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Abstract Since its introduction to astro- and solar physics, the concept of
helicity has proven to be useful in providing critical insights into physics of
various processes from astrophysical dynamos, to magnetic reconnection and
eruptive phenomena. Signature of helicity was also detected in many solar
features, including orientation of solar active regions, or Joy’s law. Here we
provide a summary of both solar phenomena and consider mutual relationship
and its importance for the evolution of solar magnetic fields.
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1 Introduction

This article deals with two seemingly unlike phenomena: (magnetic, current)
helicity and the orientation of solar active regions (Joy’s Law). Joy’s law repre-
sents one of the earliest observational tendencies discovered at the beginning of
modern era of solar observations (Hale et al. 1919), while helicity is a more re-
cent subject (Berger and Field 1984; Seehafer 1990; Martin et al. 1994; Pevtsov
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et al. 1994; Rust 1994). But are these two phenomena completely unrelated?
Here we present overview of recent studies of helicity and Joy’s law, investi-
gate their possible relation, and discuss what the relation between helicity and
active region tilt may tell us about the origin and the evolution of magnetic
fields on the Sun.

Early studies of helicity on the Sun are well-represented by individual ar-
ticles in Brown et al. (1999). Later developments were described in Büchner
and Pevtsov (2003). A graphic summary of the hemispheric helicity rule en-
compassing magnetic fields on spatial scales from quiet Sun network to the
interplanetary magnetic field was presented in Pevtsov (2002). A more recent
update on the hemispheric helicity rule can be found in Pevtsov (2008). Some
details omitted from the present article can be found in these earlier reviews.

The rest of the article is organized as follows. Section 2 presents a summary
of the theoretical basis of the helicity concept. Sections 3–5 present an overview
of the current observations of helicity on the Sun and the heliosphere. Section
6 considers different aspects relevant to orientation of solar active region (Joy’s
Law), and Section 7 summarizes the article.

2 Basic Theory

Magnetic helicity is a measure of important structural properties of a mag-
netic field such as twist, shear, linking, and kinking. It is conserved to an
excellent approximation in the highly conducting plasmas present in the Sun
and heliosphere. The large magnetic Reynolds numbers (108 to 1015) in the
solar corona produce ideal magnetohydrodynamic (MHD) behaviour on large
scales. Resistive MHD processes on smaller scales (current sheet formations
and magnetic reconnection) barely affect the conservation of total magnetic
helicity (Berger 1984). Any detailed model of the Sun and heliosphere, in or-
der to be consistent, must obey the helicity balance equations. In this sense,
magnetic helicity can be considered a more robust invariant than total energy,
as ideal motions convert energy back and forth between kinetic and magnetic
forms, dissipative processes convert both forms into heat, and various plasma
processes convert energy into particle acceleration.

Although magnetic helicity is conserved, it can be transported between
regions; in addition helicity can be transferred between different length-scales.
Helicity transport between regions obeys a Poynting-like equation; it involves
either the bulk transfer of a helicity-carrying field from one region to the other,
or propagation of twist and braiding along field lines crossing the boundary
between the regions (Berger and Field 1984; Pariat et al. 2006).

We can distinguish two types of scale transfers. First, when there is a
net helicity of one sign, there is a tendency for turbulent plasma to generate
or maintain a large-scale magnetic field structure via the inverse cascade of
magnetic helicity to longer wavelengths. Secondly, ideal processes can generate
large-scale helicity of one sign balanced by small-scale helicity of the opposite
sign. Thus a magnetic flux rope rising through the convection zone can kink
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due to Coriolis forces. The kinking (measured as writhe) represents large scale
helicity of one sign, balanced by a small scale helicity (internal twisting of field
lines) of the opposite sign.

Helicity affects the solar cycle and activity in several ways. First, in the
interior of the Sun, the solar dynamo is responsible for regeneration of the
magnetic field and the 11-year solar cycle. Differential rotation provides an
essential contribution to the dynamo; the effect of differential rotation on the
magnetic field can be directly quantified using magnetic helicity techniques
(Berger and Ruzmaikin 2000). On the other hand, too much helicity can sup-
press turbulent dynamo (alpha effect) action.

Secondly, magnetic helicity build-up in a solar active region can lead to
enhanced activity. Of particular importance for the space weather effects and
forecasting potential is the realisation that increasing the pinch or helicity
content in a solar filament or an active region can also increase the probability
of eruption eruption (e.g., Romano and Zuccarello 2011).

Third, if we go further into the heliosphere, helicity can also play an impor-
tant role. The helicity of filaments and active regions can be examined before
an eruption; after the eruption, this helicity can be compared to that of the
remaining active region and of the corresponding magnetic cloud (e.g. Foullon
et al. 2007).

Here we detail how helicity and helicity transport can be calculated, and
how it relates to structural features of a magnetic field such as twist, kinking,
and linking.

2.1 Linking, twisting, and helicity integrals

Magnetic helicity integrals measure the net interlinking and twisting of mag-
netic field lines. Before thinking about magnetic fields in general, consider
two simple cases: first, where the field-lines are all closed curves; and second,
where the field-lines extend between parallel planes. In the first case, the he-
licity measures the net linking between all pairs of field-lines. In the second,
the helicity measures the net twist between all pairs of field-lines. Of course,
the number of field-lines in a magnetised volume is infinite, so the sums over
linking and winding are weighted by magnetic flux.

The Gauss linking number (Ricca and Nipoti 2011) is a double line integral
along two closed curves (see figure 1). This integral gives an integer, as long as
the two curves are distinct (when they are the same curve, it gives the writhe
as discussed below). The magnetic field counterpart of the linking number is
the closed magnetic helicity.

Let σ and τ parametrize curves 1 and 2, and label points on these curves
as x(σ) and y(τ). Also let r = y − x. The Gauss linking number is

L12 = − 1
4π

∮
1

∮
2

dx
dσ

· r
r3

× dy
dτ

dτ dσ. (1)
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Fig. 1 Left: If these were magnetic flux tubes with net axial fluxes Φ1 and Φ2, then the
helicity would be H = 2LΦ1Φ2 + T1Φ2

1 +T2Φ2
2 where T1 and T2 measure the net twisting of

field lines within the tubes about their axes. For these tubes, the linking number is L = 2.
Right: two tubes stretched between parallel planes. Here H = 2wΦ1Φ2+T1Φ2

1+T2Φ2
2, where

w is their winding number. For the tubes shown, the winding number w = 1.

The magnetic field counterpart is a double volume integral in a volume V
with boundary S. Assuming the field is closed within the volume (i.e. B · n̂ = 0
at the boundary S) we have the magnetic helicity (Moffatt 1969)

H = − 1
4π

∫ ∫
B(x) · r

r3
× B(y) d3xd3y. (2)

This double integral form of the helicity provides an important caution:
helicity is a non-local quantity; it does not have a simple density like mass.
However, this form is unwieldy and difficult to use. To simplify calculations,
employ the Coulomb gauge vector potential

A(x) = − 1
4π

∫
r
r3

× B(y) d3y, (3)

which gives magnetic helicity the more widely known form (for a closed vol-
ume)

H =
∫

A ·B d3x. (4)

Note, however, that gauge transformations of A may change the value of this
integral when magnetic flux crosses the boundary (and also if the volume is
multiply-connected, Berger 1999).

