding mode control structures — par-
ticularly twisting and super-twisting controllers - has also reju-
venated interest in this area (Moreno & Osorio (2008)) and
the literature expanding these Lyapunov ideas into the realm
of adaptive sliding mode control is developing rapidly (Plestan
et al. (2010); Alwi & Edwards (2013); Shtessel et al. (2012);
Bartolini et al. (2103); Taleb et al. (2013)). Whilst it is in-
tuitively clear that when sliding begins to deteriorate the con-
troller gains must be increased, devising an effective way of
lowering unnecessarily large gains once sliding is achieved, has
proved more elusive. This paper follows the approach of Utkin
& Poznyak (2013a) and Lee & Utkin (2007) in the sense that
the adaption scheme relies on the availability, in real time, of
the equivalent control signal, and exploits this information in
the adaptive scheme.

The main contribution of this paper is to propose new equiv-
alent control-based adaptive schemes for conventional, super-
twisting and continuous higher order sliding mode control al-
gorithms. The approach is based on a novel dual layer nested
adaptive scheme which is quite different to the existing schemes
proposed in the sliding mode literature (Plestan et al. (2010);
Utkin & Poznyak (2013a)). The scheme allows the magnitude
and rate of change of the controller parameters to adapt whilst
guaranteeing a sliding motion. The new adaptive schemes do
not require knowledge of the minimum and maximum allowed
values of the adaptive gain and in their most general form, do
not require information about the bound on the disturbances
and their derivatives that are necessary in Utkin & Poznyak
(2013a). The notation used in the paper is standard — the sym-
bol R is used to represent the real numbers and || - || is used to
represent the Euclidean norm.
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2. A Single-Input Single-Output Formulation

Consider initially the prototypical first-order sliding mode
equation representing the dynamics of the switching variable

o (1) = a(t) + u(r) ey

where o(¢) € R represents the switching function to be forced to
zero in finite time, u(f) represents the scalar control input to be
manipulated and a(?) is a disturbance® Here it will be assumed
that a(#) is not known but its magnitude and its derivative are
bounded so that |a(?)| < ag and |a(?)| < a; where ay and a; are
finite.

Consider the control law

u(t) = —(k(1) + n) sign(o (7)) @)

where 7 is a small positive design constant and k() is a varying
scalar term which satisfies an adaptive scheme, which will be
explicitly defined later in the section. The objective is to select
k(#) as small as possible to ensure sliding takes place in (1).
Note that a sufficient condition to enforce a sliding motion in
(1) is that

k() > la(?)| (3

in which case the n-reachability condition oo < —n|of is satis-
fied (Edwards & Spurgeon (1998)). During the sliding motion
o(t) = 0 and the so-called equivalent control u,,(f), which is
the value the switched signal in (2) must take on average (Utkin
(1992)) to maintain sliding, and which is formally obtained as
the solution to the algebraic equation 6 = 0 when o = 0, must
satisfy
ueq(t) = —a(r)

i.e it must exactly cancel the unknown disturbance/uncertainty.
Consequently during sliding |u.,(1)] = la(®)]. Although the
equivalent control was conceived as an abstraction to allow the
analysis of the reduced order sliding motion, a close approxi-
mation can be obtained in real-time by low-pass filtering of the
switching signal u(¢) (Utkin (1992)). In this way if i, (f) satis-
fies

. 1
Ueq(1) = ;(—(k(t) +17) sign(o (1)) — iheg(1)) “

where 7 > 0 is a (small) time constant, |i.q(f) — u.,(t)| can be
small for small enough 7 (Utkin (1992)). The filter in (4) is
the simplest choice, but other higher order systems with low-
pass characteristics can be employed. In this paper it will be
assumed there exist scalars 1 > ¢; > 0 and ¢, > 0 such that

lliteq (D] = lueq (DIl < €1lueg(D)] + € &)

holds for all time after a finite time #,,, to allow for the (fast)
dissipation of the effects of the initial conditions of the filter.
Equation (5) is an assumption on the accuracy to which u,,(f)

2Equation (1) does not represent the dynamics of the overall system to be
controlled, but instead represents the dynamics of the sliding variable — possibly
after partial closed-loop compensation with control elements representing the
known parts of the equivalent control (Edwards & Spurgeon (1998)).

