Methanotrophy potential versus methane supply by pore water diffusion in peatlands

E. R. C. Hornibrook, H. L. Bowes, A. Culbert, and A. V. Gallego-Sala

Bristol Biogeochemistry Research Centre, Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK

Received: 4 March 2008 – Published in Biogeosciences Discuss.: 18 June 2008
Revised: 13 July 2009 – Accepted: 22 July 2009 – Published:

Abstract. Low affinity methanotrophic bacteria consume a significant quantity of methane in wetland soils in the vicinity of plant roots and at the oxic-anoxic interface. Estimates of the efficiency of methanotrophy in peat soils vary widely in part because of differences in approaches employed to quantify methane cycling. High resolution profiles of dissolved methane abundance measured during the summer of 2003 were used to quantify rates of upward methane flux in four peatlands situated in Wales, UK. Aerobic incubations of peat from a minerotrophic and an ombrotrophic mire were used to determine depth distributions of kinetic parameters associated with methane oxidation. The capacity for methanotrophy in a 3 cm thick zone immediately beneath the depth of nil methane abundance in pore water was significantly greater than the rate of upward diffusion of methane in all four peatlands. Rates of methane diffusion in pore water at the minerotrophic peatlands were small (<10%) compared to surface emissions during June to August. The proportions were notably greater in the ombrotrophic bogs because of their typically low methane emission rates. Methanotrophy appears to consume entirely methane transported by pore water diffusion in the four peatlands with the exception of 4 of the 33 gas profiles sampled. Flux rates to the atmosphere regardless are high because of gas transport through vascular plants, in particular, at the minerotrophic sites. Cumulative rainfall amount 3-days prior to sampling correlated well with the distance between the water table level and the depth of 0 μmol l⁻¹ methane, indicating that precipitation events can impact methane distributions in pore water. Further work is needed to characterise the kinetics of methane oxidation spatially and temporally in different wetland types in order to determine generalized relationships for methanotrophy in peatlands that can be incorporated into process-based models of methane cycling in peat soils.

1 Introduction

Alpha and gamma Proteobacteria belonging, respectively, to the Methylocystaceae and Methylococcaceae families are ubiquitous at oxic-anoxic interfaces in the Earth system where oxygen (O₂) is present and methane (CH₄) is transported in large quantities under the influence of concentration gradients or ebullition. These microorganisms, also known as Type I (gamma) and Type II (alpha) methanotrophs, serve as an efficient filter, removing CH₄ that otherwise would enter the troposphere. Collectively low affinity methanotrophs in such environments annually consume a quantity of CH₄ well in excess of the ~600 Tg that does enter the Earth’s atmosphere from biological and geological sources (Fletcher et al., 2004).

The anoxic soils of natural wetlands are one of the main perennial sources of CH₄ flux that help to maintain a low but significant quantity of this chemically and radiatively active organic gas in the Earth’s highly oxidizing atmosphere. More than three decades of study of methanotrophs in wetlands and peatlands has yielded significant insights into their phylogeny, distribution, kinetics, and preferred growth conditions (e.g., Segers, 1998; Gutknecht, 2006; Chen et al., 2008). Methanotrophic populations in the rhizosphere and with depth in peat soils have been mapped using molecular biology techniques, including PCR amplification of DNA extracts and hybridisation with specific phylogenetic 16S rRNA and functional gene primers (e.g., Krumholz et al., 1995; McDonald et al., 1996, 1999; Ritchie et al., 1997; Calhoun and
Attempts to quantify the efficiency of methanotrophy in peat soils have yielded a wide range of estimates of CH$_4$ consumption, in part, because of different methods employed and the limitations associated with specific approaches as discussed by Pearce and Clymo (2001). Le Mer and Roger (2001) concluded from a survey of literature that ~60 to 90% of CH$_4$ produced in wetland soils is oxidized by methanotrophs in the rhizosphere or shallow subsurface horizons; however, other estimates suggest a range of proportions, including 20–40% in general for natural wetlands (Whalen, 2005), 15 to 76% of potential diffusive CH$_4$ flux seasonally and ~43% annually of CH$_4$ entering the oxic zone of a freshwater marsh (Roslev and King, 1996), ~22% for conversion of CH$_4$ to CO$_2$ during transport through 10 cm of acrotelm Sphagnum-rich peat (Pearce and Clymo, 2001), complete consumption within 20 cm of the water table in an undrained peatland (Roulet et al., 1993), 65±24% of CH$_4$ entering the rhizosphere of Sagittaria lancifolia estimated by CH$_3$F inhibition and 79±20% by mass balance (Schipper and Reddy, 1996), 34.7±20.3% and 16.1±7.9% in the rhizosphere, respectively, of bulrush and reed wetlands (van der Nat and Middelburg, 1998), 55% of upward diffusing CH$_4$ in an Alaskan boreal peatland (Whalen and Reeburgh, 2000), 52±10% and 81±9% in two tidal freshwater wetland forests (Megonigal and Schlesinger, 2002), 0 to 34% rhizosphere oxidation of CH$_4$ in a Carex fen determined using 13C mass balance (Popp et al., 1999), and 58 to 92% or <20% in the same peatland depending upon whether CH$_4$ consumption was quantified by subtracting in situ methane emission rates from CH$_4$ production rates measured in the laboratory or in situ use of the CH$_3$F inhibitor technique (Popp et al., 2000). Much of the variability in estimates of CH$_4$ oxidation efficiency appears to stem from differences in methodology. As noted by Popp et al. (2000), CH$_4$ production rates determined in vitro likely lead to an overestimation of CH$_4$ supply in peat soils, contributing to the calculation of anomalously high proportions of CH$_4$ removal by methanotroph activity.

