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Abstract

We present a novel framework for measuring the body motion of multiple in-
dividuals in a group or crowd via a vision-based tracking algorithm, thus to
enable studies of human-induced vibrations of civil engineering structures,
such as floors and grandstands. To overcome the difficulties typically ob-
served in this scenario, such as illumination change and object deforma-
tion, an online ensemble learning algorithm, which is adaptive to the non-
stationary environment, is adopted. Incorporated with an easily carried and
installed hardware, the system can capture the characteristics of displace-
ments or accelerations for multiple individuals in a group of various sizes
and in a real-world setting. To demonstrate the efficacy of the proposed sys-
tem, measured displacements and calculated accelerations are compared to
the simultaneous measurements obtained by two widely used motion tracking
systems. Extensive experiments illustrate that the proposed system achieves
equivalent performance as popular wireless inertial sensors and a marker-
based optical system, but without limitations commonly associated with such
traditional systems. The comparable experiments can also be used to guide
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the application of our proposed system.
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Object tracking, human induced vibration, ensemble learning, online
learning.

1. Introduction

In civil engineering dynamics, there have been many problems related
to vibrations of floors[1], footbridges [2], assembly structures (grandstands,
spectator galleries, etc.), due to crowds or groups of human occupants walk-
ing, running, dancing and jumping. For example, the London Millennium
Footbridge [3] opened on 10 June 2000 was closed almost immediately for
nearly two years because of the unexpected movements occurred when a large
crowd of pedestrians crossed the bridge. Just a year before, a similar vibra-
tion serviceability problem was observed on the newly built Solferino foot-
bridge in Paris [4]. Also, in 2000 during a concert event, the cantilevers of
the Cardiff Millennium stadium experienced excessive vibration amplitudes
caused by people jumping so that the concert had to be stopped. Moreover,
the modern structures have become more flexible and prone to human in-
duced vibrations. Consequently, extensive research into the human-structure
dynamic interaction phenomenon was launched. The research results were
incorporated into two key design guidelines relevant to crowd loading of foot-
bridges (France) [5] and grandstands (UK) [6] for civil engineers.

Human motion and the induced force have drawn much attentions of
researchers from different areas for many years [7, 8]. Several reliable force
models for active individuals [9, 10] are available. However, there is a lack of
models describing dynamic loading of structures due to groups or crowds of
people. How to use a model of individual loading to generate load models of
multiple people still remains a challenge. It is unknown how people interact
in groups of various sizes and what the level of synchronisation is between
individuals under different circumstances, such as various visual and tactile
stimuli. The main difficulty is to collect simultaneously the body motion
data for multiple people in groups or crowds on real structures. Therefore,
the key aim of this paper is to develop a new vision-based system which will
enable robust collection of fundamental body data.

Although vision-based methods for human motion analysis have caught
much attention of researchers and practitioners involved in gaming, security
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and other related applications, the robustness of the systems is far from ideal.
The key reasons for this are difficulties in setting up tracking targets and
the environmental conditions. At present, these challenges can be partially
solved using the robust object descriptors and adaptive appearance models
[11, 12, 13, 14]. These methods can work well on data sets recorded under
controlled conditions. However, due to the unpredictability of environmental
changes, most existing methods cannot be applied directly in a real-world
situation. In addition, they are usually unable to cope with the challenges
appearing in a video sequence simultaneously. Thus, in this paper, a real-
time system which contains a vision-based multiple object tracking algorithm
[15] and a set of carefully selected hardware components is constructed to
deal with the weaknesses of current systems.

The remainder of this paper is organized as follows. The background of
measuring dynamic load and the contributions are given in Section 2. In Sec-
tion 3, we describe the framework of the adopted object tracking algorithm.
How to align the signals generated by different sensors is detailed in Section
4. Extensive experiments in comparison to classical sensors are presented in
Section 5. We conclude this paper and discuss future work in Section 6.

2. Background and Contributions

2.1. Measuring dynamic load

Several researchers tried to adopt different systems to monitor activities of
individual people and investigate the synchronization phenomenon of groups
or crowds. Early attempts to measure human induced loading [16, 17, 18]
were based on direct force identification using force plates and instrumented
treadmills. However, their size places restrictions on studies of loading in-
duced by multiple people [18]. An alternative approach is to measure the
loading indirectly. According to [19], if the accelerations of body motion are
known or measured, the ground reaction force (GRF) F [8] can be calcu-
lated indirectly using the basic principles of Newtonian mechanics, i.e., force
is equal to mass times acceleration. Therefore, using the acceleration and
mass of the individual, the GRF generated by a crowd can be computed by

F =
∑

i

miai − g
∑

i

mi, (1)

where g is the static acceleration due to gravity, mi is the body mass of
the ith test subject and ai is the dynamic acceleration due to body motion.
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Generally, the body mass is supposed to be known, while acceleration of the
body needs to be experimentally measured or estimated.

Experimental characterisation of the body motion is possible using opti-
cal marker-based motion tracking [10], wireless inertial sensors [20], video-
based monitoring [21] or multichannel interacting model [22]. In [10], the
accelerations of body segments were measured by tracking optical markers
(Codamotion) stuck to the surface of the human body, and then used to
generate force signals. However, due to interaction with daylight and the
limitation of the number of markers, marker-based optical tracking systems
are usually constrained to artificial laboratory environments. Alternative
wireless inertial sensors [23] can be used in outdoor environments but are ex-
pensive and typically suffer from synchronising individual units in a wireless
network. Moreover, the number of units within a wireless network is limited,
which in turn restricts the number of monitored individuals within a crowd.

