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Jurassic climate mode governed by ocean gateway
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The Jurassic (B201–145 Myr ago) was long considered a warm ‘greenhouse’ period; more

recently cool, even ‘icehouse’ episodes have been postulated. However, the mechanisms

governing transition between so-called Warm Modes and Cool Modes are poorly known.

Here we present a new large high-quality oxygen-isotope dataset from an interval that

includes previously suggested mode transitions. Our results show an especially abrupt

earliest Middle Jurassic (B174 Ma) mid-latitude cooling of seawater by as much as 10 �C in

the north–south Laurasian Seaway, a marine passage that connected the equatorial Tethys

Ocean to the Boreal Sea. Coincidence in timing with large-scale regional lithospheric

updoming of the North Sea region is striking, and we hypothesize that northward oceanic heat

transport was impeded by uplift, triggering Cool Mode conditions more widely. This extreme

climate-mode transition provides a counter-example to other Mesozoic transitions linked to

quantitative change in atmospheric greenhouse gas content.
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C
old and warm climate ‘modes’ in the Jurassic have been
suggested1 on the basis of palaeobiogeographic and
oxygen isotopic evidence2,3. In support of cold modes,

several authors have noted the occurrence of glendonite
(predominantly cold-water calcite pseudomorphs) and ice-
rafted debris in circum-Arctic basins4–6, although whether
significant continental ice sheets developed during the Jurassic
is debatable7. In contrast, the Toarcian Oceanic Anoxic Event
(T-OAE) in the Early Jurassic (B182 Ma) stands out as a very
warm episode8,9. The origins of such warm interludes are well
investigated10,11, but the character and origins of the cold periods
in the Jurassic are not understood.

The area of western Europe was situated between palaeolati-
tudes 30–45� N (ref. 12). Much of the region was traversed by
epicontinental seas forming the so-called ‘Laurasian’ Seaway that
connected the low-palaeolatitude Tethys Ocean in the south to
the high-palaeolatitude Boreal Sea via the Viking Corridor in the
north (Fig. 1), and some authors have suggested that seaway
dynamics had wide effects on palaeoceanography and climate13.

Here, we present new data comprising oxygen-isotope ratios
from well-preserved late Pliensbachian to Bajocian (191–168 Ma)
calcite macrofossils of the Laurasian Seaway area, which we use to
reconstruct past seawater temperatures. The new data set is
unprecedented in terms of degree of detail and stratigraphic
precision for this interval of time. Diagenetically resistant low-
Mg-calcite fossils (belemnites, bivalves and brachiopods) were
screened for post-depositional alteration and only those samples
lacking physical or chemical signs of alteration were regarded
as preserving the original carbonate d18O (Methods section),
following the detailed explanations recently fully reviewed in ref.
14. We infer an abrupt earliest Middle Jurassic (B174 Ma), mid-
latitude, cooling of seawater by as much as 10 �C, and we
conclude that tectonic influence on seaway connectivity had
far-reaching effects on palaeoclimate.

Results
Oxygen isotopes. Large oxygen-isotope fluctuations occur
over the studied interval (Fig. 2 and Supplementary Data 1),
highlighting the Late Pliensbachian Cool Event15,16, the warm
episode during the T-OAE (refs 9,17), and the Middle Jurassic
cold interval18,19 earlier described as a long-term trend to cooler
temperatures7. Here we show for the first time that this latter
positive d18O shift is very sharp and occurs precisely in the
earliest Aalenian just after the Early to Middle Jurassic boundary
(Toarcian–Aalenian; Fig. 2).