is estimated and depends on the filter bandwidth % For a given
f.q and 7, estimates of & and €, can easily be obtained to ensure
(5) holds. Furthermore in an engineering system information
about the bandwidth of the uncertainty can be exploited to help
select T an ensure an appropriate level of accuracy. Here the
equivalent control will be used to construct the adaptive algo-
rithm for k(#). To introduce a ‘safety margin’, the objective will
be to ensure

1
k(1) > —liteg(D] + € (6)
a

where 0 < @ < 1 and € > 0 are design scalars (depending on ¢
and €|) chosen to ensure the estimate i,,(z) satisfies

1
;meq(t)l +€/2 > ueg (0l (N

Now define an error variable
1
o) = k(1) — ameq(t)l —€ (®)

Note if 6 = 0 then k(¢) = élﬁeq(t)l +€ > ueg(H)| = la(?)|. Thus, in
what follows, the problem of maintaining sliding is transposed
to one of forcing d(f) — 0, or at least sufficiently close to zero,
so that k(r) + n > |a(¢)| can be guaranteed.

The adaptive control element k(¢) in (2) will now be explicitly
described. Specifically define

k(r) = —p(n)sign(6(r)) €))

where p(¢) is a varying scalar. This scalar has a physical inter-
pretation: namely it represents an upper-bound on the rate of
change of the disturbance. In this paper it is assumed that p(f)
has the structure

pt) =ro+r(t) (10

where ry is a fixed positive scalar. The evolution of r(¢) will also
satisfy a differential equation (i.e an adaptive law) that will be
described shortly. Precise details regarding the adaptation law
for r(¢) proposed in this paper will depend on the assumptions
which are made with respect to the knowledge about a; (the
upper-bound |a(¢)|). In particular two layers of adaptation oc-
cur. One layer is concerned with the magnitude of the switching
signal in the control law k(#). The rate at which k(#) can change
depends on the time-varying parameter r(#) which itself adapts
in a way to ensure r(t) + ro > |a(¢)|. This is the second adap-
tive layer in the scheme. This second layer obviates the need
to know a-priori the bound a;. This dual layer adaptation is the
crux of this paper. Two situations will be considered: firstly the
situation when a) is known, and secondly when it is unknown.

2.1. Formulation when the bound a; is known

In this subsection it is assumed that @y is unknown (but
bounded), but g, is available: i.e the worst case rate of change
of the disturbance a(¢) is known. Define

e(t) = qai/a—r(t) (1D

where the user defined scalar g > 1 is a safety margin chosen to
ensure I%(ﬁeq(t))l < ga;. Since (in this subsection) it is assumed



that a; is known, e(¢) is known, and can be exploited in the
adaptation scheme. Define

(1) = YI6(0)| + ro +/y sign(e(n)) 12)

where y > 0 is a design scalar and 6(¢) is defined in (8).

Proposition 1. Consider the sliding mode equation (1) sub-
Jject to an uncertainty a(t) which satisfies |a(t)| < ag and |a(t)| <
aj, where ay and a; are finite, and a, is known. Then the con-
trol law (2), exploiting the dual layer adaptive scheme given by
(9) and (12), forces 6(t) = 0 in finite time, and consequently en-
sures a sliding motion can be sustained. Furthermore the gains
p(t) and k(t) in (9) and (10) remain bounded.

Proof: The dynamical system associated with the variables
o(t) and e(?) in (8) and (11) are governed by the differential
equations

e(r)
0

~Y16(0)] = ro \ysign(e(n)) (13)
—(ro + % — e(1))sign(6(1)) — édJ(t) (14)

where ¢(t) := %(ﬁeq(t)) and satisfies |¢(7)| < ga,. These equa-
tions have discontinuous right hand sides and so the solution
needs to be understood in a Filippov sense (Filippov (1964)).
The stability of (13)-(14) will now be analyzed using

1 1
V==-6+—é 15
205 (15)

It follows from (14) that

56

IA

—wmwwmi%mw+ww%
—rol6(0)] + e(D)lo (1)) (16)

from the definition of e(¢) in (11). Therefore from (12)

