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Abstract 12 

Light Detection And Ranging (LiDAR) systems are frequently used in ecological studies to 13 

measure vegetation canopy structure. Waveform LiDAR systems offer new capabilities for 14 

vegetation modelling by measuring the time-varying signal of the laser pulse as it illuminates 15 

different elements of the canopy, providing an opportunity to describe the 3D structure of 16 

vegetation canopies more fully. This paper provides a comparison between waveform 17 

airborne laser scanning (ALS) data and discrete return ALS data using terrestrial laser 18 

scanning (TLS) data as an independent validation. With reference to two urban landscape 19 

typologies we demonstrate that discrete return ALS data provided more biased and less 20 

consistent measurements of woodland canopy height (in a 100% tree covered plot, height 21 

underestimation bias = 0.82 m; SD = 1.78m) than waveform ALS data (height overestimation 22 

bias = -0.65 m; SD = 1.45 m). The same biases were found in suburban data (in a plot 23 

consisting of 100% hard targets e.g. roads and pavements), but discrete return ALS were 24 

more consistent here than waveform data (SD = 0.57 m compared to waveform SD = 0.76 25 

m). Discrete return ALS data performed poorly in describing the canopy understorey 26 

compared to waveform data. Results also highlighted errors in discrete return ALS intensity, 27 

which were not present with waveform data. Waveform ALS data therefore offer an improved 28 

method for measuring the three dimensional structure of vegetation systems but carry a 29 

higher data processing cost. New toolkits for analysing waveform data will expedite future 30 

analysis and allow ecologists to exploit the information content of waveform LiDAR.  31 

 32 
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1. Introduction 33 

The spatial and volumetric structure of vegetation in ecosystems is a key driver of function 34 

(Shugart et al., 2010) and Light Detection And Ranging (LiDAR) instruments provide critical 35 

data for describing and modelling vegetation structure (Vierling et al., 2008).  LiDAR 36 

instruments can be operated from the ground (e.g. Terrestrial Laser Scanning; TLS) from 37 

airborne platforms (e.g. Airborne Laser Scanning; ALS) or from satellites (e.g. freely 38 

available data from ICESat (Harding and Carabajal, 2005)), and come in two forms – 39 

discrete return and full waveform systems (Lefsky et al., 2002, Vierling et al., 2008).  The 40 

difference between these is the way in which data are recorded. Discrete return systems 41 

(most commonly used) measure the time taken for a laser pulse to travel to an object and 42 

are used to determine height. In products derived from ALS data there are usually two 43 

datasets: a digital surface model (DSM) provides an estimate of the top-of-canopy height 44 

whilst the digital terrain model (DTM) shows topographic variability in the neighbouring 45 

ground surface.  Such data can be used to describe canopy patterns (Anderson et al., 2010, 46 

Luscombe et al., 2014), model hydrological flowpaths (Jones et al., 2014), monitor wildlife 47 

habitat (Hyde et al., 2006), or produce carbon inventories at patch (Calders et al., 2015) or 48 

landscape (Asner et al., 2011) scales. Waveform ALS data (Figure 1), however, have the 49 

potential to provide much richer spatial information about canopy characteristics in three 50 

dimensions. This is because these systems record the range to multiple targets within the 51 

canopy (Danson et al., 2014). By measuring the time-varying signal of the laser pulse as it 52 

illuminates different elements of the canopy, these systems can be used to model the spatial 53 

character and arrangement of structures that drive canopy biophysical processes such as 54 

canopy architecture and size and woody biomass (Armston et al., 2013, Mallet and Bretar, 55 

2009) and can provide useful data for studies requiring tree species discrimination (Alonzo et 56 

al., 2014). 57 

It is only since around 2010 that waveform systems have begun to be heavily explored in 58 

ecological contexts (with limited earlier examples by Anderson et al. (2006), and Hyde et al. 59 

(2005), for example). This is probably because of the high data volumes requiring high 60 

computing power, and the complexity of analysing the return signal (e.g. rather than a few 61 

