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Design and Analysis of an Integral Sliding Mode Fault
Tolerant Control Scheme

Mirza Tariq Hamayun, Christopher Edwards, and Halim Alwi

Abstract—A novel scheme for fault tolerant control is proposed in this
paper, in which integral sliding mode ideas are incorporated with control
allocation to cope with the total failure of certain actuators, under the
assumption that redundancy is available in the system. The proposed
scheme uses the effectiveness level of the actuators to redistribute the
control signals to healthy actuators without reconfiguring the controller.
The effectiveness of the proposed scheme against faults or failures is
tested in simulation based on a large transport aircraft model.

Index Terms—Fault tolerant control (FTC), linear matrix inequalities
(LMIs), integral sliding modes (ISM).

I. INTRODUCTION

The challenges of ensuring safety, in critical systems such as
aircraft and chemical plant has motivated the need for Fault Tolerant
Control (FTC) and has stimulated research in this area. Survey papers
such as [1] highlight recent work in the area of FTC and discuss the
various application areas. One of the important elements necessary
for achieving FTC, is the availability of redundant actuators. This
provides increased freedom in terms of controller design to mitigate
the effects of faults and failures. For over actuated systems such as
aircraft, this requirement is easily satisfied. Although these ‘redun-
dant’ actuators are often designed for different purposes, in the event
of an emergency (such as faults or failures to the primary actuators),
they can be used to retain satisfactory performance1.

This paper is concerned with the development of fault tolerant con-
trollers for a class of over-actuated linear systems. The redundancy in
the over-actuated system will be exploited to achieve tolerance to a
specified class of faults/failures, which includes the possibility of total
failure to certain primary actuators. Unlike some other schemes in
the literature, it is not assumed that the redundancy takes the form of
pure replication of certain actuators, and exploits instead the inherent
coupling typically present in multi-variable systems. The precise class
of total actuator failure which can be accommodated is identified. A
novel control scheme is proposed which involves a combination of
control allocation and integral sliding mode techniques.

Control Allocation (CA) is one approach which has the capability
to manage redundancy in over-actuated systems [3], [4]. In aircraft
systems for example, the idea is to design a controller based on
a ‘virtual’ system which provides the desired moments about the
center of mass [5]. The virtual control signal is then translated
into actual control surface deflections using CA. In terms of the
‘virtual’ controller design, many methods have been considered in
the literature, including LQR [5], and sliding mode control [6], [7],
[8]. Classical sliding modes, as employed in [6], [7], [8], consist
of two phases: the initial reaching phase (prior to the attainment
of a sliding mode), followed by the reduced order sliding motion.
During a sliding mode, the closed-loop system is inherently robust to
faults in actuators which can be well modeled as matched uncertainty.
However this robustness is only achieved during the sliding motion.
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1An example of this is the Propulsion Controlled Aircraft (PCA) experi-

ments conducted by NASA [2].

To achieve a sliding mode throughout the entire system response,
the concept of integral sliding modes (ISM) was proposed in [9],
[10] and [11]. In this paper a novel combination of ISM and CA is
proposed. This combination allows total failures for a certain subset
of the actuators (as well as faults in all actuators) to be accounted
for, since sliding mode systems, in common with other traditional
feedback systems, are not capable of mitigating total actuator failures
without some form of reconfiguration/accommodation. The proposed
scheme uses the measured or estimated effectiveness level of the
actuators to redistribute the control effort during faults/failures to
maintain close to nominal closed-loop performance without reconfig-
uring the controller. The scheme proposed in this paper has certain
advantages compared to [8], which is based on traditional sliding
mode control methods. An important advantage is that the analysis
of the closed loop system is less complex and less conservative
than the work in [8]. Furthermore the stability test proposed in this
paper allows a more effective synthesis procedure to be employed to
compute the parameters involved in the control law. In fact, a convex
representation of the problem can be formulated to allow the use of
LMI optimization to synthesize the controller, whereas the approach
in [8] requires a ‘synthesis-followed-by-analysis’ procedure. In this
paper the synthesis and analysis is totally integrated.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