Vo< —rld®] +160le(r) ~ ye@i(n)
= ;ﬁm(ﬁmm+j§wm0s —r V2V (17)
since

6l el o7 leP\"?
-1 = 4 < —|— + — for all 6, e (18)
V2 \/Z) (2 2y

Inequality (17) implies V = 0 in finite time and therefore 6(f)
and e(#) become zero in finite time. Consequently from the def-
inition of ¢ in (8)

1
k(#) = “liteq(D)] + € > luteg ()] = |a(®)] (19)

This is exactly the condition necessary to maintain sliding. Also
note that since e(z) is bounded, from the definition of e(r) in
(11), r(¢) and hence p(r) is bounded. a

2.2. Formulation when a; is unknown

In this subsection it is assumed that both ag and a; are un-
known (but bounded). Since a; is not known the variable e(¢)

is unknown and the adaptive scheme in (12) can not be used.
Instead define

mﬁ{ywn

where 69 > 0 is a design scalar. The adaptive scheme now
comprises (9), (10) and (20).

Proposition 2. Consider the system in equation (1) subject to
an uncertainty a(t) which satisfies la(t)| < ay and |a(t)| < ay,
where ay and ay are finite, but both ay and a; are unknown. If €
is chosen to satisfy

if [6()] > ¢

otherwise (20)

1 ga;

Sl 1)

1
162 > 53 +
for any given 8y and ay, then the control law (2), exploiting
the dual layer adaptive scheme given by (9) and (20), forces
[6(1)] < €/2 in finite time and consequently ensures a sliding
motion can be sustained. Furthermore the gains p(t) and k()
remain bounded.

Proof: The Lyapunov function (15) will be employed to an-
alyze the error variables e(f) and 6(f) from (8) and (11). As
before, from (16), it follows that

86 < —rolo(D)| + e()|6()| (22)

Suppose r(0) = 0, then whatever the evolution of (6(¢), e(?)), it
follows from the definition of e(¢) in (11) that e(¢) < % because
from (20) r(¢) > O for all time.

If |6(¢)] > &p then from the definition of e(¢) in (11) and of
r(t) from (20), it follows that e(¢) = —i(¢) = —y|d6(¢)| and

—rol6(0)] + 16(0)le(r) — %ei’(t)
=rol6(D)] + 16(Dle(?) — 6(Dle(®) = —rolé(D]  (23)
Otherwise inside the vertical strip of width 26y in Fig. 1, when
[o(0)| < 89, it follows from (22) that if e(¢) < 0, then, as before,
V < —rolé (o).

Since e(t) < % for all time (because # > 0), in the solution
domain, outside of the rectangle

Vv <

Rz{(&,e) S 16l < 60,0 < e < %}

it follows that V. < —rgld(7)]. Let V be the smallest ellipse
centred at the origin of the form

YV ={,e) : V(6,e)<F}, F>0 (24)

which encloses the rectangle R. In fact the “radius” 7 can be
given explicitly as

1

1 qai,
= 00+ —
0 27( )

2 1%
By construction R ¢ V, and so outside of V in the solution
domain, V < 0, and therefore V is an invariant set. Let € be
chosen so that (21) is satisfied.

If the solution ((¢), e(f)) enters V (in finite time) then since
V is an invariant set, (5(f), e(f)) cannot leave V and therefore
from (21)), |6(?)| < €/2.
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Figure 1: Visualization of V and R

Otherwise if the solution (6(¢), e(¢)) does not enter V, then
from the arguments above V < —ry|d(¢)| and

fm rolo(Hldt < V(0) (25)
0

Since V(e, ) is bounded for all time, the solution (e(?), 6(¢)) to
(13)-(14) is bounded and consequently the right hand sides of
(13)-(14) are bounded, which implies the derivatives &(¢) and
é(t) of the solution (e(r), 6(¢)) are bounded, and therefore 6(r)
and hence |6(7)| is uniformly continuous. Consequently (25) im-
plies 6(t) — 0 as t — oo (Barbalat’s Lemma (Khalil (1992))).
Consequently there exists a finite time f, such that [6(¢)] < €/2
for all time ¢ > (. Therefore, irrespective of whether (e(¢), (1))
enters V or not, |6(¢)| < €/2 in finite time.
Consequently from the definition of §(¢) in (8)