We investigated the balance between CH$_4$ supply by pore water diffusion and the quantity of CH$_4$ emitted to the atmosphere in four peatlands situated in Wales, UK during the summer of 2003 to determine the potential contribution of CH$_4$ diffusion through pore water to total emissions and the degree to which methanotrophs may consume CH$_4$ transported via pore water diffusion. Detailed (cm scale resolution) in situ profiles of dissolved CH$_4$ concentration were measured to estimate the supply of CH$_4$ into the methanotrophic zone at the sites. Complete attenuation of CH$_4$ transport via pore water diffusion was evident when the abundance of dissolved CH$_4$ was ~0 µmol l$^{-1}$ within the saturated zone. We compared estimated rates of CH$_4$ transport by pore water diffusion to total quantities of CH$_4$ emitted to the atmosphere. We also used aerobic incubations of peat amended with CH$_4$ to assess differences in CH$_4$ uptake kinetics with depth and between two of the peatlands (a raised bog and an intermediate fen). In situ CH$_4$ concentration data and
the determined μ_m (maximum rates of CH$_4$ oxidation) and K_s (half saturation concentrations) values were employed to estimate the capacity for CH$_4$ consumption in relation to the supply of CH$_4$ by pore water diffusion. Finally, we also investigated relationships between cumulative rainfall in the period preceding pore water sampling and the distribution of CH$_4$ with depth in the peatland soils to determine whether the timing of sampling impacted our results.

2 Site characterisation

2.1 Peatland descriptions

The locations of the four peatlands investigated in Wales, UK are shown in Fig. 1 and details about peatland elevation, pore water pH, and dominant vegetation are provided in Table 1. Crymlyn Bog (51°38’11″N, 03°53’18″W) and Gors Lwyd (52°15’44″N, 03°34’44″W) both receive water input from surrounding uplands via overland and subsurface flow and thus have slightly more alkaline pore water than Blaen Fign (52°15’24″N, 03°55’00″W), which are ombrotrophic bogs. Sphagnum spp. were common at all sites; however, predictably the abundance of vascular plants was highest at the two minerotrophic peatlands Crymlyn Bog and Gors Lwyd. At each peatland, two adjacent stations (~1 m apart) were chosen for installation of pore water equilibrators and ground collars to support flux chambers. At Crymlyn Bog and Blaen Fign the ground collars enclosed significantly different proportions of bryophytes and vascular plants with Sphagnum moss dominating at station 1 and sedge, grass and rush species at station 2.

2.2 Weather data

Daily precipitation data for the period January to December 2003 collected at UK Meteorological Office Stations at Swyddffynnon, Cwmystwyth, Llangurig and Swansea Victoria Park (Fig. 1) were obtained from the British Atmospheric Data Centre (BADC) archive.

3 Analytical Methods

3.1 Sample collection

Pore water equilibrators and ground collars for flux chambers were installed at the sites several months prior to the onset of sampling which began in the spring of 2003. Measurements of in situ concentrations of pore water CH$_4$ and CH$_4$ flux rates to the atmosphere were performed between April and September 2003 at the four peatlands. One peatland was sampled each week yielding on average one monthly data set for each site during the growing season. Peat cores were collected in September 2005 for follow-up experiments investigating differences in methane oxidation kinetics with depth at Cors Caron and Crymlyn Bog.

3.2 Methane flux

Collection methods and CH$_4$ flux data for all sites were reported previously in Bowes and Hornibrook (2006) and Hornibrook and Bowes (2007). Briefly, flux chambers and ground collars were constructed of polyvinyl chloride (PVC) and had a combined volume of either 11 or 15 l. The chambers were sealed onto the collars using large neoprene rubber o-rings coated with silicon grease and then covered with opaque lids also fitted with greased o-rings. Air samples were collected via a 4-m length of 3-mm OD Tygon tube.

Table 1. Sites descriptions (after Hornibrook and Bowes, 2007).

<table>
<thead>
<tr>
<th>Site</th>
<th>Wetland Type</th>
<th>Altitude (m a.s.l.)</th>
<th>pHb (n = 20)</th>
<th>Dominant Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crymlyn Bog</td>
<td>intermediate fen</td>
<td>9</td>
<td>5.5±0.5</td>
<td>Juncus squarrosum, Carex elata, Eriophorum gracile, Cladium mariscus, Sphagnum spp.</td>
</tr>
<tr>
<td>Gors Lwyd</td>
<td>upland valley mire</td>
<td>385</td>
<td>4.9±0.6</td>
<td>Erica tetralix, Eriophorum angustifolium, Sphagnum spp.</td>
</tr>
<tr>
<td>Blaen Fign</td>
<td>blanket bog</td>
<td>504</td>
<td>4.2±0.3</td>
<td>J. squarrosus, Calluna vulgaris, Trichophorum cespitosum, Molinia caerulea, Sphagnum spp.</td>
</tr>
<tr>
<td>Cors Caron</td>
<td>raised bog</td>
<td>160</td>
<td>4.2±0.1</td>
<td>Rhyncospora alba, T. cespitosum, C. vulgaris, Narcethium ossifragum, M. caerulea, Sphagnum spp.</td>
</tr>
</tbody>
</table>

a m a.s.l. = meters above sea level
b Mean pore water pH±standard deviation (1σ; n = # of measurements) from 5 to 45 cm depth for May to August 2003.
installed in the lid of each chamber. A second identical tube fitted in the lid was kept open during sampling to prevent subambient pressures from forming while air samples were collected. Each chamber contained a small battery operated fan to mix the headspace. Air samples for CH$_4$ flux measurements were collected at 0 (chamber open), 5, 15 and 30 min in 60 ml polypropylene syringes fitted with gas-tight valves. Independent flux determinations were conducted in triplicate for each station during each sampling trip.

3.3 Pore water methane

Collection methods and pore water CH$_4$ data for Blaen Fign were reported previously in Bowes and Hornibrook (2006). The dissolved CH$_4$ abundances for Crymlyn Bog, Gors Lwyd and Cors Caron are reported here for the first time. Briefly, the collection technique employed membrane-exchange equilibrators constructed of PVC that were installed \sim15 cm from each ground collar. The equilibrators enabled sampling of pore water gases at closely spaced depth intervals (2 cm resolution) for measurement of dissolved CH$_4$ abundance. The design of Hesslein (1976) was modified to permit input and removal of de-ionised, de-gassed water after ground installation through 3-mm OD Tygon tubes connected to $1 \times 25 \times 0.5$ cm (H×W×D) troughs that were sealed with a gas and ion permeable membrane filter (0.2 μm pore size; HT-200, Pall Life Sciences).