A LTI system with actuator faults/failures can be represented as

ẋ(t) = Ax(t) + BW (t)u(t) (1)

where the system and input matrices A ∈ Rn×n , B ∈ Rn×m,
and W (t) = diag{w1(t), .., wm(t)} is a diagonal matrix. The pair
(A, B) is assumed to be controllable. The time varying scalars
w1(t), .., wm(t) model the effectiveness level of the actuators. If
wi(t) = 1, it means that the ith actuator has no fault and is working
perfectly, whereas if 1 > wi(t) > 0, an actuator fault is present
i.e. the actuator functions with reduced capability. If wi(t) = 0,
actuator i has completely failed and the control input component ui

has no effect on the system dynamics. This representation of actuator
faults/failures, has been used by many researchers: see for example
[12] and [13]. The matrix W will be termed the efficiency matrix
indicating the health level of each actuator. Associate with (1) a set
of controlled outputs

yc(t) = Cx(t) (2)

where C ∈ Rl×n and l < m. The variables yc(t) are required
to respond to desired (external) commands. In terms of ‘control-
ling’ these outputs only l independent actuators are needed to
induce the required closed-loop performance. The remaining m − l
actuators constitute redundancy and can be exploited to achieve
fault tolerance. In this paper an estimate of the actuator efficiency,
Ŵ (t) = diag{ŵ1(t), .., ŵm(t)}, where the scalars 0 ≤ ŵi(t) ≤ 1,
will be used explicitly in the control law. One way to obtain an
estimate of the actuator efficiency is by using a measurement of the
actual actuator deflection compared to the demand. Such information
is typically available in many safety critical systems e.g. passenger
aircraft [14]. In other situations Ŵ (t) would need to be provided
by a Fault Detection and Isolation (FDI) scheme. A sliding mode
observer based approach, proposed in [15], can be used to estimate
W (t). Because of the properties of sliding mode observers, the error
system dynamics collapse in finite time, and do not introduce an extra
dynamical error loop which is advantageous. Kalman filter based
methods have also been considered to create the estimates Ŵ (t),
see for example [16]. Whatever method is employed the estimate
Ŵ (t) will not be perfect and in this paper the difference between
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the actual efficiency matrix W (t), and its estimate Ŵ (t) is assumed
to satisfy

W (t) = (I −4(t))Ŵ (t) (3)

where 4(t) = diag{δ1(t), ...δm(t)}. The unknown scalars
δ1(t), .., δm(t) model the level of imperfection in the fault estimation.
The effect of this imperfection will be analyzed later in the paper.
In this paper a virtual control concept [5] for resolving actuator
redundancy will be employed. To this end, the matrix B can be
partitioned as:

B =

[
B1

B2

]
(4)

where B1 ∈ R(n−l)×m , B2 ∈ Rl×m of rank l < m. Here, as
in [8], it is assumed that the elements of B2 have large magnitude
compared to ||B1||, so that B2 represents the dominant contribution
of the control action on the system compared to B1. To create this
separation, a permutation of the states must usually be undertaken.
The virtual control input [5] is defined as

ν(t) := B2u(t) (5)

where ν(t) ∈ Rl can be interpreted as the total control effort
produced by the actuators [5]. As in [8], once the partition of B
in (4) has been achieved, scale the states so that B2B

T
2 = Il. This

can be achieved without loss of generality.
The control signal sent to the actuators is

u(t) = B†
2(t)ν(t) (6)

where B†
2(t) ∈ Rm×l is a right pseudo-inverse of the matrix B2.

Thus the matrix B†
2(t) ‘distributes’ the virtual control signal to the

physical actuators via (6). A generic choice of B†
2(t) such that

B2B
†
2(t) = Il is

B†
2(t) = Ŵ (t)BT

2 (B2Ŵ (t)BT
2 )−1 (7)

assuming det(B2Ŵ (t)BT
2 ) 6= 0. In the special case when Ŵ (t) = I ,

B†
2(t) = BT

2 . The overall control structure is given in Figure 1.
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Fig. 1. Schematic of the Overall Control Strategy

Define

W = {(ŵ1, .., ŵm)∈ [0 1]× ...× [0 1]︸ ︷︷ ︸
m times

: det(B2ŴBT
2 ) 6= 0}

(8)
Because l < m, it is possible that det(B2ŴBT

2 ) 6= 0 even if up to
m− l of the entries ŵi(t) = 0 in the matrix Ŵ (t): in other words,
potentially up to m− l can totally fail and yet det(B2ŴBT

