
1  

 

Towards predictive understanding of regional climate change 

 

Shang-Ping Xie1*, Clara Deser2, Gabriel A. Vecchi3, Matthew Collins4, Thomas L. Delworth3, 

Alex Hall5, Ed Hawkins6, Nathaniel C. Johnson7,1,8, Christophe Cassou9, Alessandra Giannini10 

& Masahiro Watanabe11 

 

Regional information on climate change is urgently needed but often deemed unreliable. 

To achieve credible regional climate projections, it is essential to understand underlying 

physical processes, reduce model biases and evaluate their impact on projections, and 

adequately account for internal variability.  In the tropics, where atmospheric internal 

variability is small compared to the forced change, advancing our understanding of the 

long-term coupling between changes in upper ocean temperature and the atmospheric 

circulation will help most to narrow uncertainty. In the extratropics, relatively large 

internal variability introduces substantial uncertainty, while exacerbating risks associated 

with extreme events. Large ensemble simulations are essential to estimate the 

probabilistic distribution of climate change on regional scales. We conclude that the 

current priority is to understand and reduce uncertainties on scales > 100 km to facilitate 

assessments at finer scales. 
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1. Introduction 

Climate change is one of the most serious challenges facing humanity, and extends far 

beyond the rise in global mean temperatures. Regional manifestations of climate change, 

including changes in droughts, floods, storminess, wildfires and heat waves, will affect 

societies and ecosystems. Information about regional impacts is crucial to support planning in 

many economic sectors, including agriculture, energy, and water resources. Despite their 

importance, reliable projections of regional climate change face ongoing challenges1.  

Here we review recent advances in understanding regional climate change, offer a critical 

discussion of outstanding issues, and make recommendations for future progress. We start by 

highlighting robust regional climate change patterns and their physical underpinnings, with a 

focus on temperature, precipitation and atmospheric circulation (Section 2). Next we discuss 

outstanding challenges, including those related to physical understanding, model biases, and 

internal variability effects, all of which contribute to uncertainty in projected changes of 

regional climate and extreme events (Section 3). We conclude with a perspective on emerging 

opportunities in regional climate change research, including efforts to better understand and 

quantify projections of extreme events enabled by increasing model resolution and ensemble 

size. 

 

2. Mechanisms for regional climate change 

Regional climate projections are often perceived as synonymous with downscaling, but a 

better understanding of the physical origins of regional changes is essential to achieve more 

reliable projections. Regional models and global climate models (GCMs) alike can facilitate 

this understanding. Here we use the term “regional” in a broad sense, considering scales as 

large as whole continents and ocean basins (1000s of km) or as small as a few hundred km, 

limited by the resolution of GCMs and long historical observations. Regional models can 

achieve finer resolution.  

Climate anomalies are made up of a response to radiative changes and variability 

generated internally within the ocean-atmosphere-land-cryosphere system. Projections rely on 

assumptions about future changes in greenhouse gases (GHGs), aerosols and land-use. 

Radiative forcing will probably continue increasing for the rest of the century, though the rate 

of increase is uncertain. Over time, the forced response will strengthen, diminishing internal 
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variability’s relative contribution. Unless aggressive mitigation policies curb GHG emissions, 

the forced response is expected to dominate regional temperature change by century’s end2. 

Uncertainty in regional climate projections arises from internal variability and differences 

in model structure and forcing scenario, with the relative importance of these factors varying 

with time horizon3. This section highlights robust patterns of regional climate change while 

Section 3 discusses uncertainties due to model biases and internal variability. GHG forcing 

uncertainty will not be treated in detail since at the regional scale it can be nearly eliminated 

simply by scaling with global mean temperature change. However, aerosols are an important 

regional-scale forcing, and their imprint on regional climate change patterns will be discussed.  
 

2.1 Temperature 

For timescales of a century and longer, the magnitude of global mean temperature change 

under any emissions scenario is related to the Equilibrium Climate Sensitivity (ECS)4 and the 

rate of deep oceanic heat uptake, which determines how quickly ECS is approached. Different 

models produce different values of these key metrics. A GCM’s ECS can be approximated as 

the sum of albedo, water vapour, lapse rate and cloud feedbacks. Cloud feedback is the 

dominant source of model spread5. Such feedbacks are strongly related to regional phenomena, 

so that the global mean is determined by integrated regional-scale effects (e.g., ice albedo 

feedback).  

At continental scales, robust features of surface air temperature change have been found 

in observations and model projections (Fig. 1a). Polar amplification is a hallmark of surface 

temperature change in the Northern Hemisphere. It is largely a consequence of sea ice and 

snow albedo feedbacks, though poleward energy transport and feedbacks from clouds and 

water vapour may also be important6,7. The ratio of land warming to ocean warming is found to 

be greater than unity across all scenarios and models for both transient and equilibrium 

warming, due to differences in surface sensible and latent heat fluxes, boundary layer lapse rate 

and relative humidity, and cloud cover8. Muted warming is found in the Southern Ocean where 

excess surface heat is mixed into the ocean interior more effectively9,10. A similar feature is 

found in the North Atlantic subpolar gyre. These large-scale features are amenable to ‘pattern 

scaling’, where fixed surface temperature change patterns are scaled by the global mean 

temperature response across scenarios and through time11.  
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2.2 Precipitation 

While surface temperatures rise everywhere in future projections, precipitation change is 

highly variable spatially in sign and amplitude, with a relatively small global mean change (Fig. 