1
0] = Ik(®) = —liteq ()] — €] < €/2

Thus |
k(t) — —liteg(D] — € > —€/2
a

and therefore from (7)
1 €
k(1) > a|ueq(t)| 5> |tteq (D) = la(®)] (26)
From (26) it follows that the condition for maintaining a sliding
motion on o = 0 is guaranteed. Note since both e(f) and 6(f)
remain bounded, from (11), the adaptive gain r(¢) satisfies

(O] < 2 + le(0)]
(04

and so r(¢) and hence p(f) remains bounded. Also from the
definition of (¢) in (8) it follows from (5)

1
K@D < 16 + —liieg(D] + € < |6(D] + (1 + 61)%0 +e

and so k(¢) remains bounded. O

Remark 1: Inequality (21) depends on different variables
with different interpretations. The scalar dy needs to be larger
than noise or computational errors. The user defined param-
eters €, a are the safety factors whilst g reflects the accuracy
associated with the estimation of the equivalent control. In par-
ticular a; is unknown. However by selecting the adaptive gain
v sufficiently large (to dominate a,), for any value of &y, ¢ and
a; there always exists an € to ensure (21) is satisfied. Of course
(21) is only a sufficient condition, and to formally ensure that
inequality (21) is satisfied, the order of magnitude of a; must be
known to allow vy to be chosen sufficiently large. Alternatively
the values of y and € can be tuned via simulation because the
physical effect of changing these values is easily understood.

Remark 2: In equality (26), the right hand side establishes a
bounding cone around the equivalent control |u.4(#)| involving
both multiplicative % and fixed § components. This intro-
duces robustness into the adaptive scheme since the value of
[teq(1)| can only be estimated by ii,,(#) through the low-pass fil-
tering process in (4). The amount of allowable uncertainty is
a function of the parameters o and € which are to be selected
by the designer (subject to 0 < @ < 1 and € > 0). In this
way the designer can introduce his/her own preferred level of
“safety” into the algorithm by widening the cone through mak-
ing a smaller and € bigger — although, of course, this must be
traded-off against how much larger k(r) becomes with respect
to |a(?)|.

Remark 3: Note that prior to sliding taking place, the adap-
tive scheme for k(#) as described above is also applicable. This
is similar to the result in Utkin & Poznyak (2013a). Suppose
sliding is not taking place in the interval 0 < 7 < #. During this
time |sign(o(¢))| = 1 almost everywhere and therefore from (4),
ltieq(t)] = k(#) + 1 almost everywhere3. Substituting this value in
(8), it follows that almost everywhere

(a-1)

o) = T(k(t) +m)—-€<0

since 0 <a < 1. Therefore sign(d(f)) = —1 and from (9)

k(t) = p(t) > ro

for 0 < t < tp and therefore the gain k(¢) grows at a rate dic-
tated by p(r) which is always greater than ry. Increasing k(¢) is
precisely what is needed to induce sliding.

Remark 4: Note that whilst certain parallels exist between
the adaptive schemes in (9), (12) and (20) and those proposed
in Utkin & Poznyak (2013a), the precise details are quite dif-
ferent. In this paper, compared to Utkin & Poznyak (2013a),
no knowledge about the upper-bound g is required. Further-
more in the scheme presented in Section 2.2, no knowledge of
the upper-bound on a; is required in the adaptive scheme. In
Utkin & Poznyak (2013a) knowledge of both ay and a; are re-
quired (as is the polarity of the disturbance signal — which is
not allowed to change). Also the dual-layer nested adaptive ar-
chitecture involving k(¢) and r(¢) is clearly quite different from
the schemes proposed in Plestan et al. (2010).

30f course prior to sliding, lieq() in (4) no longer estimates the equivalent
control ue,(f), which has no formal meaning during the reaching phase.



.00050| +——sigma
.00025
0 o
-.00025
-.00050
0 5 10 15 20
Time (sec)

Figure 2: Evolutions of the switching function

——r0(t)

0 5 10 15 20
Time (sec)

Figure 3: Evolutions of u(f) and p(¢)

2.3. An Example

Consider the sliding variable dynamics in (1) when the dis-
turbance is given by a(f) = sin(f). Suppose initially that the
bound a; = 1 on the rate of change of the disturbance a() is
known, so that the adaptive scheme given by (9) and (12) can
be employed. In the simulations which follow a; = 1, @ = 0.99,
ro = 0.5, 69 = 0.01, € = 0.15, 7 = 0.01 and y = 200. The time
constant of the filter is 7 = 0.01, starting with zero initial condi-
tions. Figures 2-4 show the evolution of (), the control signal,
and the two adaptive gains k(¢) and p(¢). Note that in this case
p(t) tracks the upper-bound a; = 1. Figure 4 shows k(¢) closely
follows |a(?)|.

