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Abstract 

Accurate forecasts of water demand are required for real-time control of water supply systems under normal 

and abnormal conditions. A methodology is presented for quantifying, diagnosing and reducing model 

structural and predictive errors for the development of short term water demand forecasting models. The 

methodology (re-)emphasises the importance of posterior predictive checks of modelling assumptions in 

model development, and to account for inherent demand uncertainty, quantifies model performance 

probabilistically through evaluation of the sharpness and reliability of model predictive distributions. The 

methodology, when applied to forecast demand for three District Meter Areas in the UK, revealed the 

inappropriateness of simplistic Gaussian residual assumptions in demand forecasting. An iteratively revised, 

parsimonious model using a formal Bayesian likelihood function that accounts for kurtosis and 

heteroscedasticity in the residuals led to sharper yet reliable predictive distributions that better quantified the 

time varying nature of demand uncertainty across the day in water supply systems.  
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1. Introduction 

Understanding natural variability in urban water demand, the fundamental aleatory uncertainty affecting 

water supply systems (Hutton et al., 2012), helps water utilities to satisfy consumer demand, whilst at the 

same time allowing them to try and minimise the costs associated with supplying sufficient water. Over 

decadal scales estimates of future water demand support strategic planning, allowing utilities to understand 

potential water shortages relating to climatic changes, and make capital investments in the water distribution 



and treatment infrastructure to meet future demand (Qi and Chang, 2011; Almutaz et al., 2013).  At shorter 

time-scales predicted water demand up to several days ahead forms a key input to near real-time control 

systems, and can contribute towards the reduction of energy consumption and cost associated with supplying 

water in distribution networks (Martinez et al., 2007; Bakker et al., 2013). Furthermore, short term predictions 

of urban water consumption are important for burst detection, helping utilities to distinguish between actual 

demand and non-revenue water (Mounce et al., 2010).  

Existing short-term Water Demand Forecasting (WDF) research (e.g. < 48 hours), has mainly focussed on two 

aspects of the forecasting problem: identification of the best inputs to predict future demand - both 

endogenous and exogenous variables - and on identification the best model structures to map these input 

variables to predict future demand (Adamowski, 2008; Herrera et al., 2010). Relatively few approaches, 

however, have attempted to quantify the uncertainty in demand forecasts over shorter timescales (Cutore et 

al., 2008), despite the fact that water demand is highly uncertain due to: (a) a range of difficult to constrain 

socio-demographic and economic factors known to affect water consumption (Arbués et al., 2003), which 

themselves vary both spatially and temporally; (b) the fact that residential demand is often not fully metered 

(e.g. <40% properties in the UK). Even when properties are metered, often they are not read frequently 

enough to quantify short term demand fluctuations. Demand uncertainty needs to be quantified adequately 

as it will propagate adversely to affect the accuracy of subsequently derive models, forecasts and control 

decisions (Hutton et al., 2013; Hutton et al., 2014). The relative performance of demand forecasting models 

has typically been evaluated and compared with reference to global metrics of model performance such as 

Root Mean Square Error (RMSE; e.g. Herrera et al., 2010) that summarise model performance in an average 

sense over the whole dataset. Such metrics reveal little information about how a model performs poorly, 

where the key errors in model performance lie, and therefore provide little guidance upon how models may 

be improved. Furthermore, the statistical assumptions upon which demand forecasting model calibration that 

employs metrics such as RMSE is typically based (e.g. independent, and identically distributed (iid) Gaussian 

errors) are seldom reported, and therefore evaluated, in the demand forecasting literature. This is despite the 

fact that it is on the validity of these statistical foundations that the legitimacy of any model comparison is 

based. 

Building upon the work of Hutton et al. (2014), who presented a framework for considering the cascade of 

uncertainty from model calibration, through forecasting, to real time control in Water Supply Systems, this 

paper presents a probabilistic methodology for the development and calibration of short water demand 

forecasting models. The methodology is designed to develop more reliable short term WDF models, and 

provide quantitative information on model predictive uncertainty to the decision maker. A Bayesian approach 

is applied for model parameter calibration, and subsequent posterior predictive uncertainty quantified 



probabilistically. The framework emphasises the iterative application of residual error analysis during 

calibration, and evaluation of the reliability and sharpness of the predictive distributions in order to diagnose 

errors within the model structure and errors in the residual error assumptions made during calibration. Section 

2 reviews short term water demand forecasting; Section 3 presents the overall methodology, followed by a 

case study implementing the methodology to forecast demand for 3 District Meter Areas in the UK; Sections 

4 and 5 then discuss and conclude the paper, respectively. 

2. Short Term Water Demand Forecasting and Model development 

Short term WDF modelling research has generally focussed on identifying the best model inputs, and on 

identifying the best models to combine these inputs and map them to predict future water demand. 

Approaches have applied either endogenous variables - e.g. past values of water demand (Alvisi et al., 2007; 

Cutore et al., 2008; Romano and Kapelan, 2014) – and/or exogenous variables such as temperature and 

precipitation (Zhou et al., 2002; Herrera et al., 2010; Adamowski, 2008). Unless past weather variables are 

used, temperature and precipitation variables may need to be forecasted as inputs to the demand forecasting 

model, which will contain additional uncertainty. Furthermore, as pointed out by Bakker et al (2013b) it may 

be difficult to include weather variables reliably in a practical setting due to reliance on external systems.   