3.4 Peat cores and properties

Peat samples for porosity measurements and CH$_4$ oxidation kinetic experiments were obtained from monoliths (100 cm2 cross-sectional area \times 120 cm length) collected using a Wardenaar peat corer (Eijelkamp, Netherlands). The peat was sectioned in the field into 1 dm3 blocks, sealed in air tight bags and then packed in ice for transport to the laboratory.

Subsamples were extracted from the peat blocks in the laboratory to determine bulk density (ρ_{bulk}: g cm$^{-3}$) and porosity (ϕ; unitless). A specific volume of peat was dried to constant weight to determine ρ_{bulk}. Porosity (ϕ) was calculated from the equation:

$$\phi = 1 - \frac{\rho_{\text{bulk}}}{\rho_{\text{particle}}}$$ (1)

where ρ_{particle} (particle density; g cm$^{-3}$) was assumed to be 1.4 g cm$^{-3}$.

3.5 Soil temperature and water table level

Soil temperature was measured using an Omega Model HH-41 handheld thermistor thermometer and a thermistor probe. The latter consisted of a nylon-coated type-K thermocouple encased within a 5-cm long brass tube that had a wall thickness of 0.15 mm. The lead wire of the thermocouple was passed through a 2-m long stainless steel tube enabling the protected thermocouple tip to be inserted to specific depths within the peat soil. A nylon plug was used to isolate thermally the thermocouple tip from the stainless steel tube.

The ambient water-table level at each peatland was measured relative to the moss surface in a 10×10 cm hole that had been cut during a previous visit using the Wardenaar corer.

3.6 Methane concentration analysis

Methane concentrations in air samples collected for determining flux rates were analyzed using a Carlo Erba HRGC5300 gas chromatograph (GC) equipped with gas-sampling valve (1 cm3 sample loop), Porapak QS packed column (3 mm×4 m), and flame ionization detector (FID). The carrier gas was helium at 35 ml min$^{-1}$, and FID support gases were hydrogen at 30 ml min$^{-1}$ and zero air at 400 ml min$^{-1}$. Samples were injected through 1 cm3 cartridges packed with magnesium perchlorate to remove H$_2$O. The relative precision of CH$_4$ analysis in air samples typically was better than \pm2% based on replicate injections of BOC Specialty Gases alpha-gravimetric standards and actual samples. Flux rates were determined from the slope of linear regression equations fitted to the change in chamber CH$_4$ concentration versus time. Rates were corrected for the areal coverage.
and volume of the chambers, and are expressed in units of mg CH₄ m⁻² d⁻¹.

Methane was stripped from pore water into a headspace of helium using the method of McAullife (1971). The resulting gas samples were analyzed on the Carlo Erba HRGC5300 gas chromatograph (GC) under the same conditions used for analysis of CH₄ in flux samples. Pore water concentrations of CH₄ were corrected for differences in peat porosity and are expressed in units of μmol CH₄ l⁻¹.

3.7 Methane oxidation kinetics

Peat monoliths obtained from Cors Caron and Crymlyn Bog were subsampled in 5 cm slices (~0.5 dm³) centred on five depths (5, 12.5, 20, 27.5 and 35 cm). The material was slurried in a 1:1 ratio with autoclaved de-ionised water. Slurry from each depth was incubated in triplicate at 15°C in crimp-top 35 ml Wheaton serum vials containing a headspace of CH₄ in zero air corresponding to initial dissolved CH₄ concentrations (S₀) of ~10, 25, 50, 100, 250 and 500 μM. An additional slurry sample for each depth was incubated in singular as a blank containing a headspace of air only to confirm the absence of net CH₄ production. Within two hours of loading the vial headspace, the actual value of S₀ in each vial was determined by GC-FID analysis of CH₄ in the headspace and Henry’s Law. The rate of CH₄ oxidation was determined subsequently from the decrease in headspace concentration of CH₄ from time 0 (initial) to 24, 48 and 72 h. Gas samples were extracted using a 50 μl Hamilton glass syringe fitted with a side-hole needle and gas-tight valve. Methane concentration was analyzed in triplicate using a Perkin Elmer Clarus 500 gas chromatogram fitted with an Elite PLOT Q mega-bore column (30 m × 0.53 mm diameter) and FID. The carrier gas was helium at 45 ml min⁻¹ and FID support gases were hydrogen at 35 ml min⁻¹ and zero air at 450 ml min⁻¹.

The CH₄ oxidation rates determined independently in triplicate for each of the six S₀ values (i.e., 18 rate measurements per depth) were used to determine the maximum specific rate of CH₄ uptake (μₘ) and half saturation concentrations (Kₛ) for each depth interval in the two peatlands. Oxygen presumably was not a limiting factor in our experiments given that the incubations were conducted in zero air and hence the single Monod expression was used to describe methanotroph consumption of CH₄ in the vials:

\[\mu = \frac{\mu_m [CH_4]}{K_s + [CH_4]} \]

(2)

where μ is the rate of methanotrophy (μmol l⁻¹ h⁻¹), μₘ is the maximum specific rate of CH₄ uptake (μmol l⁻¹ h⁻¹), [CH₄] is the concentration of CH₄ (μmol l⁻¹) (i.e., S₀ values) and Kₛ is the concentration of CH₄ (μmol l⁻¹) required to attain half the maximum rate of CH₄ uptake. Equation (2) was fitted to the CH₄ oxidation rate and S₀ data using nonlinear regression software (Prism v4.0, GraphPad Software, San Diego, CA, USA).