To overcome the limitations of conventional motion tracking sensors, a
vision-based method can be considered. Video data captured by a camera
(CCD or CMOS sensor) are becoming increasingly discussed as an innovative
tool for measuring the motion of humans, structures or animals. Combined
with the right video analysis algorithms used to detect the motion trajec-
tory in the image space, vision-based methods have the potential to save
time and money over conventional sensors. Research in vision-based motion
tracking methods is topical [24], with a wide range of applications, such as
surveillance [25], augmented reality, robotics and human-computer interac-
tion. Compared with the conventional systems, vision-based methods for
measuring human motion have the following advantages: (1) It is possible to
measure people in outdoor environments rather than laboratory setting. This
is because the system is less sensitive to illumination changes than marker-
based sensors. (2) The number of tracking individuals is not limited. Due
to the entire scenario being captured and no special tracking target (such
as a Codamotion marker) being predefined, it is easy to track much more
targets in the view at all times. (3) People are not aware of being recorded.
No markers or inertial sensors need to be worn by participants. This will
save time for preparation and lead to more natural captured body movement
of test subjects, although there are ethical considerations to be addressed.
(4) It is a cheap, remote and long-term monitoring system. The available
commercial marker-based or wireless inertial systems are typically expensive
and require external power.

Some research on digital image correlation (DIC) [26] methods to track
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the movement of crowds does exist [21]. However, the suggested methods are
built based on a strong assumption that the motion of each individual in a
crowd is similar to the motion of surrounding people, i.e. everybody moves in
the same direction. In reality, even when test subjects follow the same music,
directions of their motion can be opposite. Moreover, each test subject has
their own motion style or pattern, such as waving hands, nodding head and
turning around, so occlusion often happens. All of these problems limit the
application of DIC.

2.2. Contributions

The aim of this paper is to develop a vision-based motion tracking method
to measure simultaneously the body motion of multiple individuals in a com-
plex environment then enables the indirect measurement of human-induced
loading [9, 10] and studies of synchronisation between individuals in groups or
crowds in a real-world scenario. Thus, a camera system with high speed and
resolution [27] is used for collecting the motion data. Aiming for addressing
the challenges and abandoning the smooth motion assumption, a real-time
robust object tracking algorithm, Learn++ [28], is designed to build the
models of the tracker for each target. Moreover, due to the discrepancies of
motion signals generated by the system and other classical sensors such as
Codamotion [29] and Opal [30], an alignment method is proposed to measure
the difference between the signals. The comprehensive comparison with con-
ventional motion tracking technology can be used to guide the application
of our proposed system. The added value of this research is that it will not
only benefit structural engineering but will also benefit areas such as mea-
surement of human movement in biomedicine, biomechanical rehabilitation,
monitoring, performance optimisation and display of sport athletes, security
surveillance and animation and virtual reality [31].

3. Algorithms

In this section, the challenges of vision-based object tracking are first
introduced. Then, we detail the framework and every module of our adopted
method. The adopted algorithm is composed of several modules: image
patch representation, tracker training and tracker updating.

3.1. Challenges and algorithmic background

A perfectly robust vision-based system is far from being established, be-
cause many challenges induced by the target itself or the environment have
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not been fully addressed. The object-induced challenges for object tracking
include object deformation, in-plane or out-of-plane rotation, abrupt move-
ment and moving out and in, while the environment-induced challenges in-
clude illumination change, motion of the camera or the background and par-
tial occlusion. In this paper, we define “target” as the general object to
be tracked. To address various challenges, different machine learning based
methods are proposed. Generally, according to the type of samples used
to train the model, the online adaptive algorithms can be divided into two
groups: generative methods [12] which only use positive samples to infer the
relationship between them, and discriminative methods [15] which use both
positive and negative samples to train a classification hyperplane.

Our adopted method is based on discriminative online learning because
of its separability and effectiveness. Thus, the discriminative online learn-
ing models are briefly reviewed. Discriminative methods generally consider
object tracking as a classification problem. A classifier or a set of classifiers
which are trained and updated online are used to make a decision for each
sub-image patch. Due to the unpredictability of the object itself and the en-
vironment, different features would have different abilities for separating the
object from the background. Choosing the most discriminative features will
improve the robustness of object tracking methods. Some online feature se-
lection mechanisms [32, 33] were proposed to improve tracking performance,
by evaluating multiple features and adjusting the set of features. Two clas-
sical machine learning methods Support Vector Machine (SVM) [34] and
AdaBoost [35] were introduced into object tracking by Aviden. After that,
the online versions of AdaBoost [36] were used for feature selection in object
tracking. Yan et al. [14] designed an ensemble framework for optimal selec-
tion of detectors and trackers to do multi-target tracking. Yoon et al. [37]
used tracker selection and interaction for multiple feature fusion. Samples
are the original information of the entire system of tracking. Weighting the
samples changes the structure of the feature space so that an optimal clas-
sifier will be fast searched according to the desired feature space which is
warped. Semi-supervised learning [13] and multiple instance learning [38]
were adopted for sample selection.

3.2. Overview of the proposed method

The flowchart of our proposed system is shown in Fig. 1. Similar to
most tracking-by-detection methods, in total, there are three main modules:
tracker initiation in the first frame, target detection in the following frames
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Figure 1: The flowchart of our proposed system. Red boxes denote the main modules.

and tracker update. The inputs of the system are the images captured by a
high resolution and speed camera system. The outputs of the system are the
motion trajectories of the multiple targets defined in the first frame. Once
the trackers are generated and trained in the first frame, they can be used to
detect the predefined objects in the following frames. In our implementation,
one tracker is assigned to each defined object. Thus, for simplicity, we will
consider the tracker for each object individually and just describe one tracker
in the following sections.