In the Hebrides Basin the shift to heavier values is 42.5%
(Fig. 3). Both positive and negative isotopic trends in the data set
are the same for the different basins and provinces with the
largest amplitudes recorded in the Cleveland and Hebrides
basins, smaller amplitudes in the Swabo-Franconian Basin, and
smallest amplitudes in the Lusitanian and Basque-Cantabrian
basins (Fig. 2). The new data set also shows that the negative
oxygen-isotope excursion during the T-OAE is transient and
superimposed on an overall warming trend through the entire
Toarcian in the Cleveland Basin. The Toarcian data from the
Hebrides are especially significant as they confirm equivalently
warm temperatures in both the Hebrides and Cleveland basins
during the Toarcian. Thus the early Aalenian presents one of the
most pronounced d18O inclines observed for Phanerozoic data
sets. The resulting heavy values persist during the Aalenian and at
least the early Bajocian (that is, for 4B5 Myr), with some
significant short-term returns to warm conditions (for example,
in the humphresianum zone: biosubzone no. 72; Fig. 2 and
Supplementary Table 1).

Carbon isotopes. Carbon-isotope data (Supplementary Data 1)
generated from the same sample set do not show a marked
change at the Toarcian–Aalenian transition, but instead show a
long-term decline in values across the same time span as oxygen
isotope become substantially heavier (Supplementary Figs 1
and 2).

Discussion
Taxa analysed for this study were selected on the basis of lack of
observed vital effects on oxygen-isotope ratios in biogenic calcite
of modern representatives16,20. Changes in the oxygen isotopic
composition of calcite shells might also partly reflect changes in
seawater d18O or pH2. However, given the ubiquitous normal
marine salinities evident from the studied fossil assemblages,
neither factor can have had a significant influence on shell d18O.
Only for the T-OAE, characterized in the seaway by up to 10 m of
laminated black shale, has it been suggested that Laurasian
Seaway salinity deviated from the long-term mean, in this case by
influx of freshwater21,22. The 2.5% d18O increase in the early
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Figure 1 | Late Early Jurassic palaeogeography. (a) Map shows the

connection between the equatorial Tethys Ocean and the Boreal Sea via the

Laurasian Seaway; the latter including the Viking Corridor which was

several hundred kilometres wide43. Red arrows mark generalized

palaeocurrents (see text, ref. 44, and references therein). (b) Detail of

Laurasian Seaway palaeogeography with the region affected by North

Sea Dome as determined by the generalized outer limit of the Toarcian

subcrop40. Brown arrows represent the siliciclastic sediment supply/

transport in relation to domal uplift39,40. Sample locations are numbered

and identified by stars (Hebrides Basin (I; Scotland), Cleveland Basin

(II; England), Swabo-Franconian Basin (III; Germany) and Lusitanian

(IV; Portugal)/Basque-Cantabrian basins (V; Spain)). SNS, Southern North

Sea Basin, W, Wessex Basin. Figures modified from refs 12,45,44 and

references therein.
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Aalenian might alternatively be explained by evaporative
concentration of the heavy isotope of oxygen, but that would
imply hypersalinity when fossil and sedimentological evidence
demonstrate stenohaline conditions through the whole late
Toarcian to early Aalenian interval23–25.

We therefore conclude that the observed strong shift towards
heavy d18O values in the early Aalenian principally reflects
seawater temperature change, indicating about 10 �C of cooling
over a period of about 0.5 Myr, and lowest temperatures of B4 �C
using the standard assumption26 of � 1% (Standard Mean
Ocean Water) for seawater d18O (Fig. 2). Some calcite macrofossil
taxa stopped calcification in cool seasons, suggesting that the
new data set might not record the coldest cold-season water
temperatures, and that warm season temperatures in these
climatic regions are overrepresented27. Such a mechanism may
explain also the lower variability of d18O in the Hebrides Basin
relative to the Cleveland Basin (Fig. 3, Supplementary Fig. 1, and
ref. 28). Lighter oxygen-isotope values and more variability are
evident from the northerly Hebrides and Cleveland basins relative
to the records from the Lusitanian and Basque-Cantabrian basins;
this likely results from shallower water habitats in northerly
basins (B100 versus B200 m)13,29 and a latitudinal salinity effect
of about B1 per mil (cf. ref. 30).