For magnetically open or multiply connected volumes (where B · n̂ �= 0
at the boundary S), we measure helicity relative to some field with minimum
structure. Let Bpot be the potential field in V . Suppose the total magnetic
field Btot in all space (including V and its complement outside of V) vanishes
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Fig. 2 Left: We wish to define the helicity of the open field in the upper part (V) of the left
figure. To accomplish this, we extend the field to the volume V ′ below the boundary. Let the
total helicity, as measured by equation 4 be Htot. Next, replace B in V by its corresponding
potential field Bpot; the helicity of this reference field (with the field inside V ′ unchanged)
is Href . The relative helicity is then Htot − Href .

at infinity, so that its helicity H(Btot) is finite. Then (Berger and Field 1984)
we can define a reference field Bref which is the same as Btot outside of V but
equals the potential field P inside (figure 2). We then define the helicity inside
the volume V to be

H(V) = H(Btot) − H(Bref ), (5)

with helicities calculated using equation 4. This helicity only depends on what
is happening inside V ; one can show (Berger and Field 1984; Finn and Anton-
sen 1983)

H(V) =
∫

(A + Apot) · (B − Bpot) d3x. (6)

This generalized helicity can be shown to be gauge invariant for any boundary
conditions or topology of the boundary S.

If the volume V lies between two planes, and all field lines stretch between
the boundaries, then the helicity is a sum of winding numbers between the
planes, as in figure 1, right. For other configurations, the interpretation can
become more complicated. For most solar atmospheric problems, a more ap-
propriate geometry would be loops with footpoints on a sphere (or at least
a plane). Again the helicity measures the net amount the loops wind about
each other. In addition, for a sheared arcade, the helicity will be related to
the amount of shear. A detailed account of calculating the helicity of loops is
given in Pariat et al. (2006).

2.2 Poloidal and toroidal fields

In Cartesian or spherical geometries it is often useful to decompose a magnetic
field into toroidal and poloidal components. Solar dynamo action is often de-
scribed in terms of differential rotation acting on a poloidal field to regenerate
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the toroidal field (the omega effect), along with helical turbulence acting on the
toroidal field to regenerate the poloidal field (the alpha effect, Charbonneau
2005).

Let L be the operator

L ≡
{−ẑ ×∇, Cartesian geometry;
−r ×∇, Spherical geometry. (7)

Then we can write
B = LT + ∇×LP, (8)

where T is the toroidal function and P is the poloidal function.
The operator L has two important properties: first, it’s divergence vanishes,

∇ · L = 0. (9)

Secondly, it is transverse:

ẑ · L = 0, Cartesian geometry;
r · L = 0, Spherical geometry. (10)

The vector potentials of the toroidal field BT = LT and the poloidal field
BP = ∇×LP are

AT = T ẑ + ∇ΨT ; (11)
AP = LP + ∇ΨP . (12)

where ΨT (x, y, z) and ΨP (x, y, z) are gauge functions.
The functions P and T can be obtained from B by solving the equations

∂2P

∂x2
+

∂2P

∂y2
= Bz ; (13)

∂2T

∂x2
+

∂2T

∂y2
= (∇× B)z . (14)

Theorem
Consider a magnetic field B = BT + BP in a region V . Assume that V is

either 1) all space, 2) a half space bounded by a plane, 3) a layer bounded
by two planes, 4) the interior or exterior of a sphere, or 5) a spherical shell
bounded by two concentric spheres. Then

1. A purely poloidal field (T = 0) has helicity H = 0.
2. A purely toroidal field (P = 0) has helicity H = 0.
3. In general,

H(B) = 2
∫
V
LT · LP d3x. (15)
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Fig. 3 A cartoon model of a prominence magnetic field, based on Martin et al. (2012). The
magnetic flux has been divided into distinct regions corresponding to arcade fields on top,
the axis field going all the way along the prominence, and barb fields below. Each single flux
element shown has one unit of flux. The self helicities of each region are shown on the left,
while their mutual helicities are shown on the right.

These results follow from the definitions of helicity and relative helicity,
and equations 9 and 10. Here we give an outline of the proof in a Cartesian
geometry. As the helicity integrals are gauge invariant, we can ignore gauge
functions ΨP and ΨT . For a purely toroidal field∫

AT · BT d3x =
∫

T ẑ · LT d3x = 0. (16)

For purely poloidal fields, there is somewhat more work:∫
LP · BP d3x =

∫
(∇× P ẑ) ·

(
∇∂P

∂z
− ẑ∇2P

)
d3x

=
∫

∇ · P ẑ ×∇∂P

∂z
d3x =

∮
ẑ · P ẑ ×∇∂P

∂z
d2x

= 0. (17)

For a field containing both toroidal and poloidal components, only the cross-
terms give non-zero results. There will be two of these, corresponding to AT ·
BP and AP ·BT , but both reduce to the integral of LP ·LT . When calculating
relative helicities, the same results apply (note that the potential field is purely
poloidal).

2.3 Self and mutual helicity

Suppose we divide the magnetic field in a volume V into two or more dis-
tinct components, with the proviso that any individual field line stays entirely
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within one component. Recall that helicity can be described as a sum or inte-
gral over the linking or twist numbers of all pairs of field lines. Then we can
ask what happens when we restrict the sum to pairs where both lines stay
belong to one component. In this case we obtain the self-helicity of the com-
ponent. If we look at all pairs where one line is in one component and a second
line is in another component, then we obtain the mutual helicity between the
two components. For example, figure 3 shows a cartoon of a prominence field
(Martin et al. 2012), divided into components: an overlying arcade, the field
along the filament axis, and low-lying barbs connecting the filament with the
field below. Each component can have its own self-helicity due to its internal
twist and shear. In addition, two different components will share a mutual
helicity due to their interlinking or shear.

Reconnection between two components of a field can exchange self and
mutual helicities, while keeping the total helicity approximately conserved.
For example, consider a simple reconnection of two equal flux tubes of flux Φ.
The mutual helicity of the new tubes will differ from that of the old tubes by
ΔHmutual = ±Φ2. In a simple reconnection (with one reconnection site, the
final tubes will share this helicity equally, both obtaining a half twist ΔHself =
± 1

2Φ2 as a result (Wright and Berger 1989). Such sudden acquisitions of half
twists may be observable. For example, a recent force-free modelling of an
active region corona using vector SDO/HMI magnetograms (Thalmann et al.
2014) displays an apparent increase of a half turn twist in a flux rope.

Often in solar physics and MHD theory one considers individual flux ropes,
for example an x-ray loop with footpoints on the photosphere. Let the coronal
volume (here anything exterior to the photosphere) be denoted by Vc. Suppose
a particular flux rope occupies a volume Vr inside Vc. There are a few ways of
calculating the self-helicity of the rope. The self helicity should give the sum
of twist inside the rope, plus the writhe of the rope’s axis (see below). If we
calculate the relative helicity of the rope volume Vc alone, we will obtain only
the twist due to axial currents inside the rope, losing the writhe altogether
(for example, if there are no currents inside the volume (potential field of Vc)
then the relative helicity H(Vc) = 0). Alternatively, one could calculate the
relative helicity of the entire corona, i.e. H(Vc), but with B set to 0 outside
the rope. This will give the sum of twist and writhe. Detailed methods for
calculating helicities of individual ropes or subvolumes are given in Low (2006);
Longcope and Malanushenko (2008). These methods are especially useful when
considering partial relaxation of a field to a piece-wise linear force free field.