1). The fundamentally regional character of forced precipitation change highlights the 

challenge for predicting precipitation.  

In the absence of major circulation changes, atmospheric moisture increases with 

warming, strengthening the climatological distribution of precipitation minus evaporation (P-E) 
12,13. This explains the general rainfall increase in summer monsoon regions14, for example. At 

high latitudes, precipitation increases as storms transport more moisture poleward15. Over 

tropical oceans, the wet-gets-wetter pattern is realized in atmospheric models in the idealized 

case where sea surface warming is spatially uniform (Fig. 2a).  

Spatial patterns of sea surface temperature (SST) changes affect tropical convection. Fast 

equatorial waves flatten horizontal temperature gradients in the tropical free troposphere, so 

that convective instability, measured by the moist static energy difference between the surface 

and upper troposphere, largely follows the SST pattern. As a result, tropical rainfall change 

follows a warmer-gets-wetter pattern (i.e., positive where the local warming exceeds the 

tropical average)16. Enhanced warming over the equatorial Pacific and Atlantic anchors a band 

of rainfall increase where rainfall is currently low (Figs. 1b, 2b). Ocean-atmosphere feedback is 

important in coupled SST-rainfall pattern formation. For example, muted surface warming in 

the tropical Southeast Pacific is associated with acceleration of the southeast trade winds, 

which suppresses the rainfall increase along the southeastward slanted rain band called the 

South Pacific Convergence Zone (Fig. 2)17. The equatorial peak in SST warming is a robust 

feature across models due to reduced evaporative damping18. The ongoing decadal cooling of 

the equatorial Pacific19 is, however, a sober reminder of the difficulty in detecting 

anthropogenically forced ocean warming patterns amidst internal variability.   

Competing effects of moisture and circulation change on P-E can be understood by 

decomposing the P-E response into a thermodynamic component due to moisture increase with 

no circulation change, and a dynamic component due to circulation change with no moisture 

change. The thermodynamic component gives rise to the wet-gets-wetter effect, but 

overestimates it because of partial compensation by the tropical circulation slowdown15,20. Sea 
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surface warming patterns induce atmospheric circulation change, so that the warmer-gets-

wetter effect is part of the dynamic component. While SST patterns do not change much 

through the year, the thermodynamic component strengthens in the rainy season, and wet 

regions in the rainy season tend to get wetter21.  

In monsoon regions, precipitation is concentrated in the summer season. Summertime 

monsoon rains are projected to intensify due to moisture increase, a change especially 

pronounced for the Asian-Australian monsoons14. A robust shift in the seasonal cycle is 

apparent in GCMs, characterized by a delay in monsoon onset and an increase in precipitation 

later in the season22. The delay in onset is consistent with a vertical stability increase, similar to 

a developing El Niño event23. This effect is compensated by a later increase in moisture 

convergence24. Over tropical continents, remote oceanic influence on rainfall changes is also 

important25. Over the African Sahel, for example, precipitation change follows the SST 

difference between the neighboring subtropical North Atlantic and global tropics26.  

Relatively high consistency in rainfall change emerges over tropical oceans from model 

projections (Fig. 1b), but large inter-model variability remains (Fig. 3a). Decomposition of 

inter-model variability shows that the dynamic component (due to uncertainties in atmospheric 

circulation change) dominates the uncertainty (Fig. 3b). The inter-model variability in tropical 

circulation can be traced further to differences in sea surface warming patterns. For example, an 

anomalous inter-hemispheric Hadley cell tied to a cross-equatorial SST gradient dominates the 

inter-model variability in the zonal mean. This displaces the band of increased rainfall into the 

anomalously warm hemisphere27. The SST pattern effect has also been identified in inter-model 

variability of rainfall change in the Sahel26 and Amazon28,29 though land surface feedback is 

also important in these cases. In the tropics, the tight relationship between circulation 

uncertainties and SST patterns points to the importance of ocean-atmosphere interaction. 

Ultimately, the coupled SST-circulation uncertainty originates from parameterized physics such 

as convection, land surface processes and aerosol effects.  

 

2.3 Circulation 

As climate warms, atmospheric moisture content increases at a rate of 6-7% per degree 

warming, set by the Clausius-Clapeyron equation. The global mean precipitation increase is 

much less (2-3% K-1) because it is constrained by tropospheric radiative cooling13. The 
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difference between these rates of increase is consistent with a general decrease in the tropical 

overturning circulation13. In climate model projections, the east-west Walker circulation shows 

such a robust slowdown30, but changes in the north-south Hadley circulation strength are more 

varied and depend on the cross-equatorial ocean warming gradient27. In addition, the Hadley 

circulation expands poleward31. What determines its poleward expansion has not been fully 

explained, but relates to the latitude at which the associated westerly flow becomes 

baroclinically unstable31. The expansion coincides with poleward shifts in arid zones, with 

important implications in sensitive regions (e.g., the Mediterranean climate zones)32,33. It is also 

consistent with an intensification of summertime subtropical anticyclones34.  