3.8 Diffusion rates for CH₄ in pore water

The rate of upward CH₄ diffusion in pore water at each peatland was determined using Ficks 1st Law:

\[J = D_S \left(\frac{d[CH_4]}{dz} \right) \]

(3)

where J is the flux rate (μmol cm⁻² s⁻¹), D₁ is the temperature and porosity corrected diffusion coefficient for CH₄ in water (cm² s⁻¹) and d[CH₄]/dz is the CH₄ concentration gradient (μmol cm⁻³ cm⁻¹) with depth (cm) in peat soils. Ficks 1st law was used because the amount of time required to sample an equilibrator profile (~1 h) is small and hence the measured gradients can be treated as being effectively steady state. Final values of J are expressed in mg CH₄ m⁻² d⁻¹ to facilitate comparison with CH₄ fluxes to the atmosphere measured using static chambers. The temperature dependency of D_S was based upon polynomial regression of diffusion coefficients for CH₄ in water in the range 0 to 35°C (83rd Edition of the Handbook of Physics and Chemistry) which yielded the relationship:

\[D_S = 5.889 \times 10^{-11} T^3 - 1.714 \times 10^{-3} T + 3.721 \times 10^{-7} T + 8.771 \times 10^{-6} \]

(4)

A value of D was calculated for each CH₄ profile based upon the mean soil temperature measured in situ across the depth interval for which pore water CH₄ concentration data were linearly regressed to determine d[CH₄]/dz. Values of D were porosity corrected using Eq. (5) from Lerman (1979):

\[D_S = D \phi^2 \]

(5)

where φ is porosity (unitless). For each pore water data set, an average value of φ was calculated from in situ porosity measurements collected across the d[CH₄]/dz depth interval.

4 Results

4.1 Daily precipitation and timing of sampling

The timing of sample collection at Crymlyn Bog, Cors Caron, Blaen Fign and Gors Lwyd is shown in Fig. 2 in relation to total daily precipitation measured at UK Meteorological Office Stations (MOSs) situated near the peatlands. Swansea Victoria Park (Fig. 2a) and Swyddffynnon (Fig. 2b) MOSs are located immediately adjacent to Crymlyn Bog and Cors Caron, respectively, providing accurate daily precipitation records for each site. There are no active MOSs in close proximity to either Blaen Fign or Gors Lwyd because of their remote locations in the Elan Valley. Consequently daily precipitation records from the Cwmystwyth and Llangurig MOSs, which geographically bracket the peatland sites, have been used (Fig. 2c and d).
4.2 Pore water CH$_4$

Pore water profiles of dissolved CH$_4$, ambient water table levels, linear regression curves from which values of $d[CH_4]/dz$ were obtained, and the 3 cm thick zone immediately beneath depth $[CH_4]_0$ in soils at the four peatlands during the summer of 2003 are shown in Figs. 3 to 6. Pore water CH$_4$ concentration profiles at all sites exhibited a similar shape although the size of the zone beneath the water table in which dissolved CH$_4$ abundance was below the detection limit of our analysis method varied widely between peatlands and sampling months at individual sites. The potential impact of the magnitude and timing of rainfall events on the size of the zone where $[CH_4] < 0$ µmol l$^{-1}$ will be explored further in Sect. 5.1.

4.3 CH$_4$ oxidation kinetics

Maximum potential rates of CH$_4$ oxidation (μ_{m}) and half saturation concentrations (K_s) determined from incubations
of slurried peat are presented in Table 2. The methanotrophy rate and S_0 data were fitted twice with Eq. (2): once using all data ($S_0 = 10 \text{ to } 500 \mu\text{mol} \text{l}^{-1}$) and a second time excluding the $S_0 = 250$ and $500 \mu\text{mol} \text{l}^{-1}$ measurements (i.e., using $S_0 = 10 \text{ to } 100 \mu\text{mol} \text{l}^{-1}$). The μ_m and K_s values determined using all data are anomalous, in particular, the K_s values which exceed all half saturation constants reported to date for low affinity methanotrophy by 1 to 2 orders of magnitude. The μ_m values are similarly high with values from the two samples in the depth interval 10 to 22.5 cm at Cors Caron being \sim10 times greater than any maximum potential rates for CH$_4$ oxidation in freshwater environments reported to date. These anomalous values appear to result from the disproportionate effects of high CH$_4$ oxidation rates determined from the small number of incuba-tions having $S_0 = 250$ and $500 \mu\text{mol} \text{l}^{-1}$. Such concentrations of CH$_4$ are uncommon in situ at the oxic-anoxic interface in peatlands and consequently, Eq. (2) was fit to the data a second time excluding CH$_4$ oxidation rates from the two highest values of S_0 (250 and $500 \mu\text{mol} \text{l}^{-1}$). The resulting μ_m and K_s values are consistent with kinetic parameters typically associated with low affinity methanotrophy in aerobic environments. The half saturation concentrations are still amongst the highest reported to date; however, they are similar to published values of K_s for peat soils, which tend to be large relative to other methanotrophic environments (Segers, 1998).

Notably the $S_0 = 10$ to $100 \mu\text{mol} \text{l}^{-1}$ set of depth profiles of μ_m and K_s samples do not show maxima at depths near the lower limit of water table fluctuations (which are present in the μ_m and K_s values from analysis of the complete data set). Instead μ_m values decrease steadily with increasing depth. The large standard errors associated with the K_s parameter preclude any broad generalisation about trends with depth of the half saturation constant in soils at either site.

4.4 Rates of CH$_4$ flux and consumption

A summary of rates of internal and external CH$_4$ fluxes (all sites) and subsurface methanotrophy potentials (Crymlyn Bog and Cors Caron only) are presented in Table 3. Rates of upward CH$_4$ flux into the methanotrophic zone were determined according to the method described in Sect. 3.8 and then scaled to a cross-sectional area of 1 m2. The majority of CH$_4$ fluxes by pore water diffusion had a magnitude $<10 \text{ mg m}^{-2} \text{ d}^{-1}$. The concentration of dissolved CH$_4$ at the water table surface was $>0 \mu\text{mol} \text{l}^{-1}$ in only 5 of the 33 pore water CH$_4$ profiles (Figs. 3c, e, g, 6c and f), suggesting that diffusion of CH$_4$ across the air-water interface contributes little to atmospheric emissions of CH$_4$ at these sites. Methane escaping from the aqueous phase within the peat profile must still transit pore spaces and methanotrophic populations in the unsaturated zone before reaching the atmosphere.

