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Abstract

This paper concerns kinematic dynamo action by the 1:1:1 ABC flow, in the highly
conducting limit of large magnetic Reynolds number R,,. The flow possesses 24
symmetries, with a symmetry group isomorphic to the group Oz4 of orientation-
preserving transformations of a cube. This can be exploited to break up the linear
eigenvalue problem into five distinct symmetry classes, or irreducible representa-
tions, which we label I-V. The paper discusses how to reduce the scale of the
numerical problem to a subset of Fourier modes for a magnetic field in each repre-
sentation, which then may be solved independently to obtain distinct branches of
eigenvalues and magnetic field eigenfunctions.

Two numerical methods are employed: the first is to time step a magnetic field in a
given symmetry class and obtain the growth rate and frequency by measuring the
magnetic energy as a function of time. The second method involves a more direct
determination of the eigenvalue using the eigenvalue solver ARPACK for sparse
matrix systems, which employs an implicitly restarted Arnoldi method. The two
methods are checked against each other, and compared for efficiency and reliability.
Eigenvalue branches for each symmetry class are obtained for magnetic Reynolds
numbers R,, up to 10 together with spectra and magnetic field visualisations. A
sequence of branches emerges as R, increases and the magnetic field structures
in the different branches are discussed and compared. In a parallel development,
results are presented for the corresponding fluid stability problem as a function of
the Reynolds number R..
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1 Introduction

The ABC flows are well-known three-dimensional flows defined by
u = (Csinz+ Bceosy, Asinz + C cos z, Bsiny + A cos z) (1.1)

with A, B,C € R, and z, y and z periodic, period 27. They are steady, incompressible solutions
to the Euler equation whose flow properties depend on the choice of the three parameters, as
discussed in Dombre et al. (1986), where the term ‘ABC flows’ was coined. These flows are
discussed in Arnold (1965), as a case of three-dimensional Euler flows that have a simple de-
scription in the Eulerian framework, but that could have chaotic trajectories in the Lagrangian
sense. Hénon (1966) went on to provide numerical evidence of chaos in members of the fam-
ily, with further work by Dombre et al. (1986) who consider integrability of streamlines using
Painlevé tests. This Lagrangian complexity and the fact that these are Beltrami flows, for
which V x u = ku, makes them of great interest in both hydrodynamics and magnetohydro-
dynamics. Our aim is to obtain numerical results for linear dynamo action and fluid stability
for the case A = B = C' = 1, that is the 1:1:1 ABC flow, by exploiting its large collection of
symmetries.

Although Childress (1970) used the 1:1:1 ABC flow as a prototype dynamo giving growth of
magnetic fields on large scales through an isotropic alpha effect, the first numerical investigation
of kinematic dynamo action in this flow was undertaken by Arnold & Korkina (1983), who
consider magnetic fields with the same 27 periodicity as the flow. Their results show that a
range of values of R, exists for which such magnetic fields grow, defining the first ‘window’ of
dynamo action for the 1:1:1 flow. Galloway & Frisch (1986) extended these results to R, = 550
and discovered a second window of dynamo activity, showing that the magnetic field in this
second window has lost many of the symmetries that exist in the first. This and more recent
work (Lau & Finn, 1992; Galloway & O’Brian, 1994; Archontis & Dorch, 1999; Archontis et
al., 2003) focuses on the geometry of the resulting fields and finds that they are dominated
by cigars, regions of concentrated magnetic field, though the different windows correspond to
different configurations of these structures. Additionally, it appears that the growth rate of
the 1:1:1 dynamo approaches a limiting value in the range of R,, up to 550, suggesting that
it is a fast dynamo, with a growth rate bounded above zero in the high conductivity limit
R,, — o0. Very recently, however, Bouya & Dormy (2013) have shed more light on the 1:1:1
ABC dynamo, with simulations up to R,, = 2.5 x 10*, and show that the growth rate continues
to change when R,, is increased further, as we shall discuss below. For a recent perspective on
ABC dynamos, see Galloway (2012).

The ABC flows possess discrete helical symmetries (rotation combined with translation), inher-
ited from the continuous helical symmetry of the individual helical waves in (1.1). The number
of symmetries depends on the parameters A, B and C (see Dombre et al., 1986). Maximal
symmetry occurs for equal parameters, that is in the 1:1:1 case, for which there are a total of
24 orientation-preserving symmetries. These are set out in Arnold (1984), which also describes
how a field, for example written as a sum of Fourier modes, may be decomposed into distinct
symmetry classes. Each symmetry class is known technically as an irreducible representation
and there are five of these, which we label I-V. Thus the evolution of any magnetic field un-
der the 1:1:1 ABC flow can be broken up into a sum of copies of five distinct types of fields.
Arnold (1984) reproduced the results of Arnold & Korkina (1983) for R,, < 5, using a severely
truncated (5 mode) model for fields in representation II, which is the relevant symmetry class



for the first window of dynamo action. Gilbert (1992) considered a simplified ABCS dynamo
(A= B =1, C < 1), and how a magnetic field that belongs to a single representation can be
constructed from a general field using the symmetries of the flow (see the Dg example in §2
for more information). The results for this flow show a growth rate dependent on the initial
field used, as fields in representations that are odd under the reflection operation s in Dg are
amplified, unlike fields that are even under s; these fields are visualised in Matthews (1999).

As well as the interest in the complex Lagrangian properties of the ABC flows for dynamo
action, a parallel research direction concerns the linear hydrodynamic stability of these flows,
when considered as steady, forced solutions to the Navier—Stokes equation at a given Reynolds
number R.. By introducing a velocity perturbation to an ABC flow in the Navier-Stokes equa-
tion, a linear equation analogous to the kinematic dynamo problem is obtained, allowing hy-
drodynamic stability to be studied alongside the magnetic case with only minor modifications.
Galloway & Frisch (1987) investigate the linear stability of several ABC flows, of which the
1:1:1 flow appears to be the most stable, initially becoming unstable at R, &~ 14 with the
growth rate appearing to reach an asymptote by R. = 200. The resulting perturbations may
also be classified through their symmetries, in the same way as for the magnetic problem.

For this hydrodynamic problem with an ABC 1:1:1 forcing, Podvigina (1999) breaks up the
resulting dynamical system into sub-systems with different symmetries. In a similar manner to
Arnold (1984), she discusses how Fourier modes are partitioned into the various representations
in the linear regime. Further exploration of the nonlinear dynamics is given in Ashwin &
Podvigina (2003), where the symmetries of bifurcations and branches of solutions are identified
by comparing mode values with those expected for each symmetry class. It is important to
note that in these nonlinear problems symmetry breaking mechanisms can link branches of
fields with different symmetries (for example, see Podvigina & Pouquet, 1994). In fact in the
full nonlinear regime several aspects of the analysis are different from the linear problem, since
linear combinations of fields may no longer be freely taken. However in the kinematic 1:1:1
ABC dynamo which we study here, the problem is linear and the magnetic fields of the five
representations are entirely independent. This allows each of the five types of field to be studied
separately: we can fully impose the symmetries, restricting the fields to a single representation.
The evolution of a general field will just be a linear combination of these.

We outline the structure of the paper and the topics addressed. We first discuss in §2 the
governing equations for the 1:1:1 ABC dynamo problem and the equivalent fluid stability
problem. In §3 we illustrate representation theory in the case of the group Dg (symmetries of a
square) and explain how a field can be decomposed into five distinct irreducible representations
or symmetry classes (in what follows we use the terms interchangeably). We then give the
corresponding results for the symmetry group Osy of the 1:1:1 ABC flow. The reader with
knowledge of representation theory may wish to omit this section. In §4 numerical methods
for the dynamo problem are given, and it is explained how the use of representation theory
can reduce the size of the numerical problem by only time stepping a subset of Fourier modes.
In the latter half of this section, an alternative approach to time stepping, namely employing
an eigenvalue solver using an Arnoldi iteration algorithm, is considered and a comparison is
drawn between the two methods. In section §5 we give results for the ABC dynamo, with a
comparison of the growth rates and frequencies of fields in each representation. The features
and structures of the dominant field in each representation are visualised. In the following
section §6, the corresponding results for the linear fluid stability problem are set out. Our final
section §7 gives concluding discussion and comments.



2 Governing equations and symmetries

We are interested in kinematic dynamo action in the 1:1:1 ABC flow given by
u = (sin z + cos y, sin x + cos z,sin y + cos x). (2.1)

This has the Beltrami property that w and V x u are everywhere parallel, and in fact the two
fields are equal, with 0 = u X (V x u) = sV|u|> — w- Vu. A magnetic field evolves according
to the induction equation given by

Ob+u-Vb=>b-Vu+eV?b, (2.2)

where ¢ = R;! is the dimensionless diffusivity or inverse magnetic Reynolds number, and
V:b=V.-u=0.

We are also concerned with the corresponding fluid stability problem, in which the steady ABC
flow u above is taken to be maintained against viscosity by a body force f = —eV?u = cu.
In the corresponding Navier—Stokes equation for a general flow U,

U +U-VU = -VP +eVU + f, (2.3)

weset U = u+v and P = —%uz +p, where v is the perturbation velocity and p the perturbation
pressure. In the linear approximation the field v obeys

ov+u-Vo+v-Vu=-Vp+eVv, (2.4)

with V - v = 0. This has a very similar structure to the magnetic field problem, with e = R_!
as now an inverse Reynolds number.