A number of different data driven modelling approaches have been applied for short term WDF including 

multi-linear regression (MLR), Autoregressive (Integrated) Moving Average models (AR(I)MA (Adamowski, 

2008; Zhou et al., 2002), and non-linear methods including multiple non-linear regression (MNLR; Adamowski 

et al., 2012), Artificial Neural Networks (ANNs; Romano and Kapelan, 2014) and variants thereof including 

dynamic ANNs (Ghiassi et al., 2008), Wavelet transform (WA-) ANNs (Adamowski et al., 2012), and Support 

Vector Machines (SVM; Herrera et al., 2010). A final class of models that may be considered more heuristic in 

approach have structures built upon observations made from exploratory data analysis. Such models share 

similarities with ARMA approaches, and generally include a component representing the average behaviour 

of the system, such as an average of past water demands (Herrera et al., 2010), and a persistence component 

representing local deviations in time, which may be represented through regression on recent prediction 

errors (Alvisi et al., 2007). Bakker et al. (2013b) applied a heuristic approach in which normalised water 

demands are used as input variables and combined with multipliers for the specific day of the week, and time 

of day to derive the forecast.  

A number of papers have conducted comparative analysis between different data driven models; Adamowski 

et al (2008) found that ANNs outperform linear regression and ARIMA models for peak daily water demand 

forecasting. SVM models have also be found to outperform 5 other model structures for one hour ahead 

demand forecasts (Herrera et al., 2010), whilst WA-ANNs have been found to outperform MLR, MNLR, AIRMA 



and ANN models for daily water demand forecasting (Adamowksi et al., 2012). However, in this latter approach 

wavelet transformed data could also be applied as input to other model types. Whilst it is difficult to compare 

different WDF methodologies in different contexts, Mean Absolute Percentage Errors (MAPE) reported in the 

literature generally vary between 3 to 10% for lead times up to 24 hours (Bakker et al., 2013; Romano and 

Kapelan, 2014; Alvisi et al., 2007), where the lowest errors reported by Bakker et al. (2013b) were found in the 

larger supply zones where deviant behaviour from the norm is more likely to be masked by average behaviour.  

The relative performance of different WDF models has been judged mainly with reference to global metrics 

of model performance like MAPE, including Root Mean Square Error (RMSE), and Mean Absolute Error (MAE; 

Ghiassi et al., 2008; Herrera et al., 2010). Such metrics, however, provide limited scope for comparative 

analysis as they collapse all residual error information into a single value, and can therefore only tell us how 

good models are in an average sense. Gupta et al. (2008) argue that such metrics are therefore weak in a 

diagnostic sense, as they reveal little information about how and where within a simulation a model performs 

poorly. Such metrics therefore provide limited information to determine between competing models, and 

guide subsequent model improvement. 

To overcome the problems of model evaluation solely with global metrics, further investigation of the residual 

errors is required. Such exploration is important for two reasons. First, it is important to test the assumptions 

of Gaussianity, heteroscedasticity and independence of residual errors that are (implicitly) assumed during the 

model fitting exercise (Engeland et al., 2005). This is particularly important as it is on these assumptions that 

the validity of the model fit, and in turn the validity of any subsequent model comparison, is based. Second, 

context specific residual error analysis helps to identify how and where a model performs poorly. Residual 

analysis, however, is not routinely applied (or at least not fully reported) in the literature during WDF model 

development. 

A further need to analyse in more details the residual errors is that urban water demand is highly uncertain 

due to limited spatial and temporal metering coverage, and also because of a range of factors that influence 

water consumption (and leakage), which themselves vary spatially and temporally (Arbués et al., 2003). Water 

demand uncertainty is also the key aleatory uncertainty that propagates into, and influences that accuracy of 

Water Distribution System model predictions (Hutton et al., 2014). However, despite this uncertainty, and 

despite the wider application of uncertainty quantification methods in Urban Water Systems’ modelling 

(Kapelan et al., 2007; Alvisi and Francini, 2010; Hutton et al., 2013; Hutton et al., 2014; Breinholt et al., 2012; 

Deletic et al., 2012) and hydraulic/hydrological modelling more generally (Liu and Gupta, 2007; Beven, 2008), 

few approaches have moved beyond deterministic WDF modelling. In a forecast setting, where models are to 

be applied to inform decision making, quantification of the reliability of a model prediction provides important 

additional information. One exception is Cutore et al. (2008) who applied the SCEM-UA algorithm within a 



Bayesian framework to calibrate an ANN for daily water demand forecasting. The approach was used to 

quantify probabilistically parameter and posterior predictive uncertainty. However, no posterior analysis was 

applied to evaluate the assumptions made during model calibration, nor was any evaluation of the quality of 

the model predictive bounds made. A key and often neglected aspect of formal Bayesian calibration is to assess 

whether the residuals can be represented by a statistical likelihood function. Such simplistic assumptions can 

break down in the context of WDS modelling (e.g. Hutton et al., 2013), as residual distributions are often 

coloured (Beven et al., 2011): that is they contain bias, with structured, auto-correlated errors resulting from 

epistemic uncertainty, which can lead to poorly calibrated models and unfair estimates of model predictive 

uncertainty. In a forecasting setting where models are to be applied in decision making context – e.g. for burst 

detection or pump scheduling – the frequentist properties of the predictive distribution can be checked during 

both calibration and validation to understand the robustness and sharpness of the model prediction bounds 

(Breinholt et al., 2012). 