Aerosol forcing is an important driver of atmospheric circulation change. Unlike GHGs, 

anthropogenic aerosols are geographically distributed because of their short atmospheric 

residence time (~a week), with high concentrations in the source regions of southeastern Asia, 

Europe and the Americas. Because of their strong spatial gradients, anthropogenic aerosols 

induce atmospheric circulation change more effectively than GHGs per unit radiative forcing35. 

Larger in the Northern Hemisphere, aerosol forcing generates an anomalous Hadley circulation 

that displaces tropical rainfall into the relatively warm Southern Hemisphere36. A striking 

regional manifestation of this aerosol effect is the precipitation decline in the African Sahel 

from the 1950s to the 1980s37,38. Over the Asian monsoon region, model results show that 

aerosol-induced cooling drives a divergent circulation in the lower troposphere. This dominates 

over the thermodynamic effect of GHG-induced temperature increase, causing monsoon 

rainfall to decrease over the 20th century39.  

Despite their distinct geographical distributions, aerosols and GHGs induce surprisingly 

similar patterns of SST and oceanic precipitation change40. Such robust macro-structures 

emerge despite large uncertainties in representing micro-physical aerosol effects41. This is 

because the climate system adjusts to radiative forcing through common ocean-atmospheric 

feedbacks that imprint characteristic patterns on the response. Because GHG and aerosol 

forcings oppose one another, and because aerosols are more effective per unit forcing in 

inducing atmospheric circulation and precipitation response, 20th century tropical rainfall 

change is relatively small and hard to detect. However, future changes may differ as 

anthropogenic aerosol loading is projected to decline, while the GHG signal is projected to 

continue growing.  
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In the Southern Hemisphere, GHG forcing causes the westerly wind jets and stormtracks 

to shift poleward in association with the increased equator-to-pole temperature gradient in the 

upper troposphere42,43. Ozone depletion in the southern polar stratosphere also contributes to 

poleward movement of the westerly jets and changes in subtropical precipitation patterns44. 

Forced changes in the Northern Hemisphere westerly jets are less pronounced. Compared to the 

tropics, coupling between large-scale atmospheric circulation and the SST pattern is weak in 

the extratropics. Atmospheric internal variability is also large, making it difficult to isolate the 

forced response. Finally, non-linear interactions between the mean flow and weather systems 

create blocking events, which are poorly understood and may be inadequately represented by 

models. Shepherd45 reviews mid-latitude atmospheric dynamics related to climate change.  

 
2.4 El Niño 

The above discussion relates to changes in mean climate, but large-scale modes of 

internal variability greatly affect regional weather and climate over a broad temporal spectrum, 

from daily extremes to decadal changes. Their possible alteration in both frequency and 

amplitude under climate change is a key source of uncertainty at the regional scale.  

In the tropics, El Niño-Southern Oscillation (ENSO) is the dominant source of 

fluctuations in present climate and is expected to remain so14. Despite common future changes 

in mean states potentially affecting ENSO growth, e.g., equatorial trade wind weakening and 

shoaling of the thermocline30, climate models do not show any systematic change in the typical 

amplitude of east Pacific SST variations46,47. The spread among model responses is likely due 

to systematic errors in simulating present-day ENSO48. In addition, there is a delicate balance 

between amplifying and decaying feedbacks in the ENSO cycle, and their relative 

modifications by climate change differ among models49,50. Low-frequency ENSO modulation, 

independent of radiative forcing changes, also makes detection of the anthropogenic response a 

challenge51. Nevertheless, there is increasing evidence that ENSO properties besides SST 

amplitude will change robustly due to the patterned background SST increase. For instance, 

positive rainfall anomalies during ENSO warm phases over the central equatorial Pacific will 

intensify52,53 because locally enhanced surface warming reduces the barrier to atmospheric 

convection. In turn, more frequent extreme tropical rainfall events during El Niño may affect 

weather patterns worldwide via atmospheric teleconnections. Associated with the enhanced 
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convective response over the eastern equatorial Pacific, the ENSO-forced Pacific North 

American pattern tends to intensify and shift eastward in a warmer climate14.  

 

2.5 Extremes 

Changes in temperature extremes often scale with changes in the mean54,55, indicating 

local temperature variance has changed little throughout the globe56.  However, variance in 

individual climate realizations may change under continued global warming, altering tails of 

probability distributions and frequencies of extreme events. Such projected changes include 

reduced wintertime mid- and high-latitude temperature variability owing to Arctic 

amplification57 and increased summertime temperature variability in some midlatitude regions 

owing to soil moisture feedback58.   

Precipitation intensity is projected to increase globally. Water vapor increases contribute 

most strongly to these changes in the tropics, but atmospheric circulation changes also play a 

role in midlatitudes59.  For example, the projected poleward shift of the storm tracks42 increases 

precipitation variance in some regions, exacerbating the risk of extremes, while decreasing it 

and alleviating the risk in other regions.  On seasonal and interannual timescales, the robust 

projection of increased extreme El Niño frequency53 would alter extreme precipitation patterns 

linked to El Niño. 