The initiation module for a tracker includes four steps: target definition,
collecting samples, parameters initiation and tracker training. Firstly, the
target is generally defined by a set of pixels surrounded by a rectangle. In
this paper, four parameters for the target are considered: (1) horizontal
and vertical coordinates; (2) height and width of the rectangle. Secondly,
after determining the location and size of the target in the first frame, two
sets of samples will be collected. The positive samples are selected from the
image patches which are sufficiently overlapped with the predefined rectangle
(i.e., the intersection between a positive sample and the target divided by
their union exceeds 0.75) while the negative samples come from other image
patches randomly selected. Thirdly, each collected sample will be represented
by a vector, which will be used in the detection module. How to represent the
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image patches will be introduced in Section 3.3. Before the training, some
parameters need to be initialised. Finally, based on the collected sample set,
a discriminative tracker will be generated and trained based on the collected
samples. How to train a tracker will be detailed in Section 3.4.

The object detection and model update modules are processed in one loop.
At first, a new image will be grabbed speedily by a camera and transmitted
to the memory of a workstation. Next, if the image is invalid, the system
terminates at this point and outputs all the motion trajectories induced by
the different subjects. Otherwise, a motion model p(at|at−1) will be used
to predict the possible location in the present frame, where at denotes the
state of object in the image space. Particle filter [39] or optical flow [40]
methods can be adopted to achieve this step. According to the prediction,
each location with high probability will be checked by the tracker. Same as
in the model initiation module, the image patch is firstly represented by a
vector. Then, the vector is considered as the input of the tracker and the
output is the classification result for the image patch. The sliding window
process in a sub-loop will not stop until all image patches with the high
probability have been checked.

The classification results in the present frame will be used to update the
tracker so that the adaptivity to the current environment can be improved.
Same as in the first frame, the positive and negative samples represented by
vectors are collected according to the detection result. Thus, the tracker can
be updated by the information contained in the new data which represents
the new environment. The details of the update module are presented in
Section 3.5.

After all frames are processed, the displacement (motion trajectory) of
the predefined object, which consists of a set of location points in the image
space, can be produced. Next, through quadratic differential operation, the
acceleration of motion is obtained. From the flowchart shown in Fig. 1, we
can see that the three modules including patch representation, model training
and model update are the three critical steps and will be elaborated in the
following three sub-sections.

3.3. Image patch representation

Effective image patch representation is a significant step for achieving
robust object tracking. In general, the rectangular patch can be converted to
a vector with discriminative information extracted by patch representation.
The most desirable property is the uniqueness so that each sample Xi, Xi ∈
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Figure 2: The pipeline of image patch representation. The enlarged patch containing a
face is used to explicitly illustrate the intrinsic mechanism but need not to be processed
in our system.

RD, will be taken as a point in the feature space and can be classified by a
learned hyperplane f in this feature space. Normally, basic cues including
intensity, colour, edge, gradient, texture and Harr-like low-level features are
used to form a high-level representation. For example, the simplest way to
describe a patch is to straighten the pixel intensity values of the image patch
to a vector or to count the number of intensities. Recently, to build a robust
feature representation, pairwise pixel comparisons attract much attention
of computer vision researchers [41]. The advantages of features based on
pixel comparisons include robustness to the illumination changes and minor
deformation.

In our system, a pixel-comparison-based feature is used to represent the
image patch. The framework of the representation is shown in Fig. 2. For
each selected patch with a size of W ×H , e.g., the face region in Fig. 2, a set
of smooth filters with different sizes is used. If the size of one filter is w× h,
then all the entries of the filter are defined by 1

w×h
. Therefore, Integral Image

[42] can be adopted to speedily calculate the convolution by multiplying a
value 1

w×h
. The filter sizes will be varied from 1 × 1 up to the image patch

size W ×H . Thus, in total, nV = (W ×H)2 values (V ∈ RnV ) are generated
for each patch, where W×H values are generated by one filter. However, the
curse of dimensionality is encountered because of the super-high dimension
and too much redundant information. To avoid the curse of dimensionality,
following [43], a set of random projections P ∈ RD∗nV is defined to embed
the feature to a low dimensional space. This matrix is very easy to compute,
as it only requires a uniform random number generator. By using the sparse
projection, a low dimensional representation is obtained:

Xi(j) = Υ(P (j, ·)Vi), (2)
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where Υ is the indicative function. Thus, Xi(j) ∈ {0, 1} and the image patch
has been binary coded. Due to the sparsity of projection (a small number of
entries are non-zeros), the vast majority of the filters are not required to be
computed so that the burden of computation is avoided.

3.4. Model training

A set of classifiers fk are trained in the embedded feature space. Each
classifier function will divide the space into two parts: one for the positive
area corresponding to sign(fk(X)) > 0 and the other for the negative area
corresponding to sign(fk(X)) < 0. The basic function can be defined by
various types of formulation such as linear functions, kernel based meth-
ods, neural networks and density distribution. The classifiers are generally
considered as the hyperplanes which are required to cross the low density
area, maximise the maximum margin or preserve the manifold structure of
samples.

In classical machine learning methods, the classifier parameters will be
trained by using a fixed sample set assuming they are independent iden-
tically distributed. However, due to the non-stationary environment, this
assumption is invalid in most cases of tracking problems. This is because
the collected sample set in the first frame is just a set with a small number
of samples and containing local information which cannot reflect the real
density distribution. As a result, the classifiers trained in the previous set
will suffer from the “concept drift” problems. Another difficulty in object
tracking is that the various challenges frequently encountered in one scenario
simultaneously, such as partial occlusion and rotation happening together.
The classifiers used in the recent previous frames will be likely to fail in the
new environment.