 

3. Water Demand Forecast Model Development Methodology 

The presented probabilistic methodology for the development and calibration of short term WDF models is 

outlined in Figure 1. The aim of the methodology is to obtain, through iterative feedback between model 

development, calibration and performance evaluation, parsimonious yet reliable predictive models of future 

water demand over short forecasting horizons (e.g. < 24 hours). In this sense, the methodology (re-) 

emphasises that model fitting is a scientific exercise of hypothesis testing (Box, 1976), where the hypothesised 

model is confronted with data. Central to the methodology is the application of appropriate posterior 

predictive checks using metrics with diagnostic power (Gupta et al., 2008) to identify discrepancies between 

data and model. Such checks may lead to model rejection (falsification), in the sense that we identify parts of 

the model that don’t fit (e.g. Residual Autocorrelation; Bennett et al., 2013). Such identification then provides 

guidance on how the model may be improved. As all models are wrong, one cannot obtain a correct model. 

Rather, the aim is to obtain iteratively, through exploratory analysis, model testing, and diagnosing model 

errors, a better, useful model (Gelman and Shalizi, 2013; Box, 1976). A key aspect of the methodology is the 

recognition of the inherent aleatory and epistemic uncertainties in water demand forecasting. Therefore, an 

ensemble forecasting approach is adopted, as often applied in flood forecasting (Cloke and Pappenberger, 

2009), where the quality of the model forecasts are quantified not in terms of deterministic metrics of model 

performance, such as RMSE, but rather in terms of the reliability and sharpness of the predictive distributions 

(Breinholt et al., 2012). Further details of the overall methodology are considered here, with more specific 

methodological decisions made at each stage of model development (Figure 1) elaborated in the context of a 

specific case study of water demand forecasting for three District Meter Areas (DMAs) in the UK.  



 

Figure 1. Flow diagram of the iterative steps involved in the model development methodology. 

3.1 Exploratory Time-Series Analysis 

Exploratory analysis of different time-series and their suitability as inputs to predict the temporal evolution of 

the variable of interest forms a key initial stage in model forecasting problems to identify an initial model 

structure (Figure 1). Identification of time-series (auto-) correlation, non-stationary and non-linearity is 

important to: 

• Reveal potential data transformation(s) required (e.g. smoothing or differencing).  

• Identify an appropriate vector of model input variables ����. 
• Identify an appropriate model structure ��� and parameters ����. 

Herrera et al (2010) for example applied visual analysis and calculated autocorrelation functions of water 

demand and weather time-series (e.g. temperature and precipitation) for input variable selection, and also to 

identify time-series non-linearity and non-stationarity that could require correction prior to model forecasting.  

3.2 Model Calibration 

Following exploratory data analysis, and the identification of an appropriate model structure and input 

variables, the model parameters are calibrated on a time-series of output data ����, corresponding to the 

input variables. In order to account for uncertainty during model calibration, and to quantify uncertainty in 

the model predictions, the deterministic forecasting model	�, dependent on a vector of model parameters 



�� and a set of input variables ���� is combined with a probabilistic error model, 
, dependent on a vector of 

error model parameters ��, to produce a vector of simulated values ����: 

�� = ����, ��� + 
����																																													� = 1,… . , �																																																																																�1�  

where � is the number of observations in the calibration dataset. Instead of identifying an optimal or maximum 

likelihood estimation of the model parameters, model parameter uncertainty can be quantified through 

Bayesian inference, which is applied for calibration of both the deterministic model parameters ����, and 

error model parameters ����, conditional on a vector of observed outputs ���� corresponding to the model 

predictions from Equation 1 (Hutton et al., 2014; Schoups and Vrugt, 2010):  

���|��� ∝ 		���|�������																																																																																																																																																		�2� 

where the second right hand term is the prior probability distribution of the model parameters 

� = {�� , ��}	and the first right hand term is the likelihood function, which is derived based on the specification 

of the error model. In order to solve Bayes’ equation, and therefore calibrate the model, the prior distributions 

for the model parameters need to be defined, which may be done so using information derived from 

exploratory analysis, or prior model runs. Following specification of the priors, posterior sampling is required, 

which often takes the form of Markov Chain Monte Carlo (MCMC) sampling for efficient exploration of 

posterior parameter space (McMillan and Clark, 2009; Vrugt et al., 2009). Parameter samples from the 

posterior distribution are then used to generate model predictions in calibration and for a model forecasting 

period (e.g. dataset not used in calibration), which includes prediction uncertainty intervals derived by 

combining samples generated from the residual error distribution with model time-series generated from the 

posterior parameter PDF (see Schoups and Vrugt, 2010). 

