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Abstract 
 

Continuously operating instrumented structural health monitoring (SHM) systems are 

becoming a practical alternative to replace visual inspection for assessment of condition and 

soundness of civil infrastructure such as bridges. However, converting large amounts of data 

from an SHM system into usable information is a great challenge to which special signal 

processing techniques must be applied. This study is devoted to identification of abrupt, 

anomalous and potentially onerous events in the time histories of static, hourly sampled 

strains recorded by a multi-sensor SHM system installed in a major bridge structure and 

operating continuously for a long time. Such events may result, among other causes, from 

sudden settlement of foundation, ground movement, excessive traffic load or failure of post-

tensioning cables. A method of outlier detection in multivariate data has been applied to the 

problem of finding and localizing sudden events in the strain data. For sharp discrimination of 

abrupt strain changes from slowly varying ones wavelet transform has been used. The 

proposed method has been successfully tested using known events recorded during 

construction of the bridge, and later effectively used for detection of anomalous post-

construction events. 

 

Running title: Identification of Unusual Events in Monitoring Data 

 

Key words: bridges, multivariate statistics, novelty detection, outlier analysis, wavelet 

transform 
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1. INTRODUCTION 

Bridges, which are the key components of any transportation system, have expected life 

cycles as long as 50 or 100 years; it is however not uncommon to see even older structures 

which are still in service. During its long service life a bridge would be subject to aging 

processes, harsh environmental conditions and excessive loads, leading to deterioration. 

Consequences of impaired physical condition can be as severe as the collapse of the structure, 

causing great financial loss or even casualties, but even major protective maintenance and 

upgrading works or replacement of the bridge are expensive and troublesome. Thus, it is 

important to have updated information on structural condition and performance of bridges in 

order to early detect any worrying signs of decline and undertake protective countermeasures. 

 Transportation infrastructure authorities have long recognized the need to keep their 

bridges healthy and to this end have implemented various inspection and management 

programs. The current health monitoring practice is primarily based on visual inspection. Due 

to high manpower demand such inspections cannot be performed frequently. Other drawbacks 

of visual inspection based condition assessment include inaccessibility of critical parts of the 

structure and lack of information on actual loading. These shortcomings lead to subjective 

and inaccurate evaluations of bridges’ safety and reliability [1]. As a result some bridges may 

be retrofitted or replaced, while in fact they are sound; on the other hand, existing damages in 

other bridges may not be identified until they become expensive to repair or dangerous for 

structural integrity. 

 An alternative to the periodic visual inspection can be continuously operating 

instrumented structural health monitoring (SHM) systems. While their application to in-

service civil engineering structures, with exception for unique constructions such as super-

long bridges, is still rare, they are becoming more and more feasible due to availability of 

affordable hardware and advances in signal processing techniques [2-4]. A long-term, 
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continuous SHM system consists of a host computer, an array of sensors (and possibly 

actuators), and communication hardware and software for data collection and interpretation. 

The system provides continuous measurements of structural response (strains, stresses, 

accelerations etc.) due to ambient loadings (temperature, wind, traffic, ground motion etc.) or 

purposely exerted test loadings. Measurement data can be used for verification if the structure 

is loaded and behaves as designed, and for warning on excessive loads, unusual behavior or 

damage. According to Sikorsky [5], SHM should be broadly defined as “the use of in-

situ, nondestructive sensing and analysis of structural characteristics, including the structural 

response, for the purpose of identifying if damage has occurred (Level 1 of diagnostics), 

determining the location of damage (Level 2), estimating the severity of damage (Level 3), 

and evaluating the consequences of damage on structural serviceability, reliability and 

durability (Level 4)”. While there have been many works on SHM monitoring in relation to, 

for example, mechanical or aerospace structures addressing the aforementioned various stages 

of damage-related studies, monitoring of civil infrastructures is still at a preliminary phase. 

To the authors’ knowledge few researchers attempted to face the challenge of converting data 

from monitoring into a deep and profound knowledge of structural behavior and condition. 

The reason for this can be the complexity and uniqueness of civil structures, their size, and 

exposure to various ambient inputs that are difficult to quantify. In view of the absence of 

similar studies, the present work sets up a modest goal of developing an analytical method for 

detection of unusual, abrupt events in the time series of data obtained during long-term, 

continuous operation of an SHM system. With the above definition by Sikorsky, the proposed 

method can be classified within Level 1 of structural health diagnostics as it identifies events 

that could possibly manifest an onset of structural degradation or damage. In particular, 

hourly sampled, static strain time histories recorded on a major bridge structure are analyzed 

using wavelet transform in order to discriminate abrupt strain changes from slow ones. Then, 
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statistical analysis of wavelet coefficient time series is conducted to detect outliers, i.e. data 

that significantly protrude from the remainder. Preliminary work incorporating this approach 

was reported by Moyo and Brownjohn [6]. However, their analysis is basically applicable to 

data from a single sensor. Also, identification of outliers was based on a rather ad-hoc 

assumed threshold without studying statistical properties of the wavelet-transformed 

measurement data. In view of these limitations of the previous study, the present paper 

extends applicability of the method proposed in [6] to handle correlated, multi-channel 

measurement data. Coefficients of wavelet-transformed strains are investigated using vector 

autoregressive moving average models and outliers are identified via multivariate statistics 

approach. The monitoring program, theoretical basics, and analysis of measurement data are 

presented in the subsequent sections in a self-contained manner. 