We will always work within a 27-periodic box for flows and magnetic fields. With this period-
icity, the ABC flow field (2.1) is invariant under a group G with the following 24 symmetry
transformations,

i(x) = (z,y,2), a(z) = (5 —y.2+5,2— %), (2.5)
a*(x) = (—x,m —y, 2 +7), a’(x) (y—35.5—2,2+73),
b(z) = (z = 5,5 =2y +3), b*(x) = (v + 7, —y, 7 — 2),

b?(x) (r+5,2—5,5—Y), c(x)=(2+35,y— 5,5 — ),
)= (r—z,y+m —2), c3(w):(§—z,y+g,x—g),
d(z) = (2, z,y), d*(x) = (y, 2, ),

e(x) =(—z,m—x,y+m), el(x) = (r—y,z+m —1),
flx)=(z4+m —x,m—1y), f2(x) = (~y,m — z,2 + 7),

glx) =(m—z,2+m —y), g’ (x) = (y+m —2z71— 1),
h(m):(g_x7z+gv _%)7 j("B):(Z_%vg_%x—i_g)y
kz)=(y+ 3.2 — 3.5 —2), (@)= (-2—-5,—2—5,—y— %),
n@)=(-z-5y- 23 n@=(-y- w3

The group is isomorphic to the group Oy4 of orientation-preserving symmetries of the cube
(Arnold & Korkina, 1983; Arnold, 1984; Gilbert, 1992). For example an element such as a of
order 4 corresponds to a m/2 rotation about the centre of a face while an element such as d of



order 3 is a 27/3 rotation about a diagonal. However in the case of the ABC flow symmetries,
the translations are crucial also: just as it is a rotation and a translation that preserves the
form of a helix as a curve in space, so too it is for the helical waves that make up the ABC flow.
We shall see however that when fields are represented in Fourier space the translations become
phase shifts so that the link with rotations and symmetries of a cube is somewhat clearer: it
is a cube of wave-vectors that is thus transformed.

It is important to note that the action of each symmetry on a vector field such as u, b or v
involves not only transferring a vector from point to point, but also rotating it appropriately
using the Jacobian of the transformation. Explicitly, for any transformation g € GG, the action
of g is to map any 27m-periodic vector field b to gb with

(gb)(r) = Jgb(g™'r), (2.6)

where Jg is the Jacobian of the transformation g. This is familiar as frozen-field evolution
under the rotational and translational motion needed to effect g. Note that for a 27-periodic
scalar field ¢ no Jacobian is needed, with (g¢)(r) = ¢(g~'r).

3 Representations

We are interested in solving (2.2) or (2.4) as an eigenvalue problem by setting
b= B(x, y,2)eM, v =o(x,y, 2)eM, (3.1)

and seeking growth rates and frequencies of magnetic or velocity fields, together with their
structure in physical space. We wish to exploit the symmetries of the ABC flow both to reduce
the computational effort of the eigenvalue problem and also to investigate branches possessing
distinct symmetries. This is common in many problems in the physical sciences (see, e.g.,
Hamermesh, 1962). The use of symmetry is familiar in straightforward cases; for example
we can consider quadrupole and dipole symmetry for a dynamo in a sphere with reflection
symmetry about the equator, the appropriate symmetry group being Z,. Any field can then be
broken up into a quadrupole component and a dipole component, by adding or subtracting the
reflected field. Such fields then evolve independently provided the evolution equation is linear
and preserves the symmetry, and in this case there are separate eigenvalue problems with
distinct branches of solutions. In the nonlinear regime there can then be symmetry breaking
and mixed mode solutions, but that is not possible in the linear approximation.

3.1 Ezxample of Dg: symmetries of a square

For readers who are not familiar with the generalisation to more complicated groups, and
because the full group G in (2.5) is hard to visualise in three dimensions, we briefly explain
the idea using the symmetry group Dg of a square. We take the square to be centred at the
origin with sides parallel to the x and y axes, depicted in figure 1(a). Dg is generated by an
anti-clockwise rotation r of 7/2 about the origin and a reflection s in the x-axis,

r(x,y) = (—y,:v), S(ZE,y) = (I’ _y>7 (32)

and contains the elements {i,r,r? r3 s rs r’s r3s}. with r! =s?> =i and rs = sr L.
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Fig. 1. Shown are (a) the geometry for a square with symmetry group Dg, and (b) a magnetic field
b confined to one eighth of the square.

Suppose we start with a general magnetic field b(r). Then we may map it with each element
g € GG to obtain 8 linearly independent magnetic fields, spanning a vector space W,

W = span{b, rb, r’b, r’b, sb, rsb, r’sb, r’sb}. (3.3)
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Fig. 2. Fields for representations I-TV: (a) b', (b) ', (c) ", and (d) b'V.

(a)

A convenient way to visualise this is to consider a magnetic field depicted schematically in
figure 1(b) which is confined to one-eighth of the square and has a anti-clockwise, or positive,
sense. Then each transformation in G maps the field to a distinct eighth of the square and
these fields are all plainly linearly independent. Note that under a reflection g, the resulting
field gb has a clockwise or negative sense. If we now seek single combinations of these eight
fields that transform simply under group elements, we find we have four of these, labelled I-1V,

b' = b+ rb+ r’b+ r’b + sb + rsb + r’sb + r’sh, (3.4)
b" = b+ rb+ r’b + r’b — sb — rsb — r’sb — r’sb, (3.5)
b"' = b —rb+r’b — r*b + sb — rsb + r’sb — r’sb, (3.6)
b =b—rb+r’b —r*b — sb + rsb — r’sb + r’sb. (3.7)

These transform under any group element g € G via multiplication through +1, that is
gb” = M“(g)b” (3.8)

where a labels the representation I-IV. For a given « the set of M*(g) for g € G is called an
irreducible representation of the group G. For example for representation II we have

MU(i) = MU (r) = MY(r?) = M"(F) = 1, (3.9)
M"Y (s) = M"(rs) = M"(r*s) = MY (r’s) = —1, (3.10)
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Fig. 3. Fields for representation V: (a) by%, (b) by?, (c) by, and (d) by°.

while for representation I all the values are M'(g) = 1. Plainly we have that
M*(g)M*(h) = M*(gh) (3.11)

for any elements g and h in the group G. The values of the M“(g) for g € G can be read
straight from the character table, table 1, for representations I-IV. Given the initial field b
shown in figure 1(b) the four fields b' to ' are seen schematically in figure 2. We have shaded
where the field has a negative sense.

Table 1

Character table for the group Dg. Entries give the character, that is the trace of the matrix M“(g),
for each transformation g and irreducible representation o from I-V.

{} | {e, 3} | {r?} | {s,r?s} | {rs,r3s}
1 1 1 1 1 1
II 1 1 1 -1 -1
111 1 —1 1 1 —1
v 1 -1 1 -1 1
A% 2 0] -2 0 0

The four fields in (3.4-3.7) transform by multiplication by +1 under transformations of the
square, but cannot span the full eight-dimensional vector space of fields W in (3.3). It is clear
for example that they do not include the possibility of a non-zero mean field in the system, as
under the 7/2 rotation r such a field could not transform to 41 times itself. In fact the set of
fields (3.4-3.7) exhaust the one-dimensional representations of the group G, and the next best
we can do is to define pairs of fields in the two-dimensional representations,

b* = b+rb—r’b —r’b + sb — rsb — r’sb + r’sb,

by* = b —rb —r’b+r’b — sb — rsb + r’sb + r’sb, (3.12)
and

b/’ =b+rb—r’b—r’b — sb + rsb + r’sb — r’sb,

by" =b—rb—r’b+r’b + sb + rsb — r’sb — r’sb. (3.13)

Note that subscripts label different fields, not their Cartesian components. These four fields
are depicted in figure 3.

Focusing on the first pair of fields (3.12) shown in figure 3(a,b), we have

by = —by", rby* = by, sb* = b)", sby® = ~by", (3.14)



and so now the action of the group elements is given by 2 x 2 matrices defined by

0-1
MVa(r> — 7
1 0

1 0
0 -1

MVYa(s) = (3.15)

with
gb? = 3" Mi(g) . (3.16)
J
where the label a corresponds to the label ‘Va’. The matrices for the remaining transforma-
tions follow by matrix multiplication, using the requirement that (3.11) hold, now as a matrix
equation. Note that the fields bY* and by® allow the possibility of a mean field in the y and
directions respectively. These two fields give a two-dimensional irreducible representation.