Tropical cyclones (TCs) are among the most destructive storms. Some key TC statistics, 

such as count and track density, are tied to large-scale environmental factors like SST and 

vertical shear. Atmospheric models of resolution finer than 100 km show remarkable skill in 

capturing this environmental control and simulating spatial and temporal variability of TCs60. 

In a warmer climate, global TC counts tend to decrease in GCMs, but intense storms may 

become more frequent, and TC rainfall likely will intensify14,61. Studies projecting TC counts 

for individual basins show large variability, with SST change relative to the tropical mean 

warming accounting for much of this variability62,63. Because of the interhemispheric gradient 

in the SST increase, the TC count decrease is more pronounced in the Southern Hemisphere. 

The western Pacific is an exception because of strong remote SST effects, similar to what is 

found for ENSO-induced variability in TC genesis63. Mid-tropospheric vertical velocity 

appears to be a robust predictor of basin count change, and is tied to the distribution of SST 
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change. In addition to TC genesis, atmospheric circulation change impacts TC tracks, affecting 

statistics of TC landfall64.   

 

3. Challenges  

For global-mean temperature projections, aerosol effects and cloud response are leading 

sources of uncertainty in radiative forcing and climate feedback, respectively2. For regional 

precipitation projections, we have shown that atmospheric circulation change is the major 

uncertainty source (Fig. S1). In the tropics, the circulation is coupled with patterns of SST 

change while in the extratropics, internal variability, random but organized into large-scale 

spatial patterns, exacerbates the circulation uncertainty.  

The problem of regional climate change projections presents a range of challenges in 

terms of physical understanding, the observational record, climate models and the simulations 

we perform with them. For example, what are the long-term observational trends, and what are 

their causes? How sensitive are regional climate change patterns to forcing types with different 

spatial distributions (GHGs vs. aerosols)? How can we predict robust patterns of circulation 

and precipitation change? How do systematic errors in models impact the change patterns? 

What are the relative roles of internal variability and forced response? These questions pose 

new problems of ocean-atmosphere-land interactions. Understanding these interactions will 

allow us to reduce circulation uncertainty and build confidence in regional climate projections.  

 

3.1 Observations  

The quality of the observational record is an inherent uncertainty source, particularly 

pertaining to variability on decadal and longer time scales.. Limited duration, incomplete 

spatial coverage, and observational errors hinder our ability to characterize past changes and 

attribute them to anthropogenic forcing, and limit our ability to evaluate models65.  

The tropical Pacific provides an example. Observational datasets disagree on the pattern 

of tropical Indo-Pacific SST change30,66.  Spatial variations in SST trends (0.2oC/century) are 

generally smaller than the global SST increase (0.6oC/century), approaching observational 

errors and/or internal variability. These spatial patterns drive atmospheric circulation changes, 

which in turn determine rainfall change patterns (sections 2.2-2.3). Since all datasets are 

imperfect, seeking physical consistency among observations, e.g., between the tropical SST 
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gradient and trade winds67, is a way to infer regional change patterns. Model-data assimilation 

seeks such consistency, and proves effective for studying variability on synoptic to decadal 

timescales. Reanalysis products, however, often are not appropriate for climate change 

studies67, as the quality and quantity of assimilated data change over time. A new generation of 

reanalysis suitable for climate change research is necessary, with use of coupled assimilation to 

improve consistency between ocean and atmospheric data.    

Knowledge of the strengths and limitations of observational data sets is imperative for 

understanding past climate change, model evaluation, and constraining projections.  

Community efforts to gather such knowledge from experienced data users and developers, and 

to share it with the wider climate community via “open source” platforms (e.g., 

https://climatedataguide.ucar.edu/) are essential68. To facilitate multi-model assessments, open 

source climate model assessment packages can be valuable resources. For example, the 

“Climate Variability Diagnostics Package” (http://www2.cesm.ucar.edu/working-

groups/cvcwg/cvdp) provides key metrics of internal climate variability across models, with 

comparison to observations69. Ongoing efforts to produce a meaningful set of metrics on mean 

states, internal variability, and response to external forcing are integral to advancing regional 

scale model evaluation (http://www-metrics-panel.llnl.gov/wiki/FrontPage). The challenge is to 

convert insights from model evaluation to model improvements.  

 

3.2 Impact of model errors on projections 

Despite limitations of observational records, model biases are clearly evident, reducing 

confidence in regional projections. A common problem is excessive summertime drying of 

soils in continental interiors, which may impact the land-sea warming ratio. Models simulating 

excessive summer Arctic sea-ice may have too weak polar amplification70. In the tropics, 

convection and rainfall are organized into east-west elongated bands called the intertropical 

convergence zone (ITCZ). A long-standing bias is the so-called ‘double’ ITCZ referring to 

models’ failure to keep the ITCZ north of the equator over the eastern Pacific and Atlantic. The 

double ITCZ bias is related to atmosphere-ocean coupling errors and is likely to affect rainfall 

change projections in the South Pacific Islands71 and elsewhere. The 30-60 days Madden Julian 

Oscillation is another phenomenon poorly represented in many models72 affecting confidence 

in projections of the South Asian Monsoon, especially the subseasonal variability such as 
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active/break cycles. Thus, despite a relatively robust understanding of tropical rainfall changes 

(see section 2), the precise pattern in any particular model may not be credible. 