2.4 Twist and Writhe

The self helicity of a flux tube can take two forms, twist and writhe: H =
Tw+Wr (Călugăreanu 1961; Moffatt and Ricca 1992; Berger and Prior 2006;
Török et al. 2010). The writhe measures the winding and kinking of the axis,
but is not itself a topological or ideal invariant. The concept of writhe is



Magnetic Helicity, Tilt, and Twist. 9

Fig. 4 Two flux ropes. Both ropes have an inverse S shape as seen in projection. However,
the one on the left has a writhe writhe Wr = −0.2Φ2 while the rope on the right has writhe
Wr = +0.2Φ2. This demonstrates that a low lying loop can have the opposite sign of writhe
to a taller loop with the same projection curve.

commonly used in biochemistry: DNA molecules must be highly coiled in order
to fit inside the nucleus of a cell, and hence exhibit a very large value of Wr.

Writhe measures helical structure of the axis of a loop, but cannot be
computed from the projection of the loop on the photosphere alone (see figure
4); the height of the loop is also important. During a kink instability, a twisted
flux rope may convert some of its twist to writhe. Unfortunately, the amount of
twist contained in the rope before the eruption cannot be accurately inferred
from observing the amount of writhe produced by this conversion (Török et al.
2014). The amount of writhe produced depends mainly on the details of the
instability, rather than the initial twist.

2.5 Magnetic helicity transport

We wish to give a simple expression for dH/dt, which may include both dis-
sipation and transport across boundaries. Although we may use any gauges
we please for A and Apot, one particular choice considerably simplifies the
algebra (Berger 1984). First, we require that Apot satisfies

∇ · Apot = 0; Apot · n̂|S = 0. (18)

One then finds
dH

dt
= −2

∫
E ·B d3x + 2

∮
S

Apot × E · n̂dS, (19)

where E is the electric field. This equation is analogous to Poynting’s theorem
for the dissipation and transport of electromagnetic energy. The first term
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corresponds to dissipation; magnetic helicity dissipation can be shown to be
negligible in high magnetic Reynolds number plasmas (Berger 1984; Ortolani
and Schnack 1993).

The second term governs transport across the boundary S. For the photo-
sphere, the dominant contribution to E comes from ideal MHD flow. In this
case E = B × V (also see, Berger 1984)

dH

dt
= 2

∮
S

(
(Apot · V)B − (Apot ·B)V

) · n̂dS. (20)

The first term represents the effect of twisting motions on the boundary, while
the second represents the bulk transport of helical field across the boundary.

The helicity transport equation takes an intuitive form in the simple case
where N flux tubes pass through a planar boundary. Let flux tube i have flux
Φi. Suppose the motion at boundary rotates flux tube i at an angular velocity
ωii, while tube i and tube j rotate about each other at an angular velocity
ωij . Then

dH

dt
=

1
2π

N∑
i=1

N∑
j=1

ωijΦiΦj . (21)

3 Computations of helicity in finite volumes

3.1 Computations of instantaneous helicity in the corona

The application of the concept of relative magnetic helicity defined in section
2 is problematic in active region (AR) magnetic field extrapolations because
their volumes are finite. For linear force-free (LFF) fields, this problem can
be bypassed by formulating the helicity content of an AR in terms of surface
integrals applied to the lower boundary (Berger 1985; Georgoulis and LaBonte
2007). These calculations include summations over the Fourier modes of the
magnetogram. When the force-free parameter α exceeds a certain critical value
that depends on the horizontal size of the calculation box, helicity attains un-
physical large values. Démoulin et al. (2002a) proposed to use the linearized
Berger’s (1985) expression in which the helicity is proportional to α. In sev-
eral publications, (e.g. Démoulin et al. 2002a; Green et al. 2002; Nindos and
Andrews 2004) the linearized formula has been used in conjunction with the
single best value of α, αbest, for the AR (see section 3.3). In framework of
LFF field, magnetic helicity can also be computed via α and magnetic energy,
Em (Pevtsov and Canfield 1999; Pevtsov 2008), with Em determined from the
Virial theorem.

Georgoulis et al. (2012) extended the work by Georgoulis and LaBonte
(2007) on LFF fields to non-linear force-free (NLFF) fields. They developed
a method that depends on a lower-boundary connectivity matrix that can be
inferred either by a NLFF field extrapolation or in some other way. Instead of
using extrapolation results, these authors used a unique connectivity-matrix
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Fig. 5 AR11158 at 06:28 UT on 2011 February 14. (a) Photospheric vertical magnetic field,
Bz , in grayscale overplotted with the flux transport velocity field (blue/green arrows) and
the polarity labels. (b) 3D view of the NLFFF extrapolation with selected magnetic field
lines. (c) Gθ map. (d) GΦ map. In (c) and (d) the helicity flux density distributions are in
units of 107 Wb2 m−2 s−1 with the same color scale, and the ±500 G isocontours of Bz are
overplotted (modified from Dalmasse et al. 2013).

solution for a given flux-partition map. The solution relies on a simulated
annealing algorithm designed to minimize the distances of connected opposite
polarity partitions.

In several publications that treat the general problem of the calculation of
the instantaneous helicity in the corona, NLFF field extrapolations are used,
and the helicity in the computation box is estimated using methods that are
based on the Coulomb gauge (e.g. Rudenko and Myshyakov 2011; Thalmann
et al. 2011). The choice of gauge is irrelevant for the relative magnetic helicity
value, but it may influence how computationally expensive the algorithm be-
comes. Valori et al. (2012) exploited the gauge freedom by choosing one that
requires that one component of the vector potential vanishes; their method is
a direct extension of an earlier work by DeVore (2000) to finite volumes.

3.2 Computations of the injection rate of helicity

When high-cadence photospheric magnetograms are available, the horizontal
velocity related to equation 20 can be computed. In the early studies, several
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authors (e.g. Chae 2001; Nindos and Zhang 2002; Moon et al. 2002a,b; Nindos
et al. 2003; Chae et al. 2004) utilized the local correlation tracking (LCT) tech-
nique (November and Simon 1988) for the computation of horizontal velocities.
Démoulin and Berger (2003) have pointed out that with magnetograms one
follows the photospheric intersection of the magnetic flux tubes but not the
evolution of the plasma. Consequently, from the observed magnetic evolution
we obtain the flux tube motion and not the plasma motion parallel to the pho-
tosphere. If vt is the tangential component of the photospheric plasma velocity
and vn the velocity perpendicular to the photosphere, the tracking algorithm
detects the velocity of the footpoints of the flux tube which is

u = vt − vn

Bn
Bt (22)

However, MHD simulations (Welsch et al. 2007) have shown that this for-
mula is not always valid, and its use should be treated with caution especially
during flux emergence episodes (see also Schuck 2008; Ravindra et al. 2008).
This conclusion has been confirmed by Liu and Schuck (2012) who analyzed
time series of HMI vector magnetograms from two emerging active regions
(ARs).

The combination of equations 20 and 22 shows that the whole helicity flux
density can be retrieved within the accuracy of the calculation. Consequently,
one may use the quantity GA = −2u ·ApotBn as a proxy to the whole helicity
flux density (e.g. Chae 2001; Nindos and Zhang 2002; Moon et al. 2002a,b;
Nindos et al. 2003; Chae et al. 2004). The GA maps always appear extremely
complex both in space and time, with polarities of both signs present at any
time. Pariat et al. (2005) showed that GA is not a real helicity flux density
and that its properties introduce artificial polarities of both signs. The spuri-
ous signals appear due to the fact that helicity flux density per unit surface
is not physical quantity. Due to the properties of helicity, only helicity flux
density per unit of elementary magnetic flux has a physical meaning. But to
estimate such quantity using observations would require to isolate flux tubes
and determine their connectivity, which is very difficult. Thus any definition
of a helicity flux density will only be a proxy of the helicity flux density per
unit magnetic flux. Pariat et al. (2005) introduced a new proxy for helicity
flux density, Gθ, which does not suffer from GA’s problems. Gθ implies that
the helicity injection rate is the summation of the rotation rate of all pairs of
elementary fluxes weighted by their magnetic flux. An example of a Gθ map
is given in figure 5(c).