 

2. MONITORING OF THE BRIDGE STRUCTURE 

The subject of the reported monitoring was the Singapore-Malaysia Second Link, also 

referred to as the Tuas Link (Figure 1). The bridge serves as a vehicular crossing between the 

Island of Singapore and Malaysian Peninsula, and is located in the Western side of the island. 

The bridge was completed in 1997 and opened to traffic in the same year. This section of the 

paper is intended to give only the basic outline of the structure and the monitoring program 

for the sake of self-containment, and readers interested in more details can find them in [6] 

and [7]. The bridge is about 1.9 km long and comprises 27 spans; the Singapore side is about 

170 m long and the main span of this section is 92 m long. The bridge was cast in-situ using 

the balanced cantilever method, to enable the navigation channel to be kept free throughout 

the construction, and post-tensioned. The cross-section of the post-tensioned, continuous box 

girder varies in depth from 2.6 m to 6.5 m along the bridge length. 
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 A suite of instruments was installed in the bridge in order to monitor its short-term and 

long-term performance under environmental and traffic loads. The instrumentation consists of 

four data loggers, twelve vibrating wire strain gauges, twelve pressure cells, forty four 

thermocouples and one tri-axial accelerometer, distributed in three segments (Segments 23, 

27 and 31) of the main span (Figure 2). Three data loggers are responsible for static 

measurements, that is strains, stresses and temperature, and one data logger is responsible for 

dynamic measurements. All the data loggers are connected to a host computer, resident in the 

bridge. The host computer can be accessed remotely via a modem. 

 The monitoring program was divided into two components, namely static and dynamic 

monitoring, the results of the former one being the focus of this paper. Static monitoring 

involved the acquisition of stress, strain and temperature data from embedded sensors. The 

magnitude and variation of these parameters depend upon structural geometry and boundary 

conditions, material properties, and the environment and live loads. The environmental effects 

include ambient temperature, solar radiation and wind. All static data were recorded hourly. 

 

3. THEORY 

Moyo and Brownjohn [6] concentrated on analysis of static strains and concluded that the 

major challenge was to convert the large amount of data from the SHM system into usable 

information. They paid special attention to identification of abrupt, anomalous events in the 

time histories of strains. Such events may result, among other causes, from sudden settlement 

of foundation, ground movement, excessive traffic load or failure of post-tensioning cables. 

As these events can potentially be onerous for structural integrity, it is of interest to 

discriminate them in the whole body of SHM-generated data. Achieving this goal by visual 

inspection of time series can be at best only qualitative, and in many cases is difficult and 

inaccurate, if not impossible. To overcome these difficulties, the analytical tool used here for 
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identification of abrupt events is the wavelet transform (WT). Another important issue, not 

yet adequately addressed in the previous work, is the simultaneous inspection of data from an 

array of synchronized sensors. Such an analysis can be used to assess whether the identified 

changes in performance affect the whole structure, or whether their impact is localized. Here, 

statistical outlier analysis of multivariate data is conducted in order to account for correlation 

of signals recorded at various locations. In short, the strategy adopted consists of the 

following steps: 

• Wavelet transform of strain time series 

• Formulation of a vector dynamic regression model for wavelet coefficients 

• Identification of outliers among dynamic regression model driven wavelet 

coefficients. 

 

3.1 Discrete wavelet transform (DWT)  

The wavelet transform is one of rapidly developing signal processing tools with new 

theoretical and applied works appearing every day. One of the most useful aspects of WT is 

the time-frequency localization, which enables zooming into data at both time and frequency, 

and close inspection of the signal’s minute features. This section of the paper gives a brief 

description of DWT’s fundamentals that are relevant for this study. 

 The basic idea of wavelet analysis is to represent general functions in terms of simple 

building blocks at different scales and positions. In the majority of practical signal processing 

applications, data decomposition is carried out using the discrete wavelet transform, which 

has an orthonormal basis and uses fast numerical algorithms. A given discrete signal in time 

( )y n  ( n∈Z , where Z  denotes the set of integers) can be decomposed as follows [8]: 
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 ( ) ( ) ( ), , , ,
1

J

J k J k j k j k
k j k

y n c n d nφ ψ
∈ = ∈

= +∑ ∑∑
Z Z

 (1) 

where ( ),J k nφ  and ( ),j k nψ  are discrete scaling and wavelet functions, respectively. They are 

derived through translation and dilation from the basic scaling function ( )nφ  and the mother 

wavelet ( )nψ : 

 ( ) ( )2
, 2 2j j

j k n n kφ φ− −= − ,   ,j k∈Z  (2) 

 ( ) ( )2
, 2 2j j

j k n n kψ ψ− −= − ,   ,j k ∈Z  (3) 

Coefficients ,J kc  and ,j kd  are termed scaling and detail coefficients, respectively, and are 

defined through the following standard inner products: 

 ( ) ( ), , ,J k J kc n y nφ=  (4) 

 ( ) ( ), , ,j k j kd n y nψ=  (5) 

Physical meaning of scaling and wavelet coefficients is such that the scaling coefficient ,J kc  

shows average values of ( )y n  at scale 2J
Js =  in the vicinity of time 2 jn k= , whereas the 

wavelet coefficient ,j kd  is associated with changes of ( )y n  at scale 2 j
js =  in the vicinity of 

time 2 jn k= . 

 Under normal conditions, static strains in a bridge girder vary slowly and smoothly 

with time, the main cause of their change being the diurnal temperature variation. Thus, 

abrupt changes would cause sudden, localized discontinuity in the variation of strains. 