In all cases the rate of upward CH$_4$ flux was less than the capacity for CH$_4$ oxidation determined in a 3 cm thick zone immediately below the depth at which $[\text{CH}_4] = 0 \mu\text{mol} \text{l}^{-1}$ (Table 3). The potential for methanotrophy in the 3 cm thick zone was estimated by integrating rates of CH$_4$ oxidation calculated by substituting values of μ_m and K_s, and in situ dissolved CH$_4$ concentrations into Eq. (2). A peat interval of 3 cm downward from the point $[\text{CH}_4] = 0$ was chosen because (i) depths above the point $[\text{CH}_4] = 0$ yield methanotrophy rates (μ) equal to zero using Eq. (2), (ii) 3 cm was the minimum depth reported by Beckmann and Lloyd (2001) for penetration of O$_2$ by diffusion into a Scottish peat soil, and (iii) our aim was to provide a conservative estimate of CH$_4$ oxidation potentials based upon the kinetic parameters determined in laboratory incubations. For example, the values of potential capacity for CH$_4$ uptake noted in Table 3 (mg CH$_4$ m$^{-2}$ d$^{-1}$) are \sim3 orders of magnitude smaller than integrated oxidation rates reported by Sundh et al. (1994) for boreal peatlands in

Table 2. Maximum CH$_4$ oxidation rates (μ_m) and half saturation constants (K_s)

<table>
<thead>
<tr>
<th>Site</th>
<th>Interval</th>
<th>$\mu_m \pm \text{SE}^a$</th>
<th>$K_s \pm \text{SE}^a$</th>
<th>$\mu_m \pm \text{SE}^a$</th>
<th>$K_s \pm \text{SE}^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crymlyn Bog</td>
<td>2.5 to 7.5</td>
<td>25.8 ± 25.8</td>
<td>231 ± 231</td>
<td>129 ± 129</td>
<td>3.3 ± 1.9</td>
</tr>
<tr>
<td></td>
<td>10 to 15</td>
<td>57.2 ± 57.2</td>
<td>905 ± 905</td>
<td>54 ± 54</td>
<td>11.5 ± 4.5</td>
</tr>
<tr>
<td></td>
<td>15.0 to 22.5</td>
<td>40.6 ± 40.6</td>
<td>190 ± 190</td>
<td>32.3 ± 32.3</td>
<td>10.2 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>25 to 30</td>
<td>8.6 ± 8.6</td>
<td>137 ± 137</td>
<td>12 ± 12</td>
<td>11.5 ± 4.5</td>
</tr>
<tr>
<td></td>
<td>32.5 to 37.5</td>
<td>22.5 ± 22.5</td>
<td>83 ± 83</td>
<td>21.1 ± 21.1</td>
<td>68.1 ± 38.1</td>
</tr>
<tr>
<td>Cors Caron</td>
<td>2.5 to 7.5</td>
<td>24.3 ± 24.3</td>
<td>83 ± 83</td>
<td>21.1 ± 21.1</td>
<td>68.1 ± 38.1</td>
</tr>
<tr>
<td></td>
<td>10 to 15</td>
<td>103 ± 103</td>
<td>881 ± 881</td>
<td>15.6 ± 15.6</td>
<td>45.8 ± 25.1</td>
</tr>
<tr>
<td></td>
<td>15.0 to 22.5</td>
<td>106 ± 106</td>
<td>956 ± 956</td>
<td>14.5 ± 14.5</td>
<td>51.2 ± 28.6</td>
</tr>
<tr>
<td></td>
<td>25 to 30</td>
<td>43 ± 43</td>
<td>353 ± 353</td>
<td>10.5 ± 10.5</td>
<td>42.6 ± 17.1</td>
</tr>
<tr>
<td></td>
<td>32.5 to 37.5</td>
<td>25 ± 25</td>
<td>54 ± 54</td>
<td>28.6 ± 28.6</td>
<td>42.6 ± 17.1</td>
</tr>
</tbody>
</table>

a SE = standard error
b dnc = did not converge

www.biogeosciences.net/6/1/2009/ Biogeosciences, 6, 1–14, 2009
Sweden that were based upon a 0 to 60 cm depth interval (3.0 to 22.1 g CH₄ m⁻² d⁻¹). Integration over large depth intervals is accurate when a double Monod expression incorporating availability of O₂ can be employed; however, we did not measure either in situ concentrations of pore water O₂ or kinetic parameters associated with O₂ consumption, hence we opted for the conservative approach of applying the determined μₘ and Kₘ values to a small depth interval in which O₂ was likely to be available.

The integrated methanotrophy potential rates were scaled to an area of 1 m² to facilitate comparison with pore water CH₄ diffusive fluxes and directly measured rates of CH₄ emission to the atmosphere. The latter also are shown in Table 3 and have been reported previously in Bowes and Hornibrook (2006) and Hornibrook and Bowes (2007). The CH₄ fluxes to the atmosphere are due only to steady-state diffusion processes (i.e., pore water or plant-mediated transport). Chamber measurements that exhibited erratic pulses

Table 3. Internal and external methane fluxes and subsurface oxidation potentials.