The second pair of fields, in (3.13), corresponds to another two-dimensional irreducible repre-
sentation ‘Vb’ isomorphic to Va, and we omit the details. All the representations, I, II, ITI, IV
and two copies of V, span the vector space W in (3.3) and any field b can be decomposed into
components in each of these spaces as above with

8b=>b"+b" +b" + bV + b/ + by + b)" + by". (3.17)
Some comments are in order. We have four one-dimensional irreducible representations -1V,
in which the action on the corresponding field is multiplication by 1 x 1 matrices (see (3.8)). We
have two copies of what is essentially the same two-dimensional representation V in which the
action is on pairs of fields through multiplication by 2 x 2 matrices. The actual matrices are not
unique under a change of basis, though we have provided a rational choice with M®(g) = J,.
The form of the fields in (3.12,3.13) are dependent on this (somewhat arbitrary) choice. Only
the traces of the matrices are invariant, and these are given in the character table, table 1. As
the matrix for the group identity operation i is always the identity matrix, this column gives
the dimension of the irreducible representation.

Going back to the basis of fields of W given in (3.3), the action of an element g € G is simply
to permute these fields and so give rise to a (reducible) representation with 8 x 8 matrices
M (g) having a permutation form (i.e. a single entry of 1 per column and row). Representation
theory can be seen as a way to choose a basis (of magnetic fields here) so as far as possible
to diagonalise simultaneously the matrices for all the g € G. In our example of Dg, under the
basis in (3.7,3.12,3.13) the 8 x 8 matrix for each g takes a block diagonal form

Mg 0 0 0
0 Mg 0 0
M| ¢ 0 M 0 (3.18)
0 0 0 MY
MY (g) 0
0 MY(g)

Any linear problem that respects the symmetries can be considered in each of the six sub-
spaces independently, in particular any linear eigenvalue problem. Thus instead of solving



the full problem, we have five distinct reduced problems (we need only consider one copy of
representation V), each with its own set of eigenvalues.

Finally, we note that it is not necessary to give the fields of each irreducible representation
as they are displayed in (3.4-3.7, 3.12, 3.13) for Dg. We have done so simply to demonstrate
how these fields relate to those of the vector space W in this example. For larger groups G
this becomes an increasingly arduous and uninteresting task. The key information is how each
of these fields is transformed by the elements of GG, which simply requires knowing matrices
M*“(g) for each irreducible representation .

3.2 Representations for the ABC flows

Having completed our brief tour of representation theory with the example of Dg, we now
return to the problem in hand and discuss the ABC flows and representations under the group
G with elements given in (2.5) (Arnold & Korkina, 1983; Arnold, 1984; Gilbert, 1992). Given
a sufficiently general magnetic field b we obtain a 24-dimensional vector space W spanned by
the images gb under the various symmetries.

Table 2

Character table for the group Oa4. Entries give the character, that is the trace of the matrix M(g),
for transformations g in the conjugacy classes (3.19) and irreducible representations « from I-V.
E|C3|C}| Oy Oy

I 1 1 1 1 1

II 1 1 1] -1]-1
II1
v

w w [\
o
|
—_
—_
|
[

Rather than writing down a decomposition of this space explicitly, we start by giving the
character table for G (i.e. that of the orientation-preserving symmetries of a cube) in table 2.
Here the elements are grouped into conjugacy classes with

E={i}, C,=1{a,a%bb’cc’}, CI={a%b*c},
Cs = {d,d* e e f f* g g}, Co=1{hj k| mn} (3.19)

(see Hamermesh (1962), for example). From the first column of the table we have a pair of
one-dimensional representations I and II in which the field is multiplied by +1 under each
symmetry operation. The values may be read from the character table. Moving to the bottom
of the table, there is a pair of three-dimensional representations IV and V. These will occur
three times in a decomposition of the action of the group on a general magnetic field, but we



need only consider one copy of each. Key matrices we will find useful are

-1 0 0 -1 0 O
M*b)=%+| 0 01|, M*®B)=%x| 00 —1],

0—10 01 0
00 1 010

Md)=|10 0|, M*d)=]0 0 1], (3.20)
010 100

and a full set may be found in Appendix A. Here for representation « as IV we take the upper
sign, and for V we take the lower sign. Note that in representation V, the matrices M " (g)
correspond to the Jacobians of the transformation in (2.5) for the corresponding group element
g. Representation IV can be considered as the tensor product of V and II (Arnold, 1984).

Somewhat less intuitive, in the middle of the table, is a two-dimensional representation III.
This is given in full in Appendix A and here we note that

1 1 —v3
MIH(b) — MIH(b3) — 5 \/_ 7

—/3 -1
1 -1 V3 MIH(dz):} -1 =3

MU(d) = ,
2 _\/§ -1 2 \/3 -1

(3.21)

Although we do not decompose the 24-dimensional space W generated by a single magnetic
field under the action of symmetries in G (as we did for Dy in section 3.1), we note that this
contains one copy of representations I and II, two copies of III, and three copies of each of IV
and V, and these span W with 1% + 12 + 22 + 32 + 32 = 24, the order of G as required (e.g.,
Hamermesh, 1962).

4 Numerical methods

Our aim is to find eigenvalues and magnetic field eigenfunctions corresponding to each repre-
sentation. We consider magnetic fields with the usual Fourier decomposition

b= Z bl,m,n(t) eilz+imy+inz ) bl,m,n - (Xl,m,'rw }/l,m,na Zl,m,n)- (41>

I,m,n
We also have the Hermitian symmetry property;,

bimn = b’ (4.2)

—l,—m,—n"

Numerically the values of [, m and n are limited by the maximum resolution N with |l|, |m|, |n| <
N and the zero mode (which would correspond to a constant mean field) is always set to zero.
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4.1  Time stepping

We first consider solving the problem without imposing any symmetries. As discussed in Gal-
loway & Frisch (1986) the great advantage of the ABC flow is that the terms involving w and b
couple neighbouring modes in Fourier space, and so a purely spectral code is appropriate, there
being no need to take Fourier transforms to and from real space, except when the resulting
magnetic fields are to be visualised.

For the advective and stretching terms we have adopted a three-step Adams—Bashforth scheme
as a balance between accuracy and speed. The diffusive terms are integrated exactly and give
exponential damping of each mode every time step. This scheme can be written analytically
(and clumsily) for the x-component with time ¢t = jAt as

X7 4 = By | X7

I,m,n lm,n

+ 5O (280, — 16Emal], ), + 5, ML) (43)
where

Epn = exp(—e(I* + m? + n?)At). (4.4)
J

1. m.m tor the z-component,

The advective and stretching terms at time step j are represented by A
and are given by

20 = i (Vi + Yiann) = im0 (Xt + X 1)
+m (Yl]mn—l - Yljmn+1) -—m <Xl]—1mn - ijJerm)
+in (Zl];mfl,n + Zl];m+1,n) —in (le,me + le+l,m,n>
+n (Zl];m,nfl - Zl];mynJrl) -n (Xl];mfl,n o Xl];erl,n) : (45>

The y and z components of b;,, , are time stepped according to similar expressions. The time
stepping for the fluid stability problem (2.4) is very similar, with a projection in spectral space
used to incorporate the effect of the pressure term.

4.2 Reduced domain without Hermitian symmetry

We now consider the use of symmetries to reduce the scale of the numerical problem of finding
ABC dynamo growth rates, and follow different eigenfunction branches. We work with the
magnetic field written in the Fourier space decomposition (4.1) with |I|,|m|, |n] < N, but in
this section do not consider the imposition of Hermitian symmetry (4.2) (see the discussion
of the Arnoldi solver below). In this case the key point is that given a magnetic field Fourier
amplitude by, ,, for a general value of the wave number (I, m,n), each symmetry operation in
(2.5) will give a distinct Fourier mode. For example the (I,m,n) modes of bb and of db are
given by

(bb) = €I Joby sy s (AD) 1 = Jd by (4.6)

while for their inverses,

(b3b>l,m,n = ei(ilerin)ﬂ-/Z Jb3 bl,fn,ma (de)l,m,n = Jd2 bn,l,m- (47>

For representations I and II the operation db gives the original field, while bb gives +1 times

11



Fig. 4. Fundamental domain Gy (a) within the full cube of wave vectors, (b) a close up view of Gy
and (c) a close up view of Hy.
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Fig. 5. A slice of constant | when (a) Hermitian symmetry is not imposed, and (b) when it is. Coloured
(shaded) modes need to be filled in using the symmetries; different colours (shades) represent different
transformations required to calculate mode values.

the field, with the upper sign for representation I and the lower for II,
bl,m,n = iei(l—m—n)w/? Jb bl,n,—ma bl,m,n = Jd bm,n,l- (48)

Applying this argument for all group symmetries we find that knowing b;,,, for a general
mode (I, m,n) tells us the amplitude of 24 Fourier modes.

Thus we may reduce the size of the computational domain, in Fourier space, to the wedge
indicated in figure 4(a,b). We call this the fundamental domain Gy which contains wave-vectors
given by

Gy ={(l,m,n):1<I<N0O<m<L0<n<I}. (4.9)

Now we consider time stepping the Fourier mode amplitudes by, , with wave vectors in Gy.
As the evolution couples each wave vector to its 6 nearest neighbours, our procedure is to fill
in the mode amplitudes around the edges of Gy using the symmetries, then to use the time
stepping method outlined in section 4.1.