Some biases persist over multiple model generations. It is important to move beyond 

routine model evaluation (e.g., root mean square errors) and develop innovative techniques to 

evaluate processes impacting regional projections. The equatorial Pacific cold tongue, for 

example, results from interaction of trade winds and ocean upwelling (Bjerknes feedback). The 

cold tongue extends too far west in most models, skewing ENSO SST anomaly patterns and 

hence atmospheric teleconnections. The balance between the Bjerknes feedback and damping 

by upwelling and surface heat fluxes determines the magnitude and pattern of SST response to 

global warming16,18. This balance varies considerably among models. Most CMIP5 models 

project larger warming in the eastern than western equatorial Pacific14. However, if the 

upwelling damping were stronger, this change in east-west gradient could reverse73, impacting 

ENSO’s magnitude and spatial pattern49. Model evaluation should quantify these ocean-

atmospheric feedbacks and their role in determining the spatial pattern of SST change. Such 

process-based model evaluation challenges the observational record, as estimates of process-

level variables may only be available from field campaigns in sparse regions and times. 

A further challenge is that model processes often involve complex interactions between 

resolved dynamics and multiple parameterization schemes. It is not the best strategy to update 

parameterization schemes in isolation, since physical consistency of multiple processes is 

required. The ‘assembly’ stage of model development, often erroneously called ‘model tuning’, 

would benefit from tighter integration with process-based model evaluation. For example, long-

standing tropical biases like the double ITCZ may be influenced by  extratropical errors, such 

as Southern Ocean clouds74 and the Atlantic meridional overturning circulation75.  

Statistical methods have been suggested to adjust regional projections based on evaluation 

of model errors. Bayesian techniques employ large model ensembles with perturbed parameters 

and weight each member according to its ability to reproduce observations76,77. Such 

approaches take into account uncertainties from multiple sources: models, observations and 

physical understanding. This allows us to move beyond simple ensemble mean and standard 

deviation approaches common in regional assessments (Fig. 1). The concept of ‘emergent 

constraints’ derives relationships between observable quantities and future projection variables 

in multi-model ensembles and uses the relationship to re-weight the multi-model projections in 
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a similar way to the Bayesian approach70,78. Emergent constraints cannot deal with errors 

common to all models, highlighting the need for innovative complementary approaches to 

improving models. 

 

3.3 Effects of internal variability 

 Any individual observed or simulated climate trajectory contains contributions from 

internal variability and external forcing. The relative importance of these two contributions 

depends on temporal and spatial scale, and on the variable of interest3,79,80.  In the extratropics, 

internal variability plays a dominant role in multidecadal atmospheric circulation changes, 

shaping regional patterns of temperature and precipitation changes80.  For example, large 

uncertainties in North American air temperature and precipitation trends projected over the next 

50 years stem mostly from internal circulation variability81. To the extent this internal 

variability is unpredictable, the resultant uncertainty is irreducible. This “single realization 

effect” is large enough to mask the forced regional response, presenting a major challenge for 

understanding and communication of regional climate change45,82.  

Due to internal variability, ensemble-mean regional climate trends may be 

misleading83,84.  The top panels of Fig. 4 provide an example of a probabilistic representation of 

winter SAT trends at a grid point near Vienna, Austria, based on a 30-member initial condition 

ensemble81.  The trend distribution is broad for 1976-2005; even with the forced response of 

0.2o/decade, there is a 20% chance the 30-year SAT trend is negative. As trend length 

increases, the radiatively forced trend increases while the trend distribution narrows, indicating 

reduced importance of internal variability.   

 Internal variability has a particularly important impact on projected changes in extreme 

events, as illustrated in the bottom panels of Fig. 4 for summertime temperature at the same 

grid box from the 30-member ensemble. Trend uncertainty over the 2001-2030 period results in 

substantial divergence among summertime temperature distributions (Fig. 4c), with dramatic 

increases in hot extremes for some realizations (e.g., realization 2) but modest increases in 

other realizations (e.g., realization 1). Variance changes, depicted by changes in the width of 

the distributions, are modest in this example. However, uncertainty in temperature trend owing 

to decadal internal variability broadens the ensemble’s probability distribution function (Fig. 

4d). This broadening indicates that internal variability averages out across realizations in 
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climate means, but not in extremes. Thus decadal internal variability increases the probability 

of extreme events by widening the tails of distribution. When coupled with potential socio-

economic consequences, this would result in increase of disaster risk. While Nature makes only 

one realization, risk assessment (e.g., for insurance) must consider all possible outcomes based 

on large initial-condition ensembles from different models under a variety of forcing scenarios. 