Learn++ [28], which is an ensemble of classifiers originally developed for
incremental learning, can be adapted for solving the “concept drift” problem
in the non-stationary environment or in data fusion applications. It specifi-
cally seeks the most discriminative information from each data set through
sequentially generating an ensemble of classifiers. The classifiers trained on
individual data sources are fine tuned for the given problem (concept drift).
Learn++ can still achieve a statistically significant improvement by com-
bining them, if the additional data sets carry complementary information.
In this paper, assuming that the ensemble function set E t and their corre-
sponding weights wl are available, the ensemble classifier F t can be defined

10



(a) (b)

Figure 3: (a) The motivation of model updating. (b) The basic setting of the vision-based
human-induced vibration detection system.

as
F t(Xi) =

∑

l:fk∈Et

wkfk(Xi). (3)

The details of how to calculate the weights of basic functions are referred to
[28].

Each basic classifier fk will correspond to nB variables in the binary vector
Xi. ∆k denotes the index set of the variables used by fk and X∆t

i denotes
the sub-vector of Xi corresponding to the index set ∆k. The naive Bayesian
is used as the basic classifier, which is defined as (assuming a uniform prior
p(y)):

fk(Xi) = argmax
y

p(y|X∆t

i ) = argmax
y

∏

j∈∆t

p(Xi(j)|y), (4)

where the label y ∈ {−1, 1}. Given a data set X
t and its corresponding

label set Y t, the class distribution p(Xm|y) for each feature variable can
be calculated according to the percentage of samples, where Xm denotes
the mth variable of the representation. N t(y) is the total number of the
samples belonging to class y in sample set Xt and N t(Xm, y) is the number of
these samples having a same code with Xm. During training, the conditional
distribution can be calculated by p(Xm|y) = N t(Xm, y)/N

t(y).

3.5. Model updating

Model updating is a critical step to increase the adaptivity of the proposed
system. As shown in Fig. 3(a), F t−1 is an ensemble classifier used for the
samples (circles) in previous frames but it cannot solve the problem in the
current sample set (squares). However, the dotted line F t seems to be the
best classifier for the current environment. The aim of model updating is to
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approximate the best classifier by incorporating the new sample set. In this
case, the new sample set (Xt, Y t) will be used to update the basic classifier
fk. N

t−1
k (y) is the total number of the samples belonging to y used by fk and

N t−1
k (Xm, y) is the number of these samples having a same code with Xm in

the t − 1 step. Thus, at the stage of updating, the conditional distribution
can be updated by p(Xm|y) = (N t−1

k (Xm, y)+N t(Xm, y))/(N
t−1
k (y)+N t(y)).

Meanwhile, the numbers will be updated as: N t
k(Xm, y) ⇐ N t−1

k (Xm, y) +
N t(Xm, y) and N t

k(y) ⇐ N t−1(y) + N t(y). We have N t
k(Xm, y) = 0 and

N t
k(y) = 0. Afterwards, the weights of basic classifiers will also be updated

to construct the new tracker which is adaptive to the current environment.
The details of this procedure are referred to [28]. By recomputing Eqn. 3, a
new adaptive ensemble classifier F t is obtained.

4. Aligning signals

To validate our proposed system, the signals should be compared with
the ground truth signals. In this paper, we will consider the signals gener-
ated by Opal or Codamotion as the ground truth data. How to compare
the signals generated by two different types of sensors will be introduced in
this section. In general, there are four types of differences between the two
signals including time domain translation, time domain scaling, amplitude
translation and amplitude scaling.

Assume two discrete signals s1 and s2 which need to be aligned have
different lengths: l(s1) 6= l(s2), where l(s1) is the length of s1. Five types
of transformation, without changing the intrinsic properties of signals, are
defined. (1) s = TH

S (s, α): s has been transformed by a scaling factor α in
time coordinate. (2) s = TH

T (s, β): s has been translated by a shifting step
β in time coordinate. (3) s = T V

S (s, γ): s has been transformed by a scaling
factor γ in amplitude coordinate. (4) s = T V

T (s, δ): s has been translated
by a shifting step δ in amplitude coordinate. (5) s1 = TC(s1, s2): The latter
part of s1 has been cut off according to l(s2).

Besides the above five transformations, we also define three quantities to
describe relationships of the two signals: (1) The energy difference of two
signals: e(s1)−e(s2), where e(s1) =

√
∑

i |s1(i)|
2. (2) The correlation of two

signals (requiring l(s1) = l(s2)):

c(s1, s2) =

∑

i(s1(i)− ŝ1)(s2(i)− ŝ2)
√

∑

i(s1(i)− ŝ1)2
√

∑

i(s2(i)− ŝ2)2
, (5)
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where ŝ1 =
∑

i s1(i)/l(s1). This quantity is not influenced by the energy
difference of the two signals and is used to align the two signals in time
coordinate. (3) The normalised distance from signal s1 to signal s2 (requiring
l(s1) = l(s2)):

d(s1, s2) =
e(s1 − s2)

e(s2)
. (6)

Based on the aforementioned transformations and relationships, the two sig-
nals can be successfully aligned in both time and amplitude coordinates.

4.1. Time translation and scaling

Assume that skc is the signal generated by the camera and sko is the sig-
nal generated by Opal or Codamotion for the kth test subject. They are
with different lengths: l(skc ) 6= l(sko). We will try to translate skc and scale
(down-sample) sko so that the two signals can be matched in time coordinate.
There are three operations: (1) Down-sample sko : TH

S (sko, βo). (2) Shift skc :
TH
T (skc , αc). (3) Cut the latter part of s

k
o according to the signal length of the

camera: TC .
Assume that the best translation step for skc is α̂c and the best scaling

factor for sko is β̂o. The two best quantities can be found by optimizing the
following objective function:

[α̂c, β̂o] = max
αc,βo

∑

k

c(TH
T (skc , αc), TC(T

H
S (sko , βo), T

H
T (skc , αc))).