To explain this further, consider a slice of modes given by a constant value of [ > 1 and m,
n with 0 < m,n < [. The modes we wish to time step are shown unshaded in figure 5(a) and
the neighbouring ones that we need to fill in to take a step are shown shaded. Note that we
need to fill in the corner mode b; ;414 in slice [ so that we can time step all the modes in slice
[ + 1. Given only the modes in the unshaded region, we can use appropriate choices of modes
(I,m,n) in (4.8) to fill in the left and right columns of shaded modes for representations I and
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IT by
b1, =2 J b0 b = Ja b (4.10)

which use modes in the fundamental domain on the right-hand side. Likewise we use b® and
d? to fill in the rows of modes bim,—1 and by, 41 in terms of modes that lie in Gy;

b1 = £ T2 by bt = Jg2 bt (4.11)

The procedure is a little more complicated for the two- and three-dimensional representations.
Taking IV and V together, we now have three distinct fields by, b, and bs to be stored on all
modes in the fundamental domain Gy. For time stepping, each of the three fields by, bs,, b3
is again stepped on modes in Gy. If we focus on a slice of Gy in figure 5(a) then for a time
step, we again need to fill in the fields by, by, b3 for the shaded modes around the edges of the
slice, and this is done by using symmetry properties of IV and V. When we apply a symmetry
operation these three fields are mapped according to (3.16) with the representation matrices
M*“(g) given in (3.20). In addition when a symmetry operation is applied, the components of
the field are premultiplied by Jg, with a phase shift.

We start with the trivial remark that b = b*b = b?(bb) and so use of the matrix in (3.20) for
b3 yields
bl = :bel, bg = :beg, b3 = ibbg, (412)

which with (4.6) gives the relationship, for any [, m, n,

(51) 1 = F T2 T (b1) 10—
( 2)l,m,n - :F€z(l—m—n)7r/2 Jb (bS)l,n,—m7
(b3)l,m,n = fe'llmm=mm/2 Jy (b2)l,n,—m~ (4.13)

=

This holds for any modes in a set of fields in representation IV (upper sign) or V (lower sign).
Similar for the rotation d we have that b = d*(db) and so

by — dby, by —dbs, bs —db, (4.14)
which with (4.6) yields

(b)) 1mm = Ja (b2)mnis (02)imn = Ja (b3)mmis (03)imn = Jda (b1)mn- (4.15)

These transformations interchange the three fields and their components with appropriate
phase shifts (from the translations in real space) and changes of sign. Use of these transfor-
mations enables us to fill in the left and right columns of modes in figure 5(a) by taking the
choices of indices used in (4.10) and (4.11). Similar b® and d? can be used to fill in the top and
bottom rows. We omit the details which are straightforward.

The picture for representation III is similar but less intuitive. Nonetheless we can proceed in
the same fashion, with two fields b; and by represented in the fundamental domain, and for
the transformation b the analogous equation to (4.12) is

2b, = bb; — V/3bb,, 2by, = —\/3bb; — bb,, (4.16)
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and so

2(bl)l,m,n - ei(l—m—n)ﬁ/2 Jb [(bl)l,n,—m - \/g(b2)l,n,—m]a
2(b2)1,mn = €T V30110, — (B2)10,-m (4.17)
while for the transformation d the equivalent of (4.14) is
2b; = —db; — V3dby, 2b, = \/3db; — dbs, (4.18)
giving
2(b1>l,m,n - Jd [_<b1)m,n,l - \/g(bZ)m,n,lL
2(b2>l,m,n - Jd [\/g(b1>m,n,l - (b2)m,n,l]- (419>
Here the magnetic field components are mapped according to the Jacobians J; whereas the two
fields are combined using the 2 x 2 matrices that give representation I1I. Again once (4.17,4.19)
are established, they may be used to fill in the amplitudes of the shaded modes in the slice in

figure 5(a) by appropriate choices of the mode (I, m,n) as we did for representations I and II
in (4.10, 4.11).

4.8 Reduced domain with Hermitian symmetry

In simulating ABC dynamos through time stepping in previous studies, it has been natural to
exploit the Hermitian symmetry (4.2) to use half the Fourier modes in a traditional truncation
of (4.1), for example in place of the full cube [I|,|m|,|n| < N, to use the half-cube 0 <
l,|m|,|n] < N, thus reducing the computer time required by a factor of two. We can also use
Hermitian symmetry to halve our fundamental domain Gy and to time step modes in

Hy ={(l,m,n) : 1 <I<N,0<m <1,0<n<m} (4.20)

This is shown in 4(c) and a slice of constant [ is depicted in figure 5(b). We only sketch the
procedure.

To time step the unshaded modes in Hy depicted in figure 4(c), we need to use various
transformations, some making the additional use of the Hermitian symmetry (4.2) to fill in the
shaded modes. For example, without Hermitian symmetry, the modes b;,,,, and b;, ,,, cannot
be related but with this symmetry and the transformation |, we have

(16)1.mm = pilltmtn)m/2 Jiboy = pill+m+n)m/2 J, bimm- (4.21)

There are several sets of modes, each requiring a specific transformation to calculate values
from modes lying within Hy; see again figure 5(b). We indicate briefly how to do this for each
set. Firstly, the diagonal shaded modes by, 41 with 0 < m <[ —1 are filled in using (4.21)
with appropriate indices,

(Ib)l,m,m—i—l — 6i(l-i—2m—&-1)7r/2 J| b?,m+1,m- (4.22>
The bottom row of modes, by, _1, for 1 < m <[ is calculated using a? and a conjugation with

(a2b) 1 = T I, b - (4.23)
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The right-hand set of modes, b; 41, for 0 < n <[, are found through n and a conjugation as

(Nb) 1,141, = €FHTIT2 T bE L (4.24)

For the bottom left corner of the triangle we use
(be)l,,l’Q = 6”7r Jb2 bl71’0, (b3b)l’0,,1 = €i(7l+1)7r/2 Jb3 bl,1,07 (425)
while for the top right corner we have

(d®6)11041 = Ja2 biprggs (dD)11001 = Ja byt (4.26)
4.4 Comparison between time stepping and an Arnoldi eigenvalue solver

The above sections give a variety of methods of handling the time stepping: namely using the
half cube of Fourier modes with Hermitian symmetry, or using the fundamental domains Gy or
‘H . This enables rigorous testing of the various codes that were developed. While the full code
will always, in due course, select the fastest growing mode, over moderate time scales it may be
used as a test for magnetic fields in each representation with careful choice of initial conditions
having the appropriate symmetry properties. The symmetries apply equally in simulations of
the dynamo problem (2.2) and the fluid stability problem (2.4). Figure 6 shows the typical
output showing the square root of energy against time, and the overall slope of the curve
gives the real growth rate. The frequency can be extracted from the period of the oscillatory
component.

16F 35
4 14+ 30
3 12 25
5 10F 20
st
1 ! 15
ok X 10F
-1k ‘ ‘ ‘ i 2r ‘ ‘ ‘ ° ‘ ‘ ‘
(a) 50 100 150 200 (b) 50 100 150 200 (C) 50 100 150 200

Fig. 6. Magnetic energy profiles for (a) class II, R, = 100, (b) class V, R,, = 100, and (c) class V,
Ry, = 250

Note that for time stepping the saving in computer time over a full (Hermitian) code is a
factor of 1/24 for (Hermitian) codes specific to the one-dimensional representations I and II,
1/12 for III and 1/8 for IV and V (in the limit of large N, in which the overhead in mode
copying is a subdominant computational cost). Thus, for example, all solution branches could
be followed with a net saving of 10/24 in terms of computer time. The savings in memory
usage are less clear cut, as we stored each field b; in the fundamental domain Hy or Gy in a
three-dimensional cube with subscripts between —1 and N for speed and ease of programming.
Of this array only about 1/6 was in use for the Hy code, for large N. We used two such cubes
for representation I1I and three for IV or V. Memory could be used more efficiently; for example
one could store the modes for the three fields by, by, bs in the same cube for representations
IV and V. However we did not do this, and note that computer time, rather than memory, is
the main limitation for these codes.
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There are a number of advantages to time stepping. Codes are easily run and may be parallelised
given the local interactions between modes in spectral space. On the other hand determining
the real and imaginary part of an eigenvalue can be time consuming near to a mode crossing,
when two complex eigenvalues are about coalesce on the real line, giving a low frequency
oscillation. Indeed the difficulty in determining growth rates at such an eigenvalue coalescence
is the origin of considerable uncertainty in growth rates in the second window of dynamo action
in the study of Galloway & Frisch (1986), recently resolved in Bouya & Dormy (2013).

An alternative method which we implemented and which has some advantages is to use a sparse
eigenvalue solver. We chose to use ARPACK, available within the NAG scientific library, which
solves problems of the form Aw = Aw, using an Arnoldi method; see Trefethen & Bau (1997).
The user code is required to return Aw when the ARPACK subroutine supplies any vector
w. Ideally the user should also be able to supply (A — o)~ 'w when the routine supplies w
and o, but in our problem it is not realistic to invert the resulting linear system. The routine
can determine eigenvalues A\ of greatest or least magnitude, real part, or imaginary part; we
require greatest real part. We consider the dynamo (and similarly the fluid stability) problem
as a matrix eigenvalue system in the form

Ab=—u-Vb+b-Vu+ Vb= Ab, (4.27)

where we have replaced b using (3.1) in (2.2). If our truncation is at mode number N, then we
have M = O(N?) modes in b and so A is an M x M matrix with approximately 7M non-zero
entries, since each mode couples to itself via diffusion and to 6 neighbours from the flow u.
Thus A is very sparse and would be impractical to store it explicitly for large N, even using
a sparse matrix format. However the ARPACK software never requires the storage of A, only
that one can evaluate it on a vector w. In fact, while it is not the case for this application,
A could even be a large full matrix which simply arises from a linear transformation on the
vector: provided this linear transformation can be calculated, the eigenvalue solver may be
used.