Changes in variance and skewness are also important for extreme events. The 

summertime temperature variance at the central European location in Fig. 4 increases by about 

7% between 2001-2015 and 2016-2030, consistent with the projected increase in European 

summertime temperature variability56 and contributing to widening of the probability 

distribution. There is evidence GCMs have considerable errors in their simulation of internal 

variability3,85,86, but such evaluations are limited by an observational record that is too short to 

be representative of the true range of decadal variability87.  This verification challenge is even 

greater for extreme events. Such events are rare by definition and therefore are even more 

affected by the observational record’s limitations55. Climate model improvements, increased 

understanding of radiatively forced dynamical changes, and large-ensemble simulations are 

required to alleviate the statistical limitations of small sample sizes in a single realization.    

 

4. Recommendations for research  

We have identified key physical mechanisms for regional climate change (Fig. 5). The 

thermodynamic response to radiative forcing is best-understood and most robust across models. 

Examples include enhanced continental warming, polar amplification and the wet-gets-wetter 

effect. Decomposition of rainfall change into thermodynamic and dynamic components shows 

that atmospheric circulation change is the main source of uncertainty in regional projections. 

Understanding the mechanisms for circulation change is essential to reduce this uncertainty, but 

they have only begun to be explored. More research is needed on how aerosol forcing can 

induce regional atmospheric circulation change (e.g., the Asian summer monsoon). Recent 

studies suggest that despite large uncertainties in aerosol radiative forcing, there are robust 

planetary-scale response patterns, mediated by ocean coupling.    

Our review suggests distinct regimes of atmospheric circulation change in the tropics 

versus the mid-latitudes, calling for different approaches. In the tropics, internal variability on 

decadal time scales and longer is relatively small in comparison to the forced signal on the 
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centennial horizon, and models now agree on some aspects of the pattern of rainfall change that 

are projected to emerge by the end of this century (e.g., an increase in the equatorial Pacific and 

Atlantic, and a decrease in the southeastern tropical oceans). Precipitation and atmospheric 

circulation are tightly coupled with the SST change pattern in both the multi-model mean 

projection and inter-model variability. Elucidating this coupling, and developing observational 

constraints, can narrow uncertainties of regional projections in the tropics. An analog may be 

the historical development of ENSO prediction, where theory initially explained how coupled 

modes emerge from ocean-atmosphere feedback, ultimately laying the foundation for seasonal 

climate prediction. The challenge is to extend this success to radiatively forced problems, and 

to design observing systems that monitor key processes associated with ongoing climate change.  

In the midlatitudes, by contrast, coupling between large-scale atmospheric circulation and 

local SSTs is weak. Internal variability plays a much larger role in generating differences 

among regional-scale projections. Nevertheless, the lack of a robust circulation response in 

midlatitudes in models does not preclude potential shifts in storm tracks or changes in blocking 

frequency that models cannot, yet, represent.  Random internal variability and the non-linear 

nature of the midlatitude circulation render regional climate projections inherently probabilistic. 

We recommend a coordinated multi-model set of large initial-condition ensembles to 

further regional climate change research (Box 1). First, such a set of experiments would 

quantify probabilities of changes in means and extremes across models, including not only 

structural uncertainty but also irreducible uncertainty due to internal variability. Quantification 

of changes in risks is necessary for insurance, and infrastructure planning. To quantify 

probability distributions and occurrence of extremes, we need research into dynamical 

processes governing changes in higher-order moments such as variance and skewness. Second, 

the set of experiments would enable isolation of uncertainties due to internal variability from 

those due to model structure. Large ensembles also open new possibilities to study radiatively-

forced changes in extratropical atmospheric circulation.   

Computing advances have benefited climate modeling through enhanced complexity and 

increased resolution. A threshold has recently been crossed: at 50 km resolution, atmospheric 

models demonstrate marked skill in simulating TC statistics. This opens up new opportunities for studying climate change effects on TC variability, much like the 1970s-80s, 

when explicit simulations of extratropical cyclones dramatically improved weather forecasts. 
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High-resolution large-ensemble simulations could greatly advance our understanding of 

internal variability and forced change in TC metrics and processes, especially track density, 

landfall statistics and ocean feedback. Higher resolution also improves simulation of blocking 

events, a phenomenon linked to extreme weather in the extratropics. 

Robust precipitation changes are projected over land: increases at high latitudes and in the 

Asian monsoon result from enhanced atmospheric moisture content, while decreases in the 

subtropics arise from Hadley cell expansion. The ocean warming pattern also changes 

atmospheric circulation over the Sahel and Amazon, although the robustness of these changes 

remains to be tested. In addition to such non-local atmospheric changes, improved 

understanding of land surface processes is key to more credible projections of human 

impacts58,88.  For example, soil moisture and near-surface relative humidity are projected to 

decrease globally89, likely exacerbating drought when it does occur, and potentially increasing 

heat wave frequency and intensity. More realistic simulation of snow albedo feedback and 

snow processes would also reduce uncertainty surrounding continental warming, runoff timing, 

and soil moisture at high latitudes90.   

Agreement among models is an indicator of robust change, but should be viewed in the 

context of model biases and weak observational constraints on forced regional response. 

Evaluating the impact of common biases and ultimately reducing them is a grand challenge. 