The above objective is defined based on the following two facts in our exper-
iment: (1) The length of signal sko is larger than that of signal skc . However,
the latter part of sko is meaningless because, at that moment, the test already
ends. We need to cut the latter part of signal sko so that the two signals have
the same length. (2) For all test subjects, the sensors of Opal or markers of
Codamotion belted on their bodies are synchronised. In addition, the whole
view of all subjects is captured by one camera, thus the signals generated by
the camera for different subjects can be considered synchronised. It means
that, for all the subjects in one test, the matching points of two signals (start
and end) are the same. As a result, the best matching points can be found
according to the summation of correlations of all subjects.

4.2. Amplitude translation and scaling

Compared with the time coordinate where translation and scaling have
same values for all test subjects, amplitude translation and scaling will be
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different for different subjects. They depend on the initial values of the Opal
sensors or the Codamotion markers and the positions of the test subjects in
the camera view. Suppose that the two signals sc and so have been matched
in time coordinate according to the best values α̂c and β̂o. To match the two
signals sc and so in amplitude coordinate, two transformations are used: (1)
Move signal so to around zero: T V

T (so, δo). (2) Scale signal sc: T V
S (sc, γc).

From the definition of correlation, we can see that the correlation of the two
signals will not be changed by the above two operations. Thus, the objective
function can be defined as:

[δ̂o, γ̂c] = min
δo,γc

|e(T V
S (sc, γc))− e(T V

T (so, δo))|

+λd(T V
S (sc, γc), T

V
T (so, δo)),

where λ is a regularisation parameter used to balance the two parts of the
function. In this objective function, the energy function considers the global
difference while the normalised distance considers subtle difference between
two signals. By optimising this objective function, the two signals sc and so
will be aligned in both amplitude and time coordinates.

5. Experiments

To test the proposed vision-based system, two experiments are conducted
in the Light Structures Laboratory (LSL) at the University of Sheffield, UK.
The basic setting of the camera system is shown in Fig. 3(b). The only nec-
essary consideration in this experimental setup was that the interest parts of
moving participants (also called test subjects) should be in the camera field
of view. During the studied activities, the bodies were moving predominantly
in the vertical direction inducing vertical structural vibrations. Therefore,
the vertical motion trajectories in the image space corresponding to the pro-
jected movement in the vertical direction were detected. To investigate the
performance of the proposed system, motion signals generated by our system
were compared against the marker-based Codamotion and/or Opal wireless
inertial sensors both in time and frequency domains.

The hardware of the proposed system includes a Point Grey Flea USB3.0
CMOS sensor [27], a USB3.0 cable, a tripod and a portable workstation. The
maximum resolution and FPS (frames per second) of the selected sensor are
2080×1552 and 60, respectively. A low distortion lens of 8mm made by NET
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(a) (b)

Figure 4: (a) The setting of the first experiment: people performing on a slab. The
blue rectangles denote the targets defined in our system. (b) The setting of the second
experiment: people bouncing to music.

New Electronic Technology1 is a C-mount lens and is attached to the camera.
The sensor can be directly connected to a workstation by using a USB3.0
cable. To solve the speed problem of transmission from memory to hard drive,
a portable solid state drive (SSD) is used. As a result, the integrated system
is easy to be installed and convenient to be taken to wherever it is needed.
More details of high efficiency and robustness of the tracking algorithm can
be found in [15].

5.1. Experimental setting

5.1.1. People moving on a slab

In this experiment, six people were standing on and inducing vertical mo-
tion in a flexible slab strip structure in the LSL. The slab strip is a 2m wide,
15 tonne pre-stressed concrete slab spanning 11m between simple supports,
and the six people were arranged in two rows. Three people in the front row
were in view of the camera positioned at one end of the slab, as shown in Fig.
4(a). Two types of actions - bouncing and jumping - were investigated at
a frequency from 2.0Hz to 2.5Hz which were synchronised by a metronome
(held by the right subject in the first row). The Codamotion markers [29]
were attached on the neck of every subject and two sets of Codamotion cam-
eras were installed at the two ends of the slab. For each sequence, the test
duration was set to 30 seconds. The sampling rates of Codamotion and the
camera were set to 200Hz and 60Hz, respectively.

1http://www.net-gmbh.com/
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5.1.2. People bouncing to music

A group of 18 (S1-S18) persons took part in this test. Vertical move-
ment of each individual was measured directly using miniature APDM Opal
wireless accelerometers [30] attached to their bodies, while the whole group
was simultaneously recorded by the video camera located 3m away from the
group. Assuming a constant magnification matrix of the video image, this
led to an approximate relation of 0.00131m per pixel. The Opal sensor has
an acquisition frequency of 128Hz, which results, according to Nyquist, in a
resolve spectrum up to 64Hz. The instrument has an accuracy of 0.0012m/s2

for accelerometer and maintains time-synchronisation of ≤ 1ms between sen-
sors. Both the camera and the sensors were synchronised by a trigger signal
measured by the Opal sensors and projected to the screen behind the par-
ticipants to allow a rough determination of starting video frames. In each
test, the participants were asked to bounce simultaneously to a given popular
song for 40−50 seconds. An example of the acquired images is shown in Fig.
4(b).

5.2. Problems Definition

To compare the displacement and acceleration generated by the proposed
system to the signals generated by other two technologies, five problems can
be identified and should be solved first.

5.2.1. Intrinsic noises

Firstly, it is difficult to select the same tracking targets on the body as
the locations of the Coda markers or Opal sensors. For example, an Opal
sensor is usually belted on the waist of a person, but motion of the waist is
often impossible to track in video records due to frequent visual occlusions
with other test subjects. Secondly, the tracking markers or sensors never
represent the exact motion of a human body due to the relative movement
between the clothes (e.g. belt) and the skin or the skin wobbling in case of
overweight test subjects. As a result, these two kinds of noise bring some
difficulties to the comparison between the signals generated by the camera
and other motion tracking systems.