<table>
<thead>
<tr>
<th>Site & Date</th>
<th>Station 1</th>
<th></th>
<th>Station 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH₄ flux into Oxidation zone</td>
<td>Potential CH₄ Oxidation rate</td>
<td>CH₄ flux into Oxidation rate</td>
</tr>
<tr>
<td></td>
<td>mg CH₄ m⁻² d⁻¹</td>
<td>mg CH₄ m⁻² d⁻¹</td>
<td>mg CH₄ m⁻² d⁻¹</td>
</tr>
<tr>
<td>Crymlyn Bog</td>
<td>27-May-03</td>
<td>4.4±0.2</td>
<td>35.2</td>
</tr>
<tr>
<td></td>
<td>2-Jul-03</td>
<td>15.8±5.7</td>
<td>30.7</td>
</tr>
<tr>
<td></td>
<td>28-Jul-03</td>
<td>1.6±0.1</td>
<td>26.7</td>
</tr>
<tr>
<td></td>
<td>19-Aug-03</td>
<td>3.4±0.4</td>
<td>18.8</td>
</tr>
<tr>
<td>Gors Lwyd</td>
<td>19-May-03</td>
<td>2.9±0.3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>24-Jun-03</td>
<td>17.6±2.8</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>23-Jul-03</td>
<td>17.5±0.0</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>11-Aug-03</td>
<td>7.7±1.2</td>
<td>–</td>
</tr>
<tr>
<td>Blaen Fign</td>
<td>30-Apr-03</td>
<td>5.6±0.8</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>4-Jun-03</td>
<td>2.5±0.3</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>8-Jul-03</td>
<td>3.9±1.0</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>5-Aug-03</td>
<td>1.3±0.4</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2-Sep-03</td>
<td>2.0±0.3</td>
<td>–</td>
</tr>
<tr>
<td>Cors Caron</td>
<td>7-May-03</td>
<td>5.3±1.3</td>
<td>59.3</td>
</tr>
<tr>
<td></td>
<td>17-Jun-03</td>
<td>1.5±0.1</td>
<td>35.6</td>
</tr>
<tr>
<td></td>
<td>14-Jul-03</td>
<td>2.3±0.6</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>25-Aug-03</td>
<td>2.0±0.2</td>
<td>34.9</td>
</tr>
</tbody>
</table>

Table 3: Internal and external methane fluxes and subsurface oxidation potentials.

- **Station 1**: The ground surface at station 1 contained a greater abundance of Sphagnum and fewer vascular species than station 2 at Crymlyn Bog and Blaen Fign.
- **Station 2**: Rates of internal CH₄ flux into the zone of methanotrophy based upon Ficks 1st law (Eq. (2)) and linear regression analysis of pore water CH₄ data shown in Fig. 2 to 5.
- **Potential rate of CH₄ oxidation in a 3 cm thick zone below the depth at which [CH₄] = 0 µmol l⁻¹ defined by the y-intercept of linear regression analysis of pore water CH₄ concentration data in Figures 2 to 5. The total potential rate of CH₄ oxidation in the 3 cm thick zone is based upon actual CH₄ concentrations measured in peat soils and the depth distribution of μₘ and Kₘ parameters determined experimentally for Crymlyn Bog and Cors Caron (Table 2).
- **Diffusive CH₄ flux to the atmosphere measured using closed dynamic chambers and reported previously in Bowes and Hornibrook (2006) and Hornibrook and Bowes (2007).**
- **Chamber measurements that exhibited erratic pulses was: Crymlyn Bog 0 of 24, Gors Lwyd 10 of 24, Blaen Fign 0 of 30, and Cors Caron 1 of 24.**

The number of chamber deployments is shown in brackets (i.e., n = 1, 2 or 3). Where n = 3 the error shown is a standard deviation and for n = 2 the ± value is the range. The number of flux measurements omitted because of evidence of natural or induced ebullition was: Crymlyn Bog 0 of 24, Gors Lwyd 10 of 24, Blaen Fign 0 of 30, and Cors Caron 1 of 24.

The concentration of dissolved CH₄ in pore water at the subsurface air-water interface was >0 µmol l⁻¹ on these days.
Fig. 4. Pore water profiles of dissolved CH$_4$ measured at Gors Lwyd during the summer of 2003 from pore water equilibrators E1 and E2. Legend details are the same as described in the caption of Fig. 3.

Fig. 5. Pore water profiles of dissolved CH$_4$ measured at Blaen Fign during the summer of 2003 from pore water equilibrators E1 and E2. Legend details are the same as described in the caption of Fig. 3.
(i.e., ebullition) were excluded from the flux analysis because it could not be determined conclusively whether the events were natural or induced artificially during sample collection (see Table 3, footnote d).

In the minerotrophic peatlands (Crymlyn Bog and Gors Lwyd), CH$_4$ emission rates to the atmosphere typically exceeded maximum rates of CH$_4$ transport by pore water diffusion by one to two orders of magnitude, in particular, during summer months (Table 3). Fluxes of CH$_4$ to the atmosphere were much smaller from the ombrotrophic peatlands (Blaen Fign and Cors Caron) with the exception of the sedge-rich plot (station 2) at Blaen Fign, consistent with the well known ability of many aquatic vascular plants to mediate gas transport via aerenchymatous tissue.

5 Discussion

5.1 The influence of precipitation events on pore water CH$_4$ profiles

Rates of both aerobic and anaerobic microbial processes in peat soils can be affected by rainfall events through the introduction of electron acceptors such as O$_2$, SO$_4^{2-}$ and NO$_3^-$ (Dise and Verry, 2001; Gauci et al., 2002; Gauci et al., 2004). Concentrations of microbial substrates in shallow peat layers, including dissolved gases (e.g., CH$_4$), also may be influenced through dilution which may affect rates of processes such as methanogenesis and methanotrophy (Kettunen et al., 1996). Thus the timing of CH$_4$ flux measurements or sampling of pore water CH$_4$ concentrations should be considered when possible in relation to short-term precipitation events.

The distance between the water table level and depth where [CH$_4$] = 0 µmol l$^{-1}$ (i.e., [CH$_4$]$_0$) differed greatly between the four peatland sites and sampling periods at individual sites (Figs. 3 to 6). The potential influence of precipitation input on this parameter was explored by comparing the depth to [CH$_4$]$_0$ in the saturated zone with rainfall amounts on (i) the day of sampling, and (ii) the periods 1, 3, 5 and 7 days before sampling of pore water. Significant correlations existed with cumulative rainfall during the period 3 days prior to pore water sampling (Fig. 7 and Table 4) but not the amount of rainfall over shorter or longer periods before sample collection (data not shown; r^2 values typically <0.40). A few of the weaker correlations in Fig. 7 (e.g., Cors Caron, stations 1 and 2) result from single data points heavily skewing the linear regression analysis because of the small size of the data sets (i.e., typically n = 4). Regression lines have a negative slope only for Crymlyn Bog, the most minerotrophic of the peatlands which receives significant moisture input from groundwater as well as precipitation. For the other three peatlands, including Gors Lwyd which is positioned at the head of a small catchment, the slopes of the regression equations are positive. The analysis in Table 4 and Fig. 7 suggests that in the absence of significant rainfall events, the depth of
[CH₄]₀ is not as variable as implied in Figs. 3 to 6. The large range of values for this parameter likely reflect differences in recent input of precipitation rather than microbiological driven changes in methane production and consumption. The “normal” depth of [CH₄]₀ appears to vary between individual peatlands as indicated by differences in the y-intercepts of the regression equations in Table 4 (e.g., ~10 cm for Gors Lwyd versus ~5 cm for Blaen Fign).