The daily verification cycle has enabled weather forecasts to improve steadily by exposing 

model errors and observational needs. Similarly, seasonal prediction91 and attribution studies of 

extreme climate events92 can improve physical understanding and build model confidence. In 

this context, pacemaker experiments—partial coupling that prescribes observed SST or wind 

evolution in tropical oceans19,93,94—are useful to identify key drivers of regional change. 

Further innovations in experimental design are necessary to expose model problems. For 

example, flux-adjusted models can be run in parallel with freely-evolving models to evaluate 

effects of model biases on regional projections.  

Regional climate projections are often taken as synonymous with downscaling global 

scenarios. The misconception is that with enhanced resolution, regional models will 

automatically solve the problem of producing regional climate projections. Downscaling global 

model projections without carefully considering model biases and internal variability adds 

essentially meaningless spatial detail1.  Regional models may be useful to understand physical 
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processes in areas of complex coastlines and orography, and may provide useful climate change 

impact information on the km scales relevant to climate adaptation planning95.  We suggest, 

however, that the current priority is to understand and reduce GCM uncertainties on regional 

scales (> 100 km), which often dictate changes on finer-scales. To achieve reliable regional 

climate projections, it is essential to understand the underlying physics, reduce model biases, 

and adequately account for internal variability. 

 

Box 1. Modeling strategies  

With limited computational resources, it is critical to make optimal use of computing 

resources to advance regional climate change projections, and to correctly assess uncertainties, 

reducing them when possible.  

There are a number of demands on computer and human resources (Fig. 6). A variety of 

independent models, differing significantly in their underlying physics and numerics, are 

required to provide assessments of the range of possible climate change. Models are also being 

developed that contain ever more complete representations of the climate system, including 

processes such as biogeochemical cycles, atmospheric chemistry and aerosols, clouds and 

convection, land processes and ice sheets. Process-oriented experiments are needed to better 

understand model behaviour, including internal variability and the response to various radiative 

forcing. The following factors increase demands on computational resources: First, internal 

variability has a very strong imprint on climate trends even on time scales as long as several 

decades and spatial scales as large as continents81. This calls for large ensemble simulations96. 

Second, when spatial resolution is high (25-50 km), many phenomena are reasonably well 

simulated in GCMs97, including tropical cyclones63,91 and extratropical weather regimes such as 

blocking98,99. This makes higher resolution desirable. 

Regional models are useful to understand the role of small-scale processes in shaping the 

regional climate response. These processes include orographic precipitation, snow-albedo 

feedback, land-sea breeze circulation systems, mesoscale convective systems, and ocean 

feedbacks on tropical cyclone intensity. Orography and coastline geography unresolved by 

global models can introduce credibility into regional patterns obtained with downscaling 

techniques  Such smaller-scale mechanisms need to be carefully evaluated to establish 

credibility100.  
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We recommend the following modeling strategies to achieve more reliable regional 

climate projections. These recommendations contribute to the ongoing planning for the next 

phase of CMIP and grand challenges of the World Climate Research Programme. 

• To develop innovative experiments to shed light on atmospheric circulation response to 

radiative forcing, and to explore the sensitivity to ocean coupling, land surface 

processes and other important physical processes such as convection; 

•  To perform large ensemble simulations to isolate forced change and internal variability, 

and estimate the probability distribution of regional change; 

• To exploit the emerging capability of high-resolution modeling to simulate important 

extreme phenomena such as tropical cyclones, and take advantage of resolved local 

geographical features like the coastline and orography; 

• To run the models for scenario projections in initialized mode and verify their 

subseasonal to interannual climate predictions, and to test models’ skill in simulating 

important climate events such as mega droughts; 

• To explore model development practices that effectively incorporate insights from 

process-based model evaluation and integrate multiple coupled processes for overall 

physical consistency.    
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Figure captions 
 
Figure 1 | CMIP5 multi-model mean changes. Surface air temperature (a) and precipitation 

(b) under Representative Concentration Pathway (RCP) 4.5 for the period 2081-2100 expressed 

as anomalies from 1986-2005, as the ensemble mean of 42 models available in CMIP5. 

Hatching indicates regions where the multi-model mean change is less than the natural 

variability (computed from 20-year averages taken from pre-industrial control experiments). 

Images generated using http://climexp.knmi.nl/plot_atlas_form.py. 

 

Figure 2 | Effect of ocean warming pattern on precipitation change. Precipitation change 

(color shading, mm/month) for (a) spatial-uniform SST increase (SUSI) of 4K, (b) spatial-

patterned SST increase (SPSI), and (c) the difference between the runs. SPSI is derived as the 

CMIP3 mean from the 1%/year CO2 increase runs at the time of quadrupling. All the results 

are scaled to a tropical (25oS-25oN) mean SST increase of 4K, based on the ensemble average 

of 11 atmospheric GCMs available in CMIP5. Line contours are for climatological 

precipitation (150, 200, 250 and 300 mm/month contours) in (a), and for SST deviations from 

the tropical mean warming (0.4 K intervals; zero contour thickened) in (b).  