The same late Pliensbachian to Bajocian palaeoclimatic
fluctuations have also been suggested for the Arctic region, based
principally on mineralogical, palaeontological and sedimento-
logical data. Significant cooling has been inferred for the late
Pliensbachian and the earliest Middle Jurassic (including the
Aalenian and Bajocian) based on glendonite occurrence,
ice-rafted debris, and low marine diversity, as well as palynology;
in contrast, a temperature maximum in the early Toarcian
is evidenced by palynological data indicative of northward
expansion of terrestrial floras4,31–33.

Over the studied interval there is no clear correlation between
the oxygen isotope and carbon-isotope records (Fig. 3;
Supplementary Fig. 2). Therefore an explanation for the
palaeotemperature changes based on inferred marine organic
carbon burial is not supported by the data. In addition, positive
carbon-isotope excursions for latest Toarcian to Bajocian
successions of other regions in the Laurasian Seaway18,19,34–37

are different in timing and magnitude19, and have been related
to more local enhanced biological activity of eutrophic
phytoplankton and radiolarians which strengthened the
biological pump36.

We hypothesize that the uplift of the North Sea Dome,
caused by a rising asthenospheric plume38–40, led to obstruction
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Figure 2 | Pliensbachian to Bajocian oxygen-isotope record plotted against subzone numbers. Data obtained from pristine and biostratigraphically

well-constrained marine calcite fossils from selected European basins (Methods section, Supplementary Data 1, Supplementary Table 1). Shading behind

the oxygen-isotope data highlight warm (red) and cool (blue) palaeotemperatures. Plot symbol shape indicates macrofossil type and colour indicates

locality. The plot highlights the abrupt and large magnitude shift towards cold seawater temperatures in the earliest Middle Jurassic which, in Hebrides

Basin, represents at least 10 �C (Fig. 3). The Late Pliensbachian Cold Event and the Toarcian Oceanic Anoxic (hot) Event are also represented.

Superimposed higher frequency climate changes are present during the complete time span for all localities. Data ranges for specific times reflect

expected (annual) temperature changes16,27 and habitat effects28.
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of a northward flowing current through the Viking Corridor
and thus strongly reduced heat transport to the Arctic regions
(Fig. 1). At the same time, cold Arctic waters were able to exert
influence on marine palaeotemperatures at palaeolatitudes as low
as 45� reaching at least the Hebrides Basin (Figs 1 and 2). A
comparable scenario is the Cenozoic domal uplift of the
Greenland–Scotland Ridge which regulated the flow of warm
water into the North Atlantic41,42. In the Jurassic North Sea area
regional uplift affected a zone of B1,250 km in diameter38–40.
Timing of the uplift has been identified by reference to the early

Aalenian unconformity, widely observed in seismic reflection
and borehole data39,40. In addition, latest Toarcian and
earliest Aalenian shoreline regression is indicated by
sedimentary facies changes in the Cleveland Basin (Yorkshire),
Wessex Basin (Dorset) and other North Sea perimetric basins,
further indicating regional tectonic uplift38–40. Pronounced
provincialism in ammonite faunas observed for both the
Laurasian Seaway and Arctic regions43 initiated in the early
Aalenian confirms a structural barrier between low and high
latitudes33,43.
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North Sea Dome uplift would have fundamentally modified
palaeocean current patterns. The general Early Jurassic ocean
circulation of the NW Tethys and adjacent shelf is thought
to have been characterized by a gyre acting down to water
depths of several hundred metres, perhaps modified by
monsoonal processes (ref. 44 and references therein).
The Jurassic palaeogeographic/palaeoceanic setting was similar
to the modern North Atlantic Gulf Stream or North Pacific
Kuroshio current with a general northward surface flow between
B 35 and 60�N (Fig. 1), although clearly it would be
inappropriate to take the parallels between modern open ocean
currents and their Jurassic seaway counterparts too far.