2 ) 6= 0.
However if more than m − l entries are zero, then rank(Ŵ (t)) < l

and det(B2ŴBT
2 ) = 0. The set W will be shown to constitute the

faults/failures for which closed-loop stability can be maintained.
Substituting (6) into (1) and using (7) results in

ẋ(t) = Ax(t)+

[
B1(I −4(t))Ŵ 2(t)BT

2 (B2Ŵ (t)BT
2 )−1

B2(I −4(t))Ŵ 2(t)BT
2 (B2Ŵ (t)BT

2 )−1

]
ν(t)

(9)

with
ν̂(t) := (B2Ŵ

2(t)BT
2 )(B2Ŵ (t)BT

2 )−1ν(t) (10)

then (9) can be written as

ẋ(t) = Ax(t) +

[
B1(I −4(t))B+

2 (t)
B2(I −4(t))B+

2 (t)

]

︸ ︷︷ ︸
B̂(t)

ν̂(t) (11)

where
B+

2 (t) := Ŵ 2(t)BT
2 (B2Ŵ

2(t)BT
2 )−1 (12)

Notice that B+
2 (t) is a pseudo inverse of B2 since B2B

+
2 (t) = I , for

all Ŵ (t) ∈ W . Furthermore in the special case when Ŵ (t) = I , then
B+

2 (t) = BT
2 (B2B

T
2 )−1 = BT

2 . Whilst the pseudo inverse B†
2(t)

defined in (7) is used for control allocation, the pseudo inverse B+
2 (t)

defined in (12) plays a significant role in the closed-loop analysis
which follows. Using the properties of pseudo inverses detailed in
[17], as argued in [8], there exists a scalar γo such that

‖B+
2 (t)‖ = ‖Ŵ 2(t)BT

2 (B2Ŵ
2(t)BT

2 )−1‖ < γo (13)

for all (ŵ1(t), .., ŵm(t)) ∈ W .
In the case when the estimates of the efficiency are perfect (i.e.

4(t) = 0), and when there are no faults present (i.e. Ŵ (t) = I),
equation (11) simplifies to

ẋ(t) = Ax(t) +

[
B1B

T
2

Il

]

︸ ︷︷ ︸
Bν

ν(t) (14)

since B+
2 (t)|Ŵ (t)=I = BT

2 . The nominal fault free equation (14) will
be used to design the control scheme. Suppose that by design of the
partition in (4), the pair (A, Bv) associated with (14) is controllable,
then there exists a state feedback controller ν(t) = −Fx(t), so that
the nominal system

ẋ(t) = (A−BνF )x(t) (15)

is stable. The state feedback controller can be designed to achieve
optimality against some appropriate criteria. The choice of the matrix
F will be discussed in the sequel.

III. INTEGRAL SLIDING MODE CONTROLLER DESIGN

This section, develops a systematic design procedure for the
synthesis of an ISM controller. There are two steps to design an
ISM controller, first a sliding surface is designed, and then in the
second step, a control law to induce and maintain a sliding motion
is created.
A. Integral-type switching surface design

The integral sliding surface suggested in [11] for the system in
(14) associated with the virtual control of input ν(t) is defined by
the set:

S = {x ∈ Rn : σ(x, t) = 0} (16)

where the switching function σ(x, t) ∈ Rl is defined as

σ(x, t) := Gx(t)−Gx(t0)−G

∫ t

t0

(
A−BνF

)
x(τ)dτ (17)

and G ∈ Rl×n is design freedom. Notice that, at t = to, the
switching function σ(x(t0), t0) = 0, and hence the reaching phase
is eliminated [11]. It can be shown (see for example) [9] that the
sliding motion associated with (17) is always nominally governed by
(A − BνF ) independent of the choice of G. Recently an approach
was suggested for the selection of G which attempts to ameliorate
the effects of unmatched uncertainty [11]. In this paper

G := B2(B
T B)−1BT (18)
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is suggested. Notice that since by definition Bν = BBT
2 , this choice

of G has the property that

GBν = B2(B
T B)−1BT BBT

2 = B2B
T
2 = Il

and so G defined in (18) is a specific choice of left-pseudo inverse
of Bν .