3.3 Posterior Analysis 

Posterior predictive checks form a key part of the methodology, and are required to diagnoise where and how 

the model performs poorly, in order that it may be improved.  Such analysis consist of posterior diagnostic 

checks of the residual errors, and therefore the validity of the assumptions embodied within the likelihood 

function, alongside evaluation of the posterior prediction bounds. The purpose of such checks are threefold: 

First, to evaluate the quality of the model prediction; Second, to diagnose deficiencies in both the structure of 

the prediction model M, and the probabilistic error model �
�; Third, provide guidance on how the model (M 

and 
) can be improved. The evaluation of the likelihood assumptions is performed with three residual analysis 

checks: 

1. Comparison of the distribution of residual errors ��� with the distribution assumed in the likelihood 

function: 		���|���. 



2. Partial auto-correlation plots to evaluate residual auto-correlation. 

3. Plots of the residual errors ��� against predictions ���� to evaluate heteroscedasticity. 

The predictive performance of the model is evaluated for both the calibration dataset and validation dataset 

by calculating the reliability and sharpness of the predictive distributions (Breinholt et al., 2012). Reliability 

measures the percentage of observations that fall within the forecasted prediction bounds. For example, a 

reliable 90% prediction interval would bound 90% of the observations. Sharpness measures the average size 

of a given prediction interval, which is a measure of the accuracy of the simulation. Within the iterative cycle 

of model development considered in Figure 1, a simulation may be considered improved if the sharpness of 

the model forecast has increased (e.g. the prediction bounds have narrowed), yet the reliability of the model 

does not worsen. There is therefore a trade-off between sharpness and reliability; as the prediction bounds 

narrow and become sharper, so there is a greater chance that the prediction bounds are not reliable in the 

sense of not appropriately bounding the observations with the correct statistical coverage. Reliability and 

Sharpness can be calculated for a range of prediction quantiles in calibration and validation, and also for 

specific sub-sets of the data in order to diagnose specific areas of model weakness. For example, in the context 

of water demand forecasting, these metrics may be calculated as a function of the time of day. Once the model 

calibration and posterior diagnostic checks are undertaken, if aspects of the model behaviour are identified as 

inadequate, changes may be made to the: 

• Time series of input and output data through data transformation. 

• Model structure and parameters. 

• Residual error model used in the likelihood function.  

The above stages (Figure 1) are then repeated until a useful model is obtained. 

 

4. Case Study 

A case study is presented in order to demonstrate the application of the methodology for water demand 

forecast model development and calibration. The methodology is demonstrated through the development of 

a model for 1 hour ahead forecasting for three DMAs in the UK. The methodology is also suitable for 

developing models for the whole forecasting horizon – e.g. up to 24 hour ahead. As identified in Romano and 

Kapelan (2014), it is preferable to have a separate model for each forecasting lead time. Note that the focus 

of this paper is not on evaluating different explanatory factors (i.e. the WDF model inputs) or alternative data 

modelling/mining technologies but on the illustration of the staged methodological approach shown in the 

previous section for developing a demand forecasting model. First, the location and data used in model 



development are introduced, followed by a description of the calibration algorithm. Subsequently the iterative 

stages in model development from the initial model (M1) to the final model (M5) are described, as shown in 

Table 1. It is important to note that some additional models were tried at intervening iterations of the 

methodology – for the sake of brevity these have not been shown. 

Table 1. Order of model development, model structure, error model and calibration parameters*  

Model Model Structure (M) Error Model (e) Calibration Parameters  

M1 Linear AR model (Eq. 4). Gaussian iid (Eq. 5) ��, � !, ��!!,	��"#, $ 

M2 Normalised Linear AR model (Eq. 6) Gaussian iid (Eq. 5) � !, �% ,	��"#, $ 

M3 Normalised Linear AR model (Eq. 6) Het. EP Dist. (Eq. 7) � !, �% ,	��"#, $, & 

M4 M3 + Res. AC. (Eq. 8) Het. EP Dist. (Eq. 7) � !, �% ,	��"#, $, &, '�, ' , '( 

M5 M3 + Lag1 + Res. AC. (Eq. 9; Eq. 10) Het. EP Dist. (Eq. 7) � !, �% ,	��"#, ), $, &, '�, ' ! 

AR = Autoregressive; iid = independent, identically distributed errors; Het = Heteroscedastic model; EP = Exponential 

Power density function; Res = Residual; AC = Autocorrelation; *the numbered sub-scripts for calibration parameters 

represent the time lag in hours. See equations and text for a description of the model parameters. 