5.2.2. Time scale difference (Real sampling rate)

Sampling rates of Opal, Codamotion and the camera should be 128Hz,
200Hz and 60Hz respectively, so the corresponding motion signals have to
be resampled. In our experimental analysis, we found that either the real
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Figure 5: (a) The acceleration examples of Opal sensors: subjects 1, 2 and 3 in Trail 1.
(b) The displacement example of camera. (c) The two accelerations are aligned in time
coordinate when the signal generated by Opal is downsampled to 57.7. (d) Same with (c)
but the signal generated by Opal is downsampled to 60.

sampling rate of the camera is not exactly 60Hz or the real sampling rate of
Opal is not exactly 128Hz, because of the loss of data or the system delay.
Fig. 5(c) and Fig. 5(d) show two types of down-sampling rate: 57.7Hz( Fig.
5(c)) and 60Hz( Fig. 5(d)). We can see that the result of Fig. 5(c) is much
better.

5.2.3. Time translation

In the first experiment, we can confirm the beginning frame according to
the power lights of markers attached on necks of test subjects as shown in
Fig. 4(a). In the second experiment, we set a screen in the camera view to
indicate the start point of the Opal sensor. However, there is a delay of over
10 frames when the button becomes completely bright from dark. So, it is
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Table 1: Comparison with Codamotion: the correlation of two displacements
ID T1 T2 T3 T4 T5 Avg
S1 0.9896 0.9878 0.9754 0.9939 0.9719 0.9837
S2 0.9935 0.9926 0.9919 0.9179 0.9590 0.9710
S3 0.9917 0.9960 0.9938 0.9626 0.9553 0.9799
Avg 0.9916 0.9921 0.9870 0.9581 0.9621

Table 2: Comparison with Codamotion: the normalised distance between the frequencies
of two displacements

ID T1 T2 T3 T4 T5 Avg
S1 0.0060 0.0089 0.0135 0.0018 0.0039 0.0068
S2 0.0044 0.0056 0.0026 0.0553 0.0288 0.0193
S3 0.0051 0.0035 0.0020 0.1535 0.0504 0.0429
Avg 0.0052 0.0060 0.0060 0.0702 0.0277

hard to decide which frame is the best one to mark the start of recording,
making time translation necessary to align the two signals.

5.2.4. Amplitude scale difference

The amplitude scale of signals generated by different sensors will be dif-
ferent because they are in different types of space. Moreover, the amplitude
scale between the tracked trajectories in the image plane and the real motion
of different test subjects will be also different as they were not standing in the
same row. The precision per pixel strictly depends on the distance between
the tracked target and the camera. A different distance means a different
amplitude scale.

5.2.5. Amplitude translation

For different Opal sensors, the default initial values should be around the
local intrinsic acceleration of gravity (−9.8m/s2). However, in reality, they
are a little different from each other. Three examples are given in Fig. 5(a)
from the first point to the 200th point. For the camera, the means of all the
accelerations are around 0. Thus, the best amplitude translation must be
fixed to match the two signals in this coordinate.

5.3. Experiment 1: displacements generated by Codamotion and Camera

In this subsection, the comparison of two vertical displacements generated
by the camera and Codamotion are given. The tests are repeated five times
and the five trials marked as T1, T2, T3, T4 and T5 are recorded. The
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Figure 6: (a) The comparison of two vertical displacements by subject 3 in Trail 3. (b)
The histogram of the displacement difference values between the camera and Codamotion.
The difference values are the direct distances of two corresponding points in two signals
and not normalised. (c) The corresponding Fourier amplitude comparison with frequency
from 0 to 6. (d) The histogram of the Fourier amplitude difference values between the
camera and Codamotion.

first three trials ( T1, T2 and T3) correspond to the action bouncing while
the last two trials (T4 and T5) correspond to the action jumping. After the
translation and scaling operations in time and amplitude coordinates to the
two displacements, the comparison results are shown in Table 1 and 2. A red
bold number denotes the best match in all tests while the blue bold number
denotes the worst one.

We can see that the correlation of any pair of signals is more than 0.95
with that of most pairs over 0.98. In the frequency domain, except for the
motion of subject 3 in Trial 4, the normalised distance between any other pair
of displacements is less than 0.06. Moreover, the displacements of bouncing
are aligned better than the displacements of jumping, because the motion
blur problem for jumping is more serious in the camera system. This can be
solved by altering the lens focus for a specialised application if needed.

From the above analysis, we know the alignment of the two displacements
by subject 3 in Trial 3 is the best. Fig. 6(a) shows the aligned displacements
generated by camera and the Codamotion and Fig. 6(b) shows the corre-
sponding frequency comparison from 0Hz to 6Hz. It illustrates that the
duration of this test is around 30 seconds and the main frequency of bounc-
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ing is around 2Hz. In fact, the test subjects were indeed bouncing with
synchronisation by a metronome at 2Hz. Hence, we conclude that the both
two displacements reflect the intrinsic motion characteristics (dominant fre-
quency). Next, Fig. 6(b) demonstrates that almost all the difference values
between the two displacements are less than 10mm and Fig. 6(d) demon-
strates the majority of frequency differences is less than 0.1Hz. We can
see that the two displacements are almost completely overlapped both in
time and frequency domains. Therefore, we can conclude that the proposed
vision-based system achieves similar results as Codamotion, but it possesses
several advantages and has better extensibility.