To include a tracking facility, the switching function (17) is aug-
mented with a feedforward term Lrr(t), where r(t) is the reference
signal to track, and

Lr := (C(BνF −A)−1Bν)−1 (19)

where C ∈ Rl×n is associated with the selected controlled outputs in
(2). Ultimately the control laws ν(t) and u(t) will also be augmented
with this term. Define a modification to the switching function from
(17) as

σ(x, t) = Gx(t)−Gx(t0)−G

∫ t

t0

(
(A−BνF )x(τ)+BνLrr(τ)

)
dτ

(20)
where G is defined in (18).
Remark: The following analysis is novel compared to the ISM
schemes in [9],[10],[11], since the effects of faults and the actuator
redundancy must be taken into account. As a consequence, the analy-
sis in this section is quite distinct compared to the papers cited above
because of the incorporation of the ideas from control allocation to
exploit the redundancy to ensure sliding can be maintained even in
the face of certain total actuator failures.

In order to analyze the sliding motion associated with the surface
in (20) and G in (18) in the presence of faults, compute the time
derivative of equation (20). It is easy to see

σ̇(t) = Gẋ(t)−GAx(t) + GBνFx(t)−GBνLrr(t) (21)

Substituting (11) in (21), and using the fact that GBν = I , yields

σ̇(t) = GB̂ν̂(t) + Fx(t)− Lrr(t) (22)

The equivalent control [18], can be obtained by solving for ν̂ in
σ̇(t) = 0 which yields

ν̂eq(t) = (GB̂)−1(−Fx(t) + Lrr(t)) (23)

Substituting the expression in (23) into equation (11) and adding and
subtracting BνFx(t) yields

ẋ(t) = (A−BνF )x(t)+
(
Bν−B̂(GB̂)−1)Fx(t)+B̂(GB̂)−1Lrr(t)

(24)
where Bν is defined in (14) and B̂ in (11). Using G as defined in
(18), further simplifying equation (24) gives:

ẋ(t) = (A−BνF )x(t) + B̃Φ̃(t)Fx(t) + B̂(GB̂)−1Lrr(t) (25)

where

Φ̃(t) := B1B
T
2 −B1(I−4(t))B+

2 (t)(B2(I−4(t))B+
2 (t))−1 (26)

and
B̃ :=

[
In−l

0

]
(27)

Remark: Notice in the case of perfect knowledge of the actuator
efficiency (i.e. 4(t) = 0), and when there are no faults in the system
(i.e. Ŵ (t) = I), the matrices B̂|Ŵ (t)=I = Bν and B+

2 (t)|Ŵ (t)=I =

BT
2 . Then using the fact that GBν = I , equation (25) becomes

ẋ(t) = (A−BνF )x(t) + BνLrr(t) (28)

which is stable by design. Furthermore by choice of Lr , the controlled
output yc(t) → r(t). Equation (28) constitutes ideal fault free
behavior. However for the generic fault/failure case, the closed-loop

stability needs to be proven since the closed-loop system equation
(25) depends on matrices Ŵ (t) and 4(t).

In the presence of faults/failures, the closed-loop system (assuming
a sliding motion is maintained) is governed by

ẋ(t) = (A−BνF + B̃Φ̃(t)F )x(t) (29)

For the subsequent analysis, define a transfer function matrix

G̃(s) = F (sI − Ã)−1B̃ (30)

where Ã := A − BνF . By construction, G̃(s) is stable, and define
a scalar

γ2 = ||G̃(s)||∞ (31)

Proposition 1: Assume the effectiveness gain estimate Ŵ (t) is
sufficiently accurate so that the condition 4maxγo < 1 holds, where
γo is defined in (13) and ‖4(t)‖ < 4max. Then during a fault or
failure condition, for any (ŵ1(t), .., ŵm(t)) ∈ W , the reduced order
sliding motion will be stable if:

γ2 γ3(1 + γo)

1−4maxγo
< 1 (32)

where γo > ||B+
2 (t)||, γ3 = ||B1|| and γ2 is as defined in (31).