In order to define the real helicity flux density, the coronal linkage needs
to be provided. With it one can represent how all elementary flux tubes move
relatively to a given elementary flux tube, and the helicity flux density is de-
fined per elementary flux tube. Using photospheric maps this can be achieved
by distributing equally the helicity input between the two footpoints for each
elementary flux tube. Then the helicity flux can be rewritten as a flux of mag-
netic helicity per unit of surface, GΦ, where GΦ is a field-weighted average of
Gθ at both photospheric footpoints, x±, of the photosheric connection.
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While GΦ provides the true helicity flux density, its practical use is presently
limited by our ability to define the coronal linkage for all magnetic polarities.
However, progress can be made if we obtain the coronal linkage from NLFFF
extrapolations (Dalmasse et al. 2013, 2014). A GΦ map resulted from such
treatment appears in figure 5(d). This map corresponds to the same area
whose Gθ map appears in figure 5(c).

It has been reported (e.g. Pariat et al. 2006, 2007) that unlike the usual
GA maps, most Gθ maps show almost unipolar spatial structures because the
non-dominant helicity flux densities are significantly suppressed. However, as
can be seen from figure 5(c), this is not always the case. In figure 5(d), the
GΦ map also displays mixed signals which implies that there are real mixed
signs of the helicity flux in the AR. However, a comparison between figure
5(c) and figure 5(d) shows that the GΦ distribution is different from the Gθ

distribution, except in the regions of open magnetic fields (in these regions
Dalmasse et al. 2013, set GΦ = Gθ). Overall, the comparison shows that the
intensity of the Gθ signal tends to be overestimated.

When a cube of helicity flux density maps is available, one can calculate
the time evolution of the total helicity flux, dH/dt. An example using a time
series of Gθ maps which includes the Gθ map of figure 5(c), appears in figure
6 (top panel, see Nindos et al. 2012). The resulting time profile of the net
accumulated change of helicity is shown in the middle panel of figure 6. Note
that we expect that the helicity flux integrated using GA to be identical to
the one integrated using Gθ or GΦ because all definitions are derived from
equation 20 (see Liu and Schuck 2013).

3.3 Computations of current helicity

Due to the difficulties involved in the computation of magnetic helicity, often
proxies of the current helicity, Hc, are used instead. The current helicity is
defined as Hc =

∫
V B · jdV , with μ0j = ∇×B. While the magnetic helicity is

gauge-dependent through A, there is no gauge freedom with Hc (∇ · B = 0).
Furthermore, magnetic helicity is a conserved MHD quantity, but the current
helicity is not. However, the magnetic and current helicity are usually con-
sidered to have the same sign (although this has not been proven rigorously).
Observationally, we can derive values of the current helicity that represent only
a fraction of its full value. This is because the volume integral of Hc can be
written as

∫
V

(Bxjx+Byjy+Bzjz)dV , of which only the last component can be
derived from observations. Though using photospheric vector magnetograms
all three components of B are available, only the vertical component of j can
be computed via the horizontal derivatives of B. Therefore we can only deter-
mine a fraction of the whole current helicity density by calculating hc = Bzjz.
Two different proxies based on current helicity have been used in statistical
studies: the fractional imbalance of hc (percentage of pixels of one sign of hc

in a given magnetogram) and area-averaged hc < hc > (e.g. Abramenko et
al. 1996; Bao and Zhang 1998). In sunspots, the horizontal components of j
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Fig. 6 (a) Time profile of the net flux of injected helicity, dH/dt, over the field of view of
AR11158 that is presented in fig. 5(b) Time profile of the net accumulated change of helicity,
ΔH, calculated from the measured dH/dt. The GOES soft X-ray flux time profile is also
presented. (c) Temporal evolution of the magnetic free energy for AR11158 (modified from
Nindos et al. 2012).

were determined either using the assumption of axisymmetric model (Pevtsov
and Peregud 1990) or from the full Stokes polarimetric inversions on the ba-
sis of known difference in height formation of spectral line winds and core
(Puschmann et al. 2010; Ruiz Cobo and Puschmann 2012). These studies in-
dicated that the horizontal components of j may exceed significantly it vertical
component.

One can also employ the value of the force-free field parameter α under
the LFF approximation, as helicity proxy. Using photospheric vector mag-
netograms, one can determine α either by fitting LFF field to the observed
transverse field (so called, αbest), or by computing the vertical component of
α for each pixel and then averaging it (< αz >). Brunette et al. (2004) found
a reasonably good correlation between αbest and < αz >. When longitudianl
magnetograms are available instead of vector magnetograms, the αbest can be
determined by comparing the computed LFF field lines with the observed soft
X-ray or EUV coronal structures (e.g. Nindos and Andrews 2004). It has been
shown (e.g., Hagyard and Pevtsov 1999) that helicity proxies hc and α have
the same sign.
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4 Observations of magnetic helicity

4.1 Sources of magnetic helicity

The first term of the right-hand side of equation 20 corresponds to the injection
of helicity by advection (i.e. emergence of field lines that cross the photosphere)
while the second term (also known as shearing term) is the flux of helicity due
to motions parallel to S (see section 3.2). Such motions may come either from
differential rotation and/or transient photospheric shearing flows.

Differential rotation was the first mechanism considered that injects helicity
into ARs (DeVore 2000). Even when a single bipole is considered, differential
rotation does not provide a monotonous input of magnetic helicity (DeVore
2000). This is because differential rotation rotates both magnetic polarities
on themselves and also changes their relative positions, introducing twist and
writhe helicity fluxes, respectively. These fluxes always have opposite signs
and similar amplitudes, and therefore partially cancel (Démoulin et al. 2002b).
Démoulin et al. (2002a) and Green et al. (2002) studied the long-term evolution
of the helicity injected by differential rotation into the coronal part of two
active regions which were followed from their birth for several months during
their decay. These studies showed that the contribution of differential rotation
to the helicity budget of active regions remains small even on the long term.

However, the conclusion is different in the convection zone for a solar cycle
and a global spatial scale. Berger and Ruzmaikin (2000) calculated the mag-
netic helicity production by differential rotation using 22 years of magnetogram
data and differential rotation curves. They found that the helicity production
in the solar interior by differential rotation had the correct sign compared to
observations of coronal structures (the magnetic helicity conservation is sat-
isfied by the natural generation of the same amount, but of opposite sign, in
both hemispheres). The net helicity flow into each hemisphere over the whole
22-year magnetic cycle was about 4 × 1046 Mx2.

ARs cover only a tiny fraction of the solar surface. The quiet Sun is char-
acterized by small magnetic flux density but its total magnetic flux is huge.
Welsch and Longcope (2003) estimated the helicity flux in five time series of
quiet Sun magnetograms located close to disk center. They extrapolated their
results to the whole Sun and found that the helicity injection in the quiet Sun
is negligible compared to the helicity injected even by a single AR. We note,
however, that their measurements included the braiding component only and
therefore they should be considered as lower limits (the twist component of
individual flux tubes was not measured because it was not possible to resolve
tiny flux tubes).