Table 3: Comparison with Opal: the correlation of two accelerations
ID T1 T2 T3 T4 T5 Avg
S1 0.17 0.14 0.19 0.17 0.22 0.18
S2 0.24 0.17 0.24 0.09 0.28 0.2
S3 0.28 0.19 0.28 0.19 0.25 0.24
S4 0.09 0.14 0.15 0.09 0.14 0.12
S5 0.26 0.22 0.27 0.09 0.40 0.25

S6 c.08 0.07 0.14 0.11 0.13 0.11
S7 0.08 0.1 0.11 0.12 0.19 0.12
S8 0.1 0.11 0.13 0.09 0.09 0.1
S9 0.23 0.11 0.18 0.08 0.2 0.16
S10 0.16 0.11 0.14 0.14 0.24 0.16
S11 0.22 0.17 0.26 0.07 0.17 0.18
S12 0.12 0.14 0.17 0.13 0.15 0.14
S13 0.06 0.06 0.12 0.07 0.08 0.08

S14 0.14 0.12 0.2 0.08 0.24 0.15
S15 0.09 0.2 0.21 0.07 0.15 0.15
S16 0.09 0.13 0.17 0.12 0.16 0.13
S17 0.09 0.12 0.12 0.12 0.15 0.12
S18 0.19 0.27 0.39 0.20 0.16 0.24
Avg 0.15 0.14 0.19 0.11 0.19

5.4. Experiment 2: accelerations generated by Opal and Camera

The second test is also conducted five times using five pieces of music with
different rhythms and the five trials marked as T1, T2, T3, T4 and T5 were
recoded. For each trial, the Opal system was started first and stopped last
so that it guarantees that the signals generated by the camera are within the
duration of the signals generated by the Opal sensors. The 18 test subjects
are denoted as S1 to S18.
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Table 4: Comparison with Opal: the normalised distance of two accelerations
ID T1 T2 T3 T4 T5 Avg
S1 0.29 0.27 0.36 0.27 0.33 0.3
S2 0.42 0.33 0.44 0.2 0.41 0.36
S3 0.46 0.36 0.5 0.28 0.42 0.4
S4 0.26 0.32 0.34 0.2 0.31 0.29
S5 0.48 0.39 0.49 0.15 0.58 0.42
S6 0.17 0.17 0.28 0.2 0.28 0.22
S7 0.16 0.19 0.26 0.2 0.29 0.22
S8 0.2 0.2 0.25 0.17 0.17 0.19
S9 0.36 0.23 0.35 0.15 0.35 0.29
S10 0.3 0.23 0.34 0.25 0.37 0.3
S11 0.35 0.35 0.51 0.17 0.37 0.35
S12 0.22 0.26 0.33 0.27 0.3 0.28
S13 0.15 0.14 0.3 0.16 0.17 0.18
S14 0.21 0.24 0.36 0.17 0.37 0.27
S15 0.19 0.36 0.36 0.15 0.32 0.28
S16 0.21 0.29 0.35 0.2 0.25 0.26
S17 0.2 0.22 0.24 0.2 0.31 0.23
S18 0.31 0.42 0.58 0.31 0.29 0.38
Avg 0.27 0.28 0.37 0.21 0.33

5.4.1. Time domain analysis

Through the several operations (translation and scaling) to the two sig-
nals generated by the camera and Opal, we can find the best match of them.
In this subsection, we will give quantitative analysis about the match. The
correlation, normalised distance and their corresponding means of the corre-
lation and distance are shown in Tables 3 and 4, separately, when the two
signals are best aligned. A larger number in Table 3 means the two signals
are aligned better whilst a larger number in Table 4 indicates the two signals
are aligned worse. A red bold number denotes the best match in that trial
while a blue bold number indicates the worst one. From Tables 3 and 4, we
can see that signals of subject 13 are aligned the best four times. The signals
of subject 18 are aligned worst three times and the signals of subject 5 are
aligned worst twice.

The differences of two signals are from three aspects. The first one is the
error from the vision-based tracking algorithm. This type of tracking method
tries to find the location of a predefined object with highest probability in
the image plane. However, due to limitations of the feature representation
or the learning model, a small error to the location cannot be avoided. The
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second aspect is the additional motion of different subjects. Even though
the vision-based method gives the exact trajectories of movement, the final
signals cannot be aligned completely because different subjects move with
different ways. For example, subject 5 in our experiment always lowered
her head, raised her hand to organise her hair, and turned her head to one
side to talk with somebody else. These additional motions will bring some
difficulties to align two signals of the same subject. Besides these types of
additional motion, in fact, the Opal sensors cannot record the exact motion
of a body because they were just fastened to the body or the clothes by a
belt. The final aspect is the intrinsic difficulty caused by different body parts.
Even though all test subjects strictly followed the rules of the experiment,
there were still different motions for different parts of the body of the same
test subject synchronised with the same music. For example, the head always
nodded when the subject bounced at the lowest point. Also, for subjects with
a large belly, the Opal sensor will record the motion of the belly.

Table 5: Comparison with Opal: the normalised distance of the frequencies of two dis-
placements

ID T1 T2 T3 T4 T5 Avg
S1 0.17 0.14 0.19 0.17 0.22 0.18
S2 0.24 0.17 0.24 0.09 0.28 0.2
S3 0.28 0.19 0.28 0.19 0.25 0.24
S4 0.09 0.14 0.15 0.09 0.14 0.12
S5 0.26 0.22 0.27 0.09 0.40 0.25

S6 c.08 0.07 0.14 0.11 0.13 0.11
S7 0.08 0.1 0.11 0.12 0.19 0.12
S8 0.1 0.11 0.13 0.09 0.09 0.1
S9 0.23 0.11 0.18 0.08 0.2 0.16
S10 0.16 0.11 0.14 0.14 0.24 0.16
S11 0.22 0.17 0.26 0.07 0.17 0.18
S12 0.12 0.14 0.17 0.13 0.15 0.14
S13 0.06 0.06 0.12 0.07 0.08 0.08

S14 0.14 0.12 0.2 0.08 0.24 0.15
S15 0.09 0.2 0.21 0.07 0.15 0.15
S16 0.09 0.13 0.17 0.12 0.16 0.13
S17 0.09 0.12 0.12 0.12 0.15 0.12
S18 0.19 0.27 0.39 0.20 0.16 0.24
Avg 0.15 0.14 0.19 0.11 0.19