Proof: The system in (29), which represents the sliding motion
can be written as:

ẋ(t) = Ãx(t) + B̃ũ(t) (33)

ỹ(t) = Fx(t) (34)

where
ũ(t) = Φ̃(t)ỹ (35)

In this form, the differential equation in (29) may be considered to
be the closed loop dynamics of the negative feedback interconnection
of G̃(s) and the ‘feedback gain’ in (35). According to the small gain
theorem [19], if

‖G̃(s)‖∞‖Φ̃(t)‖ < 1 (36)

then (29) will be stable. From (26) it is clear that

‖Φ̃(t)‖ ≤ ‖B1B2‖+‖B1(I−4(t))B+
2 (t)‖‖(B2(I−4(t))B+

2 (t))−1‖
Using the fact that ‖B2‖ = 1, B2B

+
2 (t) = Il and also that in general

‖(I −X)−1‖ ≤ (1− ‖X‖)−1 if ‖X‖ < 1 [20], then

‖Φ̃(t)‖ ≤ ‖B1‖+‖B1‖(1+4max)‖B+
2 (t)‖(I−‖B24(t)B+

2 (t)‖)−1

(37)
This is well defined since ‖B24(t)B+

2 (t)‖ < 4maxγo < 1. Since
γo > ‖B+

2 (t)‖ and γ3 = ‖B1‖, inequality (37) becomes

‖Φ̃(t)‖ ≤ γ3(1 + γo)

1−4maxγo
(38)

Since γ2 = ‖G̃(s)‖∞, in conjunction with (38), it is clear that
if inequality (32) holds, the small gain condition (36) holds, and
consequently the system in (29) is stable.
B. Integral Sliding Mode control laws

Now a sliding mode control law must be designed based on
the virtual system (11) with respect to ν̂(t). The proposed control
structure has a form given by:

ν̂(t) = ν̂l(t) + ν̂n(t) (39)

where
ν̂l(t) := Lrr(t)− Fx(t) (40)

The scaled unit vector

ν̂n(t) :=

{
−ρ(t, x) σ(x,t)

||σ(x,t)|| if σ(t) 6= 0

0 otherwise
(41)
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where ρ(t, x) is a scalar modulation function to enforce the sliding
motion. A suitable choice of ρ(t, x) will be described explicitly in
the sequel.
Proposition 2: Suppose that

‖4(t)‖ ≤ 4max <
1

γo
(42)

where γo is defined in (13). If ρ(t, x) is chosen as

ρ(t, x) =
4maxγo‖ν̂l‖+ η

1−4maxγo
(43)

where η is a positive scalar, then, the control law proposed in (39)
satisfies the so-called reachability condition and sliding on S in (16)
is maintained.

Proof: Substituting (11) in (21) gives

σ̇ = (GB̂)ν̂(t) + Fx(t)− Lrr(t) (44)

Substituting for ν̂(t) from (39)-(41) and using the fact that GB̂ =
(I −B24(t)B+

2 (t)), gives

σ̇ = −ρ
σ

||σ||−B24(t)B+
2 (t)

(−Fx(t)+Lrr(t)−ρ
σ

||σ||
)

for σ 6= 0

(45)
Consider the candidate Lyapunov function

V (t) =
1

2
σT σ (46)

The time derivative of the Lyapunov function along the trajectories
satisfies

V̇ = −ρ‖σ‖+ σT B24(t)B+
2 (t)

(
Fx(t)− Lrr(t)

)

+ρσT (B24(t)B+
2 (t))

σ

‖σ‖ for σ 6= 0

and therefore

V̇ ≤ −ρ‖σ‖+ ‖σ‖‖B24(t)B+
2 (t)‖‖Fx(t)− Lrr(t)︸ ︷︷ ︸

−ν̂l

‖

+ρ‖σ‖‖B24(t)B+
2 (t)‖

≤ −ρ‖σ‖+ (ρ + ‖ν̂l‖)‖σ‖4maxγo

≤ −ρ(1−4maxγo)‖σ‖+ ‖ν̂l‖‖σ‖4maxγo (47)

Substituting for ρ from (43) into (47) gives V̇ ≤ −η‖σ‖, which is
the standard η-reachability condition [21], and implies that the sliding
motion is maintained for all time.