We implemented the Arnoldi solver for the dynamo problem as follows. Given a vector w with
M complex entries,

e A routine ‘unpacks’ w by placing successive elements of the vector as magnetic field mode
components Bz,m,n for modes in the fundamental domain Gy (4.9). For representations III,
IV and V the various fields (l;])lmn are unpacked in turn. We omit the details, which are
straightforward and follow the discussion of degrees of freedom outlined in Appendix B.

e Modes that neighbour Gy are filled in as detailed in section 4.2 according to the representa-
tion in use. This employs the same routines as in the time stepping codes.

e Ab, the right-hand side of (4.27), is now evaluated. Note that this is almost the same as
time stepping the time evolution problem (2.2) and only the diffusion terms are treated
differently, otherwise the routine used is from the time stepping code. The results for the
magnetic field b for I and II, or fields Bj for I1I, IV and V are stored.

e These fields are now ‘packed’, mode by mode, back into a vector w, precisely the inverse of
the first step, and this is returned to the ARPACK routine.

One important difference between this eigenvalue solver method and time stepping the original
PDE, is that Hermitian symmetry can no longer be exploited to reduce the number of modes
and so the computational time: it is necessary to work with all the modes in Gy. One could
write down a map from modes in Hy to Hy that corresponds to evaluating the right-hand
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side of (4.27), and this would easily be available from the time stepping codes, but such a
map involves complex conjugation and would destroy the linearity of the operation w — Aw
required for any eigenvalue solver.

A second important difference concerns the degrees of freedom of the magnetic field in Fourier
space. Focusing on Gy for the sake of argument, the symmetries for a given representation
may require certain modes on the boundary of Gy to be zero, or to be related to other modes.
For the purposes of time stepping this is not important, and these conditions are not imposed
explicitly on the field in our simulations. (In addition some of these component fields are forced
to be real from Hermitian symmetry, but this is not relevant to the Arnoldi solver.) Initially
these conditions were not imposed on magnetic fields for the Arnoldi solver, but it was found
that often this converged to a spurious solution (in which the conditions do not hold) and
spurious eigenvalue or, more often, was unable to converge to one at all.

Thus the vector w that holds all the magnetic field information is required to contain precisely
the correct number of degrees of freedom, without duplication or zeros. To do this we start by
exploiting V - b = 0 to reduce the number of components per mode to two instead of three.
Given that [ # 0 in Gy we may always reconstruct

Xl,m,n = _l_1<m}~/l,m,n + nZl,m,n) (428)

and so only store fﬁmn and Zz,m,n- The next step is to consider modes on the boundary of
Gn which are mapped to themselves or to other boundary modes under symmetries, leading
to either duplicated information, or modes forced to be zero. After these considerations, w
may be taken to contain only the minimal set of modes, and the unpacking routine recreates
everything from these; the details are in Appendix B.

Ry, || rep | N dt T | memory | comp time

I 8 | 0.01 | 200 | 1196KB 1s
IT | 8 | 0.01 | 200 | 1196KB 1s
10 || 1T | 8 | 0.01 | 200 | 1460KB 1.5s
IV | 8 | 0.01 | 200 | 1720KB 2s
vV | 8 | 0.01 | 200 | 1720KB 2s

I |22 0.005| 800 | 4892KB 2m 44s
IT | 22 | 0.005 | 200 | 3836KB 41s

100 || TIT | 22 | 0.005 | 800 | 7268KB 3m 47s
IV | 22 1 0.005 | 200 | 8588KB 1m 11s
V |22 ] 0.005 | 300 | 8852KB 1m 48s

Table 3
Typical values for time stepping codes

Two values R,, (one low, one intermediate) were chosen to demonstrate the major differences
between time stepping (table 3) and the Arnoldi solver (table 4), these being R,, = 10 and
100. To facilitate the comparison between these very different methods, the only parameter
common to both, the resolution, has been standardised as N = QR}T{Q. The resolution required
scales as RY/2 (Moffatt & Proctor, 1985; Galloway & Frisch, 1986) and these values for N
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Ry, || rep | N | # of solns | basis vectors | memory | comp time
I 8 1 7 1424KB < 1s
T |8 1 7 1452KB <L 1s

10 || 111 | 8 1 11 1656KB < Is
v | 8 1 15 1872KB < Is
VvV |8 1 11 1860KB < 1s
I |22 2 110 14MB 2m 24s
IT | 22 1 80 11MB 1m 34s

100 || III | 22 5 184 44MB 11m 35s
IV | 22 4 250 86MB 17m 59s
V | 22 2 230 79MB 10m 30s

Table 4
Typical values for Arnoldi eigenvalue solver code

have been tested to provide safe resolutions for convergence of growth rates to three significant
figures.

The space of parameters particular to each method has been explored so that the optimal values
for solutions to have converged are known. In the case of the Arnoldi eigenvalue solver this is
the minimum number of basis vectors, whereas for time stepping, these are the largest possible
time step dt and shortest simulation time 7. Values are given in the tables. The numbers of
solutions found are noted in table 4 as it identifies one of the difficulties with the Arnoldi
solver, namely that it does not always locate the eigenvalue with the largest real part unless it
is set to compute multiple eigenvalues. This seems to occur when there are several eigenvalues
whose real parts are of the same order of magnitude. For example, in representations II and III
at R,, = 100, class II has one overridingly dominant eigenvalue whereas class III has several
modes which are decaying at similar rates. This is an inherent weakness with the Arnoldi solver
method as one has to vary not only the minimum number of the basis vectors but the number
of eigenvalues to be computed, to ensure that the dominant one is actually found.

Additionally, for the ABC dynamo problem, the setting of parameters for convergence can
be very sensitive to the value of R,,, as the minimum number of basis vectors required can
increase by an order of magnitude with a small change in R,,,. This sensitivity could, however, be
indicative of more interesting structure within each representation that, through time stepping,
we are unaware of. Figure 7 identifies such a case, where crossings occur in sub-dominant
branches. In our experience, the only systematic means of finding the minimum number of basis
vectors for convergence is by brute force, rerunning simulations for fixed R,,, and incrementing
the number of basis vectors until the routine succeeds in finding one or more eigenvalues
(depending on the number desired). For low and intermediate R,,, this is not too problematic,
as simulations are relatively fast (on the order of minutes), but since increasing the number
of basis vectors will also increase the computer time for a given simulation, this becomes
extremely difficult with R,, = O(10%). The fact that we are unable to determine in advance
whether the routine will converge until it has ended, is at the core of the problem, although
a similar problem arises with time stepping, as it can be difficult to determine whether the
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field has settled to a final state or is in a long transient (an example being representation V at
R, = 215).

For lower and intermediate R,,, the Arnoldi method can be very informative, as it has the ability
to find more than one eigenvalue branch (see figure 7). Currently, through time stepping, we
can only calculate the real and imaginary parts of the dominant eigenvalue; however there
are multiple branches of solutions, corresponding to different eigenvalues, which can provide
insight into alternative (although less effective) dynamo mechanisms and the nature of branch
crossings.
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Fig. 7. Growth rates for seven branches of solutions for class V, R,, = 10 to R,, = 100.

Note that because of local mode interactions in spectral space, parallelisation of our spectral
ABC time stepping codes can be achieved without much difficulty. We divide the full range
of [ into a set of (generally unequal) subranges, assigning each subrange to a computer core.
After each time step, the memory assigned to each core is updated with the necessary magnetic
field modes from contiguous cores. The boundary modes displayed in figure 5 are then updated
before all modes are again stepped in time; we omit further details. Parallelisation was employed
for R,, > 3000. In a comparison at R,, = 1000, time steps took on average 9.0 x 1072s on a
desktop machine using a single core, whereas time steps took on average 8.6 x 1073s using a
single node (12 cores in parallel), showing a speed up of around ten times.
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5 Growth rates and magnetic field structure

In this section we give the results of our simulations.