Wavelet coefficients in the neighborhood of the abrupt change in the signal or its derivative 

significantly differ from others [9], hence wavelet analysis comes as the natural tool for 

detection of these discontinuities. In what follows we will restrict the study to real-valued 

WT. 
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3.2 Statistical model for wavelet coefficients 

Wavelet coefficients of signals from m  measurement channels at scale j  and time k  

can be considered as an m-dimensional random vector: 

 ( ) ( ) ( ) ( )1 2
, , ,

Tj m
k j k j k j kd d d⎡ ⎤= ⎣ ⎦d K  (6) 

where “T” denotes transposition. To simplify notation, hereafter the superscript j  will 

generally be omitted and used only when necessary to avoid confusion. Without loss of 

generality it can be assumed that random process { }kd  has a zero mean: 

 kE =d 0  (7) 

where E  denotes the expected value operator and the symbol “ 0 ” is used to indicate a zero 

matrix or vector of dimensions to be understood by the context. Consequently, hereafter any 

references to mean values of { }kd  are omitted. The covariance matrix function for process 

{ }kd  is defined as follows [10]: 

 ( )dT
k l k lE − =d d Σ  (8) 

where superscript l  is the time lag. Strain signals simultaneously measured at several spatial 

locations will often be correlated and so will be their corresponding wavelet coefficients, and 

hence, the dispersion matrix ( )
0
dΣ  [11] will be non-diagonal. This suggests that multivariate 

statistics should be used in the analysis of wavelet coefficient time series rather than 

univariate statistics. In addition, the covariance function will also be non-zero for some lags l  

different than zero, i.e. ( )d
l ≠Σ 0 , l∈Z . This is so, because the wavelet coefficients k l−d  and 

kd , as defined in Equation (5), are linear combinations of several values of the analyzed 

signal in the possibly overlapping neighborhoods of times k l−  and l , respectively. Such 
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correlation among the contemporary signal and its lagged version is characteristic for the 

autoregressive moving average (ARMA) process, thus suggesting that process { }kd  should 

be modeled using a vector ARMA representation of order ( ),p q  (referred to as ARMA(p, 

q)): 

 ( ) ( )p k q kB B=Φ d Θ a  (9) 

( )BΦ  and ( )BΘ  are matrix polynomials in the back shift operator B : 

 ( )
1

p
i

p i
i

B B
=

= −∑Φ I Φ  (10) 

 ( )
1

q
i

q i
i

B B
=

= −∑Θ I Θ  (11) 

where iΦ  ( 1, ,i p= K ) and iΘ  ( 1, ,i q= K ) are m m×  matrices, and I  is the identity matrix. 

The action of the back shift operator on a vector time series { }kx  is defined as follows: 

 1k kB −=x x  (12) 

Process { }ka  is a stationary zero-mean multivariate Gaussian white noise process with 

dispersion matrix ( )aΣ , i.e. { }ka  has an m-variate zero-mean normal distribution, in short 

{ } ( )( )~ , a
k mNa 0 Σ . 

 Assuming that the process defined in Equation (9) is invertible [10], we can rewrite it 

in the following autoregressive (AR) from: 

 ( ) k kB =Π d a  (13) 

where 

 ( ) ( ) ( )1

1

i
q p i

i
B B B B

∞−

=

⎡ ⎤= = −⎣ ⎦ ∑Π Θ Φ I Π  (14) 
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and iΠ  ( 1,i = ∞K ) are m m×  matrices. In practical applications the infinite sum in Equation 

(14) need be replaced by a finite one, resulting in the following AR model of order r  (in short 

AR(r)): 

 ( )
1

r
i

i
i

B B
=

≈ −∑Π I Π  (15) 

It follows from Equation (9) and Gaussian distribution of { }ka  that process { }kd  is also 

normally distributed. Thus, detection of sudden changes in the analyzed strain signals, 

manifested by unduly large values of corresponding wavelet coefficients, can be achieved by 

examining the actual statistical distribution of wavelet coefficients for the presence of 

outliers. 

 

3.3 Outlier detection in ARMA process 

Detection of outliers in multivariate random data is more difficult than among 

univariate observations because outliers have more room to hide in the bulk of 

multidimensional data. The difficulty is even higher when observations are not independent 

from one another but are governed by an ARMA process, and the analysis needs to account 

for correlation between samples. The detection of time series outliers was first studied by Fox 

[12] for the univariate ARMA process. The theory presented here is an extension of Fox’s 

concepts to handle multivariate situation. 

Assume that { }kd  is an outlier-free process described by ARMA model of Equation 

(13), whereas { }kf  is an outlier-including process. Fox [12] considers two types of outliers 

that lead to spurious observations: the additive outliers (AOs) and the innovative outliers 

(IOs). They are respectively defined as additions to { }kd : 

 ( )K
k k kI= +f d ω  (16) 
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 ( ) ( )1 K
k k kB I

−
= + ⎡ ⎤⎣ ⎦f d Π ω  (17) 

where ω  is the amplitude of an outlier and ( )K
kI  is the indicator variable signaling the 

presence or absence of an outlier at time K  and is defined as follows: 

 ( ) 1,
0,

K
k

k K
I

k K
=⎧

= ⎨ ≠⎩
 (18) 

It can be seen respectively from Equations (16) and (17) that an AO affects only the K-th 

observation, whereas the effect of an IO propagates to the subsequent observations due to the 

memory of the system defined by operator ( )BΠ . Assuming that a time series contains 

several AOs and IOs, it can be described by the general model: 

 ( ) ( )

1

i
M

K
k k i i k

i
B I

=

= +∑f d ν ω  (19) 

where ( )i B =ν I  for an AO and ( ) ( ) 1
i B B

−
= ⎡ ⎤⎣ ⎦ν Π  for an IO, respectively. 