Finally using equations (6), (7) and (10) it follows that the control
law is given by

u(t) = Ŵ (t)BT
2 (B2Ŵ

2(t)BT
2 )−1(Lrr(t)−Fx(t)−ρ

σ

||σ|| ) if σ 6= 0

(48)
This is the actual control signal which will be sent to the actua-
tors, and depends on the effectiveness levels. The proposed ISM
controller (48) can deal with total actuator failures, provided that
(ŵ1(t), .., ŵm(t)) ∈ W and the conditions of Proposition 1 are
satisfied. The results developed in this section can be summarized
in the form of the following theorem:
Theorem 1: The system in (1) is closed-loop stable for any
fault/failure combination belonging to W in (8) under the control
law (48), if a feedback gain F can be found such that

γ2 γ3(1 + γo)

1−4maxγo
< 1

where γ2 is defined in (31), γ3 = ‖B1‖, γo satisfies γo ≥ ‖B+
2 (t)‖

where B+
2 (t) is defined in (12), and 4max bounds the relative error

in the estimation of the effectiveness gains in (3).

C. Design of the Controller Gains

This section demonstrates one of the key advantages of this
approach compared to [8]. It will be demonstrated that the stability
test in Proposition 1 is amenable to incorporation within a synthesis
framework for determining the feedback gain F in (15). For the
nominal system (15), the matrix F must be chosen to stabilize
(A−BνF ). Since (A, Bν) is assumed to be controllable, the LQR
formulation adopted here seeks to minimize the cost function

J =

∫ ∞

0

(xT Qx + uT Ru)dt

where the matrices Q and R are symmetric positive definite matrices.
This problem can be posed as an LMI optimization [22]: Minimize
trace(X−1) subject to

[
AX + XAT −BνY − Y T BT

ν (QX −RY )T

QX −RY −I

]
< 0 (49)

X > 0 (50)

where Y := FX with Y ∈ Rm×n and X ∈ Rn×n.
Since, in addition, the small gain stability condition (32) needs to

be satisfied, from the Bounded Real Lemma [22], the L2 gain from
ũ to ỹ, which in this situation is equal to the H∞ norm of its transfer
matrix G̃, satisfies ||G̃||∞ < γ iff there exist X > 0 and γ ≥ 0 such
that


AX + XAT −BνY − Y T BT

ν B̃ Y T

B̃T −γ2I 0
Y 0 −I


 < 0 (51)

where B̃ is defined in (27). Here γ is an a-priori fixed scalar gain
which may be viewed as a tuning parameter. If

γ <
(1−∆maxγo)

γ3(1 + γo)

then the conditions of Theorem 1 are satisfied and closed loop
stability for a fault/failure combination belonging to W is guaranteed.
The overall optimization process is: Minimize trace(Z) subject to

[ −Z In

In −X

]
< 0 (52)

together with (49), (50) and (51). The matrix Z is a slack variable
which satisfies Z > X−1 and therefore trace(Z) ≥ trace(X−1).
Finally the feedback gain F can be recovered as F = Y X−1.

IV. SIMULATION RESULTS

The problem of controlling the lateral axis of a large transport
aircraft [23] will be used to demonstrate the effectiveness and
feasibility of the proposed scheme. A linear model has been obtained
around an operating condition of straight and level flight at 263,000
Kg, 92.6 m/s true airspeed, and at an altitude of 600m based on
25.6% of maximum thrust and at a 20 deg flap position. The states are
[φ, β, r, p]T , where φ is roll angle (rad), β is sideslip angle (rad), r is
yaw rate (rad/sec), and p is roll rate (rad/sec). The controlled outputs
are [β, φ], which means l = 2. The available control surfaces are
δ = [δa, δr, δepr]

T , which represent anti-symmetric aileron deflection
(rad), rudder deflection (rad) and differential aggregated engine
pressure ratios (EPR). Note in this example m = 3 while l = 2,
and so in theory only two control inputs would be required to force
the controlled outputs to follow a commanded trajectory. Here the fact
that three control inputs can be manipulated, indicates the existence
of redundancy in the system which can be exploited to achieve fault
tolerance. The ordering of the states ensures ‖B1‖ << ‖B2‖. After
scaling the states to ensure B2B

T
2 = Il the state-space representation

is

A =




0 0 0.0084 0.3334
0.1055 −0.0999 −0.3170 0.0538

−0.0059 0.5617 −0.1856 −0.1796
0.0008 −4.8828 0.2154 −1.0789
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B =




0 0 0
0 0.0174 −0.0010

−0.1459 −0.7584 −0.6352
−0.9387 0.3089 −0.1531




}
B1

}
B2

In a fault free scenario, i.e in normal flight, the primary control
surfaces for φ and β tracking are the ailerons and rudder respectively;
however the engine thrust can be used as redundancy for both
surfaces. Based on these assumptions, using a numerical search, it
was found that a suitable bound for the scalar in (13) is γo = 3.2020.
Consequently the maximum error in efficiency estimation which
can be tolerated is 1