5.1  Growth rates & frequencies
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Fig. 8. Growth rates of the representations of ABC dynamos for R,, up to 10*

The growth rates for magnetic fields in all of our simulations are summarised in figure 8§,
showing growth rate v = Re A versus R,,. For the 1:1:1 ABC flow, fields in only two of the
symmetry classes provide the dominant dynamo mechanism, namely those of classes II and V.
As discussed in Galloway & Frisch (1986), there are two distinct windows of dynamo action,
separated by a brief interval of purely decaying fields over the range of R,, =~ 17.5 to R,,, ~ 27.
The fields in the second window were referred to as ‘symmetry-breaking’, as they have fewer
apparent symmetries than fields in the first window. It is now clear that fields in the second
window belong to symmetry class V, and this remains dominant in our simulations up to
R,, = 10% and up to 2.5 x 10* in Bouya & Dormy (2013) (where the growth rate begins to
level at approximately 0.1). The branches II, IV and V give growth rates that show no sign of
tending to zero in the large R,, limit, suggestive of fast dynamo action. However the limiting
values for large R,, cannot be assessed from the present results. Interestingly, it can be seen
from figure 9 below that boosts in growth rates for classes II and IV at high R,, are linked to
mode changes within the classes.
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Symmetry classes I and III have also been established to contain dynamos, but show the lowest
growth rates and last onset as R,, is increased. In both cases, difficulties were encountered with
calculating the leading growth rate, as fields in these two classes show long, slowly evolving
transients, particularly in class ITI. Limitations of computer time have not allowed us to explore
values of R, for class III beyond those shown in figure 8. In class I, until the mode change at
R,, ~ 800, the field with the largest growth rate is the trivial solution, with b = u, v = —R!.
It is important to note that without enforcing symmetries, the dynamo growth rate will simply
be the envelope of the individual growth rates of the symmetry classes, meaning that the
growth rate of only the fastest growing dynamo for a given R,, will be calculated.
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Fig. 9. Frequencies for the ABC dynamos plotted against R,,.

The imaginary parts of the eigenvalues, corresponding to (half of) the frequencies of the mag-
netic energy oscillations, are shown in figure 9. Since the eigenvalues occur in complex conjugate
pairs, the absolute value of the imaginary part is plotted. It is apparent that some of the modes,
within each symmetry class, are steady (real eigenvalue), whereas others are oscillatory (com-
plex eigenvalue). Transitions between steady and oscillatory modes for a given symmetry class
may occur because of a mode crossing (giving a discontinuity in the frequency) or because of
eigenvalue coalescence (in which the frequency tends to zero with a square root dependence).
This is discussed recently in Bouya & Dormy (2013); our results agree with theirs for the fastest
growing mode at each R, (as symmetry is not imposed) and we refer to this paper for further
discussion including a phase plane analysis. Here we simply note that the kink in the dominant
representation V curve around R, ~ 215 was a source of difficulty for Galloway & Frisch
(1986) as very slow oscillations led to uncertainty in the growth rate. It was not possible at the
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time to determine whether this corresponds to a real eigenvalue or two complex eigenvalues
with small imaginary parts. It is now clear that the frequency goes to zero below this point,
where two complex eigenvalues coalesce to give a leading real eigenvalue above it (Bouya &
Dormy, 2013); naturally there is also a subdominant real eigenvalue.

In addition to this there are changes in the eigenvalues for other, subdominant symmetry
branches. For branch II there is a mode crossing (within representation II) at around R,,, ~ 190
giving a discontinuous jump from a non-zero frequency to a real eigenvalue followed by eigen-
value de-coalescence as R, increases above 329 and the branch becomes oscillatory. Likewise
for branch IV there are mode changes followed by eigenvalue coalescence and de-coalescence
(at R,, ~ 249 and 675 approximately). In class III, the frequency appears to be decreasing
rapidly as R,, increases, prior to the mode change at around 620. For larger R,,, an increase
in frequency is seen, closely matching the frequency profile for class I, which may be related
to the similarity in the structure of their magnetic fields as discussed below

5.2  Field structures

()

Fig. 10. Visualisations of magnetic field strength |B| for (a) II to d) V for R,, = 100

Figure 6 gives examples of plots of total magnetic energy versus time for two oscillatory cases
(a,b) and one steady case (c). In the oscillatory cases, the structure of the field is time dependent
and we have visualised fields over times during a cycle. The symmetries in each class force the
magnetic field to take certain arrangements, leading to the individual structures that are seen
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in figure 10, which shows snapshots of the strongest fields in three dimensions for R,, = 100.
We see the familiar cigar-like structures (which we simply refer to as ‘cigars’ in what follows),
some single and some multiple, concentrated on the straight-line heteroclinic connections, or
separatrices, determined by Dombre et al. (1986). Note that we have chosen a moderate value
of R,, as visualisations at larger values simply give similar, but more concentrated structures
and are in practice harder to interpret. We do not show the field for class I, at this value of
R,,, which is just b = u.

(C) 0 /2 o 3n/2 on (d) 0 /2 n 3n/2 on

Fig. 11. Visualisations of magnetic field component b, on a cross section z = 7/4 for (a) II to (d) V
with R,, = 100.

The remaining classes II to V are all oscillatory at this value of R,, and have similarities
in structure but differences in detail. To give another view we show in figure 11 the field
component b, perpendicular to a slice z = w/4 through the fluid domain. For reference figure
12 (after Dombre et al., 1986) shows Poincaré sections for z = 0,7/4, ... reading across then
down. There is a network of thin bands of chaos visible, and in between (the white regions),
there is integrable motion, referred to as the ‘principal vortices’” of the flow. The second of
the sections, z = 7/4 is relevant to figure 11. At this value of z there are stagnation points
u = 0 lying at 7, = (5,3,1)7/4 (with a 2-d stable manifold, 1-d unstable manifold, type ‘a’)
and o = (7,5,1)m/4 (with a 2-d unstable manifold, 1-d stable manifold, type ‘3’). There
are also two points lying on the straight-line separatrices that join stagnation points namely
rs=(1,1,1)r/4 and 4, = (3,7, 1)7 /4.

In each symmetry class from II to V in figure 10 the field has concentrations along the separa-
trices joining stagnation points, and this is evident in the panels in figure 11, where the values
of b, are large near to 71, r3 and r4. At the stagnation point r; the 2-d stable and 1-d stable
manifold act to concentrate magnetic fields into flux ropes and these are then visible along
separatrices, e.g. at r3 and r4. In each case, the field is not significant at rs, unsurprisingly
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Fig. 12. Poincaré sections of particle trajectories in the 1:1:1 ABC flow, crossing the planes of z = rx /4
for r =0,1,...,7, reading across then down.

since here the 2-d unstable manifold acts to repel field. As all the modes are oscillatory for this
value of R,,, the fields in the cigars change sign during a single cycle. However the structures
and the way this occurs differs in the different representations and we now remark on this
(based also on other visualisations not shown here).

In classes IV and V, the field is twisted around (but never lies on) the separatrices with the
dominant fields consisting of four and two flux tubes respectively. In the oscillating branch for
class V, the pair consists of a minor (weak) and a major (strong) flux tube, each with different
polarity, eventually reversing polarity and switching roles. Class IV contains two pairs, each
pair consisting of a positively and a negatively directed flux tube but with one pair being
dominant (strong) and the other subdominant (weak). As in class V, these pairs feed off one
another until a critical point is reach (lowest total energy in the cycle) and the fields reverse
polarity and switch roles.

Before the emergence of the growing mode in class I, the slowest decaying mode is simply
the trivial solution b = u. In the growing mode that emerges at R,, ~ 800 we see something
much more interesting: the magnetic field is formed as ‘flux ropes’, centred around the six
principal vortices. Each flux rope consists of six individual flux tubes, each tube with varying
strength along its (periodic) length. This structure can be clearly seen in figure 13 (a,b) and
the cross section of b, at z = 7/4 reveals the alternating polarity of these tubes. The flux ropes
in classes I and III (below) closely resemble the structure of fields in smooth Ponomarenko
dynamos (Ponomarenko, 1973). This is well known as a slow dynamo mechanism, relying on
diffusion in curved geometry and shear to give a dynamo cycle (Gilbert, 1988; Ruzmaikin,
Sokoloff & Shukurov, 1988). Our current results indeed show falling growth rates for these
branches as R, — o0, in keeping with this interpretation.

Class III is intriguing in that it has features that resemble both the structures of class I and
those of classes II, IV and V. Before the emergence of the growing mode, the field switches
between two states. In its first state, the field is concentrated along four of the six principal
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(d)

Fig. 13. Magnetic field strength (|B|) for (a) class I and (c) class III and field component b, at z = 7 /4
for (b) class I and (d) class III, for R,, = 1000.

vortices of the flow and in the second state, the field forms three flux tubes, containing a major
and two minor flux tubes (with the opposite polarity to the major), and all twisted around the
separatrices. Over a single cycle, the magnetic field jumps between these two states, each time
reversing polarity so that each state occurs twice in one cycle. Figure 11 (b) shows class III in
the second state described. In the growing mode, however, which emerges at R,, ~ 650, we have
a combination of the two states, with the flux ropes, seen in class I, concentrated around four
of the six principal vortices and only two apparent flux tubes (of opposite polarities) twisted
around the separatrices. This structure can be seen in figure 13 (c,d). Note that the fact that
we see field in four of the six principal vortices seems surprising — why these four? — but is
ultimately a result of our choice of matrices employed for III; with this our visualisations (for
III, IV, V) have an element of arbitrariness although the eigenvalues do not.

