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Abstract 

Due to an aging population, the incidence of dementia is steadily rising. The ability to identify early markers 

in blood, which appear before the onset of clinical symptoms is of considerable interest to allow early 

intervention, particularly in “high risk” groups such as those with Type 2 Diabetes (T2D). Here we present a 

longitudinal study of genome-wide DNA methylation in whole blood from 18 elderly individuals with T2D 

who developed pre-symptomatic dementia within an 18 month period following baseline assessment and 

18 age, sex and education matched controls who maintained normal cognitive function. We identified a 

significant overlap in methylomic differences between groups at baseline and follow-up, with eight CpG 

sites, being consistently differentially methylated above our nominal significance threshold prior to 

symptoms at baseline and at 18 month follow up, after a diagnosis of pre-symptomatic dementia. Finally 

we report a significant overlap between DNA methylation differences identified in converters, only after 

they develop symptoms of dementia, with differences at the same loci in blood samples from patients with 

clinically-diagnosed Alzheimer’s disease compared to unaffected controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 



Alzheimer’s disease (AD) is a chronic, currently incurable, neurodegenerative disorder with more than 26 

million cases worldwide, and accounting for ~60% of dementia cases (Brookmeyer, et al., 2007).  With an 

increasingly aging population, new estimates for dementia incidence predict >115 million cases worldwide 

by 2050 (Prince, et al., 2013). AD is characterised by the accumulation of extracellular amyloid plaques, and 

intracellular neurofibrillary tangles, leading to selective neuronal cell loss, behavioural and personality 

changes and ultimately death after many years of suffering. Although much progress has been made in 

understanding the molecular pathology of AD, the treatments currently available only temporarily alleviate 

some symptoms and do not modify the underlying pathology. By the time an individual becomes 

symptomatic there is already considerable neuronal cell loss, plaque deposition and neurofibrillary tangle 

burden within the brain, which can appear years before a clinical diagnosis is made (Jack, et al., 2010). 

Although the majority of AD cases are sporadic, occur later in life (age>65 years) and have no known cause, 

the disease is associated with several vascular risk factors, especially type 2 diabetes mellitus (T2D) 

(Arvanitakis, et al., 2004,Stewart and Liolitsa, 1999), which more than doubles the risk of developing AD 

(Schnaider Beeri, et al., 2004). 

A number of studies have aimed to identify blood-based biomarkers for AD. These have identified changes 

in the abundance of plasma or serum proteins (Hye, et al., 2006,Hye, et al., 2014,O'Bryant, et al., 

2010,O'Bryant, et al., 2011,Ray, et al., 2007,Thambisetty, et al., 2008) and specific gene expression 

signatures (Booij, et al., 2011,Fehlbaum-Beurdeley, et al., 2012,Lunnon, et al., 2013,Rye, et al., 2011), some 

of which differentiate AD, and even persons with mild cognitive impairment (MCI), from elderly controls 

with normal cognition. Recently we have started to examine whether epigenetic (DNA methylation) 

changes are seen in white blood cells in AD sufferers compared to elderly non-demented control subjects 

(Lunnon, et al., 2014). 

The ability to identify early peripheral molecular signatures associated with the onset of dementia in “high 

risk” groups is of particular importance for the development of preventive interventions. To this end the 

aim of the current study was to identify DNA methylation differences in whole blood obtained from a 

longitudinal analysis of T2DM patients developing pre-symptomatic dementia symptoms over an 18 month 

period, compared to those remaining cognitively normal.  

 

 

 

 

2. Methods 



2.1 Subjects and Samples 

This study builds on the longitudinal Israel Diabetes and Cognitive Decline (IDCD) study, which investigates 

the effects of long-term T2D-related characteristics on cognitive decline (Ravona-Springer, et al., 2013).  