3.2020
= 0.3123. Here 4max = 0.25 is

chosen to satisfy this requirement which implies an upper bound
on the relative error in Ŵ of 25%. It can be easily verified that
γ3 = ‖B1‖ = 0.0174. It can be shown that in order to satisfy the
requirements of Theorem 1, the scalar γ2 = ‖G̃(s)‖∞ must satisfy
γ2 < 1

0.3671
= 2.7240. The nominal state feedback controller gain

F associated with (15) has been designed using the LMI approach
proposed in Section III-C. The nominal performance design matrices
Q and R in (49) have been chosen as Q = diag{1, 1, 10, 10} and
R = diag{7, 7} respectively. The choice of γ = 14 in (51) results
in γ2 = 2.1061 < 2.7240 and it can be verified that

γ2 γ3(1 + γo)

1−4maxγo
= 0.7719 < 1

and therefore the condition of Theorem 1 is satisfied 2. Consequently
the closed-loop stability of the system for any combination of faults
(ŵ1, .., ŵ3) ∈ W is ensured.

In the simulations which follow the linear aircraft model undertakes
a turning manoeuvre, where the reference command requests a change
in φ to 25 deg during the period of time 60-90sec, whilst a 0 deg
reference command is applied to β throughout. In some applications
the discontinuous controller can be applied directly. In this case
it is not possible, and the discontinuity in (41) is smoothed using
the sigmoidal approximation [21], σ

||σ||+δo
where the value of the

positive scalar δo is chosen to be 0.001. An ideal sliding motion will
not be obtained in this situation, and instead the switching function
σ(t) will be forced into a boundary layer around S. This can be
made arbitrarily small by selecting δo sufficiently small. The loss
of ideal sliding results in another (exogenous) signal, depending on
σ(t), impacting on (25). However the stability analysis of the sliding
motion associated with (29) is still valid. Figure 2 and Figure 3 show
various levels of aileron faults (from 0%-100%) each occurring at
80-sec in 15% increments. It can be seen that the CA systematically
redistributes the control signals to the rudder and the engines, while
maintaining the same level of tracking performance as in the fault
free condition.

Figure 4 and Figure 5 show the tracking performance of the states
and the control surface deflections, when a rudder jam occurs at 80-
sec -2 deg. In the failure case the control signal sent to the rudder
is shutoff as the effectiveness level vanishes. Although not shown, in
all the simulated scenarios, a sliding mode exists for the whole of
the simulation period.

V. CONCLUSION

A novel Integral Sliding Mode fault tolerant control scheme
has been proposed in this paper. To handle total actuator failures,
integral sliding mode ideas are incorporated into a control allocation
framework, which has the capability to redistribute the control effort

2Choosing γ = 2.7240 in (51) will guarantee that γ2 < 2.7240 but will
unnecessarily limit the nominal performance of the controller. Because of the
conservatism resulting from the common solution to (49)–(51) a larger value
of γ has been used during the synthesis but this still results in γ2 < 2.7240,
which satisfies the requirements of Theorem 1.

among the healthy redundant actuators automatically in the case of
faults/failures without reconfiguring the controller. The estimation of
the actuator effectiveness levels is a key source of information for the
control allocation scheme. A new stability analysis ensures closed-
loop stability of the system for a certain level of mismatch between
the actual and the estimated fault and in fact the synthesis problem
can be posed as a convex optimization in terms of the parameters of
the controller. The efficiency of the proposed fault tolerant scheme
has been demonstrated through simulation based on fault scenarios
in a large transport aircraft.

REFERENCES

[1] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-
tolerant control systems,” Annual Reviews in Control, vol. 32, no. 2, pp.
229–252, 2008.

[2] T. Tucker, Touchdown: The development of propulsion controlled aircraft
at NASA Dryden. Monographs in Aerospace History, no 16, 1999.
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Fig. 2. Aileron-fault: plant states
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Fig. 3. Aileron-fault: actuator deflections
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Fig. 4. Rudder offset-jam: plant states
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Fig. 5. Rudder offset-jam: actuator deflections