For class V, a full cycle of field evolution is displayed in figure 14 at eight different times for
R,, = 100. The snapshots were taken so that the evolution of the field could be seen as clearly
as possible, though some explanation is required. The start of the cycle was fixed as the time
at which the energy is at its minimum and the snapshots were normalised to account for the
growing field. At the start of the cycle, we see lone flux tubes at the stagnation point 75 and at
the midpoints 3 and r4. These flux tubes weaken as secondary flux tubes of opposing polarity
develop alongside them until by 0.457, the secondary flux tubes are stronger. Between 0.45T
and 0.467 (frames 3 and 4), a reversals occurs so that when the secondary flux tube reaches
full strength and the primary tube is diminished, the field has returned to a state similar in
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Fig. 14. Magnetic field component B, at z = 7 /4 for times ¢t = 0, 0.27", 0.45T, 0.467', 0.52T", 0.57T,

0.87 and 0.997 for class V, R,, = 100. Blue (dark) represents negative field strength and yellow
(light) represents positive.

appearance to its original configuration at 0.527. Between 0.527 and 0.577, multiple field
reversals occur, each on a timescale of order 0.017 or less, until by 0.577 the configuration
settles as the reverse of that at 0.527". Again, a secondary flux tube emerges and grows while
the primary diminishes so that by 0.997', the configuration has almost returned to that of the
start. This process describes the dominant dynamo mechanism for R,, > 24, with the period
of this cyclic behaviour increasing until at R,, =~ 215, the period becomes infinite and the
structure of the dynamo is no longer time dependent, though the field amplification process
remains the same (see Dorch, 2000). The final field configuration can be seen in figure 15
at R, = 250. As R,, is increased, the structure of this dominant mode remains the same,
although the flux tubes are confined to an ever smaller region, making it increasingly difficult
to visualise at higher R,,.

3ﬂ/2 .
3m/2

Fig. 15. Visualisations of (a) magnetic field strength |B |) and (b) field component b, at z = 7/4 for
class V, R,, = 250.

Spectra of magnetic energy reveal some differences between the representations that mirror
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Fig. 16. Energy spectra displaying normalised magnetic energy against wavenumber k (log-log) for
(a) Ito (e) V, at R, = 10,102,103, 10%.

the structure of the fields in real space. In figure 16, it is seen that for representations II, IV
and V a spectrum with a power law dependence of approximately k£ emerges at large R,,:
this is consistent with the concentration of magnetic field in isolated flux tubes. (In fluid
dynamics similar tubes of vorticity would correspond to an energy spectrum of k~* and so a
vorticity spectrum of k.) However for representation I there is considerable energy at large scales
consistent with the broader spatial scales of a slow dynamo maintained by weak stretching in

the principal vortices, while III shows a rather flatter spectrum whose relationship with the
complicated physical space picture is unclear.

6 Growth rates and structure for fluid stability of ABC flows.

In this section we consider the fluid stability problem given in (2.4) for a perturbation v to
the ABC Navier—Stokes flow w (2.1), maintained against viscosity by a body force. The same
symmetry considerations apply as for the dynamo problem, but the results are very different.
Figure 17 shows growth rates and figure 18 frequencies for each branch as a function of R,

obtained numerically using codes for which symmetry is built in, and checked against a code
with no assumption of symmetry.

To test our results, we referred to Galloway & Frisch (1987), who numerically solve this problem
up to R, ~ 200. We obtain the same branch of solutions for the range of R, that they studied
and identify it as class V. In parallel with the magnetic case, all five symmetry classes contain
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Fig. 17. Growth rates for fluid instability in the ABC flow.

flows in which the growth rate of the instability is positive. The first flow to become unstable
is in class V and this occurs somewhere in the interval R, € [13,14]. As R, is increased, classes
III, TV and II follow, with class I the last to have an unstable mode, emerging at R, ~ 50. Class
V remains the most unstable flow until R, ~ 160, at which point a flow in class I becomes the
dominant mode. It is then superseded by a steady mode in class IT at R, ~ 370, with this mode
remaining dominant up to the largest R, simulated. In contrast to the magnetic problem, all
classes have remarkably similar growth rates at large R..

Note that the dominant mode at R, = 102 in class II, is steady, as with the dominant mode in
the magnetic problem. Class II is the only one in which the dominant modes have successively
lower frequencies as R, is increased and, of course, is the only class to contain a steadily growing
perturbation as the dominant mode for intermediate and high R.. The modes of classes I, III,
IV and V at R, = 10% are oscillatory with surprisingly little difference in their frequencies.
Notably, classes I and III are very close in frequency, as are classes IV and V. We see no cases of
eigenvalue coalescence or de-coalescence. We observe only discontinuous changes in frequency
indicative of completely different modes emerging within each class.

The results that we have obtained indicate that the symmetries play a less crucial role in the
fluid instability problem. Figures 19 and 20 are visualisations of the flow structures in each
class at R, = 300. This value was chosen, as by this point, the dominant modes are on the
same branches as the dominant modes at R, = 103, and so the flows have a similar structure
but are not so concentrated around the separatrices. In each case the strongest velocity fields
are linked to separatrices, but the second of these figures shows much more overall structure
in a cross section, than in the magnetic case.
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Fig. 18. Frequencies for fluid instability in the ABC flow.

&
(d) ‘ (e)

Fig. 19. Visualisations of magnitude of fluid instability |v| for (a) I to (e) V for R. = 300

The dominant flows in classes II-V are reminiscent to those of classes II, IV and V of the
magnetic problem. There is no analogue of the magnetic field concentration in principal vortices
observed for representations I and III. We see that imposing the symmetries forces the flows
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into certain configurations. Class II includes three tubes of strong flow concentrated around
the a-type stagnation point that are stretched equally towards the S-type stagnation point.
Referring to the cross section of v, at z = 7/4, the flow in two of the tubes is of the same
sign, or direction, with the third of the opposite sign. Note that in this class, strong flows also
exist that surround the S-type stagnation points; these are not seen in figure 19(b) but are in
figure 20(b). Class III has two tubes of flow centred on the a-type stagnation point. These two
tubes are joined at the stagnation point, however, with each tube stretched towards a different
[-type stagnation point. These connected tubes are of the same sign, seen as a flat area of
strong flow at r; = (5,3, 1)7/4 in 20(c).

2n

(d) 0 /2 ” sx/2  on (e)
Fig. 20. Magnitude of fluid instability component v, for (a) I to (e) V for R, = 300 at z = 7 /4

The most unstable flow in class IV includes a single major and multiple minor tubes centred
on the a-type stagnation point. The cross-section is less revealing than others, though we can
identify stronger flows near r, and relatively strong flows in the principal vortex that runs
vertically on the left-hand side of the section. The strongest flows in class V are, again, centred
on the a-type stagnation points and are stretched into the classic cigars, though appearing
more flattened than their counterparts in the magnetic case. These features resemble those of
figure 2 in Galloway & Frisch (1987), which appears to belong to the same branch of solutions
as those in class V.

The magnitude of the perturbation flow is difficult to visualise in class I, as there are many
small features. The dominant flow here is situated around the separatrices connecting the a-
and [-type stagnation points, rather than centred on the a-type stagnation points. However,
three small beads of strong flow are also built up on the planes in which the streamlines of
the flow enter the a-type stagnation points. In figure 20(a), we see that areas of flow are
also loosely arranged around the principal vortices, suggesting that these also play a part in
generating and magnifying the fluid instabilities. Overall, in comparison with the magnetic
problem, the structures appear to be less ordered and much more loosely linked to the thin
bands of Lagrangian chaos, with substantial flows in the principal vortices.
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7 Discussion

In this paper we have studied the behaviour of the ABC 1:1:1 dynamo at large R,, and
by exploiting symmetries have both reduced the computational effort and obtained distinct
branches of solutions. These show a variety of field structures, in particular fields dominated
by between one and three cigar-like structures on the separatrices, and fields that lie in the
principal vortices, showing generation by a Ponomarenko-type mechanism. The results show
that the second window of Galloway & Frisch (1986) remains dominant up to R,, = 10* and
this has now been extended by Bouya & Dormy (2013) in a related study, with growth rates
of around v = 0.1 at R,,, = 2.5 x 10%. It is interesting to compare these results with the rate of
line-stretching (equal to the topological entropy for this flow) measured as hj,e ~ 0.09 and the
rate of growth of flux as I's >~ 0.055 in Childress & Gilbert (1995). The growth rates known
at the largest values of R, exceed both I's and the rigorous upper bound of hy,. (Klapper &
Young, 1995). Either the latter has not been measured sufficiently precisely, or the growth rate
v has yet to reach a true large-R,, limit for the magnetic Reynolds numbers so far studied and
must yet decrease. Certainly we do not see much evidence of the accumulation of sheets or
tubes of flux in a chaotic region, but then this may be hidden as the line stretching rate hjpe
is distinctly smaller than the stretching given by the eigenvalue /2 at any a-type stagnation
point. In other words it is difficult to separate the global chaotic stretching and folding from
the strong local amplification at these stagnation points, and this is a topic for future analysis.

Certainly the growth rates and frequencies of all the branches do not seem to have really settled
down for R, up to 10* in our runs. We also note that idealised models of dynamo action in
steady flows suggest the possibility of an infinite sequence of mode crossings with a growth
rate that nonetheless converges to a limit; however with these crossings could be fields with
increasing levels of structure along field lines and so the frequencies of the dominant modes
would increase with R,,, while the growth rates would converge (Finn et al., 1991; Childress
& Gilbert, 1995). Indeed there are hints of the magnetic fields developing structure along field
lines in the multiple field reversals noted for class V (see the discussion of figure 14).