‘hits’ (typically, up to five) from a discrete return system, waveform systems give a near-62 

continuous pulse; Figure 1).  Waveform data represent a significant signal processing task - 63 

tracing the photon from the sensor to the ground and understanding what the interactions 64 

represent is a potential barrier to their application in ecology and beyond. Extracting 3D 65 

canopy information from the waveform is challenging because the pulse can be perturbed on 66 

its path through the canopy – e.g. the electromagnetic radiation in the pulse can be 67 

redirected within the canopy and is known to suffer ‘multiple scattering’ between different 68 



elements (e.g. leaves and woody biomass). This leads to highly complex signals requiring 69 

de-noising and correction using signal processing approaches, followed by product 70 

validation. Despite this challenge there are a variety of new waveform signal processing 71 

approaches emerging, particularly for vegetation applications, with most studies following 72 

one of three methods:  73 

1) Decomposition into points and attributes using function fitting (Hofton et al., 2000, 74 

Wagner et al., 2008); 75 

2) Decomposition into points using deconvolution (Jiaying et al., 2011, Roncat et al., 76 

2011, Hancock et al., 2008); 77 

3) Extracting metrics such as height of median energy (Drake et al., 2002).  78 

The points or metrics from the resulting models can then be used to infer plot-level 79 

characteristics or calculate canopy height (Boudreau et al., 2008), fit geometric primitives to 80 

crowns (Lindberg et al., 2012); or fill voxels to enable construction of 3-dimensional models 81 

from a regular grid of cubes (e.g. as in Minecraft) where canopy structure can be optimally 82 

modelled (Hosoi et al., 2013).  83 

Waveform laser scanning technology is now at a tipping point, evidenced by NASA’s 84 

forthcoming ‘Global Ecosystem Dynamics Investigation LiDAR’ space mission, due for 85 

launch in 2018  (GEDI (NASA, 2014, Krainak et al., 2012)).  It is hoped that the enhanced 86 

capability of the waveform system on GEDI will provide superior global estimates of 87 

vegetation carbon stocks.  88 

In this paper we address the pragmatic research question of what benefits waveform ALS 89 

data can offer ecologists over more easily obtainable discrete return ALS products, using 90 

urban systems as an exemplar. Quantitative description of the pattern and 3D structure of 91 

urban vegetation demands fine-scale spatially-distributed information describing canopy 92 

architecture (Yan et al., 2015). This is because the pattern and extent of green infrastructure 93 

(e.g. street trees, parks, domestic yards and gardens) is a key determinant of the provision 94 

of ecosystem services in cities and towns, including nutrient cycling, temperature and flood 95 

risk regulation, reduction in atmospheric pollution, aesthetics, and multiple dimensions of 96 

human health (Gaston et al., 2013). Most examples of remote sensing approaches for 97 

mapping urban greenspace rely on either optical classification of aerial photographs, or 98 

height-based classification of discrete return ALS to determine the spatial distribution of 99 

basic classes such as trees, bushes and grass (Yan et al., 2015, Chen et al., 2014).  Whilst 100 

these data are appropriate to the particular scale range of the texture of urban vegetation 101 

variance, and allow the small patch sizes of urban greenspace to be mapped (e.g. in yards 102 

and gardens) they neglect to characterise the important vertical distribution of vegetation and 103 



photosynthetic material through the depth of the canopy and its spatial form. Furthermore 104 

they cannot account for important habitat features such as the understorey which are 105 

important in driving urban ecological connectivity. This work sought to establish the impact of 106 

those omissions in describing urban vegetation complexity. 107 

Here, we compare a simply processed waveform ALS product with discrete return ALS data 108 

from the perspective of ecologists working in urban environments. We validate the findings 109 

using a ground-based TLS survey, quantify differences in each approach and evaluate the 110 

relative processing costs of each. Finally, we discuss the wider implications for using 111 

waveform ALS data for vegetation monitoring in other ecological settings. 112 

2. Materials and Methods 113 

2.1 ALS survey data 114 

An ALS survey was carried out over the town of Luton, UK on 5 and 6 September 2012 115 

(Figure 2) when the urban vegetation was in full leaf-on stage. The survey utilised the UK 116 

Natural Environment Research Council (NERC) Airborne Research and Survey Facility 117 

