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ABSTRACT 
 

In-service civil infrastructure experience short-lived and transient changes in strain from 
time to time resulting for example from ground movements, development of cracks, heavy 
traffic, and accidents.  With the advent of instrumented structural monitoring it is now 
possible to capture these events.  In this paper an approach based on Box-Jenkins transfer 
functions is proposed for assessing the effect of these events on structural behaviour and 
performance.  The analysis is based on strain data recorded by a structural health monitoring 
system installed in a major bridge at construction stage. 
 
INTRODUCTION 
 

Structural health monitoring (SHM) is defined here, in the context of a continuous long-
term health monitoring system, as the continuous monitoring of a structure’s response to the 
loading environment in order to build up a database of loading demand and to diagnose the 
onset of anomalies in structural behaviour and performance.  Anomalies can include and are 
often defined as deterioration and damage resulting from changes in material properties, 
geometric properties, boundary conditions, system connectivity and the loading environment 
of the structure. 

Identification and characterisation of anomalies is important from the point of view of 
infrastructure management as these events could have adverse effects on structural behaviour.  
In a long-term continuous monitoring system, these unusual random events often appear as 
abrupt or transient changes hidden in measurement data, and their detection requires 
systematic procedure.  Once these events have been located it is essential to assess their effect 
on the structure since they may affect serviceability and long-term performance of structure. 
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In this paper we use transfer functions of Box-Jenkins model type to assess the effect of 
unusual events observed in strain data recorded by a long-term health monitoring system.  
First a brief description of the procedure for identification of anomalous events using wavelet 
analysis is outlined.  A background of the relevant theory on applying Box-Jenkins models to 
assess the effect of external events then follows.  The proposed procedure is then used to 
assess the effect of some events identified from strain data recorded by a bridge health 
monitoring system. 
 
IDENTIFICATION OF ANOMALOUS EVENTS 
 

From experience gained with monitoring bridges in Singapore (Moyo and Brownjohn, 
2002), identifying and locating abrupt and transient changes from health monitoring data such 
as stress, strain, accelerations, constitutes a significant portion of the data interpretation 
problem.  To this end an approach based on wavelet analysis has been developed for 
identifying abrupt and transient changes from static strain data acquired by continuous 
structural health monitoring systems. 

The basic idea of wavelet analysis is to represent general functions in terms of simpler 
fixed building blocks at different scales and positions.  A theoretical treatment of wavelets 
and wavelet analysis can be found in Daubechies (1992).  In most practical signal processing 
applications, data decomposition is carried out using the discrete wavelet transform.  The 
discrete wavelet transform of a function Yt consists of wavelet and scaling coefficients: 
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j is a scale or dilation variable and k represents time shift or translation. 

In the frequency domain the wavelet coefficients dj,k are nominally associated with 
frequency bands [ ]jj −+− 2,2 )1(  Daubichies(1992), i.e. the wavelet function approximates a band 
pass filter with band pass [ ]jj −+− 2,2 )1( .  Using the band pass properties of wavelet functions, it 
can be shown (Moyo and Brownjohn 2002) that the discrete wavelet transform decomposes 
strain data into components associated with creep effects, seasonal changes, diurnal 
temperature changes, and random changes as follows: 
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t
cJ

d wavelet coefficients associated with strains due to temperature variations. 

Ck represents time dependent strains due to creep and shrinkage of concrete, which appear 
as a trend in the observed strain values. 

Tk represents strains induced by thermal dilation of concrete.  This is largely due to diurnal 
and seasonal variations in temperature. 

Rk represents changes in strain due to random events.  These events could include transient 
events such as immediate settlement, change in weather, or abrupt changes such as, ground 
motions, accidents, short spells of weather changes, or heavy traffic.  It is assumed that these 
events would appear in Yt as uncorrelated data.  Therefore by studying portions of the discrete 
wavelet transform of strain data associated with random events one can then identify and 
locate abrupt and transient changes.  The identification process involves statistically 
extracting these events from noisy signals and then finding their occurrence in time (Moyo & 
Brownjohn 2002).  Figure 1 shows an example of a random event identified from strain data 
recorded at hourly intervals. 
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Fig.1: Identification of an unusual event using wavelet analysis 
 
ASSESSMENT OF EFFECT OF UNUSUAL EVENTS ON STRUCTURE 
 

Having identified the occurrence of an anomalous event, for example using wavelets, it is 
of interest to determine whether there is any evidence of change in structural behaviour and 
performance associated with the event.  An approach to this problem is to consider 
components of strain in a simple rheological model, associated with anomalous events.  The 
strain can be divided broadly into elastic strain and inelastic strain.  Elastic strain is reversible, 
that is, it dies out once loading on a structure has been removed.  On the other hand if the 
strain is inelastic the structure suffers an irreversible strain change, or permanent deformation.  
Irreversible strain can reduce the limit state capacity of a structure and may result in 
serviceability problems if strain change is large enough.  In new healthy structures exposing 
the structure to certain levels of irreversible strains may not impair structural performance 
immediately, however accumulation of these strains may have a long-term effect.  Therefore 
maintaining a database of these strains and their effect on the structure is essential for future 
condition assessment.  Thus it is considered important here to get some indication of which of 
the components of instantaneous strain dominate strain change due to random effects that 
occur in a structure from time to time.  For this impact assessment procedures proposed by 
Box & Tiao (1975), also known as intervention analysis, will be adopted. 
 