 

4.1 Location and Data 

The methodology is applied to forecast hourly water demand for three Yorkshire Water Services DMAs in the 

UK. The three DMAs are representative of many UK DMAs, have an average water consumption of 26.76 ls-1 

(DMA1), 24.64 ls-1 (DMA2) and 6.57 ls-1 (DMA3) for the time period considered for each DMA. As an ensemble, 

the DMAs cover light industrial, urban and rural regions. Each DMA has only one inlet, no outlets to other 

DMAs, and none have internal water storage. As the potential application of a demand forecasting model is 

to aid in the identification of abnormal conditions (e.g. pipe burst),  the time-period of observations for each 

DMA were chosen to provide a set of data for model development and demand forecasting evaluation under 

normal demand conditions (e.g. actual water consumption plus background leakage). Therefore, obvious 

abnormal conditions were removed from the time-series, to provide a 271 day period for DMA1 (24/03/2011 

to 20/12/2011), 230 day period for DMA2 (04/05/2011 to 20/12/2011) and for DMA3 a 224 day period 

(11/04/2011 to 21/11/2011) at an hourly time-step. 

 



4.2 Model Calibration 

Upon selection of a model structure the Differential Evolution Markov Chain (DEMC) algorithm was applied 

for global calibration of the model parameters; more details of which can be found in Ter Braak (2006). Briefly, 

a generation of * Markov chains are run in parallel to explore parameter space, following random initialisation 

from uniform prior distributions for each parameter. Wide uniform priors were set for each parameter based 

on exploratory time-series analysis of lag correlation and demand variability. Once the likelihood +��|��� is 

evaluated for each chain, its location is updated using the Differential Evolution algorithm, which generates a 

proposal by adding to the location of the current chain the difference between the location of two other 

chains, multiplied by a factor �,�, plus a random sample drawn from a small symmetric distribution. The 

proposal likelihood +��|��-� is calculated, and the proposal accepted using the metropolis algorithm: if the 

ratio +��|��-�/+��|��� is greater than a random number on the interval [0, 1] then the proposal is accepted. 

During sampling , = 2.38/√22, where 2 is the number of parameters, and * = 22. Every 10th generation , 

is set to one to allow jumps between modes in parameter space. Following an initial burn in period, the 

simulation was stopped once the Gelman and Rubin (1992) convergence criterion dropped below 1.2 for all 

parameters. 

 

4.3 Primary Model 

The initial model �M1� applied to all three DMAs is endogenous in structure in that past water demands up to 

the forecasting time are used as inputs to the forecasting model. Auto-correlation plots and visual inspection 

of the relationship between demand at time step t ��4� and lagged demand ��456� were employed to identify 

initial time-lags ��; hours� for model input. Based on this analysis a linear auto-regressive model was initially 

applied for demand forecasting at time t in each DMA: 

�4 = ���45� + � !�45 ! + ��!!�45�!! + ��"#�45�"#																																																																																														�4� 

where ��	is a multiplier for each lagged demand, and �  indicates the time-lag. Thus, 4 parameters in total were 

calibrated from the model. The residual errors �
� are initially assumed to be independent and identically 

distributed according to a Gaussian likelihood function with zero mean and constant standard deviation �$�. 
Thus, this assumption for the residual errors results in a standard least squares approach. For convenience the 

log-likelihood is applied in calibration: 

+��|��� = −�
2 ln�2π� −

�
2 ln�$

 � −BC�� − ���D
 

2σ 
6

�F�
																																																																																												�5� 



The model parameters in equation 4, alongside the error model standard deviation, are jointly calibrated using 

the DEMC algorithm on the first half of the dataset available for each DMA. The second half of each dataset is 

used for validation. 

All three DMAs show similar calibration performance, as exemplified by the standardised residuals for each 

(Figure 2). The diagnostic plots show that the iid assumptions made in applying the Gaussian assumption for 

the residual errors are inappropriate: the true residual distributions are heavier tailed; significant 

autocorrelation occurs up to lags of 5 hours, and around 12 and 24 hours; and the residuals are also 

heteroscedastic with larger residuals errors at higher flow rates. The sharpness and reliability of the 95% 

prediction interval for M1 is shown in Figure 3 for all DMAs, plotted as a function of the time of day. The 

assumed coverage of the residuals by the prediction bounds under-estimates the actual percentage of 

observations that fall inside the bounds during the night time. During peak morning demand there is a large 

drop in reliability, as the prediction bounds fail to adequately cover the correct number of observations.  

Analysis of the residuals as a function of day of the year for each DMA (not shown) reveals that the largest 

residuals occur either on public holidays, or when one of the lagged demands used as input to the model falls 

on a public holiday. The effect of this contributes to the heavy tailed residual distributions that the Gaussian 

error model cannot adequately represent, and therefore an over-estimation of the model predictive 

uncertainty, particularly under normal working day conditions. 

 

Figure 2. Standardised residuals (predictions minus observations) for DMA 1 (top row), DMA 2 (middle row) and DMA 3 

(bottom row), plotted as a histogram alongside the assumed distribution (solid black line) derived from M1 (1st column); 



residual autocorrelation with 95% significance levels (grey dashed lines; 2nd column); and residuals plotted as a function 

of simulated flow (3rd column). The right hand column (4th Column) shows residuals plotted as a function of simulated 

flow for model M2. 