(ARSF) Dornier 228 aircraft platform and the Leica ALS50-II ALS system with a WDM65 full 118 

waveform digitiser, measuring at 1064 nm. Geo-registration of the scans was achieved using 119 

differential global positioning system (GPS) data from the aircraft and at a linked GPS 120 

ground-station. All ALS data were collected by a single instrument with separate discrete 121 

return and waveform output streams.  The footprint density of ALS data (waveform and 122 

discrete return data) were collected with a density of between one point per 25 cm2 and one 123 

point per 4 m2 – this variability is normal and is dependent on scan angle and overlap 124 

between flight lines. The discrete return ALS data had up to four returns per pulse. Raw ALS 125 

data were processed into a geolocated point cloud with associated waveforms using Leica 126 

ALSPP software (version 2.75). More detailed documentation about the data processing can 127 

be found online (NERC ARSF, 2014a, NERC ARSF, 2014b) 128 

Two data products from the ALS survey were compared: a discrete return ALS point cloud 129 

describing x,y,z spot heights and intensity; and a waveform ALS dataset which required pre-130 

processing before it could be used.  131 

2.2 Field site description 132 

Data from two field validation sites (both within an area of Luton, UK, called Little 133 

Bramingham Woods) are presented in this manuscript (Figure 2). The first site was in an 134 

area of dense and varied tree cover with a clear understorey (referred to as the ‘woodland’ 135 

site) and the second was from a residential area (referred to as the ‘suburban’ site). A very 136 

simple 2 m resolution land cover map (LCM) was generated for these sites using data from 137 



an airborne hyperspectral survey (with the AISA Eagle 12 bit pushbroom scanner) carried 138 

out at the same time as the ALS survey. The LCM was generated by applying an 139 

unsupervised classification algorithm to discrete return ALS data and a Normalised 140 

Difference Vegetation Index (NDVI) product. The NDVI was calculated using equation 1 141 

where vis was the mean visible reflectance in channels from 500 nm to 680 nm and nir was 142 

the mean infrared reflectance between 761 nm and 961 nm.  143 

 144 

A 70 cm threshold for discriminating tall from short vegetation and an NDVI threshold of 0.2 145 

for discriminating vegetated from non-vegetated areas was used. In the woodland area, the 146 

LCM showed that the majority of the site was covered by tall vegetation. In the suburban 147 

area, as was expected, there was a mix of tall and short vegetation and vegetated and non-148 

vegetated areas. For both woodland and suburban sites the discrete return and waveform 149 

ALS data were extracted for a 20 m by 20 m square at the centre of each TLS ground-150 

validation site for comparison. These comparison areas were chosen because they were 151 

proximal to sampling sites where complementary ecological data were being collected – 152 

specifically bird feeders where population counts were being collected and where flows of 153 

biodiversity through urban systems were being measured. These sites were also evaluated 154 

in the waveform LiDAR datasets prior to collection of the TLS validation data, and were 155 

found to be representative areas with a variety of waveform shapes and widths. 156 

2.3 Method for processing waveform ALS data 157 

The ALS50-II system recorded the intensity of reflected light as an eight-bit value every 1 158 

nanosecond. The first step in signal processing the waveform data was to remove 159 

background electronic noise – which is known to be very stable in the Leica ALS50-II 160 

(Hancock et al., 2015). Here we used a simple method to extract canopy signals from the 161 

waveform ALS data. The first peak in the waveform above the noise threshold was traced 162 

back to the mean noise level (DN=12, derived from a histogram) to provide a consistent 163 

estimate of the canopy maxima. The histograms of signal intensity from Hancock et al. 164 

(2015) were then used to set the simple noise threshold at DN=16 (see Hancock et al. 165 

(2015) Figure 5b) to remove all background noise, and the result was a product showing 166 

point height information that could be used to compare datasets quantitatively. Further 167 

processing - for example using function fitting, deconvolution or pulse width subtraction may 168 

have further improved the retrieval of the ‘true’ canopy top (Hofton et al., 2000). These more 169 

complex signal processing methods were not the focus of this paper and will be discussed in 170 



a subsequent manuscript which develops a validated voxel-based approach for 3-D canopy 171 

description in urban settings.  172 

2.4 Validation data from TLS survey 173 

To validate the information content of the two ALS products, a waveform TLS system was 174 

deployed (Riegl VZ-400, operating at 1545 nm (near infra-red)) to measure vegetation 175 

structure (from the ground up) on 5 and 7 August 2014. The TLS instrument had a reported 176 