Noteworthy in Fig. 7 are the infilled data points for Cors Caron and Crymlyn Bog that lie largely at x-values of ~0 mm (i.e., when little or no rainfall occurred prior to the sampling period). The infilled points (5 in total) represent times when the concentration of dissolved CH₄ at the water table level exceeded 0 μmol l⁻¹ and CH₄ transport was occurring across the subsurface air-water interface. The correlations in Table 4 will be unimportant during periods of low rainfall and at those times CH₄ most likely is able to diffuse across the water table surface because heterotrophic activity in the unsaturated zone has depleted O₂ from pore spaces.

Table 4. Equations for linear regression curves in Fig. 7.

<table>
<thead>
<tr>
<th>Site</th>
<th>Station 1</th>
<th>Station 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crymlyn Bog</td>
<td>(y = -0.41 x + 5.13) ((r^2 = 0.98; n = 4))</td>
<td>(y = -0.22 x - 2.95) ((r^2 = 0.29; n = 3))</td>
</tr>
<tr>
<td>Gors Lwyd</td>
<td>(y = 0.86 x + 9.17) ((r^2 = 0.94; n = 4))</td>
<td>(y = 0.68 x + 11.05) ((r^2 = 0.81; n = 4))</td>
</tr>
<tr>
<td>Blaen Fign</td>
<td>(y = 0.74 x + 5.45) ((r^2 = 0.91; n = 5))</td>
<td>(y = 0.62 x + 4.77) ((r^2 = 0.40; n = 5))</td>
</tr>
<tr>
<td>Cors Caron</td>
<td>(y = 2.03 x - 0.29) ((r^2 = 0.61; n = 4))</td>
<td>(y = 0.71 x + 5.06) ((r^2 = 0.07; n = 4))</td>
</tr>
</tbody>
</table>

a Exclusion of 17 Jun 2003 data point yields \(y = 1.61 +3.01 \) \((r^2 = 0.84)\).

b Exclusion of the 25 Aug 2003 data point yields \(y = 1.61 -1.29 \) \((r^2 = 0.99)\).

Fig. 7. Distance from water table surface to depth of nil CH₄ concentration plotted against the cumulative amount of precipitation from the 3-day period prior to collection of the pore water CH₄ samples. The y-axis parameter is explained graphically in the inset to panel (a). Y-axis data in panels (a) and (b) are from stations 1 and 2, respectively, at each peatland. The symbols correspond to Crymlyn Bog (squares), Cors Caron (triangles), Blaen Fign (circles), and Gors Lwyd (diamonds). Filled symbols represent times when [CH₄] was >0 μmol l⁻¹ at the air-water interface. Precipitation data (shown in Fig. 2) were taken from Swansea Victoria Park (src id 1257) for Crymlyn Bog, Swyddffynnon (src id 1204) for Cors Caron, and Cwmystwyth (src id 1211) for Blaen Fign and Gors Lwyd. The dashed lines are linear regression analysis curves fitted to the data for each peatland. The equations for the eight regression lines are listed in Table 4.

5.2 CH₄ oxidation kinetics

The \(\mu_m \) values determined for different depth intervals at Crymlyn Bog and Cors Caron (Table 3; \(S_0 = 10 \) to 100 μmol l⁻¹ values) lie within the range of potential methane oxidation rates (0.1 to 100 μmol m⁻³ s⁻¹) compiled by Segers (1998) for different types of environments that host low affinity methanotrophic activity. Conversion of units in Table 3 for comparison yield \(\mu_m \) values of 0.5 to 1.1 and 2.9 to 5.9 μmol m⁻³ s⁻¹, respectively, for Crymlyn Bog and Cors Caron. Half saturation constants for Cors Caron also are higher than values for Crymlyn Bog. It is unclear why methanotrophs in the raised bog environment should have a lower affinity for substrate (i.e., higher \(K_s \)) and molecular biology data are unavailable to determine whether differences existed in methanotrophy communities at the two peatlands. Although the two peatlands differ in the composition and pH of their soil solution, we cannot speculate about potential relationships between the parameters \(\mu_m \) and \(K_s \), and factors such as pH because slurries were diluted 1:1 with deionized water. The buffering capacity of peat from the two sites would have differed considerably (i.e., rainfed versus groundwater influenced). However, \(K_s \) values cited by Segers (1997) for peat soil ranged from 1 to 45 μmol l⁻¹, encompassing the values determined for Crymlyn Bog. Watson et al. (1997) reported a \(K_s \) of 57.9 μmol l⁻¹ for CH₄ oxidation in acidic peat from Ellergower Moss, comparable to the range of half saturation constants determined with depth for Cors Caron, which also is a raised bog (i.e., 42.6 to 68.1 μmol l⁻¹; Table 3).

The range of \(\mu_m \) and \(K_s \) values in Table 3 is noteworthy also because of the difficulties such variability presents in efforts to model CH₄ dynamics in peatland soils. For example, one of the more rigorous process-based models for estimating CH₄ flux from peatlands (Walter and Heimann, 2000) employs the assumption that the parameters \(\mu_m \) and \(K_s \) for methanotrophy are constant with depth and in different types of wetlands, assigning values of 20 μmol l⁻¹ h⁻¹ and 5 μmol l⁻¹, respectively. The mean \(\mu_m \) values for Crymlyn
Bog and Cor Caron suggest that maximum rates of CH$_4$ oxidation may differ between minerotrophic and ombrogenous mires and in both cases appear to decrease gradually with depth. As noted previously, half saturation concentrations also may be higher in acidic rainfed peatlands (e.g., Table 3 and Watson et al., 1997). Availability of kinetic parameters describing CH$_4$ oxidation in peatlands is too limited at present to attempt to develop generalised relationships describing μ_m and K_s in different types of peatlands and spatially and temporally within individual sites.