Figure 3. Percentage of observations covered by the 95% prediction bound during calibration (Reliability), compared to 

the theoretical coverage (black horizontal line at 95%); Sharpness of the 95% predictive distribution; box plots of 

observed flow variability. All graphs plotted as a function of the hour of the day for DMA 1 (left column), DMA 2(middle 

column) and DMA 3 (right column), derived from models M1 to M5. 

 

4.4 Data Transformation 

A number of approaches may be taken to deal with the negative effect of public holidays on demand 

forecasting in general, from removing them from the analysis (Amaral et al., 2008), modifying the model 

structure to account for different days of the week (Cutore et al., 2008), and data transformation. A data 

transformation is applied here, in a similar vein to Bakker et al. (2013), to normalise the effect of the day of 

the week on the data for all three DMAs. First, demand for each hour of each day was categorised into either 

a working day (weekdays excluding public holidays) and non-working day (weekend days and public holidays). 

A vector of normalised demands 	��6� were obtained by dividing demand for each hour of the day by a day 

factor: HI. The day factor equals the average demand for that hour of the day on the same day type (working 

or non-working day) in the preceding 15 days, divided by the average demand for that hour over all previous 

days in the 15 day window. Following normalisation for each DMA, the time-series were re-analysed as 

described in section 4.3 to identify the best optimal prediction lags. The lag 1 term was removed compared to 



the model in equation 4 as the relationship showed significant scatter in comparison to the retained lags. 

Similar optimal lags were identified for all DMAs, resulting in the following model structure: 

�4 = HIJC� !	�645 ! + �% 	�645% + ��"#	�645�"#D																																																																																																	�6� 

Thus the normalised demands are used in prediction, and multiplied by the day factor in order to obtain the 

predicted demand. The new model was calibrated using the same error model (Equation 5), using the same 

procedure presented in section 4.3. Data normalisation removed many of the larger residuals associated with 

public holidays, as shown in Figure 2. Figure 3 shows the reliability and sharpness of the 95% predictive 

distribution in calibration, compared to the discharge variability plotted as a function of the time of day. Data 

normalisation led to an improvement in the sharpness (e.g. reduction in the width) of the 95% predictive 

distribution, notably for DMA 1 (Figure 3). Even though the bounds became narrower, normalisation also led 

to an improvement in the reliability of the 95% prediction bound in comparison to M1. The bound for M2 is 

much closer to the theoretical coverage at 7am and 8am in all DMAs. The reason for improvement is that it is 

at these hours of the day that there is the greatest difference between bank holiday and weekday demand 

that led to the large residual errors in M1. This is likely associated with people who are more active earlier in 

the day before work. However, there is also a decline in reliability during the evening peak demand, and the 

error model still over-estimates predictive uncertainty at night-time, where the prediction bounds cover close 

to 100% of the observations. A homoscedastic error model assumes constant variance, and produces a 

predictive distribution of fixed width (sharpness) across the day (Figure 3). Such an error model fails to reflect 

the temporal variation in aleatory demand uncertainty, which is lowest at night, where there is little variability, 

and greatest during the day, particularly during the morning peak where demand is high. Heteroscedastic 

errors such as these may also result from measurement uncertainties. Such heteroscedasticity can also be 

seen in Figure 2. 

 



 

Figure 4. Standardised residuals (predictions minus observations) for DMA 1 (top row), 2 (middle row) and 3 (bottom 

row) plotted as a histogram alongside the assumed distribution (solid black line) derived from M3; autocorrelation with 

95% significance levels (grey lines); and residuals plotted as a function of simulated flow. 

 

 

4.5 Residual Error Model Modification 

In order to better represent the true distribution of residual errors, heteroscedasticity is introduced by 

assuming that the error standard deviation is a linear function of flow: $� = $�. In addition a kurtosis 

parameter �&� is introduced which results in an exponential power distribution and the following log-

likelihood: 
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where MN and ON are derived from &, the kurtosis parameter (see Schoups and Vrugt, 2010), which is jointly 

inferred alongside the model parameters and $. The newly employed likelihood function applied with the 

model in Equation 6 (M3) leads to a much better representation of the heavier tailed residual distribution, and 

stabilises the heteroscedasticity for all DMAs, as shown in Figure 4. In predictive terms, the likelihood in 

equation 7 allows the sharpness of the model predictive distribution to vary across the day to much better 

reflect the true variance in demand (Figure 3). Despite a reduction in sharpness during the day, notably during 



the morning and evening peaks, the 95% prediction bounds are now more reliable – e.g. the sharpness has to 

decline, notably during the morning peak, to better bracket the observations with the correct coverage. The 

negative effect of over-estimation of predictive uncertainty at night, and under-estimation during the day that 

resulted from applying Equation 5 has been reduced. In DMA 3, however, the reliability of the 95% prediction 

bounds has worsened at night, and the predictive bounds have become too sharp. Such sharpening suggests 

the simple linear relationship between discharge and error variance is inappropriate in this DMA. Figure 4 also 

shows that there is a strong Lag 1 autocorrelation in all DMAs.  