5 mm accuracy and 3 mm repeatability which was far greater than the ALS data. Previous 177 

work by Calders et al. (2015) has shown how this approach provides a good validation 178 

where accurate tree heights could be obtained, and demonstrating that attenuation was not 179 

significant. The dates of field sampling with TLS were chosen to ensure that the vegetation 180 

was in a similar state to the time of the ALS survey. Validation sites were chosen to cover a 181 

range of observed habitat structures, and a variety of ALS waveform shapes and urban 182 

typologies. As a result the TLS scan methodology had to be adapted for each site so as to 183 

capture the variability in canopy structure appropriately. The plot sizes also varied, with small 184 

(5 m) plots sometimes requiring three scan positions to capture variability in the dense 185 

vegetation whilst sparsely vegetated plots measuring tens of metres in size only required two 186 

scan positions due to reduced occlusion. Each site was scanned from two or three different 187 

positions so as to infill shadowed areas, and multiple scans were co-registered using 188 

reflector targets. TLS point clouds were then manually translated to align the roofs of 189 

buildings with the geolocated ALS data to within 10 cm vertically and < 30 cm horizontally. 190 

2.5 Quantitative comparison  191 

To quantitatively compare the consistency of the height estimate error in the datasets, the 192 

mean difference between the ALS and TLS derived ranges to the tallest object, and the 193 

standard deviation (SD) of those differences were calculated for a 5 m x 5 m area around the 194 

plot centres of the 20 m x 20 m extracts. In the woodland area this 5 m x 5 m measurement 195 

area was covered with dense trees. The LCM classification indicated that the woodland plot 196 

comprised 100% tall vegetation. In the surburban zone, the 5 m x 5 m measurement area 197 

was a road surface with neighbouring pavement and lamp posts with no green elements. 198 

The LCM classification indicated that this plot comprised 75% short non-vegetation (e.g. 199 

roads, footpaths, gravel driveways or cars), and 25% tall non-vegetation (e.g. buildings or 200 

lamp posts). These comparison plots therefore represent endmembers of urban structural 201 

diversity and so offer the most effective insight into the relative merits of waveform versus 202 

discrete return ALS products.  203 



The ALS waveform-derived canopy top was calculated using the method described in 204 

Hancock et al. (2011) using a mean noise level of 12 and a noise threshold of 16.  Calders et 205 

al. (2015) have demonstrated that TLS-derived estimates of canopy height are very reliable 206 

(see figure 6 in (Calders et al., 2015)) and our comparisons therefore rely on TLS being able 207 

to provide a robust validation of true canopy height. Biases between TLS measuring the leaf-208 

underside versus the ALS measuring the leaf-topside are treated as negligible here. 209 

 210 

3. Results 211 

3.1 Validation of airborne discrete return and waveform ALS data with TLS 212 

Figure 3 shows the results of comparing waveform and discrete return ALS data with TLS 213 

data. Over hard surfaces with little spatial complexity in height and structure, such as roads 214 

and buildings in the suburban area (Figure 3(a) and (b)), the discrete return data provided a 215 

height model that indicated basic trends, whilst the waveform data showed pulse blurring 216 

caused by the 3.55 nanosecond system pulse (Hancock et al., 2015). Conversely, the 217 

waveform pulses (coloured green) in Figure 3(b) travelled through urban greenspace 218 

components like bushes and shrubs and so provided potentially useful within-canopy 219 

structural information, whilst the discrete return points failed to capture the detail of the 220 

canopy profile.   221 

In the woodland setting the ALS waveform system recorded returns from throughout the 222 

canopy and could be used to provide useful information on the canopy understorey (e.g. 223 

presence/absence, density and structure). In some settings there was penetration of the ALS 224 

waveform all the way to the ground, allowing the urban habitat to be described much more 225 

accurately than with discrete return data (Figure 3(c) and (d)). In some places, however, 226 

there were data shadows – e.g. beneath the centre of a large tree (Figure 3(d)). This same 227 

figure shows that in a few places the discrete return ALS heights of the tree tops appear to 228 

be under-estimated relative to the height derived from TLS. A few further issues are evident 229 

with the waveform data – in figure 3(b) and (d) some of the waveform returns appear below 230 