Now suppose that a; exists but is unknown, and the adaptive
control scheme in (9) and (20) is employed. Note that in this
case p(t) no longer tracks the upper-bound a; = 1 (which is in
accordance with the theory). However Figure 6 shows k(7) still
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Figure 4: Evolutions of k(¢) and |a()|
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Figure 5: Evolutions of u(¢) and p(f)
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Figure 6: Evolutions of k(¢) and |a(?)|

closely follows |a(?).

3. A Multi-Input Multi-Output Formulation

Now consider a multi-variable version of the first-order
scalar equation in (1) given by

o(t) = a(t) + u(t) 27)

where o (¢) € R™ represents the switching function to be forced
to zero in finite time, u(f) € R™ represents the control input to
be manipulated and a(r) € R™ is a disturbance which is impre-
cisely known. Here it will be assumed that a(f) is not known
but its magnitude and its derivative a(f) are bounded so that
lla(®)|| < ag and ||a(?)|| < a; where ay and a; are finite but un-
known.

Consider the unit vector control law (Edwards & Spurgeon
(1998)) given by

o(1)
lle@)ll
where 7 > 0 is a design constant and k() is a varying term

which satisfies an adaptive law. A sufficient condition to ensure
sliding on o = 0 in finite time is

u(®) = —(k() + 1)

(28)

k(t) > lla()l| (29)

If (29) is satisfied then the multivariable n-reachability condi-
tion (Edwards & Spurgeon (1998)) o7 < —7||o|| is satisfied
and sliding is guaranteed. In this multivariable situation the



concept of equivalent control is equally applicable and once
sliding is achieved ||uq(D)|| = |la(?)|l. Now define an error signal

1
1) = k(1) = ~lliteg (Il — € (30)

where, as in Section 2, the scalars 0 < @ < 1 and € > 0 and
it (1) represents a low-pass filtered version of u(z) in (28). As
in Section 2.2 the gain k(¢) adapts according to the law in (9)
where p(f) adapts according to (20). Although the control prob-
lem is a multivariable one, the approach in Section 2 can be
employed here because 6(¢) defined in (30) is again a scalar,
and a multivariable version of Proposition 2 can be proved.

4. Adaptive Super-Twisting

Consider once again the scalar sliding variable dynamics in
(1) under the assumption that |a| < a; where a; > 0 and |d| < a».
Now suppose that in instead of the relay structure in (2), u(t) is
given by (the slightly modified) super-twisting control law

wn) = =o' sign(o (@) +z(1) (31)
(1) —k(7) sign(o(7)) (32)
Here, as in Utkin & Poznyak (2013a), the modulation gain as-
sociated with the discontinuous term is time-varying. As argued

in Utkin & Poznyak (2013a), for any given 0 (0), there exists a
sufficiently large 4 > 0, such that, provided

k(t) > a; > la(?)l, (33)

the control structure in (31)-(32) drives both ¢ and ¢ to zero in
finite time: i.e. it induces a 2-SM.

Remark 5: Of course if a; is known, a standard fixed gain
super-twisting approach could be employed. Although it can be
argued, even in this situation there is benefit to using the “small-
est” magnitude of switching gain which can sustain sliding
rather than a possibly conservative upper bound on the worst
case disturbance (Alwi & Edwards (2013)).

Equations (1), (31) and (32) can be written in the form

o) = —Alo)]"?sign(o(®)) + v(t) (34)

V(B = e(t) —w(t) (35)
where ¢(t) = a(t), and

w(t) = k(1) sign(o (1)) (36)

During a 2-SM o = v = 0 (which is identical to the condition
o = ¢ = 0) and therefore the equivalent control w,,(7) = ¢(?).
Again two cases will be considered: firstly the case when a,
(the bound on |d|) is known; and secondly the case when a; is
unknown.