4.6 Auto-correlation 

The autocorrelation suggests there are still components – or trends in the system - that need to be “whitened”, 

as the residual pattern is not random (Bennett et al., 2013). Therefore residual error autocorrelation terms, 

prior to normalisation, were added to the model in equation 6: 

�4 = HIJ S� !	�645 ! + �% 	�645% + ��"#	�645�"# +B '�
45�
T

�F�
	U																																																																	�8� 

where 
� is the normalised residual error at lag �, V is number of lags in included in the model, and '�  is a 

calibrated parameter for each lag. For each DMA the model was recalibrated using the likelihood in Equation 

7, resulting in model M4. The additional autocorrelation terms reduced the lag-1 residual error, most notably 

for DMA 3, as shown in Figure 5 where V was increased up to 3. However, the model was not completely able 

to remove lag 1 and lag 2 autocorrelation, particularly for DMA 1 and 2. The inclusion of autoregressive error 

terms led to an improvement in sharpness of the predictive distributions for all DMAs. In terms of robustness 

this led to a small decline in reliability of model M4 for DMA 1 for the first 9 hours of the day in comparison to 

M3, whereas for DMA 3 the same model modifications led to an improvement in night time reliability. In all 

DMAs the narrowing of predictive distribution led to a decline in reliability for peak morning demand. The 

inclusion of predictor variables in the model with shorter lags explains the general improvement in predictive 

performance with sharper bounds, with modest declines in reliability for the 95% prediction interval. Yet 

autocorrelation remains. As explained previously, the lag 1 term in Equation 6 was removed moving from M1 

to M2 as despite a strong R2 between  �64 and �645�, there was a fair amount of scatter in the relationship. 

Further exploratory analysis of this relationship (Figure 6) shows that the scatter is not random, but rather the 

lag 1 gradient varies as a function of the time of day. As an alternative approach to deal with lag 1 

autocorrelation, the lag 1 term is re-introduced in the model in normalised form:  

�4 = HIJC� !	�645 ! + �% 	�645% + ��"#	�645�"# + ��	�645� + '�
45� + ' !
45 !D																																			�9� 

where: 
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therefore the gradient of the lag 1 term is allowed to vary as a function of time of day by combining the 

calibration parameter ) with the equivalent gradient from the previous day. Initial model runs (not shown) 

showed that there was still some lag 1 correlation, and the introduction of the gradient term also introduced 

some lag 24 and lag 25 correlation. Therefore two additional residual error correlation terms were introduced 

(Equation 9), with associated calibration parameters �'� and		' !�. The resultant model, M5 removed the 

majority of the autocorrelation from the residuals for each DMA, and in this respect showed improvement in 

comparison to M4 (Figure 5). The effect of this change in the predictive performance of the model is very 

minor for DMA 1; for DMA 2 there is a slight worsening in sharpness and slight improvement in robustness for 

7am; and for DMA 3 there is an overall improvement in robustness.  

 

Figure 5. Autocorrelation plots with 95% significance levels (grey lines) for model M4 (top row) and M5 (bottom row) for 

DMA 1 (1st column), 2 (2nd column) and 3 (3rd column).  

 



 

Figure 6. Normalised demand	��64� plotted against normalised demand at lag 1 hour 	��645�� for DMA 1. The 

colour of the points shows the time of day (hours).  

Figure 7 compares the sharpness and reliability of model M1 and M5 in both calibration and validation across 

a range predictive percentiles for 5 different hours of the day for DMA 1 (for the sake of brevity, results for all 

DMAs are not shown). Regardless of the model there is a decline in reliability moving from calibration to 

validation. In all DMAs M5 produces more reliable prediction bounds as the reliability curves for each hour of 

the day fall closer to the 1:1 line. The most notable improvement in performance occurred for DMA 3. 

Importantly the improvement in reliability is also accompanied by an improvement in sharpness of the 

prediction bounds, most notably at night (3am). The effect of this can be most clearly seen in Figure 8, which 

shows time-series plots of observed demand and predictive uncertainty. Model M5 produces prediction 

bounds that better reflect the time-varying nature of demand uncertainty across the day in comparison to 

those derived using a Gaussian model with constant heteroscedasticity. Furthermore, the prediction bounds 

are generally sharper across all hours of the day, which as shown in Figure 3 for the 95% prediction interval 

occurs once lag – 1 terms are re-introduced into the model in M4 and M5, in comparison to previous models. 

 



 

Figure 7. Reliability (top row) and sharpness (bottom row) plots for model M1 in calibration (first column) and validation 

(second column), and for model M5 in calibration (third column) and validation (fourth column) for DMA 1 plotted for 5 

different times of the day (24 Hour clock). 

 

Figure 8: Time-series of observed demand (black bullets), 95% prediction intervals (width of shaded area), for DMA 1 

modelled using M1 (top) and M5 (bottom). Shading from dark to light within the 95% prediction interval indicates narrower 

prediction bounds. 