the TLS-derived ground surface. These errors are caused by the combination of multiple 231 

scattering of photons in the canopy and automatic instrument settings applied at the point of 232 

data collection. These erroneous points can be corrected using signal processing 233 

approaches (see section 1), but these are computationally complex and require extensive 234 

testing and validation.  235 

 236 

 237 

 238 



3.1.1 Quantitative comparison 239 

Applying the method explained in 2.3 and 2.4, statistics were generated that showed that 240 

discrete return ALS data consistently overestimated the range (and so underestimated 241 

height), with a bias of 0.82 m (SD = 1.78 m) in the 5 m x 5 m woodland test area. Conversely 242 

the waveform ALS data consistently underestimated range (and so overestimated height), 243 

but with a smaller bias, and provided a more consistent estimate of height (i.e. smaller SD) 244 

than the discrete return data (bias = -0.65 m; SD = 1.45 m). In the 5 m x 5 m suburban test 245 

area the biases showed similar patterns (discrete return bias = 0.78 m; waveform bias = -246 

0.29 m) but the discrete return data had a lower SD (0.57 m) compared to the waveform 247 

data (0.76 m), indicating that more consistent results were achieved with discrete return data 248 

where vegetation was not present. This analysis adds weight to the suggestion that the 249 

discrete return algorithms are optimised for hard surfaces (such as roads), where they 250 

outperform simply processed waveform data, and that waveform data provide more accurate 251 

results over vegetation. It should be noted that the waveform ALS product could be 252 

processed to generate a product which performed as well as the discrete return data over 253 

hard surfaces, but the computational costs of doing so would be high.   254 

 255 

3.2 ALS intensity measures 256 

Further issues with discrete return ALS products are apparent when evaluating discrete 257 

return ALS intensity values over vegetated surfaces. Figure 4 demonstrates this by 258 

comparing the intensity measured from the discrete return ALS product with the reflected 259 

energy from the waveform data (the integral of the waveform intensity with time) over a 260 

mixed urban landscape in Luton. Areas of high intensity appear brighter than those with 261 

lower intensity. At 1064 nm healthy green vegetation would be expected to reflect radiation 262 

strongly  and yet some of the vegetated areas in Figure 4(a) show low intensity (indicated by 263 

dark areas) which is an artefact of the diffuse return containing a large amount of energy but 264 

having a low, broad peak (Hancock et al., 2015). Therefore, there are often non-physical 265 

effects caused by signal distortion, and these could lead to large errors in interpretation of 266 

discrete return ALS data if used for automated land cover determination. This is frequently 267 

overlooked - for example studies by Antonarkakis et al. (2008) and Donoghue et al. (2007) 268 

both utilised discrete return ALS intensity as an additional measure to derive a supervised 269 

classification of vegetation types. The discrete return intensity is a function of vegetation 270 

structure (e.g. foliage profile), albedo (e.g. phenology) and the processing algorithm applied, 271 

so will confound classification accuracy if one or more of those variables is changed. 272 

Waveform ALS data are much less prone to such limitations, being able to record a much 273 

more accurate measure of reflected radiation and shape of the signal response of the target, 274 



allowing the same discrimination using the physically based shape rather than an artefact 275 

(Figure 4(b)).  276 

 277 

3.3 Computational requirements 278 

When deciding which ALS product to use one must consider data volumes and 279 

computational requirements underpinning information extraction. Data volume and 280 

processing costs are currently much higher with waveform data than with discrete return 281 

data. For example, the waveform files used here (LAS1.3 format (ASPRS, 2015)) were 6 to 282 

10 times larger than the discrete return (LAS1.0 format) files. For example, 1 strip of discrete 283 

return ALS data would occupy 700Mb of disk space, whilst the same spatial extent of 284 

waveform ALS data would occupy 4.2Gb. Much of this additional data volume is occupied by 285 

wavebins that contain no usable signal but which must be retained for post-processing. 286 

Once the background noise is removed, file sizes can be reduced by roughly an order of 287 

magnitude by simple run length encoding. The signal processing needed to extract target 288 

properties is computationally expensive: applying the method described in Hancock et al. 289 