 

Figure 3 | Inter-model spread of tropical precipitation change (ΔP, mm/month). (a) Inter-

model standard deviation of precipitation change σ(ΔP’), along with climatological 

precipitation (150, 200, 250 and 300 mm/month contours). Here ΔP = ΔPMME + ΔP’, where the 

prime denotes the inter-model deviation from the multi-model ensemble (MME) mean. (b) 

Standard deviation of spatial variations of ΔP’ within 30oS-30oN (cross marks for individual 

models) as a measure of uncertainty, based on 70-year trends from 1% CO2 increase to 

quadrupling runs with 20 CMIP5 models. ΔP is decomposed into dynamic and thermodynamic 

components. The open circle denotes the ensemble mean, and the error bar one standard 

deviation. The dynamic component is highly variable among models and the largest uncertainty 

of rainfall projections. ∆ ௗܲ௬௡ = − ଵఘೢ௚ ׬ (௣ೞ଴ ∆߱ ∙ ப୯ப୔)݀݌, and ∆ ௧ܲ௛௘௥ = − ଵఘೢ௚ ׬ ቀ߱ ∙ ப∆୯ப୔ ቁ ௣ೞ଴݌݀ , 

where ݌ is pressure, ݍ specific humidity, ߱ pressure velocity,  ߩ௪ the density of water, ݃ 

gravity, and the subscript ݏ denotes surface value. All results are scaled to a tropical (25oS-

25oN) mean SST increase of 4K in each model. 
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Figure 4 | Probabilistic representation of regional climate change at a grid box near Vienna, 

Austria (48.5ᵒN, 16.2ᵒE). (a) Frequency distributions, binned at intervals of 0.5ᵒC [50 yr]-1, of 

the 1976-2005 and 1976-2080 wintertime (December-February) SAT trends from a 30-member 

CESM ensemble under the Representative Concentration Pathway (RCP) 8.5. (b) The 

frequency of linear trend exceedance for trends that begin in 1976 and end in different years (x-

axis) at the grid point.  The trend threshold (filled contours at intervals of 0.25ᵒC [50 yr]-1) at 

the α frequency of exceedance is determined by the (100 - α) percentile of the 30 ensemble 

member trends.  The plotted exceedance frequency limits are 2.5% and 97.5%. The radiatively forced trend is approximated by the median trend.  (c) Estimates of probability distribution 

functions of summer (June-August) mean SAT anomalies, defined by the 1951-2000 base 

period. The PDF of a “typical” realization for 2001-2015 (dashed black) is determined as the 

normal distribution with mean and standard deviation of the 30-member ensemble.  The purple 

and orange curves are 2016-2030 PDF estimates from two individual ensemble members, 

obtained by kernel density estimation.  Deviations from the seasonal mean for the PDFs are 

obtained by subtracting the seasonal SAT anomaly from the 2001-2030 linear trend. (d) As in 

(c) but the thick red curve represents the 2016-2030 estimated PDF from the full ensemble by 

adopting the normal distribution with variance equal to (ߪ଴ଶ +  ఓଶ), where σ0 is the ensembleߪ

mean of the seasonal standard deviation from the 2016-2030 mean (0.85°C) and σµ is the 

ensemble standard deviation of the 2016-2030 mean SAT anomalies (0.23°C), indicating the 

widening impact of trend uncertainty on the ensemble PDF.  The dashed red curve is the 

estimate derived directly from the histogram of the 30 ensemble members.  The expected 

increase in hot extremes, depicted by the area in red shading, is due to both rightward shift of 

the PDF and the PDF broadening owing to trend uncertainty from natural variability and an 

increase in σ0 from 0.80 to 0.85°C.   

 

Figure 5 | Schematic of physical origins of regional climate change. 

 

Figure 6 | Competing priorities for running climate simulations. Many choices have to be 

made in designing an ensemble to produce information about past and future climates. These 

choices include: (i) 'Variety' - the number of (pseudo-)independent simulators, (ii) 'Complexity' 
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- the number of physical, chemical & biological processes included in the simulator, (iii) 

'Resolution' - the grid spacing, (iv) 'Experiments' - how many different types of simulation to be 

performed, (v) 'Domain' - whether the simulation needs to be global & coupled or regional 

atmosphere-only, (vi) 'Ensemble' - the number of independent realisations, (vii) 'Length' of the 

simulation. Different purposes and questions require different ensemble design strategies. For 

example, CMIP5 made a set of core choices (grey) to use many different global simulators, to 

typically run several different long experiments with medium complexity and resolution with 

small ensemble sizes. This core ensemble was designed to answer specific questions about how 

climate has changed in the recent past and may change in the future with different emission 

scenarios. Alternatively, if the question was to determine how the probabilities of certain 

outcomes may change in the near-term (next 20 years) on regional scales, a different design is 

required (orange). Or, if the focus is on detailed downscaling using regional models for future 

time slices then a different set of decisions would be made (green). For detection & attribution 

of past climatic changes, a large number of experiments are needed (blue). Note that some of 

these categories are serial, i.e. more time is required to complete the simulations, and some are 

parallel which means additional processors could be used to perform the simulations in the 

same time. 
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