22



0 10 20 30 40 50

−5

0

5

Time[s]

T
he

 v
er

tic
al

 a
cc

el
er

at
io

n[
m

/s
2 ]

 

 

Camera
Opal

0 2 4 6 8
0

200

400

600

800

1000

The difference of acceleration[m/s2]

T
he

 n
um

be
r 

of
 d

iff
er

en
ce

(a) (b)

0 1 2 3 4 5
0

0.5

1

1.5

2

F
ou

rie
r 

am
pl

itu
de

Frequency[Hz]

 

 

Camera
Opal

0 0.05 0.1 0.15 0.2 0.25
0

200

400

600

800

1000

The difference of Fourier amplitude

T
he

 n
um

be
r 

of
 d

iff
er

en
ce

(c) (d)

Figure 7: (a) The comparison between the two accelerations of Subject 13 in T2 in the
time domain. (b) The histogram of the displacement difference values between the camera
and Opal. (c) The corresponding Fourier amplitude comparison with frequency from 0 to
6. (d) The histogram of the Fourier amplitude difference values between the camera and
Opal.

5.4.2. Fourier spectral analysis

Besides the time domain analysis, we also investigate the frequency dif-
ference for all the test subjects. The results are given in Table 5. The most
remarkable point is that the normalised distance in the frequency domain is
less than that in the time domain. This means that the translations in time
or the vertical direction probably contribute to the most difference between
the two accelerations, but the most dominant frequencies have also been cap-
tured by the camera system. In fact, the frequency analysis of acceleration
induced by human is the most important step to monitor the fitness of a
structure. The second point is that the results in Table 5 have the same
trend as in Table 4. The pair of signals which has a lower comparison score
in the time domain still has a smaller normalised distance between them. For
example, the two signals of subject 13 in Trial 2 are the most similar pair in
Tables 3 and 4 and they are also the most similar pair in Table 5.
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Table 6: The percentage of points satisfying the conditions
Condition (m/s2) > 3 > 2 > 1 > 0.7 > 0.5

Percentage 0.031 0.096 0.337 0.483 0.617

5.4.3. The best match of subject 13 of Trial 2

According to the comparison results in time and frequency domains, we
realise that the two signals generated by the camera and Opal on subject 13
in Trial 2 (T2) is aligned best. The correlation of the aligned signals is up to
0.93. Also, the normalised distance of the two signals is 0.14. Fig. 7(a) shows
that there are around 50 seconds activities corresponding to the music played
for 50 seconds. The generated accelerations by the two systems are both
between 7m/s2 and −9m/s2 and the two signals are similar with each other.
However, it is worth to mention that the two signals come from motions of
different parts of the body. The red signal is generated by the camera and
the head is considered as the target whilst the blue dashed one is generated
by the Opal sensor and the belly or the waist is considered as the target. As
a result, it is obvious that there are some differences between the movements
of the parts. We also investigate difference values of the two accelerations
when they are aligned. From Table 6, firstly, we can see that the difference
values of most points are less than 0.7m/s2. Next, we know that difference
values of about 32% of the points are less than 0.5m/s2 and that of only 3%
of the points is larger than 3m/s2. Moreover, the histogram is given in Fig.
7(b). It illustrates that the difference values of most of the points are with a
low value. And the mean and variance of the difference values are 0.909m/s2

and 0.696m/s2, respectively. c Same as the analysis in the time domain, the
Fourier spectral comparisons are shown in Fig. 7(c) and Fig. 7(d). We can
see that there are two peaks of the frequencies around 0.98Hz and 1.96Hz in
the two signals and most of the frequencies are similar with each other. Fig.
7(c) just shows the comparison with the frequencies from 0Hz to 6Hz and the
higher frequencies of the two accelerations both tend to be zero. Generally,
the frequency difference between the two accelerations is proportional to the
amplitude. However, the Fourier amplitudes are almost the same around the
dominant frequency of the activities as shown in Fig. 7(c). It demonstrates
that both systems capture the main motion characteristics of the activities.
Moreover, Fig. 7(d) illustrates that almost all the frequency differences are
less than 0.06Hz. As a result, we can conclude that the proposed camera
system can capture almost all the characteristics of human induced motion
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as the inertial sensor Opal.

6. Conclusion and Discussions

Based on the extensive investigation of the two comparative experiments
with two motion tracking systems Codamotion and Opal, the following con-
clusions can be safely drawn.

First, the proposed vision-based system shows good performance in the
field of human-induced vibrations. Compared with the classical sensors, such
as marker-based and inertial sensors, this system can be easily installed and
used in various environments. Due to the ability of remotely capturing the
whole view of the scene, there is no limitation on the number of cameras.
Moreover, no markers or other instruments are attached to the human body,
so body motion can be natural (i.e. not restricted by hardware) and test sub-
jects are not necessarily aware of being recorded. In addition, the adopted
Learn++ based object tracking algorithm overcomes the difficulties encoun-
tered in realistic scenarios, such as moving out of view and partial occlusion.

Next, the possible errors are from the following three sources. (1) The
motions of the selected different body parts will slightly differ so that the
measured movements will be also different. This contributes to the main dif-
ferences between the two types of systems. However, the error can be avoided
by selecting the parts of the body with little uncontrollable movement, such
as chest or neck. (2) The loss of data in the process of transmission will also
lead to error in the trajectories in the time coordinate. At present, we use a
low-end portable workstation and an improved hardware system will poten-
tially improve the overall performance. (3) The non-vertical imaging plane
will also lead to different scales of vertical displacements or accelerations for
different test subjects.

In future work, we will investigate the influence to the reconstructed
ground reaction force by different body parts and confirm which part or
parts will be the best to use. Also, it is worth to adopt a calibration step to
measure the distance between the camera and the target.
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