5.3 Methane supply, demand and net flux

The amount of upward CH$_4$ transport in all four peatlands via pore water diffusion typically was <10 mg m$^{-2}$ d$^{-1}$ and exceeded this value in only 4 of the 33 pore water CH$_4$ profiles collected during the summer of 2003. Rates of CH$_4$ emission to the atmosphere from Blaen Fign and Cors Caron were the same order of magnitude as pore water CH$_4$ diffusion rates; however, it is unlikely that CH$_4$ transport by this mode contributed to atmospheric flux. The stable carbon isotope compositions (δ^{13}C values) of CH$_4$ in pore water and surface flux have been used previously to demonstrate that diffusive emission of CH$_4$ to the atmosphere at all four peatlands occurs predominately via plant-mediated transport (Bowes and Hornibrook, 2006; Hornibrook and Bowes, 2007). For example, CH$_4$ emitted at a higher rate from sedge-rich station 2 at Blaen Fign has δ^{13}C values that are statistically indistinguishable from CH$_4$ emissions from Sphagnum-rich station 1 (Bowers and Hornibrook, 2006). The δ^{13}C composition of CH$_4$ emissions from both plots are 13C-depleted by \sim15 to 20% relative to pore water CH$_4$, which eliminates the possibility that the small quantities of CH$_4$ emitted from station 1 are residual CH$_4$ that has survived transit across the unsaturated zone (Happell et al., 1994; Popp et al., 1999). Similarly, CH$_4$ emissions from Cors Caron, Cernym Bog and Gors Lwyd also are 13C-depleted relative to the pore water CH$_4$ pool (Hornibrook and Bowes, 2007). These conclusions about transport processes based upon stable isotope data are consistent with the observation reported here that low affinity methanotrophs in the 3 cm thick zone where CH$_4$ first appears in the pore water pool (i.e., immediately below the depth [CH$_4$]$_0$) have a capacity for CH$_4$ consumption that significantly exceeds the upward CH$_4$ supply via pore water diffusion (Table 3). While low affinity methanotrophs appear to consume the bulk of CH$_4$ transported along concentration gradients in pore water, they do not provide a robust barrier to CH$_4$ flux from peatlands because of the prevalence of CH$_4$ movement through vascular plants which bypasses the methanotrophy filter. During June to August, microbial CH$_4$ oxidation rates ranged from 0.8 to 40.7% of total CH$_4$ flux to the atmosphere in Cernym Bog and Gors Lwyd; however, the majority of values were $<10%$. In the same months, the percentages were higher at sedge-poor plots at the ombrotrophic mires (Blaen Fign, \sim9.3 to 53.4%; Cors Caron, 11.0 to 21.1%), but the difference in proportions is unimportant because as indicated by δ^{13}C data little or none of the diffusion transported CH$_4$ contributed to surficial emissions (Hornibrook and Bowes, 2007). Consequently, in the absence of bacterial CH$_4$ oxidation the CH$_4$ flux rate from minerotrophic peatlands would not be significantly greater in absolute terms but the increase would be proportionally much larger from the ombrotrophic bogs. The steady state flux rates of >100 mg CH$_4$ m$^{-2}$ d$^{-1}$ commonly observed from wetland soils (e.g., Whalen, 2005) would be difficult to achieve if pore water diffusion alone was the dominant transport mechanism. The bulk of CH$_4$ emitted from peatlands typically occurs via vascular plants and possibly ebullition, although data for the latter transport process remain sparse (Baird et al., 2004).

6 Conclusions

The depth below ambient water table levels at which dissolved methane is depleted to ~0 μmol$^{-1}$ by methanotrophic activity varies widely between peatlands and temporally within individual peatlands. Short-term precipitation events appear to increase the depth to [CH$_4$]$_0$ without necessarily disturbing dissolved CH$_4$ profiles. In the absence of recent rainfall input, the depth of [CH$_4$]$_0$ below the water table level ranged from \sim5 to 10 cm, although the size of the interval diminished to 0 (i.e., CH$_4$ present at the water table surface) during prolonged periods without precipitation input.

The capacity for methanotrophy in peatland soils from both minerotrophic and ombrotrophic peatlands typically was greater than the available supply of upward diffusing CH$_4$. Kinetic parameters (μ_m and K_s) describing the response of methanotroph populations to substrate (i.e., CH$_4$) concentrations are not constant with depth as assumed in some process models and both parameters were larger in the ombrotrophic versus minerotrophic peatlands. Low affinity methanotrophic activity effectively consumes the majority of upward diffusing CH$_4$ in peatland soil (in most cases 100%). Maximum rates of CH$_4$ flux by pore water diffusion were at most 10 to 20 mg m$^{-2}$ d$^{-1}$, which in minerotrophic mires represents typically $<10\%$ of actual emissions. The generally lower CH$_4$ emission rates from ombrotrophic mires would be impacted more by cessation or attenuation of methanotrophy activity but diffusive CH$_4$ flux rates would still amount to only a few 10 s of mg m$^{-2}$ d$^{-1}$.

Acknowledgements. We thank Mike Dury for manufacturing flux chambers and pore water equilibrators. HLB was funded by an NERC postgraduate scholarship and AVGS by a NERC Industrial CASE scholarship. This study was funded by NERC (NER/B/S/2000/00076) and Royal Society (574006.G503/21832/SM) grants to ERCH. The UK Joint Higher Education Funding Council for England and Office of Science and Technology Science Research Investment Fund (SRIF), and the
University of Bristol are thanked for infrastructure funding. We thank the British Atmospheric Data Centre (BADC) for technical advice and permission to use daily precipitation data from Met Office weather stations in Wales.

Edited by: C. Slomp

References