(2008) took 25 processor days on a computer with a 3Ghz CPU, although this could be 290 

parallelised on a cluster workstation to expedite processing time. In comparison, the discrete 291 

return point cloud is processed by the instrument during collection and typically is ready for 292 

use in geographical information systems or other image processing software on delivery 293 

(although some users will subsequently choose to apply additional topographic normalisation 294 

techniques or post-process the data using other tools).  295 

 296 

Whilst considering the various costs of extracting information from waveform ALS data, it is 297 

also important to highlight the recent development of new software tools for expeditious 298 

analysis of such data. Not all of these tools are mature but they offer a means by which most 299 

users could extract useful information from both discrete return and waveform-capable 300 

LiDAR systems (from both ALS and TLS systems). Such tools (we list only free-to-use (FTU) 301 

or open source (O/S) options) are briefly summarised in table 1. 302 

4. Summary and conclusions 303 

The results shown here suggest that discrete return ALS data are optimised for use in 304 

measurement of simple hard targets (i.e. roads), and that the methods and assumptions 305 

used to generate discrete return ALS products do not permit accurate description of the 306 

three dimensional structural complexity of vegetated areas. Using two urban landscape 307 

typologies we have shown that if discrete return data were used alone, measurements of the 308 

vegetation system would be biased in terms of canopy height (underestimation), inaccurate 309 

in terms of intensity (likely resulting in physical misclassifications of greenspace) and missing 310 



vital data on the characteristics of the canopy understorey. Inaccuracies arising from the use 311 

of discrete return ALS data in measuring tree canopy height have been reported previously, 312 

for example by Zimble et al. (2003) who showed bias in deriving canopy height models from 313 

discrete return ALS (in this example, the underestimation was caused by the points missing 314 

tree tops, hitting the shoulders of tree crowns and thus, underestimating canopy height). The 315 

bias in canopy height in the discrete return ALS data reported in our study is most likely 316 

caused by the signal processing algorithms used to generate the discrete return products 317 

and has also previously been reported also by Gaveau and Hill (2003). This is a different, 318 

and additional effect to that described by Zimble et al. (2003).  Such biases in discrete return 319 

ALS data could be addressed on a site-by-site basis using an empirical calibration against 320 

ground data, although using the waveform allows this bias to be removed in a more 321 

consistent way (Hancock et al., 2011).  322 

By adopting a waveform ALS approach, there are benefits and costs for the ecologist. The 323 

major benefits are a more complete three dimensional description of the vegetation canopy. 324 

With waveform data, we show how ecologists can obtain improved canopy height models, 325 

which are critical for improving understanding of spatial carbon assessment and biomass, for 326 

example (Lefsky et al., 2005, Hilker et al., 2010). We also show the potential of the 327 

waveform approach for improved detection and description of understorey characteristics 328 

which are important if spatial models of biodiversity, resource availability (Decocq et al., 329 

2004), and variables such as propagule abundance and connectivity (Jules and Shahani, 330 

2003) are to be determined. To date, there have only been a limited number of studies that 331 

have investigated canopy understorey characteristics with LiDAR systems, and none 332 

currently exist which use waveform ALS for this purpose. For example, Hill and Broughton 333 

(2009) used leaf-off and leaf-on discrete return ALS data to map the spatial characteristics of 334 

suppressed trees and shrubs growing beneath an overstorey canopy, and Ashcroft et al. 335 

(2014) have demonstrated the capability of TLS to capture three-dimensional vegetation 336 

structure, including understorey. With waveform data we have shown that there exists an 337 

unexplored capability to model canopy understorey in leaf-on stage, over large areal extents: 338 

an exciting scientific opportunity. The costs are a high data storage and processing demand 339 

(see section 3.3) and in this thread there is certainly a great need for more work to improve 340 

and optimize the processing of waveform data to account for multiple scattering effects and 341 

for accounting for the waveform pulse shape. It is also worth noting that currently there are 342 

many LiDAR systems (both ALS and TLS systems) that are waveform-capable but the 343 

waveforms are often discarded during the automated process of generating discrete return 344 

data (e.g. Riegl LMS-Q1560 (Disney et al., 2010)).  345 

 346 



In answering the question posed in the title of the paper, we therefore conclude that there is 347 

a hidden and rich resource in data from waveform ALS systems that would provide added 348 

value for spatial ecologists investigating vegetation systems and dynamics across a range of 349 

ecological systems. The ‘costs’ of processing waveform data should not be overlooked, but a 350 

growing suite of processing tools (table 1) will reduce the processing costs and the technical 351 

requirements for users of waveform data to have signal processing expertise. As waveform 352 

data become more readily available (e.g. through new global missions such as NASA’s 353 