BRIEF REVIEW OF INTERVENTION ANALYSIS 
 

A Box-Jenkins model is a transfer function model of the type, (Ljung 1987): 
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where, 
y(t) = output signal, x(t) = input signal, e(t) = external disturbance, B = back shift operator 
such that )1()( −= tytBy , and ω , δ , θ  and φ  are the parameters of the transfer function 
model. 

The Box-Jenkins model represents a family of transfer functions and time series processes.  
In the absence of an input for example the model reduces to: 
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which, is a general form of an autoregressive-moving average ARMA time series model of 
order (p,q).  On the other hand if e(t) is zero the model reduces to a noise free transfer 

function model )(
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interaction between times series processes and transfer functions, proffered by the Box-
Jenkins model. 

The basic concept of intervention analysis is: Given a stationery time series process 
recorded at equal time intervals how does the onset of an exogenous event occurring at known 
time T affect the process?  Using the Box-Jenkins model, the time series process can be 

represented by an ARMA model )(
)(
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=Ψ  and the effect of an extraneous event can 

be modelled in terms of a deterministic input x(t) by a transfer function )(
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)(tΨ  stands for normal behaviour of a system while the deterministic input series )(tx  serves 
to indicate the presence or absence of an external event and is often represented by a step 
function )(tW or pulse function )(tU taking the value of 0 or 1 (Figure 2). 
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(a)   Step function 
Figure 2: Input function  
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(b)   Pulse function 
 

 
APPLICATION OF INTERVENTION ANALYSIS IN SHM 

 
Consider a long-term structural health monitoring system logging strain data from a 

structure at equal time intervals.  Under normal operational conditions of the structure, the 
resulting time series of strains, y(1), y(2),…, y(t), does not contain any unusual events and can 
be modelled as an ARMA model.  Occasionally the structure may experience rapid changes of 
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strains due to external inputs such as ground movement, traffic, accident effects, or immediate 
settlement of supports.  Following the Box-Jenkins model given above, these external events 
can be represented as external inputs, using a step or pulse function.  Thus, by applying the 
intervention analysis models represented by the Box-Jenkins model it is possible to assess the 
effect of an anomalous event on a structure.  In the transfer function model, the magnitude of 
ω  is proportional to the amount of change associated with a proposed model.  In the model 
for an abrupt permanent change, for example, ω  can be interpreted as irreversible or inelastic 
strain. 

The first step of intervention analysis is building an ARMA model.  Since the ARMA 
model describes stochastic behaviour of a time series process and intervention events are 
additional external disturbances, only the data before the onset of external events should be 
used in constructing )(tΨ .  It is also assumed that the form of the time series model for )(tΨ  
remains the same before and after the event.  ARMA model building consists of selecting an 
appropriate order (p,q), for the model.  There are a number of procedures for selecting the 
model order, for example partial auto-correlation analysis and Akaike’s Information Criterion 
(AIC).  Details of these procedures can be found in standard time series analysis books 
(Brockewell and Davis 1991, Box and Jenkins 1970).  Here partial auto-correlation analysis 
will be used. 

Once an ARMA model for the time series has been identified an appropriate Box-Jenkins 
model must be selected to assess the effect of the event.  The model is selected as follows; 
Estimate the parameter δ  for the transfer function model using a pulse function as the input.  
If the estimated value of the rate of change parameter δ is close to unity, then strain change is 
largely permanent.  Then estimate the parameter δ  for a step function input.  If the parameter 
is too small it implies the change was abrupt and permanent. 

Intervention analysis procedures described above were used to assess the effect of some 
events identified during and after construction of the Singapore Malaysia Second Link (Figure 
6).  A SHM system was installed during construction in order to monitor the bridge’s short-
term and long-term behaviour and performance under construction loads, environmental 
loads, and vehicular loads.  The SHM system includes a set of temperature sensors, stress 
cells, strain gauges and accelerometers distributed in three segments of the Singapore side of 
the bridge’s main span and logging data once every hour. 
 