4.1. Formulation when a, is known

As in the earlier sections, it is assumed w,,(?) is available by
low-pass filtering w(f) and satisfies similar bounds with respect
10 Weq(?) as in (7). In this section define

1
O(t) = k(1) = ~Weq(1)] = € (37)

where 0 < @ < 1 and € > 0 is a small real number. The first
layer of the double-layer control gain adaptation algorithm is
defined in (9), (10) and (12) where

e(r) = qaz/a — r(1) (38)

where as before g > 1 represents a user defined gain. Note that
in order to realize (12), a, must be known.

Proposition 3. Consider the system in (1) with the super-
twisting control law (34)-(36) and the dual-layer adaptive
scheme given by (9), (10) and (12). Then, for a sufficiently large
A, (37) is forced to zero in finite time which guarantees the con-
ditions for a 2-SM to exist are met. Furthermore the adaptive
gains k(t) in (9) and r(t) in (12) remain bounded.

Proof: Consider V(e,¢) from (15) as a candidate Lyapunov
function. Using arguments similar to those in the proof of
Proposition 1

55 < -r |5|—r(t)|6|+|5|% = (-n+e)ldl (39
and it follows
Vo< (-ro+oldl—Leit) < —rgV2V'"? (40)

This guarantees that in finite time V = 0. This in turn guaran-
tees finite time convergence of §, ¢ — 0 and the boundedness of
k(t) and r(¢) from (9) and (12).

Since ¢ = 0 in finite time, using (37), the following holds

L
k) = — [eg)] + &> |weg (0] = 1) (41)
This means equation (33) holds, and provided 4 in (31) is suffi-
ciently large, the 2-SM is maintained. a

4.2. A formulation when a, is unknown
If a, is unknown the formulation (12) used in Section 4.1 is
not applicable since e(?) in (38) is unknown. Instead consider

Ho) = { glé(r)l if [5(1)] > 6

otherwise
where y and dy are positive scalars. The stability of the dynam-
ics 6(¢) and e(?) from (37) and (38) together with the adaptive
laws (9) and (42) will now be investigated. (Note this formula-
tion does not require knowledge of a,.)

Proposition 4. Consider the system in (1) with the super-
twisting control law (34)-(36) and the dual-layer adaptive
scheme given by (9), (10) and (42). If 6 satisfies
qax

a

(42)

1 1
—€ > 5 + ;( ) (43)

4
then the error 6(¢) in (37) is forced to satisfy |6(7)] < €/2 in
finite time, and for a sufficiently large A, the conditions for a
2-SM to exist are met. Furthermore the adaptive gains k(f) in
(9) and r(¢) in (42) remain bounded.

Proof: Using the Lyapunov function candidate V(e, ) from
(15), arguing as in the proof of Proposition 2, in finite time the
inequality |6(¢)| < €/2 is guaranteed, and from (37) it follows

1
K0 > ~ [y (O] + /2 > weg 0] = I ) (44)

This means that equation (33) holds, and provided A from (31)
is sufficiently large, a 2-SM is maintained. O



5. Adaptive Continuous HOSMC
Now consider the more generic case when
(1) = u(?) + a(t) (45)

where the integer n > 2, and u(f) represents the control vari-
able whilst a(?) is an unknown disturbance. The objective is to
force o, 7, ...,0™ = 0 in finite time. Consider a control law
comprising two parts:

u(t) = —up(1) — us() (46)

where

up()=y1lo|"sign (o). .. + ynla("_l)la" sign(a'(”_l)) 47

and
us(t) = Alsl'? sign(s() + [ k(Dsign(s()dr  (48)

where the auxiliary sliding variable
s) = " V(@) + [lup(t)dr (49)

In (47) the scalars yq,7>, ..., ¥, must be chosen such that the
polynomial p" +7,p" ! +...+y,p+7; is Hurwitz and the scalars
ay, s, ..., @, are chosen recursively as

@iy = —HL o n (50)

2041 — @;

with @41 = 1 and @,, = @. In (48) the positive scalar A must be
chosen sufficiently large and the time varying gain k(f) adapts
according to the dual layer structure previously described in
Section 4.