Early Jurassic ammonite distributions in the Laurasian Seaway
show progressive homogenization of faunas from the latest
Pliensbachian to early Toarcian, and re-establishment of distinct
faunal provinces in the later Toarcian45, supporting earlier
conclusions based on a wider range of invertebrate fossils
evidencing northward faunal spread in the early Toarcian32,46–50.
A strong northward flow in the Viking Corridor is also suggested
for the later Middle Jurassic by invertebrate fossil distributions for
times when the strait is known to have been open43. In contrast,
southward current flow was suggested for the Toarcian based on
model calculations13; a finding difficult to reconcile with both the
stenohaline fossil distributions and associated oxygen-isotope
data9,28,46,48,50 (Supplementary Fig. 1), all showing relatively
warm waters in the Toarcian Laurasian Seaway. Directionality
apart, the models are of particular value in that they emphasise the
potential significance of the seaway for heat transport.

The mechanism suggested here for the transition from
Toarcian Warm Mode to Aalenian-Bajocian Cool Mode may
also have been responsible for the transition from an earlier
Pliensbachian Warm Mode to a later Pliensbachian Cool Mode.
The possibility of an early onset of North Sea doming is suggested
by the occurrence of regressive facies in the late Pliensbachian of
the North Sea region, similar to those of the late Toarcian51,52;
namely the Drake Formation (Southern North Sea Basin), Scalpa
Sand Formation (Hebrides Basin), Staithes Sand (Cleveland
Basin), Downcliff Sand and Thorncombe Sand (Wessex Basin).
A global sea-level rise of likely tectonic origin, with a weakly
quantified magnitude in the order of up to 100 m, has been
well documented for the early Toarcian53; thus any seaway
bathymetric (that is, regional) effect from an early, Pliensbachian,
North Sea domal uplift is likely to have been counteracted by
eustasy, at least until the late Toarcian.

The Early to Middle Jurassic scenario elaborated here shows
clearly that major modifications in Mesozoic oceanic current
patterns have significant influence on large magnitude, abrupt
climate change and potentially govern transformations between
Warm/Cool climate modes. Although greenhouse gases may also
have had strong influence on Mesozoic events, the T-OAE being a
prime example, this is not necessarily the case for other highly
significant transitions. The North Sea Dome triggered perhaps the
largest palaeoceanographically induced climate change in the
Jurassic, at least on a super-regional scale.

Methods
Sampling. Belemnites, ostreoids, pectinids, pinnids and brachiopods were
collected in Yorkshire, NE England (Robin Hood’s Bay–Hawsker Bottoms, Saltwick
Nab, Ravenscar–BleaWyke, Staithes–Brackenberry Wyke and Hundale Point) and
in the Inner Hebrides, Scotland (Bearerraig on the Isle of Skye and Druim an
Aonaich on the Isle of Raasay; Supplementary Data 1 and Supplementary Table 2).
Samples from the South German Swabo-Franconian Basin originate mainly from
the Staatliches Museum für Naturkunde Stuttgart. A few additional samples from
this basin were taken in the Aubach valley near Aselfingen in the Wutach area.
The samples cover in total the stratigraphic interval from the davoei (late early
Pliensbachian) to the humphriesianum (late early Bajocian) ammonite biozones
(Supplementary Table 1). Previously published data (Fig. 2 and Supplementary
Data 1) were added to the new data for several localities (Bearreraig54; Robin

Hood’s Bay, Castle Chamber, Staithes and Brackenberry Wyke16; Hawsker
Bottoms, Saltwick Bay, Ravenscar and Blea Wyke28,55–57), and for coevally
deposited successions of Scotland (Inverarish Burn and Beinn na Leac18), South
Germany (Roadcut, D (ref. 54)), Portugal (Lusitanian Basin, Peniche29 and Cabo
Mondego54) and Spain (Basque-Cantabrian Basin, Camino58,59, Santiurde de
Reinosa58,59, San Andrés58,59 and Fuentelsaz60, the latter including the Global
Boundary Stratotype Section and Point (GSSP) for the Aalenian Stage). Only
literature data from stratigraphically well-defined and diagenetically well-screened
samples were used for the plots and discussions to maintain the comparability to
our new stratigraphically well-defined, well-screened and carefully selected
samples, representing best preserved material available.