 
Figure 3: Second Link Bridge 

 
In this study attention is paid to strain data recoded during and after construction of the 

bridge.  The causes of some events that occurred during the construction phase are known and 
they are, post-tensioning, concreting of segments and shifting of form traveller.  Figures 7 
show some events associated with post-tensioning activities. 
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Figure 4: Post-Tensioning Events 

 
Assessing the effect of post-tensioning 

Figure 1 shows part of the strain time series that contains an abrupt change of strain that 
resulted from post-tensioning at a segment of the bridge.  The event occurs at 241th record of 
strain. 

The first step in intervention analysis is selection of an appropriate time series model for 
the data.  Here it is assumed that the process is an Auto-regressive process of order p, AR(p) 
i.e. q is zero in the ARMA model.  Such an assumption is valid since high order AR models 
can represent ARMA models well (Hannan and Kavaliers, 1984).  The equation for )(tΨ  then 
reduces to, 

)()()( tetB =Ψφ , i.e.            (11) 
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For an AR process of order p, the estimated partial auto-correlations are approximately 

independent and normally distributed with zero mean and standard deviation φσ .  The 

standard deviation can be estimated as n/12 =φσ  (Box and Jenkins 1970), in which n is the 
number of observations used in model identification.  p is estimated from the partial auto-
correlations as the lag at which the partial auto-correlations are less than 2 φσ  (Box and 
Jenkins 1970).  Further residuals of the AR(p) should be uncorrelated, i.e., all partial auto-
correlation coefficients of the residuals should be less than φσ2  and their power spectrum 
should be the same as white noise spectrum.  For the data in Figure 10 only the first 240 
observations will be used for AR model identification.  Before identification of an AR(p) for 
the time series, low frequency components were filtered off the raw data to remove trends 
using wavelet analysis.  An AR(25) was chosen and used in the Box-Jenkins model for effect 
assessment. 

The step function for effect assessment takes the values of zero for the first 240 
observations and one for subsequent observations.  Similarly, the pulse function is zero 
everywhere except at observation 241 where it is one. 
The parameters estimated for different effect models are shown in Table 1. 
 

Temporary Abrupt 
Effect Model 
Parameters 

Gradual, 
Permanent, t 
Effect Model 
Parameters 

Permanent, 
Abrupt Effect 
Model 
Parameters 

Event Date 

ω  δ  δ  ω  ω  
31-05-1997 13.22 0.99 0.18 7.13 11.88 

Table 1: Transfer function parameters for post-tensioning event. 
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The decay parameter for the temporary change is close to one [0.99], indicating that the 
effect of the event would not decay to pre-intervention level too quickly.  This is confirmed 
by the rate of change parameter for the gradual permanent change, which is close to zero.  
From Therefore the change is abrupt and permanent with magnitude 11.88 με .  This should 
be expected since post-tensioning force remains permanently after locking the strands at the 
ends. 
 
Assessing the effect of post construction events 

Figures 5 shows some unusual events identified from the data using procedures given in 
section of this paper. 
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Fig. 5: Abrupt events identified after construction 

 
Using the time series model identified above, an effect assessment gives listed in Table 2.  

Note that where the rate of change parameter for an abrupt temporary model is close to no 
further other model is tested as this strongly suggests a temporary effect. 
 

Event Date Temporary 
Abrupt Effect  

Permanent 
Gradual Effect  

Selected Model 

 ω  δ  ω  δ  ω  
02-10-1997 3.8 0.99 4.46 0.57 Gradual permanent effect, 

will eventually reach a value 
of 10.1 με  

20-10-1997 -7.07 0.04   Temporary Abrupt Effect 
26-03-2000 -2.30 0.46 -2.41 0.11 Temporay & Abrupt 

permanent effect. Effective 
drop of –2.52-(-2.30=0.22)) 

01-06-2000 6.48 0.009   Temporary Abrupt Effect 
Table 2: Transfer function parameters for events in Figure 5. 
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Negative values of the parameter ω  indicate loss of tension proportional to the magnitude 
of the parameter ω  while positive values signify an increase in compressive strain.  It is 
interesting to note that most of the tension effects are accompanied by significant recovery of 
strain. A plausible reason could be the effect of post tensioning which pulls the structure 
together. 
 
DISCUSSION AND CONCLUDING REMARKS 
 

Effect assessment of anomalous events observed in strain data begins with identification 
of an ARMA model for the data time series followed by formulation of transfer function 
models in which the input is represented by a step or pulse function.  Three Box-Jenkins type 
transfer function models have been used to classify effects as temporary effects or permanent 
effects.  The selection of an appropriate effect model for a particular event is based on the 
logical relationship between the effect models.  The effectiveness of the approach was 
checked using post-tensioning events recorded during the construction of a bridge. 
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