Other elements of our study included testing the use of a sparse Arnoldi eigenvalue solver on
this problem: this we found problematic at large R,, and here it appears that time stepping
remains the best method available. Nonetheless at moderate R,, it is efficient and also allows
one to find subdominant branches. We also investigated the fluid stability problem and followed
branches in all five symmetry classes. Here it is striking that, unlike in the magnetic problem,
the growth rates of all symmetry classes become similar at the largest Reynolds numbers
studied, of around 1000. This strongly suggests instability mechanisms that are not closely
linked to the behaviour of the base flow along the separatrices and so not closely constrained
by the symmetries of the field. In contrast, in the magnetic problem, the stretching of field
along these separatrices is a crucial part of the dynamo mechanism and so if a representation
limits the types of field that can occur there, it has a strong impact on the growth rate. For the
fluid instability the modes indeed are more dispersed than in the dynamo problem, although
again the strongest flows are along the separatrices.

Future planned studies are to combine the codes here with those in Bouya & Dormy (2013)
in order to push R, to even larger values, and to investigate the alpha effect and large-scale
dynamo fields, using a Bloch wavenumber formulation to allow fields of arbitrary scale. This
is easily incorporated into the current code and again symmetries may be used to reduce the
computational effort, one aim being to reproduce and extend results of Galanti et al. (1992).
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We note that the 1:1:1 ABC flow was chosen for its high level of symmetry and well-established
dynamo but it is known that other ABC flows have more substantial regions of chaos and faster
growth rates, for example flows with A = B # C (see Galloway & Frisch, 1986; Alexakis,
2011). Naturally these flows are less symmetric, with only eight of the 24 symmetries retained,
in the case of A = B those that map z to +z, namely i, a,a?, a®,b?, ¢,k and n. This group is
isomorphic to Dy as discussed in section 3.1; following every representation gives only a 25%
saving of computer time over a full simulation, although there is the advantage of obtaining
all the branches independently. For A, B and C all unequal, only the symmetries i, a2, b? and
c? are retained, this group being isomorphic to Zs X Zs, and there is no saving.

Finally we consider how the symmetry classes I to V impact on the presence or otherwise of
cigars in the magnetic field problem. We consider the separatrix whose centre is at the « type
stagnation point at » = —(1,1, 1)7/4 and introduce local cylindrical polar coordinates (p, 0, ()
there (Gilbert, Ponty & Zheligovsky, 2011), given by

z m/4 1/v2 1/v6 1//3) [pcost
y|=—|=x/4|+|-1/v2 1/V6 1/V3| | psind |- (7.1)
2 /4 0 —2v61/V3 ¢

With this it may be checked that the action of d is to take (p,8,{) — (p,0 + 27/3,() and the
action of n is to take (p,d,() — (p, —0, —(¢). We may consider potential cigar structures of the
general form

bemn = &pm cosmb, bgpn = &pm sin m#, (7.2)

It can be checked that under the action of d we have to restrict m = 0 mod 3 for I and II,
while m # 0 mod 3 for III, and values of m are unrestricted for IV and V. This eliminates the
possibility of a single cigar, i.e. a local, approximately axisymmetric (m = 0), (-independent
structure, for representation III. If we look for a single cigar in representation I or II, then we
observe that this is possible only in II (in which M"(n) = —1), and similarly an m = 0 cigar
is possible only in V and not in IV, of the three-dimensional representations.

This characterisation of the structures that can occur within a given symmetry classes has
points of contact with figures showing magnetic fields in section 5.2 and the growth rates
at the largest values of R, in figure 8. We observe that the two modes showing the fastest
growth rates are II and V, in which single cigars can exist. On the other hand I, III and IV
show rather smaller growth rates to the right of this figure. Although these cases allow multiple
cigars (that is m # 0) or more complex structures, the enhanced dissipation is likely to suppress
growth rates at these R,,. Further study is planned of the cigars in real space and the link to
symmetries.
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A Matrices for representations III-V

The forms of representations a equal to IV and V that we choose to use are given below with

the upper sign for a as IV and the lower sign for o as V.

01 0 -1 00
M®@)==x|-10 0|, M*@)=| 0-10
00 —1 0 01

-1 00 1 0 0
M*b)y==+| 0 01|, M*®)=|0 -1 0
0—-10 0 0-1

0 0-1 -10 0
M*c)==+|0 -1 0|, M** = 01 0
1 0 0 00 —1

00 1 010
MYd)=|10 0|, M*d)=|0 0 1
010 100

0—-10 0 01
M*e)=|o0 o1, M*F)=]|-1 00
-1 00 0—-10

0 0-1 01 0

Mg =|1 0 0|, M*g)=| 00 —1
0 -1 0 10 0

00 —1 0—10

MeG)==+| 01 0|, M*(k)=%|[-1 00
10 0 0 01

00 1 010
M*m)=x£|0 1 0|, M*n)==x[1 0 0
100 00 1
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0 -1 0
, M@ =+|1 0 0],
0 0-1
~10 0
,MbB=+| 00 -1/,
01 0
0 01
, M=% 0-10],
~1 0 0
0 —1
, M%e)=|[-10 o],
01 0
0 -1 0
, M (%) = 0-11,
0 0
1 0 0
, M*(h)==%10 0-1],
0 -1 0
100
, M*(l)=+10 0 1|,
01 0
100
, M*()=10 1 0 |-
00 1



The form of representation III that we use is given explicitly by

MHI(i) _ MIII(aQ) _ MIII<b2) _ MIII<C2) _ ( 1 0) |

B Degrees of freedom for representations I-V

We work with the modes in Gy given in (4.9) and here we let M be the number of degrees
of freedom for a given value of N. In other words M is the minimum number of independent
complex quantities needed to specify any field b in Gy for representations I and II, and to
specify the fields b; for representations III-V. In each case we include the constraint that
V -b =0, but we do not impose Hermitian symmetry.

We consider a slice of constant [ depicted in figure 5(a). We first note that in view of the
discussion of section 4.2, the left-hand column b;p,, 0 < n <[ and top row b ,,;, 0 <m <
can be obtained from b;, o and by, respectively, using (4.6) and (4.7). The remaining modes
are treated as follows for b = by in representations I and II, and the b; for III-V.

e Modes (b;)imn, (b;)imo and (b;);;, with 0 < m,n < [ are unconstrained and each corre-
sponds to 2 degrees of freedom using (4.28).

e The modes (b;);;; map to themselves under d and this constrains b;;; = 0 for representations
I and II. For III, these modes are constrained to the form

(bl)l,l,l :(2a, —a + \/567 —a + \/3/8), (B1>
(ba)iis =(28, —V3a — 3,V3a — B). (B.2)

For IV and V the fields must take the form

(bl)l,l,z = (0&7 —Q — 5;5)7 (bz)z,z,z = (57047 —Q — 5); (bs)l,z,l = (—Oé - 6,5704)~ (B‘3>
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e The modes (b;);;0 map to themselves under k and this constrains b;;o = 0 for I and
biio = (o, —a, §) (B.4)
for II. For representation III, however, the two fields take the form
(b1)110 = (o, —, 8), (b2)igo =0 (B.5)
For IV the fields must take the form
(b1)1i0 = (b2)110 = (o, —a, B),  (b3)110 = 0. (B.6)
and for V
(b1)iio = (o, —,y),  (b2)io = (—a, o, =),  (b3)i0 = (8, —05,9). (B.7)

e The modes (b;);00 map to themselves under b. For representations I (upper sign) and II
(lower sign) this constrains b; o = 0 for | = 2k even, and

bioo = (0,a, F(—1)%ia), (B.8)
for [ = 2k — 1 odd. For representation III, the fields are of the form
(b1)100 =0, (b2)100 =0 (B.9)
for [ = 2k even and
(b1)100 = (0,20, (=1)*i(v38 — a)),  (ba)ioo = (0,28, (=1)¥i(v3a + B)) (B.10)
for | = 2k — 1 odd. For IV (upper sign) and V (lower sign) the fields must take the form
(b1)100 =0, (ba)ioo = (0,0, £(=1)"8), (b3)i00 = (0,3, F(~1)"a) (B.11)
for [ = 2k even, and
(b1)100 = (0, ., £(=D)¥iar), (b2)100 =10, (b3)100=0 (B.12)

for [ =2k — 1 odd.

Counting of modes gives the the total number of degrees of freedom as

4N? —6N? — TN + 12), (B.13)
4N?® —6N* + 5N), (B.14)
4N? — 6N? +5N), (B.15)
4N3 —6N? + N), (B.16)
4N? —6N? + 5N — 4), (B.17)

NI N— W = O
N TN N N N
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for I, II, III, IV, V respectively for N even, while for N odd,

4N? —6N? — TN +9), (B.18)
4N —6N? + 5N — 3), (B.19)
4N? — 6N? +5N — 3), (B.20)
AN® —6N? + N + 1), (B.21)
4N? —6N? + 5N — 3). (B.22)

N[ N[ W= O [= Oy =
N N N N N
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