The study of the helicity budget of active regions requires knowledge of
the helicity injected into them and of the helicity carried away from them.
The former is computed using the methods described in section 3 while CMEs
are considered responsible for the latter. The helicity content of a CME can
be estimated by the change of coronal helicity of the source region during
the event (e.g. Mandrini et al. 2005; Tziotziou et al. 2013). Inside magnetic
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clouds, helicity is estimated from modeling of the insitu measurements of the
magnetic field vector. In practice, in studies of the long-term evolution of
helicity of ARs that are linked to at least one magnetic cloud at 1 AU one
assumes that the helicity carried away by each CME is equal to the helicity
content in the magnetic cloud. Nindos et al. (2003) and Lim et al. (2007) were
able to partially reconcile the amount of helicity injected into the corona with
the helicity carried away by the CMEs in the ARs they studied. However,
the uncertainties of these studies are significant primarily due to the large
uncertainties in the calculation of the helicity transported away by CMEs.

Using line-of-sight magnetograms together with the Démoulin and Berger
(2003) formula (equation 22), one cannot calculate separately the advection
and the shearing terms of equation 20. Furthermore, the validity of the Démoulin
and Berger hypothesis has been questioned (see section 3.2). Theoretical stud-
ies (e.g. Démoulin et al. 2002a) indicate that on the AR scale transient shearing
motions are a rather inefficient way to bring helicity into the corona, compared
to the helicity carried by the emergence of a significantly twisted flux tube.
However, this is hard to prove observationally. The separate computation of
both the shearing and advection terms requires the use of photospheric vector
magnetograms. Several methods have been developed towards this goal and
contradictory results have been reported (e.g., Kusano et al. 2002; Welsch et al.
2004; Longcope 2004; Georgoulis and LaBonte 2006; Schuck 2008; Zhang et al.
2012; Liu and Schuck 2012). Furthermore, the methods which were developed
before 2007 were checked against the same anelastic MHD simulation (Welsch
et al. 2007) and produced different results.

On solar cycle time scales, the helicity injected into ARs has an upper limit
of 6.6 × 1045 Mx2 and is an inherently disorganized, impulsive and aperiodic
process (Georgoulis et al. 2009). The whole solar-cycle value for the quiet Sun
is about 1043 Mx2 (Welsch and Longcope 2003).

4.2 Hemispheric helicity rule

4.2.1 Observations

All helicity proxies discussed in section 3 reveal that solar magnetic fields, at
different spatial scales, show primarily negative chirality (i.e. negative helicity
sign) in the northern hemisphere while those in the southern hemisphere show
primarily positive chirality. This trend is called hemispheric helicity rule and
a pictorial summary of it appears in figure 7.

Using vector magnetograph observations of ARs and the αbest, αav or cur-
rent helicity imbalance methods (see section 3.3), it has been established (e.g.
Seehafer 1990; Pevtsov et al. 1995, 2001; Abramenko et al. 1997; Bao and
Zhang 1998; Bao et al. 2000; Hagino and Sakurai 2004, 2005; Zhang 2006;
Hao and Zhang 2011; Liu et al. 2014) that the hemispheric helicity rule is a
relatively weak statistical trend satisfied by 60-75% of active regions.
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Fig. 7 Pictorial representation of the hemispheric helicity rule. Adopted from Pevtsov
(2002).

Soft X-ray sigmoids have also been used as proxies to the chirality of ARs
with S (reverse-S) shapes corresponding to positive (negative) chirality. Rust
and Kumar (1996); Lim and Chae (2009) determined that the hemispheric
rule was obeyed by 80-87% of sigmoids whereas in a larger sample analyzed
by Pevtsov and Canfield (1999) the fraction was 64%. We note, however, that
potential fields may occasionally show sigmoidal structures (Pevtsov et al.
1997); furthermore the apparent direction of curvature of a three-dimensional
sigmoidal structure may depend on projection effects.

The hemispheric helicity rule is also observed in filaments, filament chan-
nels, and their overlying coronal arcades (Martin 1998). By visual inspec-
tion of the orientation of the “barbs” of both quiescent and active-region fil-
aments Martin (1994); Rust and Martin (1994); Pevtsov et al. (2003); Yeates
et al. (2007); Lim and Chae (2009) found that 76-82% of them satisfy the
hemispheric helicity rule. However, the corresponding percentage found by
Bernasconi et al. (2005) who used an automated detection algorithm was only
68%. Wang (2013) argued that the higher strength of the hemispheric rule
in filaments reflects the difficulty in determining the twist in newly emerged
ARs, and that the strength of the hemispheric rule in ARs should indeed be
similar to that in quiescent filaments.

For the study of the chirality of large-scale solar magnetic fields, proxies of
the current helicity were computed from the large-scale vector magnetic fields
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which, in turn, were derived from time sequences of longitudinal magnetograms
(by tracking the flux as it rotated across the disk and using the changing
projection angle to reconstruct its vector components under the assumption
that the field did not change over several days, e.g. Pevtsov and Latushko
2000; Wang and Zhang 2010) or even from full-disk vector magnetograms
directly (Gosain et al. 2013). Calculations of the helicity injection rate applied
on series of synoptic maps derived from longitudinal magnetograms have also
been used (Yang and Zhang 2012). Pevtsov and Latushko (2000) did not detect
any significant hemispheric chirality asymmetry within ±40◦ of the equator.
In their data, however, asymmetry was present at high latitudes where the
current helicity was negative (positive) in the northern (southern) hemisphere.
The studies by Wang and Zhang (2010); Yang and Zhang (2012); Gosain
et al. (2013) found that the hemispheric helicity rule still holds in general,
when large-scale fields are considered. Note also that from a large sample of
AR vector magnetograms, Zhang (2006) found that weaker fields (<500 G)
followed the hemispheric rule, but stronger fields had the reverse helicity sign.
However, using vector synoptic maps, Gosain et al. (2013) reached exactly the
opposite conclusion.

The structures with the smallest spatial scales where the hemispheric he-
licity rule still holds are quiet Sun network elements (Pevtsov and Longcope
2001, 2007) while the structures with the largest spatial scales include mag-
netic clouds (e.g. Leamon et al. 2002).

The hemispheric helicity rule does not change from one solar cycle to the
other. The study that covered the most time-extended data set was done by
Pevtsov et al. (2008) who analyzed data from four different vector magne-
tograms for 19 years from solar cycles 21, 22, and 23 and found that the
hemispheric rule is a weak tendency with significant scatter. However, there
are published reports that the rule might change its sign in some periods of a
solar cycle. For example, using current helicities Bao et al. (2000) argued that
the hemispheric helicity rule was not present at the ascending phase of solar
cycle 23. On the other hand, the αbest helicity proxy did not show any change
in the hemispheric helicity rule for the same period. Hagino and Sakurai (2005)
found that the rule is satisfied in the solar maximum phase but may not be sat-
isfied in the solar minimum phase. Hao and Zhang (2011) studied 64 ARs that
appeared in the descending phase of solar cycle 23 and the ascending phase of
solar cycle 24. The 34 ARs of cycle 24 followed the hemispheric helicity rule,
whereas the 30 ARs of cycle 23 did not. However, when combining all ARs as
one sample, they followed the hemispheric helicity rule. Zhang et al. (2010)
studied AR vector magnetograms from more than 20 years of observations and
found that the “wrong” signs disappear at the ends of the butterfly wings as
well as at their very beginnings. Furthermore, the large-scale magnetic helic-
ity fluxes computed by Yang and Zhang (2012) showed the same sign in both
hemispheres around 2001 and 2005. We note that when we investigate whether
or not there is a change of the hemispheric rule with solar cycle we need to
take into account how this might be affected by a possible lack of consistency
between different magnetograms obtained in the years when the hemispheric
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rule is reported to change sign. For example, Pevtsov et al. (2008) argued that
due to significant scatter in the data, years with low sunspot activity may
show deviations from the rule because the statistical sample is insufficient.