 Wei [10] describes a method for estimation of one outlier’s magnitude when all 

parameters in Equation (19), i.e. the ARMA model as well as outlier’s type and time of 

occurrence, are known. Extending his results to a multivariate case, we define 

 ( )k kB=e Π f  (20) 

and from Equations (16) and (17) have respectively for an AO and an IO: 

 ( ) ( )K
k k kB I= +e Π ω a  (21) 

 ( )K
k k kI= +e ω a  (22) 

The least square estimations of the magnitude of an AO and IO occurring at time K , 

respectively denoted by ( )ˆ A
Kω  and ( )ˆ I

Kω , are then: 

 ( ) ( )1 *ˆ A
K KF−=ω T Π e  (23) 



 

 12

 ( )ˆ I
K K=ω e  (24) 

where 

 ( )*

1

r
T i
i

i
F F

=

= −∑Π I Π  (25) 

and F  is the forward shift operator acting on a time series { }kx  such that 

 1k kF +=x x  (26) 

Matrix T  in Equation (23) is defined as 

 
1

r
T
i i

i=
= +∑T I Π Π  (27) 

The dispersion matrices of outlier magnitude estimators in Equations (23) and (24) can be 

shown to be respectively equal to 

 ( ) ( ) ( ) ( ) ( )1 1

1

ˆ ˆ
rTA A A a a T

K K i i
i

E − −

=

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

∑Σ ω ω T Σ Π Σ Π T  (28) 

 ( ) ( ) ( ) ( )ˆ ˆ
TI I I a

K KE= =Σ ω ω Σ  (29) 

The outlier test is based on the Mahalanobis distances [11] defined as: 

 ( ) ( ) ( ) ( )( )1 21
ˆ ˆ

TA A A A
K K K

−
Δ = ω Σ ω  (30) 

 ( ) ( ) ( ) ( )( )1 21TI I I I
K K K

−
Δ = ω Σ ω  (31) 

The Mahalanobis distance differs from the Euclidian distance in that it accounts for the 

relative dispersions and correlations among vector elements. It is a probabilistic distance in 

the sense that equal distances imply equal likelihoods. 

 The null hypothesis of the outlier test, 0H , assumes that Kf  is neither an AO nor an 

IO. The two hypotheses competing with 0H  are: AH  assuming that Kf  is an AO, and IH  

assuming that Kf  is an IO, respectively. The likelihood test statistics for AH  versus 0H  and 
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IH  versus 0H  are the squared Mahalanobis distances, ( )2A
KΔ  and ( )2I

KΔ , respectively. Under 

the null hypothesis the magnitudes of outliers are normally distributed [10], 

( ){ } ( )( )~ ,A A
K mNω 0 Σ  and ( ){ } ( )( )~ ,A I

K mNω 0 Σ , and thus both squared Mahalanobis distances 

follow a chi-square distribution with m  degrees of freedom [11], ( ){ }2 2~A
K mχΔ  and 

( ){ }2 2~I
K mχΔ . 

 While testing whether a particular observation is an outlier, the value of its squared 

Mahalanobis distance is compared against an assumed threshold C . The knowledge of 

statistical distributions of the squared Mahalanobis distances of outlier magnitudes enables 

relating the threshold’s value to the upper 100 -thα  percentile of the m-degree-of-freedom 

chi-square distribution, denoted by ( )2
mχ α : 

 ( )2
mC χ α=  (32) 

where 

 ( )2
21

m
mF

χ
α χ α⎡ ⎤= − ⎣ ⎦  (33) 

and 2
m

F
χ

 is the cumulative distribution function for the m-degree-of-freedom chi-square 

distribution. Thus, significance levels can be assigned to the decision whether a tested 

observation is an inlier or an outlier: an observation is declared to be an inlier if ( )2A
K CΔ ≤  

and ( )2I
K CΔ ≤ , or the null hypothesis 0H  is rejected with the significance level of %α  in 

favor of AH  or IH  if ( )2A
K CΔ >  or ( )2I

K CΔ > , respectively. 

 It should be noted that the above procedure for outlier detection assumes that all the 

parameters of the outlier-free AR model of Equation (13), including the white noise 
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dispersion matrix ( )aΣ , are known. In practice, however, they usually need to be estimated 

from available data, and presence of outliers can lead to a serious bias in the estimates. Quite 

often, as is also true in the case of the analyzed bridge monitoring data, none of the portions 

of measured time series can be declared outlier-free beforehand and used for an unbiased 

estimation of the AR model. To deal with this problem, a multivariate extension of the 

iterative outlier detection procedure of Chang and Tiao [13] reported in [10] is used. Details 

of the procedure are given in Appendix. 

 Having identified outliers in multivariate data it is of interest to examine which of the 

vector components contribute most to the Mahalanobis distance. A convenient measure was 

proposed by Worden et al. [14], who used individual “diagonal” components, ( )1 2i
ii K

−

Σ ω  

( 1,2, ,i m= K ), that sum together with “off diagonal” components, ( ) ( )1 i j
ij K K

−

Σ ω ω  ( 1,2, ,i m= K ; 

1, 2, ,j m= K ; i j≠ ), to form the squared Mahalanobis distance. Here, 
1

ij

−

Σ  denotes element 

(i, j) of an inverse of dispersion matrix Σ  and ( )i
Kω  i-th component of vector Kω . In the 

present study, normalized square roots of diagonal components defined as follows 

 ( )
( )

( )

1

1

2

2

1,2, ,
max

i
i ii K

K
i

ii Ki m

D
−

−

=

=
⎧ ⎫
⎨ ⎬
⎩ ⎭

Σ ω

Σ ω
K

 (34) 

are used to assess the relative contribution of each channel to the examined outlier. 