 

5. Discussion 

The assumption that the residual error distribution is adequately described by a Gaussian iid likelihood 

function was shown to be inappropriate for demand forecasting in the three DMAs considered in this case 

study. This finding has implications for the application of demand forecasting model calibration procedures 



that employ mean square error based approaches that also make these assumptions. The residual error 

structures in this case study were characterised by heavier tails and heteroscedasticity – evidence for which 

has been found elsewhere (Bakker et al., 2013b; Alvisi et al., 2007). The diagnostic methodology aided in the 

identification of these errors, alongside other deficiencies in model performance (e.g. autocorrelation), and 

resulted in a model that uses a formal Bayesian likelihood function that account for kurtosis and 

heteroscedasticity in the residual distribution that better reflected the true nature of residual errors. 

Calibration using such approaches is required to prevent bias in parameter calibration that can result from 

inappropriate assumptions (Schoups and Vrugt, 2010). If information is available to quantify independently 

different sources of error, such as measurement error, then it may be preferable to quantify error sources 

independently (e.g. Kuczera et al 2006), as joint inference of model and error model parameters may then be 

avoided when updating error model structure. However, re-calibration at each stage of model development 

is efficient computationally with the models applied in this study. It is important to consider that diagnostic 

tests applied in this study may lead to the rejection of formal Bayesian approaches, particularly if epistemic 

errors are of greater importance (Beven et al., 2008; Hutton et al., 2013). However, this is entirely compatible 

with the iterative methodology presented here, and also recommended in the framework of Hutton et al 

(2014) for choosing an appropriate method for dealing with model uncertainty. 

 An adequate model of the residual errors is not just important for calibration, but also to provide an 

adequate description of model predictive uncertainty. In the presented methodology sharpness (width) and 

reliability (nominal coverage) are used as measures of the adequacy of the predictive distributions. The 

derived predictive distributions from model M5, which provides a better representation of the residual errors, 

are sharper, particularly at night time, than model M1. What is critically important is that the improvement in 

sharpness, and therefore confidence in the accuracy of the model prediction, has not come at the expense of 

a drop in reliability. Rather, the reliability of the model has also improved. In comparison to previous 

deterministic approaches, the result of the application of the proposed methodology is a richer set of 

information that more accurately quantifies the time-varying nature of demand uncertainty. Such information 

may be of particular use for differentiating between normal and abnormal conditions, as the range of normal 

demand behaviour has been quantified probabilistically for different times of the day. This is an area of 

ongoing research.  

The performance of model M5 developed through the methodology can be compared tentatively, and only 

in an average sense to previous models, and for the three DMAs considered produced Mean Absolute 

Percentage Errors (MAPE) in calibration (and validation) for the 1 hour ahead forecasts of 5.07% (4.07%), 3.09 

(4.09%) and 4.25% (3.85%) for DMA 1, 2 and 3, respectively, which are at the lower end of the range of errors 

previously reported in the literature, including for these DMAs (Romano and Kapelan, 2014). For DMA 1 and 



DMA 3 there was a slight improvement in forecasting performance in validation, which likely reflects a decline 

in demand variability towards the latter half of the year, not least due to fewer bank holidays in the validation 

time-period.  

The overall aim of the applied methodology was to obtain a useful model. Part of a model’s use in water 

distribution systems is real-time application, where computational resources limit model application. Thus 

whilst the developed methodology requires user interaction to identify and implement improvements in 

model performance, model terms are added (as with the transition from model M4 to M5), when justified by 

the data to derive parsimonious model structures that are better suited to real time application. Such models 

may be run in an ensemble in real-time to then quantify predictive uncertainty. An approach starting with 

simple models is also appropriate for situations where data available for calibration are scarcer, as may be the 

case in other water related fields. In such situations care should be taken to avoid poor parameter 

identifiability with addition of more parameters, which may be a particular issue in adequately characterising 

prediction uncertainty.  

Alongside the detection of abnormal conditions, the greater level of information on predictive uncertainty 

may also be useful for control optimisation under normal conditions. Such modelling would require demand 

forecasts for up to 1-2 days. Further work will investigate the application of the methodology for deriving 

forecasting models to predict over a larger forecasting horizon.  Whilst previous studies have generally 

identified a monotonic decline in forecasting accuracy as a function of lead time (Romano and Kapelan, 2014), 

it is expected, given the time-varying nature of demand uncertainty identified, that this will vary as a function 

of the time of model forecast (e.g. Alvisi et al., 2007). Additional diagnostic tests will therefore be required to 

evaluate and improve model performance. 

6. Conclusions 

In order to better account for the aleatory and epistemic uncertainties that affect the performance of water 

demand forecasting, a probabilistic methodology is presented for quantifying, diagnosing and reducing model 

structural and predictive errors for the iterative development of short term water demand forecasting models. 

The application of the methodology revealed problems with calibration based on simplistic Gaussian iid 

assumptions, which in the case study considered led to inappropriate estimation of predictive uncertainty. 

The developed methodology emphasises iterative model development, calibration and testing using 

diagnostic checks of both the residual errors and frequentist properties of the predictive distributions. 

Application of the methodology led to development of a parsimonious model structure suitable for real-time 

modelling using a formal Bayesian likelihood function that accounts for kurtosis and heteroscedasticity in the 



residuals. The model produced sharper yet still reliable predictive distributions that better quantify the time 

varying nature of demand uncertainty in water supply systems.  
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