4.2.2 Interpretation

Potential candidates for the origin of the hemispheric helicity rule include
solar differential rotation, direct action of the Coriolis force, solar dynamo,
and turbulent convection in the upper part of the convection zone.

Wang (2013) showed that the net twist introduced by the Coriolis force on
the cross-sectional expansion of each leg of a rising Ω-loop may be substantial
if the loop’s rise time scale is sufficiently long; he also found that the sense of
the twist satisfies the hemispheric rule. But the rule of helicity generation in
the hydrodynamic dynamo that is driven by the Coriolis force dictates that
the variation of α should be proportional to the sine of solar latitude; this
trend is not supported by the observations (Pevtsov et al. 1995).

Differential rotation of the Sun acts over extremely long time scales during
which it is unlikely that a single flux tube could survive. But even if we assume
so, the maximum possible twist introduced to the tube will be well below ob-
served values (e.g. Longcope et al. 1999; Démoulin et al. 2002b). Furthermore,
a fundamental problem with both differential rotation and the Coriolis force
is that they are steady mechanisms which lack inherent fluctuations while an
intrinsic significant scatter is found in the hemispheric rule.

Choudhuri (2003) has investigated the relation between dynamo theory
and the generation of magnetic helicity in flux tubes in the convection zone.
He postulated that the toroidal and poloidal fields are generated in two differ-
ent regions; at the bottom and at the top of the convection zone, respectively.
When toroidal flux tubes move upward into the region near the surface where
the poloidal field is present, the poloidal field gets wrapped around the flux
tube giving rise to helicity. Choudhuri (2003) showed that this process gener-
ates helicities with signs that obey the hemispheric rule. Based on this model,
computations by Choudhuri et al. (2004) show that at the beginning of a so-
lar cycle the hemispheric rule reverses sign. This is in agreement with some
observations (e.g. Bao et al. 2000) but more recent reports (see section 4.2.1)
have not confirmed this trend.

The significant scatter exhibited by the hemispheric rule implies that tur-
bulence in the convection zone may play an important role in the generation of
the observed chirality trends. Indeed, Longcope et al. (1998) showed that tur-
bulence of the convection zone can introduce to a flux tube helical deformation
on small scales (at the mixing length) if the turbulence contains a nonvanish-
ing kinetic helicity. Longcope et al. (1998) called this effect the Σ-effect and
showed that these helical deformations will be of the handedness appropriate
to explain the scatter observed in the hemispheric helicity rule.

Nandy (2006) provided indirect support in favor of the Σ-effect mecha-
nism. He found that the dispersion in the AR twist distribution is latitude-
independent, implying that the amplitude of turbulent fluctuations does not
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vary with latitude in the convection zone. His data set also showed that the
amplitude and dispersion of twist decreased with increasing magnetic size of
active regions, supporting the conclusion that larger flux tubes are less affected
by turbulence.

5 Magnetic helicity and the initiation of CMEs

5.1 Helicity as an important agent for CME initiation

Whatever the mechanism that generates helicity on the Sun, it operates con-
tinuously. Thus helicity should be removed from the Sun at approximately the
same rate as it is created. Accumulation of helicity would make it difficult for
solar dynamo to operate – a problem referred to as dynamo quenching (e.g.
Brandenburg and Sandin 2004).

CMEs are thought to be the primary agent through which the Sun gets
rid of its excess helicity (e.g. Rust 1994; Low 1996; Zhang and Low 2005).
The main arguments supporting this idea are: (1) solar magnetic fields obey
the hemispheric helicity rule (see section 4.2) which appears not to change
from solar cycle to solar cycle. (2) A fraction of AR’s helicity is created by
the dynamo and then transported into the corona through the photosphere
with the emerging magnetic flux. This process would constantly accumulate
helicity into the corona because of helicity’s property not to be destroyed under
reconnection. Furthermore, cancellations of opposite helicity fluxes involves a
small fraction of the magnetic flux (e.g. between ARs of opposite helicity
sign, either within the same hemisphere or across the equator, Pevtsov 2000).
Finally, it is speculated that a small fraction of coronal helicity is cancelled
via magnetic reconnection between magnetic fields (ARs and coronal holes)
of opposite helicity sign. However, this represents only a small fraction of the
accumulated helicity, as the relevant magnetic fluxes are small.

Along the above lines, Low and Zhang (2002) and Zhang and Low (2001,
2003) have developed a unified view of CMEs as the last chain of processes
that transfer helicity from the convection zone into the inteplanetary medium.
Their theory exploits Taylor’s conjecture that the magnetic field will relax
towards a LFF field state. A summary of their results is as follows. When
new field enters the corona, repeated reconnections between the new and pre-
existing field take place. This process simplifies the magnetic topology and the
dissipated magnetic energy produces flares. The relaxation proceeds according
to Taylor’s conjecture and results in the formation of a flux rope which contains
a significant fraction of the total helicity of the system. The fate of the flux
rope is determined by the efficiency of its confinement by its surrounding
anchored field. Flux rope ejection occurs when the magnetic energy it contains
is sufficient to drive an outward expansion against the confining field.

In a series of articles, Zhang et al. (2006); Zhang and Flyer (2008); Zhang
et al. (2012) studied the theoretical upper limit of helicity that can be stored
in various field configurations and its implications for coronal evolution. In the
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2006 article they showed that in an open spherical volume like the corona, for
a given boundary flux distribution, there is an upper bound on the magnitude
of the total helicity of all axisymmetric power-law force-free fields. When the
accumulated helicity exceeds this limit, a non-equilibrium situation is reached
which mimics the initiation of CMEs. In the 2008 article they found that
the helicity upper bound of force-free fields depends on the boundary flux
distribution: multipolar photospheric configurations can have a helicity upper
bound 10 times smaller than dipolar ones. In the 2012 article they studied the
helicity of self-similar axisymmetric force-free fields and found that there may
be an upper bound on the total helicity of all bipolar axisymmetric force-free
fields. As the helicity increases, the fields open up forming a current sheet
surrounded by Parker-spiral-like structures.

Amari et al. (2003a,b) constructed a set of force-free fields having different
magnetic flux and helicity contents and used them as initial conditions by
applying converging motions or a turbulent diffusion-driven evolution. These
processes can trigger eruptive events that may be either confined or global,
depending on the value of the initial helicity. Amari et al. (2003b) concluded
that helicity cannot be the only parameter controlling the triggering of an
ejection, as its value is constant during the diffusion-driven evolution: having
a large enough helicity seems a necessary condition for an ejection to occur,
but not a sufficient one. Jacobs et al. (2006) performed MHD simulations by
shearing an axisymmetric arcade outside a sphere, and found that a twisted
flux tube forms and ejects when H/Φ2 is typically above 0.2–0.3.

5.2 Observational evidence

The physical view presented in section 5.1 has been supported by several ob-
servations. Nindos and Andrews (2004) used LFF field extrapolations and the
αbest method to model the pre-flare coronal field of 78 ARs that produced big
flares. Only some 60% of these flares were associated with CMEs. Then from
the derived values of αbest they computed the corresponding coronal helicities.
Their results indicated that in a statistical sense both the pre-flare absolute
value of α and the corresponding coronal helicity of the ARs producing CME-
associated big flares were larger than the absolute value of α and helicity of
those that did not have associated CMEs.