 

4. APPLICATION 

4.1 Method verification using monitoring data recorded during bridge construction 

 In order to verify the proposed analytical method we first use it to analyze strain time 

histories recorded during construction works. As mentioned before, the bridge was built using 

the balanced cantilever method and in-situ concreting [15]. In this bridge erection technique 
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the construction process departs from a pier, and consists of repetitive steps during which two 

segments of the bridge girder, symmetrically located with respect to the pier, are first 

concreted, then stressed using tendons, and then concreting form traveler is shifted. At the 

end of construction of the span the closure segment is cast and continuity or integration 

tendons are stressed. Then the girder changes from separate cantilevers into a continuous 

beam. Each of these events, i.e. concreting, tensioning, shifting of form traveler last for a few 

hours and are separated by a few days’ time intervals. They are performed according to a 

construction schedule and are well documented. At the same time, these events can be 

expected to produce significant, sudden changes in strains. Thus, the proposed analytical 

method to be effective should be able to identify the concreting, tensioning and form traveler 

shifting events. This section of the paper is devoted to examining the performance of 

identification method as well as explaining and illustrating its details. Another useful result of 

analysis of known events can be the ability to compare them to identified future unknown 

events. Noticing similarities between known and unknown events may be helpful in 

understanding the causes and consequences of the latter ones. 

 A portion of strain time series recorded by four strain gauges located in Segment 31 

was chosen for the purpose of verification of the identification method. The strain gauges are 

denoted as SG31-1, SG31-2, SG31-3 and SG31-4 (see Figure 2); SG31-1 and SG31-3 are 

placed close to the top of the girder, whereas SG31-2 and SG31-4 close to the bottom. The 

strain time series starts on April 29, 1997 at 00:00 hours, corresponding to time 1n = , and 

comprises 1500 hourly sampled measurements. These time series for the fours strain gauges 

are shown in Figure 3. The sign convention is such that positive strains denote contraction; in 

addition, the numerical values of strains, given here in the microstrain units ( 61 10με −= ), 

correspond to relative rather then absolute strains and are measured from unknown reference 
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levels, which are generally different for different channels. Table 1 lists major stages of the 

construction schedule together with the times when they were carried out. 

 Firstly, the time series of strains were wavelet-transformed using the Daubechies 

orthonormal wavelet systems of order N  and support length 2 1N − , denoted by ( )D N  [8]. 

In particular, results presented here were obtained using the ( )4D  system. This order was 

chosen as a trade-off between good time and poor frequency localization of lower order 

systems and poor time and good frequency localization of higher order ones. Figure 4 shows 

time series of wavelet coefficients at the lowest scale, ( )1
kd , for the four strains. For easier 

comparison of strain and wavelet coefficient time series, the latter ones were plotted with 

time interval of 2, to compensate for the down-sampling inherent in DWT. Several significant 

excursions from the mean value of zero can be seen in the wavelet coefficient time series in 

all channels, and the subsequent analysis aims at classifying them as inliers or outliers. 

To choose an adequate order of AR process governing the wavelet coefficients, 

several AR(r) models with different r  were checked and it turned out that a low order model 

- AR(2) ensures sufficient accuracy. The rationale behind this choice was that all values of 

AR model matrix coefficients iΠ  for 3i ≥  did not have significant values, and process { }ka  

became white noise for AR(2). The AR model parameter estimation and simultaneous outlier 

analysis ware conducted using all available data. The initial estimation of parameters of 

AR(2) and their standard deviations computed under the assumption that there are no outliers 

were obtained through the least squares method [10]. The results are shown below where 

numbers in parenthesis are the standard deviations; (only these entries that exceed 1.5 of their 

respective standard deviations are retained, while the other are set to zero): 



 

 17

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1

-0.42 0.07 0.15 0.07 -0.11 0.07 0
0 -0.37 0.05 0 -0.11 0.05ˆ

-0.22 0.07  0.14 0.07 -0.24 0.07 0
-0.12 0.05 0 0.10 0.05 -0.33 0.05

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Π  (35) 

 

( )

( )

2

0 0 -0.14 0.07 0
0 0 0 0ˆ
0  0 0 0
0 0 0 -0.08 0.05

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Π  (36) 

and the initial estimation of the white noise dispersion matrix is 

 ( )

0.58 0.07 0.34 -0.12
0.24 -0.11 -0.05ˆ

0.53 0.09
. 0.27

a

sym

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Σ  (37) 

By examining the diagonal and off-diagonal coefficients of AR(2) model parameter matrices, 

it can be seen that wavelet coefficients in all four channels are related to their own past values 

as well as cross-related to past values in other channels. The relationship is strong between 

the current observations and the observations immediately preceding them, but much smaller 

for earlier observations. By examining ( )ˆ aΣ , which has significant values of off-diagonal 

entries, it can be concluded that the signals’ wavelet coefficients are also contemporaneously 

related. 