GEDI (NASA, 2014, Krainak et al., 2012)) and tools become available to make those data 354 

easier to process, we suggest that these will provide a rich source of accurate, three 355 

dimensional spatial information for describing vegetation canopies. This will improve 356 

scientific understanding of the functional relationships between vegetation structure and 357 

related, important ecological and environmental parameters in a wide range of settings.  358 

 359 
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 369 

Figure 1: Stylised representation of a waveform ALS system over a tree canopy, showing a 370 

typical waveform pulse return (left of figure). In contrast, a discrete return system would not 371 

provide details of the pulse, but would instead report a series of ‘hits’ from various 372 

components of the landscape being monitored, typically from near to the top of the tree and 373 

from somewhere close to the ground surface (sometimes with further returns from points in 374 

between). Simulated discrete returns are shown on the plot in the left of the figure. 375 



 376 

Figure 2: (a) a map of Luton with position in the UK shown inset, (b) air photo with two urban 377 

endmember typologies shown, (c) Photographs showing typical vegetation structure at the 378 

woodland site and (d) at the suburban site, (e) ALS discrete return dataset showing a basic 379 

vegetation height model of the focus area in Luton, UK. 380 

 381 

 382 



 383 

Figure 3: Comparison of TLS, and waveform and discrete return ALS data for two urban 384 

typologies. (a) and (b) show sections through the ‘suburban’ scanning site whilst (c) and (d) 385 

show sections through the ‘woodland’ scanning site.  The simple plots (a) and (c) show a 386 

cross section through a 2 m deep area, whilst the more complex plots (b) and (d) show a 387 

cross section through a 20 m deep area to give a broader perspective to the comparison.  388 

The results highlight where waveform ALS intensity carries information on within-canopy 389 

structures whilst also demonstrating how discrete return ALS performs best over hard 390 

surfaces such as roads. 391 



 392 

Figure 4: The impact of using discrete return intensity vs. waveform ALS in the near infra-red 393 

(1064 nm) is shown for a mixed zone in the focal area of Luton. In (a) the intensity of the 394 

discrete return ALS data are shown, whilst (b) shows the difference when waveform ALS 395 

intensity is used. The major differences in intensity appear in zones with dense vegetation. 396 

These data show that relying on discrete return intensity would lead to bias – the area of 397 

dense trees appear as having low intensity (low reflectance at 1064 nm) when they should 398 

have high reflectance (the two are related). This bias is not present in waveform intensity 399 

which shows both the mown grass and the dense trees as having high intensity which is 400 

correct given the known strong vegetation reflectance response in this region of the 401 

spectrum.  402 



Table 1: Summarising free-to-use (FTU) and open-source (O/S) tools for processing and 403 

visualizing waveform LiDAR data  404 

 405 

Software FTU 
or 
O/S 

Function Coding 
expertise 
required 

References 

LAStools FTU Handling 
and 
visualising 
discrete 
return 
LiDAR  

Low http://www.cs.unc.edu/~isenburg/lastools/ 

(Podobnikar and Vrecko, 2012). 

 

Pulsewaves FTU Waveform 
LiDAR 
analysis 

Low http://rapidlasso.com/category/pulsewaves/ 
 

SPDLib O/S Processing 
LiDAR data 
including 
waveform 
formats 

High, 
requires 
C++ 
coding 

http://www.spdlib.org/doku.php 
(Bunting et al., 2013) 

PyLAS O/S Converts 
LiDAR 
formats into 
GIS layers 

Medium, 
requires 
Python 
coding 

https://code.google.com/p/pylas/ 
 

LibLAS O/S Converts 
LiDAR 
formats and 
links with 
GDAL 
functionality 

Medium, 
requires 
Python 
coding 

http://www.liblas.org/ 
 

Cloudcompare O/S Visualising 
3D LiDAR 
point clouds 

Medium, 
requires 
data in 
specific 
formats 

http://www.danielgm.net/cc/ 
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