The above results are consistent with the ones reported by LaBonte et al.
(2007) who calculated the helicity flux in 48 ARs that produced X-class flares
and in 345 non-X-flaring ARs. They found that a necessary condition for the
occurrence of an X-class flare is that the peak helicity flux has a magnitude
> 6 × 1036 Mx2 s−1.

Tziotziou et al. (2012) used the method developed by Georgoulis et al.
(2012, see section 3.1) to calculate the instantaneous magnetic free energy
and helicity from 162 vector magnetograms in total of 42 different ARs. They
found a statistically significant, monotonic correlation between the free energy
and helicity. This correlation implies that, in addition to helicity, free energy
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Fig. 8 Free energy-helicity diagram of ARs. Diamonds, squares and asterisks correspond
to non-flaring, M- and X-class flaring ARs, respectively. Dashed lines indicate the estimated
thresholds for helicity and magnetic free energy above which ARs give major flares. These
thresholds divide the diagram into four regions, labeled a, b, c, and d. The dotted and
dashed-dotted lines denote the least-squares best fit and the least-squares best logarithmic
fit, respectively, between helicity and magnetic free energy (from Tziotziou et al. 2012).

may play a significant role in eruptive phenomena. In their study, the eruptive
ARs appeared well segregated from the non-eruptive ones in both free energy
and helicity (see figure 8).

In ARs, a primary constraining force that inhibits global eruptions is pro-
vided by the overlying background field. Using both line-of-sight and vector
magnetograms, Nindos et al. (2012) studied the long-term evolution of the
background field in AR11158 that produced three major CMEs. In their cal-
culations they used the decay index of the magnetic field which is a parameter
that quantifies how fast the field decreases with height. Their results indicated
that the initiation of eruptions did not depend critically on the temporal evo-
lution of the variation of the background field with height. On the other hand,
they showed that both the magnetic free energy (computed from NLFF field
extrapolations) and the accumulated helicity into the corona (computed from
the helicity injection rate) contributed the most to the eruptions by their in-
crease throughout the observations (by factors of more than 5 and more than
two orders of magnitude, respectively; see figure 6).

5.3 Other approaches

There are several other approaches to the initiation of CMEs and the role of
helicity. Some models suggest that eruptive events can occur without any sig-
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nificant helicity accumulations. MacNeice et al. (2004) studied the evolution
of helicity under the breakout model (Antiochos et al. 1999). In their simu-
lation, the model was driven by a shear flow that injected both free energy
and net helicity into the corona. Their results showed that the helicity shed
by the plasmoid ejection was at least 80% of the total originally injected into
the system. They interpreted this result as an indication that although CMEs
remove the bulk of the coronal helicity, some fraction remains behind. They
suggested that some other mechanism (possibly small-scale diffusion) might
be responsible for dissipating the rest of the helicity. Furthermore, Kliem et al.
(2011) found that simulated flux rope CMEs carried away only a minor part
of the initial helicity that was present in the simulation box; most of the helic-
ity remained in the simulation box even after the departure of the CME from
there. This result was interpreted as a consequence of the requirement that the
current through an expanding loop must decrease if the magnetic energy of
the configuration is to decrease as the loop rises, to provide the kinetic energy
of the CME.

Phillips et al. (2005) presented simulations of the breakout model where
eruption occurs even when no net helicity is injected into the corona. In their
simulations the eruption occurs at a fixed magnitude of free energy in the
corona, independent of the value of helicity. It would be desirable to check
these results against computations of the helicity evolution in observed erup-
tions that appear to be due to breakout. The MHD simulations by Zuccarello
et al. (2009) also showed that the injection of helicity is not a necessary con-
straint in the initiation of CMEs. However, the absence of significant net he-
licity accumulation prior to an eruption might result from the accumulation of
similar amounts of both positive and negative helicity; in such case the “helic-
ity annihilation” might be at work (Kusano et al. 2003). Indeed, Kusano et al.
(2004) presented simulations where the introduction of a reverse helicity was
essential for the eruption of a sheared arcade.

The helicity content of a twisted flux rope with a uniform twist across
its section and having N number of turns is simply N , when it is measured
in units of its flux to the second power. It is convenient to express helicity
values in number of end-to-end twist and turns, i.e. in units of the square of
the magnetic flux of the active region. For example in an active region with a
total magnetic flux and helicity of Φ = 5× 1021 Mx and H = 1.25× 1043 Mx2,
respectively, helicity can be expressed as N = 0.5Φ2, i.e. the global helicity of
the flux rope forming the active region can be characterised as having 0.5 end-
to-end turn, equivalent to 1π. In the solar corona twist values are usually low,
below N = 1, or 2π. However, in the interplanetary medium magnetic clouds
are significantly more twisted: values can reach N = 10 (Gulisano et al. 2005;
Démoulin 2008). The increase in end-to-end twist likely takes place during
CME eruption via magnetic reconnection between the erupting flux rope and
the sheared arcade field below (Mandrini et al. 2005; Attrill et al. 2006).

Magnetic helicity of a thin flux rope can also be expressed via its twist
(Tw) and writhe (Wr , see Section 2.4). Since magnetic helicity is conserved
in ideal MHD, twist can be converted into an equal amount of writhe. Such a
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conversion takes place during kink instability (e.g. Török and Kliem 2005). The
threshold of kink instability is reached at around a twist of 2π. As presently
twist cannot be directly measured in the corona, Török et al. (2014) asked
the question whether or not the amount of writhing of erupting flux ropes,
proxyed by erupting filaments, which is a more directly measurable quantity,
could provide quantitative information on the amount of twist in the pre-
eruptive magnetic configuration. They carried out MHD simulations of kink
instability with a range of internal twists (3.0− 10.6π) and found that up to a
high initial twist of 7.5π the rope axis invariably develops a one-turn helix, i.e.
the amount of twist converted to writhe being about 2π (for an observational
example see Williams et al. 2005). Writhing only increased for the highest
initial twist values, which are well above twist values usually observed on the
Sun. (Although several examples were found by Vršnak et al. (1991) of end-to-
end twist of pre-eruption prominences being in the range 3−15π, and another
example by Romano et al. (2003) of about 10π). Therefore from writhing of
erupting filaments one can determine the sign of twist/helicity in the active
region (Green et al. 2007), but can only deduce whether or not they are twisted
less or more than about 6π.

Moreover, several proposed eruption mechanisms do not explicitly rely on
helicity. These models include the tether cutting (e.g. Moore et al. 2001),
breakout (Antiochos et al. 1999), magnetic flux cancellation (e.g. van Balle-
gooijen and Martens 1989). On the other hand, helicity is at the heart of the
helical kink instability (e.g. Rust and Kumar 1996; Török and Kliem 2005;
Kliem et al. 2012), which has been invoked to explain several eruptive phe-
nomena.