Stratigraphy. All sections sampled are biostratigraphically very well-constrained
by ammonite biozonation, in many cases being amongst the most intensively
investigated in the world, and the detailed subdivision is given in refs 25,61–65.
In the Bearreraig section (Fig. 3, Supplementary Data 1) no biostratigraphically
significant taxa occur between 62 and 85.8 m. It was therefore necessary to
approximate the base of the ovalis and laeviuscula zones and the sayni, trigonalis
and laeviuscula subzones (Supplementary Data 1). Higher in the section we
approximated the base of the sauzei zone (Fig. 3, Supplementary Data 1) at the
highest level of the major erosion surface about 8–10 m below the top of Holm
Sandstone. Zonal and subzonal boundaries from the murchisonae zone are based
on heights below a prominent belemnite-rich bed (¼marker bed O16, cf. ref. 25).
We use the height of 19.65 m for the base of the gigantea subzone and 70.00 m for
the base of the ovalis subzone (ref. 25).

Selection. Belemnites, bivalves and brachiopods were chosen as substrates
for analysis. The fossils could usually not be determined to finer taxonomic
levels because generally only small fragments were available for collection
(Supplementary Data 1); delineation of large-magnitude oxygen-isotope variations,
however, is possible even with taxonomically undetermined specimens2,16.

Screening and geochemical measurement. Despite their resistance to diagenesis,
fossil specimens were carefully screened to identify potential post-depositional
alteration which might have reset the primary geochemical signal2,14,66. Bivalve
and brachiopod shells were prepared, optically inspected and hand-picked using a
binocular microscope and needle16,67. For belemnites, fresh surfaces of broken
pieces were inspected under the binocular microscope, and powders were drilled
from the best material with a handheld microdrill16,66. Representative shell
splinters of processed bivalves and brachiopods, and fragments of most of the
belemnite rostra were additionally screened for preservation of the ultrastructure
using a FEI Quanta 250 scanning electron microscope (Geological Museum in
Copenhagen). Only shells with smooth surfaces (for example, lamellar or fibrous)
and no signs of re-crystallization were classified as pristine67,68. Aliquots of
300–700mg (Copenhagen) and 150–300 mg (Innsbruck) were reacted in sealed
glass vials by adding anhydrous phosphoric acid after removal of atmospheric
contaminants with He. Resultant carbon dioxide was analysed for oxygen- and
carbon-isotope ratios at the Department of Geosciences and Natural Resource
Management, University of Copenhagen (Iso Prime triple collector Isotope Ratio
Mass Spectrometer) and at the Institut für Geologie und Paläontologie, University
of Innsbruck (ThermoFinnigan DeltaplusXL mass spectrometer; Supplementary
Data 1). The reproducibility of the measurements determined by the s.d. of
in-house reference materials was 0.18% for d18O and 0.08% for d13C (2 s.d.,
n¼ 649; ref. 66) in Copenhagen, and better than 0.2% (2 s.d.) for d18O and d13C in
Innsbruck. Temperatures calculated from the oxygen-isotope values (Fig. 2) are
based on ref. 69 assuming a d18O value of � 1% SMOW for ambient water. The
Mn/Ca and Sr/Ca ratios for all processed calcite fossils (Supplementary Data 1)
were quantified using the Perkin Elmer Optima 7000 DV ICP-OES at the
University of Copenhagen using aliquots from the H3PO4 treatment remaining
after the stable isotope analyses66. Reproducibility for Mn/Ca and Sr/Ca ratios,
assessed by using different reference materials, was better than 2.8% (2 s.d.) and
2.5% (2 s.d.), respectively (for further details see ref. 66). Mn enrichment and
Sr depletion in biogenic calcite were used to identify alteration in samples2,67.
Mn and Sr concentrations in seawater vary temporarily, spatially and, in addition,
Sr incorporation in biogenic calcite is variable between taxa and controlled by
environmental factors16,57,66,70–75. Such potential primary Mn/Ca enrichments and
primary variability of Sr/Ca ratios in calcite fossils2,16,57 were taken into account
(Supplementary Data 1, and ref. 14).
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