 An important step in the outlier detection procedure is the choice of the threshold 

value C . This threshold has to be judicially chosen because too low a value would lead to an 

excessive number of outliers and false alarms, whereas too high a value could leave some 

outliers undetected. After several trials the threshold to be used in this study was chosen as 

=24.50C . The value of α  for the upper 100 -thα  percentile of the 4-degree-of-freedom chi-

square distribution, ( )2
4χ α , [Equation (33)], is this case very low: 56.3 10α −= × . To better 
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appreciate the order of this threshold value it can be explained as follows. The 2
4χ  variable, 

which describes statistical distribution of the Mahalanobis distances, is a sum of four 

independent variables with a zero-mean unit-variance normal distribution, ( )0,1N . Taking 

the value of probability of exceeding 4±  standard deviations for an ( )0,1N  variable and 

finding the value of a 2
4χ  variable corresponding to this probability yields the assumed value 

of C . It appears that the chosen threshold is relatively high. 

The outlier detection procedure classified about 14% of observations as outliers. It 

should be noticed that, given a relatively high value of the threshold, the original distribution 

of noise { }ka  before outlier identification was quite heavily tailed as compared to the normal 

distribution. This could be explained by the fact that during construction the bridge 

experienced many unusual, abrupt events due to construction works and corresponding loads, 

such as excitation from construction machines and equipment. Durations of those events often 

extended for several hours influencing a number of wavelet coefficients in their vicinity. In 

addition, some outlying observations could be just noise due to, for example, electromagnetic 

interference. It should also be noticed that the wavelet transformation is a trade off between 

time and frequency localization. For a given sharp jump in signal at time instant n  not only a 

single corresponding wavelet coefficient at that time is affected but also a few coefficients 

nearby. That means an identified event is quite often manifested not by a single outlier but 

rather by a few outliers. 

The final estimation of parameters of AR(2) after outliers have been removed is 

 

( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1

-0.37 0.03 0 0 0
-0.03 0.02 -0.31 0.02 0.03 0.02 -0.11 0.02ˆ
-0.20 0.03  0.08 0.03 -0.14 0.03 0
-0.06 0.02 -0.03 0.02 0.02 0.02 -0.40 0.02

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Π  (38) 
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( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2

0 -0.07 0.03 -0.05 0.03 0.06 0.03
-0.05 0.02 -0.06 0.02 0 -0.05 0.02ˆ

0  -0.06 0.03 -0.09 0.03 0
0 -0.04 0.02 -0.03 0.02 -0.08 0.02

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Π  (39) 

and the dispersion matrix of the white noise process is 

 ( )

0.12 0.01 0.10 0.00
0.04 0.01 0.02ˆ

0.12 0.01
. 0.03

a

sym

−⎡ ⎤
⎢ ⎥−⎢ ⎥Σ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (40) 

It can be noticed that the white noise dispersion is now markedly smaller. As for the changes 

in AR(2) model parameters, comparing their estimated values with standard deviations, it can 

be concluded that they do not vary much from the initial estimates. 

 After describing the details of the outlier identification method we will now 

concentrate on examining the method’s efficiency in detecting abrupt events experienced by 

the bridge. Figure 5 shows the Mahalanobis distances for all identified additive and 

innovative outliers and compares them to the square root of threshold, 1 2C . As can be seen in 

Figure 5 and Table 1 the outlier detection procedure was able to detect all but one (F25) 

known events during construction. Zooming into the strain time series revealed, however, that 

event F25 did actually not cause visually noticeable strain fluctuations. In addition to the 

known events, many other, unknown ones were discovered. Figure 6 shows examples of 

strain time series in vicinity of tensioning (T24), concreting (C24), shifting of form traveler 

(F26) as well as an unknown event (UN1). Events T24, C24 and F26 were chosen because 

they share common features with the remaining tensioning, concreting and form shifting 

events. The tensioning events are the most evident in Figure 5, followed by concreting, and 

finally form shifting. The latter two types give in fact similar Mahalanobis distances to many 

detected unknown events. Indeed, as seen in Figure 6, the tensioning event is characterized by 
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an abrupt jump of strain, while concreting and form shifting last longer and do not cause such 

strong changes in strain. On the other hand, some of the unknown events turned out to give 

origin to strain changes of sharpness comparable to the tensioning events. Figure 7 shows in 

the left hand side column the wavelet coefficients corresponding to the events of Figure 6, 

and in the right hand side column it shows bar plots explaining the relative contribution of 

each signal to the Mahalanobis distance as defined in Equation (34). Regarding event T24, it 

is most noticeable in bottom signal SG31-4 followed by bottom signal SG31-2; top signal 

SG31-1 is also quite strong whereas top signal SG31-3 much weaker. This pattern is similar 

for the other tensioning events as well, which were characterized by large values of wavelet 

coefficients (relative to their variances) of the bottom signals, whereas the top signals, 

although possibly strong, did not show any consistent trend. Concerning the concreting events 

all of them were also easily visible in the bottom signals, while the top signals did not 

contribute much to their detection. As to the form shifting events, usually all four channels 

contributed significantly to their detection. Eventually, the unknown event UN1 affected 

mainly the bottom strains, similarly to the concreting events. In fact, comparing the strain 

time series of events C24 and UN1 (see Figure 6) reveals their close resemblance: both 

bottom strains experience large, step-like changes, while the top strains are not much affected. 

Regarding the rest of identified unknown events, histograms of relative contribution of each 

signal to the Mahalanobis distance are shown in Figure 8. The histograms show the 

percentage of relative contributions laying in the intervals marked on the vertical axis, and 

high values in the interval 0.9-1.0 demonstrate that a particular signal was an important factor 

in detection of a large number of outliers. Thus, it can be noticed that signals SG31-1, 3 and 4 

contributed almost equably to identification of outliers, while the bottom signal SG31-2 did 

not play such an important role. 
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4.2 Bridge monitoring after construction 

 In the previous section, the detection of outliers during construction period was 

conducted inclusively, i.e. the estimation of the AR model and dispersion matrix of white 

noise were conducted simultaneously with outlier detection, using the proposed iterative 

procedure described in the Appendix. To reduce computational burden associated with the 

iterative procedure, it is desirable to specify “training data” and use it for estimation of an AR 

model and noise dispersion matrix. Once these are computed, they can be regarded as known, 

and outlier detection in newly recorded data, referred to as the monitoring data, can be carried 

out exclusively. This approach will be used for analysis of post-construction strain data. 