The IDCD study design and subject selection is described in detail in the Supplementary Methods.  The 

Clinical Dementia Rating (CDR) scale and neurological and psychiatric assessments were used to define 

intact cognition (CDR = 0) at study entry.  For the purposes of this study, we chose the first 18 subjects 

whose cognition at 18-months follow-up declined to CDR=0.5 (i.e. pre-symptomatic dementia; converters) 

confirmed by a multidisciplinary diagnostic consensus conference. Eighteen control subjects (non-

converters), i.e. individuals whose normal cognition was maintained at follow up based on a CDR=0 and 

confirmed in consensus conference, were matched to the converters for age, sex, and number of years of 

education. Subject characteristics are summarised in Supplementary Table 1.  

2.2 Methylomic Profiling 

Genomic DNA was isolated in individuals at baseline and follow up from whole blood stored in EDTA 

collection tubes using a standard phenol-chloroform extraction method and tested for degradation and 

purity prior to analysis. 500ng DNA from each sample was treated with sodium bisulfite using the Zymo 

EZ96 DNA methylation kit (Zymo Research, CA, USA) according to the manufacturer’s standard protocol. 

Samples were assessed using the Illumina Infinium HumanMethylation450K BeadChip (Illumina Inc., CA, 

USA) using the Illumina HiScan System (Illumina, CA, USA). All samples were grouped by individual with 

their age and sex-matched pair processed alongside. All samples were processed in a single batch of six 

BeadChips. Illumina Genome Studio software was used to extract the raw signal intensities of each probe 

(without background correction or normalization). 

2.3 Data Analysis  

All computations and statistical analyses were performed within the R statistical environment (version 

2.15.3) (R Development Core Team, 2012) and Bioconductor 2.14 (Gentleman, et al., 2004). Signal 

intensities were imported into R using the methylumi package (Davis, et al., 2012). Initial quality control 

checks (QC) were performed to assess concordance between reported and genotyped gender. Non-CpG 

SNP probes on the array were used to confirm that longitudinal samples were sourced from the same 

individual. Data was pre-processed using wateRmelon (version 1.4.0) using the dasen function as previously 

described (Pidsley, et al., 2013), with two samples being excluded at baseline for failing QC (Supplementary 

Table 1). Non-CpG SNP probes, non-specific probes, and probes that have been reported to contain 

common (MAF > 5%) SNPs in the CpG position or single base extension position were flagged and removed 

from analyses, leaving 388,850 probes (Chen, et al., 2013). 



We identified differentially methylated positions (DMPs) by comparing non-converters and converters at 

both baseline and 18 month follow-up using linear models at each time point separately, whilst controlling 

for the effects of age, sex, Hbac1 and years of education. The Genomic Regions Enrichment of Annotations 

Tool (GREAT) (McLean, et al., 2010) was used to annotate probes with genes within 5000bp upstream, and 

1000bp downstream.  Similarities of DNA methylation differences across datasets was assessed using 

Pearson’s correlation. Raw microarray data are available in the online Gene Expression Omnibus (GEO) 

(accession number: GSE62003). 

 

3. Results and Discussion 

The top-ranked DMPs at baseline and 18-month follow-up are shown in Supplementary Tables 2 and 3. A 

particular interest was the identification of stable DNA methylation differences between converters and 

non-converters, detectable at both time points. In this regard, it is notable that DNA methylation 

differences for the 100 top-ranked DMPs at baseline are strongly correlated with DNA methylation 

differences at the same probes at 18-month follow-up (Figure 1A; 0.856, P=5.84E-30). Similarly, DNA 

methylation changes for the 100 top-ranked DMPs at follow-up are strongly correlated with DNA 

methylation differences at the same probes at baseline (Figure 1B; r=0.872, P=1.49E-32). Furthermore, 

using a nominal p-value threshold (p≤0.001), we identified eight probes that were differentially methylated 

at both time points (Table 1; Supplementary Figure 1). This group of DMPs may represent early and 

consistent markers of cognitive change. Of these, four DMPs were hypermethylated in converters at both 

time points and four were hypomethylated at both time points. One of these probes is located in close 

proximity to RPL13. Interestingly DNA methylation in the vicinity of RPL13 has been previously associated 

with AD pathology in post-mortem brain (De Jager, et al., 2014,Lunnon, et al., 2014). Although the other 

identified loci have not been robustly associated with dementia, they could still represent novel 

biomarkers. We have previously shown that the most significant DMPs in blood between AD patients and 

non-demented control individuals are, as expected, very distinct from those seen in brain (Lunnon, et al., 

2014), and it is plausible that novel DMPs identified in this study represent a peripheral response by 

leukocytes to early disease changes in the brain, rather than a direct reflection of neuropathological 

changes observed in the brain. 