Theorem 1: Consider the system in (45) with uncertainty
a(t) which is twice differentiable and subject to |a(t)| < a; and
|a(?)| < ap. Using the control law from (46) in (45) where k()
adapts according to the dual layer equations (9),(42) and as-
suming (43) is satisfied, then for sufficiently large A, there ex-
ists an €, € (0, 1) such that for every & € (1 — €, 1) the origin
0,0, ...,0" =0isa finite time stable equilibrium point.

Proof: From equations (49) and (47)-(48), the dynamics as-
sociated with the auxiliary variable s are described by

$(1) = a(t) =2 |s|'? sign(s(r)) — folk(‘r)sign(s(r))d‘r (51)

—us(t)

This is exactly equivalent to the set of equations in (34)-(36) and
so arguing as in proof of Proposition 4, the dual layer adaptive
structure induces a 2SM in finite time in which § = s = 0, and
during the 2SM the control term u, exactly compensates for the
uncertainty: i.e a(t) = u,(t). Therefore during a 2SM

o™ = a(t) + u(t) = a(t) — us(t) —up(t) = —up(t)
—_————

=0

and therefore from the definition of u,, in (47), the sliding mo-
tion is governed by

. —1 . —1
o™ = —y o™ sign (o). .. = Yl V| sign(c D)

2| —e—sipma
1 —s—dot(sigma)
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Figure 7: Evolutions of o(¢), o(t) and &()
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Figure 8: Evolutions of u(r)

From Proposition 8.1 presented in Bhat & Bernstein (2005),
there exists an €, € (0, 1) such that for every @ € (1 — ¢, 1) the
origin o, ...,0™ = 0 is a finite time stable equilibrium O

Remark 6: The continuous controller (46) can be claimed to
be a continuous HOSM controller for the system in (1), since
it drives o, 7, ..., 0™ — 0 in finite time in the presence of the
smooth disturbance a(t) with bounded derivatives |a(?)|] < a;
and |d| < as.

5.1. An Example

Consider the system in (45) with relative degree n = 3. The
coefficients of the underlying Hurwitz polynomial p? + y3p* +
v2p + 1 associated with the controller are selected as y; =
8, y2 = 12, y3 = 6. The exponents @, a,, @3 in equation
(47) are calculated based on the seed @ = 0.8 in equation(50).
Explicitly they are given by a; = 0.56, a; = 0.66 and a3 = 0.8.
The initial conditions are selected as o-(0) = 1, (0) = 0.5,
d(0) = 0. The disturbance in (45) is taken as a(t) = 2 sin(?).
The parameter A = 4.75 and the other parameters that are used
in simulations are rp = 1,y = 800 and @ = 0.99; and dy = 0.01
and € = 0.15. The time constant of the filter is T = 0.01, starting
with zero initial conditions. It is assumed that a, exists but is
unknown. In this case the adaptive control HOSMC in (46)-(49)
is employed. The results are shown in Figures 7-10. Figure
7 shows the convergence of o, 6 and & to zero in finite time
despite the presence of the disturbance, using a smooth control
action (Figure 8). Figure 9 shows that p(f) does not track the
unknown bound a,, but nevertheless k(7) closely tracks |a(?)|
(Figure 10).
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Figure 9: Evolutions of w() compared to p(f)
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Figure 10: Evolutions of k(f) compared to |a(?)|

6. Conclusion

This paper has proposed a new adaptive scheme for con-
ventional, super-twisting and higher-order sliding mode con-
trol algorithms. It is based on a novel dual layer nested ap-
proach and relies on the availability of an online approxima-
tion of the equivalent control associated with the (possibly em-
bedded) switched terms. The assumptions on the uncertainty
and the required knowledge about the bounds on the magnitude
and derivative of the uncertainty are weaker than those in the
comparable literature. In particular in its most general form,
the scheme does not require information about the upper-bound
of the disturbance and its derivative. Here the adaptive ideas
are deployed for conventional, super-twisting and higher-order
control structures but the underlying ideas can be applied to
other sliding mode control structures. The schemes are robust
to imperfections in the estimates of the equivalent control by
choice of two specific scalar parameters. These trade-off ro-
bustness, against the degree of conservatism over-bounding the
uncertainty. The simulations presented in the paper confirm the
effectiveness and simplicity of the approach.
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