 For the purpose of monitoring during post-construction stage, a portion of strain time 

series was chosen which was recorded by eight strain gauges located in Segments 23 and 31, 

denoted as SG23-1, SG23-2, SG23-3, SG23-4, SG31-1, SG31-2, SG31-3, and SG31-4 (see 

Figure 2). The record starts on May 19, 1999 at 17:00 hours, corresponding to time 1n = , and 

comprises 2492 hourly sampled measurements. The training data ware chosen as the first 600 

wavelet coefficients and AR(2) model was fitted to this data. The inclusive outlier detection 

procedure with a threshold =32.93C  found that about 6% of training data were outliers. The 

threshold value used here corresponds to the same significance level 56.3 10α −= ×  as in 

Section 4.1. The dispersion matrix after outlier removal is 

 ( )

0.11 0.11 0.09 0.11 0.07 0.04 0.07 0.04
0.20 0.09 0.15 0.08 0.04 0.08 0.04

0.16 0.11 0.06 0.04 0.07 0.05
0.26 0.08 0.05 0.09 0.05ˆ

0.07 0.02 0.05 0.02
0.09 0.02 0.05

0.08 0.02
. 0.06

a

sym

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ  (41) 
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It is interesting to notice that even wavelet coefficients of strains from different segments are 

quite strongly contemporaneously correlated. 

An exclusive outlier detection procedure using the estimated AR model and white 

noise dispersion matrix found about 9% outliers among the remainders of wavelet time series 

or the monitoring data, and the total number of outliers detected during post-construction 

stage amounted to 7.6% of the whole data. It can be seen that this number is smaller by a 

factor of almost two as compared to the number of outliers found in the data recorded during 

construction. This can be explained by the fact that during normal operation the bridge did not 

sustain so many strong, abrupt events such as tendon tensioning or segment concreting. 

Figure 9 shows the Mahalanobis distances for the identified outliers and compares them to the 

square root of threshold, 1 2C . It can be seen in this figure too, that post-construction events 

are not that strong as those during construction (cf. Figure 5). 

 Two examples of identified events, respectively referred to as Events E1 and E2, are 

shown in Figure 10, while their Mahalanobis distances are marked in Figure 9. Figure 11 

shows bar plots explaining the relative contribution of each channel to the Mahalanobis 

distances for the two considered events. It can be noticed that Event E1 was registered by all 

the eight sensors, though the sensors in Segment 31 contributed more. Indeed, sharp changes 

in strain can be seen in Figure 10 for strain time series of all the channels, and it can be 

concluded from the sign of this changes that the girder was subjected to a strong compressive 

force. On the other hand, Event E2 was more localized in space and it was registered only by 

bottom strain gauges in the middle span, i.e. at Segment 23, and almost not felt at Segment 

31. Figure 12 shows histograms of relative contribution of each signal to the Mahalanobis 

distances of all identified events. It is interesting that the bottom strain gauges SG21-2, SG23-

4, SG31-2 and SG31-4 contributed much stronger to the detection of abnormal events, which 

is clear from high values of respective histograms in the 0.9-1.0 interval. It can be also 
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noticed that the histograms for all eight sensors have relatively large values in the interval 

0.0-0.2. This shows that for a significant number of identified events some channels 

contributed strongly while the remaining ones did not. Thus, many of the events were 

localized in space, affecting only one of the instrumented girder segments or just selected 

sensors from a segment. 

 

5. CONCLUSIONS AND FUTURE RESEARCH 

A method of outlier detection in multivariate data has been applied to the problem of finding 

and localizing abnormal, sudden events in the strain data recorded during continuous, long-

term operation of a multi-sensor SHM system installed on a full-scale bridge structure. For 

separation of abrupt strain changes from slowly varying ones wavelet transform has been 

used. Wavelet decomposition significantly enhances ability to detect sudden events, which 

are typically well hidden among other strain fluctuations when one wants to find them by 

visual inspection of strain time series. The multivariate statistics approach for detection of 

abrupt events enables joint, systematic analysis of mutually correlated signals from an array 

of sensors, and yields information about spatial localization of events. The proposed method 

has been successfully tested through application to the strains measured during construction 

of the bridge, when abrupt events are known beforehand, and later effectively used for 

detection of abnormal post-construction events. 

 While the proposed method enables detection of events which could signalize an onset 

of structural change or damage, it does not decisively tell that any form of damage has 

actually been sustained. Ongoing investigations will try to address this issue through 

application of the multivariate intervention analysis of time series. Intervention analysis 

enables examination of what happened to the system after an unusual event and checking if 

this event had a permanent impact or only a transient one. Furthermore, the proposed method 
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is able to spatially localize points in the structure where abrupt changes in strains occur, but it 

cannot point out what caused those strain fluctuations. It is planned to formulate an analytical 

bridge model and use numerical simulations of different damage scenarios, such as post-

tensioning tendon failure or foundation settlement, to obtain some insight into the possibility 

of linking patterns in measured strain to the physical events and processes experienced by the 

structure. 