Having previously identified a number of CpG sites that are differentially methylated in whole blood in AD 

patients compared to elderly non-demented control subjects (Lunnon, et al., 2014), we were interested in 

investigating whether any of the DMPs identified in the current study overlapped with loci differentially 

methylated in clinically-diagnosed AD patients. We found no significant correlation between DNA 

methylation differences at the 100 top-ranked converter-associated DMPs at baseline with our previously 

reported AD-associated DMPs (Supplementary Figure 2; r=0.165, P=0.101). Interestingly, however, there 



was a significant correlation between DNA methylation differences at the top-ranked DMPs identified post-

conversion with differences seen at the same CpG sites between control and clinically-defined AD subjects 

(Supplementary Figure 3; r=0.32, P=1.29E-3). This indicates that the differences seen in converters at 

follow-up, after they display symptoms of pre-symptomatic dementia, reflect differences identified in 

clinically-presenting AD patients. Differences between converters and non-converters at baseline, however, 

are not seen in clinically-recognized AD patients. This reinforces the hypothesis that epigenetic differences 

identified in the blood from AD patients most likely reflect peripheral responses to the disorder, rather than 

causally-related variation. Such changes are, however, potentially useful as biomarkers of underlying 

neuropathology. 

 

4. Conclusions 

Given the predicted increase in dementia incidence, the identification of early and robust markers of 

disease, which are detectable prior to the emergence of clinical symptoms, is of upmost importance, 

particularly in ‘high risk’ groups. This study identified a number of DMPs in blood samples from T2D 

patients after they had developed pre-symptomatic dementia, which are also altered in white blood cells 

from AD patients, and could thus represent early markers of dementia. This study also demonstrated 

robust alterations at several CpG sites in blood samples from T2D patients at baseline who developed pre-

symptomatic dementia. These loci were altered prior to the emergence of clinical symptoms, and remained 

altered after conversion.  Interestingly one of these CpG sites reside close to a gene previously associated 

with dementia (RPL13) (De Jager, et al., 2014,Lunnon, et al., 2014).Although the other identified CpG sites 

have not been robustly associated before with dementia, they still could represent part of an early 

peripheral response to dementia and serve as potential biomarkers for early cognitive changes. Although 

the changes reported in this study do not reach genome-wide significance, this is not surprising given the 

relatively small number of samples. An optimum level of significance for epigenome-wide association 

studies (EWAS) has yet to be established, but given the non-independence of DNA methylation across CpG 

sites and the non-variable nature of most probes on the 450K array (Mill and Heijmans, 2013), it is likely 

that a Bonferroni correction is overly stringent. The intra-individual longitudinal repeated-measure design 

used in this study is relatively robust and controls for many potential confounders in epigenetic 

epidemiology. Although we were able to validate DMPs at two independent time points and in an 

independent study comparing non-demented control and clinically-diagnosed AD patients, future research 

is needed to validate the findings from this pilot study in larger independent sample cohorts, and to 

determine the exact specificity and timing of these changes.  
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Figure 1: Correlation of the % methylation differences for the 100 top-ranked DMPs across both time points. DNA methylation differences for the 100 most significant 

DMPs at baseline (shown in Supplementary Table 2) (X-axis) are significantly correlated (r=0.856, P=5.84E-30) with DNA methylation differences in the same probes at 18 

month follow up (Y-axis) (A). Similarly DNA methylation differences for the 100 most significant DMPs at 18 month follow-up (shown in Supplementary Table 3) (Y-axis) are 

significantly correlated (r=0.872, P=1.49E-32) with DNA methylation differences in the same probes at baseline (X-axis) (B). 

                                