Eventually, as the currently used SHM system merely collects the measurement data, 

it is of interest to augment its software with a module that would be able to perform signal 

processing described in this paper on site, immediately after strain readings are available. 

Such an extended SHM system could operate autonomously issuing warnings to an operator, 

and would be a further step towards intelligent civil engineering structures. 

Equation Section (Next) 

6. APPENDIX. PROCEDURE FOR ITERATIVE OUTLIER DETECTION 

The procedure shown here enables iterative estimation of parameters of an AR model of 

Equation (13) as well as detection of outliers when the number of AOs and IOs is not known 

beforehand. The steps of the procedure are as follows. 

Step 1. Model time series { }kf  as if there were no outliers; the estimated model is denoted by 

( )ˆ BΠ . Compute the residuals from the estimated model: 

 ( )ˆˆk kB=e Π f  (A.1) 

Compute initial estimate of dispersion matrix of { }ka : 

 ( )

1

1ˆ ˆ
N

a
k

kN =

= ∑Σ e  (A.2) 

where N  is the size of the sample. 
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Step 2. Calculate ( )2ˆ A
kΔ  and ( )2ˆ I

kΔ  from Equations (30) and (31) using the estimated model and 

define 

 
{ }

( ) ( ){ }2 22

1,2 , ,
ˆ ˆ ˆmax max ,A I

K k kk N A I=
Δ = Δ Δ

K
 (A.3) 

If ( )22ˆ ˆ A
K K CΔ = Δ >  then there is an AO at time K  with an estimated magnitude of ( )ˆ A

Kω . 

Modify the data as follows: 

 ( ) ( )ˆ A K
k k K kI= −f f ω%  (A.4) 

and compute modified residuals: 

 ( ) ( ) ( )ˆˆ ˆ A K
k k K kB I= −e e Π ω%  (A.5) 

If ( )22ˆ ˆ I
K K CΔ = Δ >  then there is an IO at time K  with an estimated magnitude of ( )ˆ I

Kω . Modify 

the data as follows: 

 ( ) ( ) ( )1ˆ ˆ I K
k k K kB I

−
⎡ ⎤= − ⎣ ⎦f f Π ω%  (A.6) 

and compute modified residuals: 

 ( ) ( )ˆ ˆ I K
k k K kI= −e e ω%  (A.7) 

Compute a new estimate for the dispersion matrix, ( )aΣ% , from the new residuals. 

Step 3. Recompute ( )2ˆ A
kΔ  and ( )2ˆ I

kΔ  based on the modified residuals ke%  and dispersion matrix 

( )aΣ% , and repeat Step 2 until all outliers are identified. The initial estimate of ( )ˆ BΠ  remains 

unchanged. 

Step 4. Suppose that in Step 3 M  outliers have been tentatively identified at times 1K , 2K , 

…, MK . Estimate the outlier magnitudes and the time series parameters simultaneously using 

the model 
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 ( ) ( ) ( ) 1

1

i
M

K
k i i k k

i

B I B
−

=

= + ⎡ ⎤⎣ ⎦∑f ν ω Π a  (A.8) 

where ( )i B =ν I  for an AO and ( ) ( ) 1
i B B

−
= ⎡ ⎤⎣ ⎦ν Π  for an IO, respectively. Compute new 

residuals 

 ( ) ( ) ( )

1

ˆˆ ˆ ˆ i
M

K
k k i i k

i

B B I
=

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑e Π f ν ω  (A.9) 

and revised estimate of ( )ˆ aΣ . 

Recalculate ( )2ˆ A
KΔ  and ( )2ˆ I

KΔ  for the M outlier candidates and compare with threshold 

C . Discard of these candidates whose magnitudes do not exceed the threshold value. Repeat 

Step 4 until all outlier candidates’ magnitudes are above the threshold value. 

Repeat Steps 2 through 4 until all outliers are identified and their magnitudes as well 

as the time series parameters are simultaneously estimated. Doing so finally leads to the 

following estimated model: 

 ( ) ( ) ( )
1

1

ˆˆ ˆ i
M

K
k i i k k

i
B I B

−

=

⎡ ⎤= + ⎣ ⎦∑f ν ω Π a  (A.10) 
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Table 1. Construction schedule and results of event detection. 

Activity Abbreviation Time Detection result 

Concreting of Segment 27 C27 91-95 + 

Tensioning of Segment 27 T27 154-156 + 

Shifting of form off Segment 27 F27 180-181 + 

Concreting of Segment 26 C26 285-289 + 

Tensioning of Segment 26 T26 326-330 + 

Shifting of form off Segment 26 F26 350-355 + 

Concreting of Segment 25 C25 499-502 + 

Tensioning of Segment 25 T25 539-541 + 

Shifting of form off Segment 25 F25 572-576 - 

Concreting of Segment 24 C24 717-723 + 

Tensioning of Segment 24 T24 779-781 + 

Shifting of form off Segment 24 F24 950-953 + 

Concreting of Segment 23 C23 1234-1240 + 

Tensioning of continuity tendons TC 1359-1363 + 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The Singapore-Malaysia Second Link. 
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Figure 2. Bridge layout and strain gauges locations. 
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Figure 3. Strains recorded during construction at Segment 31.
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Figure 4. Wavelet coefficients at lowest scale of strains during construction at Segment 31.
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Figure 7. Wavelet coefficient time series and sensor contribution to outlier distance
                for selected events identified during construction.
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Figure 10. Strain time series for selected events identified after construction.
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Figure 11.Sensor contribution to outlier distance for selected events identified after construction.
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Figure 12. Histograms of sensor contribution to outlier distance for all events
                  identified after construction.
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