6 Active region tilt

6.1 Introduction of Joy’s Law

Sunspots do not form randomly over the solar photosphere, but develop in
groups, or active regions. Typically, active regions are elongated in East-West
direction. Early observations of magnetic fields indicated that active regions
are represented by bipolar patterns, with leading and following sunspots having
opposite magnetic polarities. Leading sunspots in opposite hemispheres have
opposite polarities: for example, in current cycle 24, leading sunspots of active
regions in Northern hemisphere have negative polarity field, while leading spots
in southern hemisphere have positive polarity field. In subsequent cycle, these
polarities will reverse (leading positive polarity in the Northern hemisphere
and negative in the southern hemisphere). Collectively, these patterns, are
now known as Hale (or Hale-Nicholson) polarity rule. In both hemispheres,
leading sunspots of all groups are situated closer to solar equator then the
following sunspots. The average angle between the main axis of the active
region and the line of parallel latitude (or equator) is a function of latitude.
This dependence of active region tilt on latitude is commonly referred to as
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AR 1

AR 2
AR 3

Fig. 9 White light image (a) and corresponding magnetogram (b) showing dark sunspots
surrounded by bright plages (left) and the associated magnetic fields (right, white color
corresponds to positive and black is negative polarity field). One of the active regions, AR1,
provides example, when using white light image alone would allow to correctly identify
active region and its tilt. AR2 does not show a well-developed sunspot in its trailing part,
and thus, the determination of tilt is less certain. Furthermore, the small spot on the East
of AR2 belongs to another bipole, representing its leading part, so AR2 could also be falsely
identified as a bipole, giving incorrect tilt angle. In case of AR3, the observer may erroneously
classify two close sunspots as an active region, which will result in incorrect tilt. In this
case, two sunspots in area marked as AR3 have the same polarity field, and thus, belong
to different groups. Data are from the Solar Optical Long-term Investigations of the Sun
(SOLIS) system.

Joy’s law (term Joy’s law was introduced by H. Zirin in 1988; prior to that,
the dependency was referred to simply as active regions tilt). Figure 9 shows
examples of patterns associated with the Hale polarity rule and Joy’s law.

Although active region tilt can be determined from white light images of
active regions (figure 9, left), in some cases, the determination of tilt may have
a high degree of uncertainty or even errors (e.g., AR2 and AR3, figure 9). Using
longitudinal magnetograms alone may also cause a problem for active regions
situated far from the central meridian because of apparent polarity reversal
due to projection effects. Therefore, the tilt angle is best determined from the
analysis of both white light and magnetic field data.

Both Hale’s polarity rule and Joy’s tilt law were first noted by Hale et al.
(1919). However, the significance of trend in tilt angles was not recognized
until much later.
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Fig. 10 Joy’s measurements of tilt (γ) vs. latitude (ϕ) averaged over 5 degree latitudinal
intervals (0-4◦, 5-9◦, etc) for rising and declining phases of cycles 10-13 from Hale et al.
(1919). Dashed and solid lines show least-square fits by linear functions (γ = (0.29 ± 0.04) ·
ϕ + (0.03 ± 0.01)) and non-linear (γ = (0.31 ± 0.04) sinϕ + (0.03 ± 0.01)) functions, where
γ and ϕ are expressed in units of radians.

6.2 Latitudinal dependence of tilt

Using sunspot drawings by Carrington (1856–1861) and Spörer (1861–1893),
Joy (see, Hale et al. 1919) measured tilt of 2633 active regions over three and
a half sunspot cycles. He found that the tilt varies with the latitude, and that
the tendency is independent of solar cycle. Figure 10 shows Joy’s data (see,
Table 2 in Hale et al. 1919) and the least-square fit by two functions (done by
us). The two fits are nearly indistinguishable from each other. All tilt angles in
Figure 10 were determined from white light images only (since magnetogram
data was not available prior to 1908) including erroneous tilts determined for
anti-Hale and complex polarity spots.

Wang and Sheeley (1989) used line-of-sight magnetograms from the Na-
tional Solar Observatory (NSO) at Kitt Peak full disk magnetograph to mea-
sure tilt of about 2700 bipolar magnetic regions (BMRs) from 1976-1986 (cycle
21). Although, the article provides no coefficients for least-square fit, judging
from their figure 6a, the latitudinal dependence is much steeper then in Joy’s
data. Table 1 provides a summary of fitted functional dependencies to latitu-
dinal variation of tilt angle, f(γ) = A · f(ϕ) + B, where f(γ) and f(ϕ) are
functions of tilt and latitude, and A and B are coefficients. For consistency,
we converted all fitted coefficients taken from their respected articles to units
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of radians. We used data from Hale et al. (1919, Carrington and Spörer, C&S
sunspot drawings) and Brunner (1930, Zurich sunspot measurements) to com-
pute the functional approximates, which are shown in the Table 1 with the
reference to our present article.

Three different functional dependencies used in these previous studies re-
turn very similar results. The first group (γ vs. ϕ) shows very consistent fits,
with the exception of Zurich and CSA (Russian) datasets, for which the tilt
is notably higher. We do not have an explanation for this inconsistency, but
we speculate that this could be related to the sampling of active regions for
two data sets. In both cases, the selection was done by the observer, and thus,
it could be that the size of selected regions played a role. We note that in
comparison with Mount Wilson (MWO) and Kodaikanal (KK) observatories,
CSA data set show significantly smaller scatter in tilt angles (Ivanov 2012),
which indirectly supports the idea that the determination of active regions in
this data set was emphasizing larger regions.

In the second group (γ vs. sin ϕ) fits to the Carrington and Spörer (C&S)
and to MWO data are in agreement with the results for the first group.
Latitudinal dependence of tilt derived from longitudinal magnetograms from
SOHO/MDI (Stenflo and Kosovichev 2012) is steeper and it is in a better
agreement with fit to Brunner (1930) data.

In the third group (sin γ vs. sin ϕ), fit to C&S data is in agreement with
the first and second groups, but fits to NSO/KP and Zurich data are much
steeper. Overall, it appears that fitting the orientation of bipolar magnetic
regions (BMRs) returns higher tilt as compared with the data based on white
light images and sunspot drawings. The latter may be the effect of the dif-
ference in evolutionary state of active regions covered by the white-light and
magnetic datasets of active region tilt angles. White-light signatures active
regions (sunspots) have shorter life span than that of the magnetic signatures
of BMRs distinguishable from background field. Therefore the difference be-
tween tilt angles obtained from white-light and magnetic datasets may rather
result from the dominance of active regions in their decay phase in the mag-
netic data sets, while the white-light (sunspot) data is dominated by relatively
young active regions.

We also note that more than half of the linear fits shown in Table 1 return
a non-zero intersect point (corresponding to about 1-2 degrees) which suggests
that even at the equator the active regions have a slight non-zero tilt. Many fits
are forced through the origin on the assumption that active regions have a zero
tilt angle at the equator. This is done because it is assumed that the Coriolis
force is the only contribution to the tilt angle value. Since all the physical
processes that contribute to the tilt angle are not yet understood, it is best
to fit the data and not assume that tilt angles are zero at the equator. As
an example, NOAA active region 11987 was a Northern hemispheric polarity
group with the leader at −2 degrees southern latitude and the follower spot on
or slightly above the equator. This group basically formed a bridge across the
equator and maintained a healthy tilt angle of ≈15–18 degrees from when it
was visible on 22 Feb 2014 until the follower spot broke apart on 27 Feb 2014.
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This is just one example of active regions near the equator not having a zero
tilt angle. More studies should be done on the tilt angles of active regions that
emerge within several degrees of the equator as their existence contradicts the
conventional wisdom of Coriolis force imparting the largest portion of the tilt.

While in most cases tilt vs. latitude dependence is assumed to be monotonic
with latitude, some data indicate a possible presence of maximum in tilt angles
in mid-latitudes. The maximum can be seen in MWO, KK and CSA data
(Sivaraman et al. 1999; Ivanov 2012). Due to reduced size of statistical sample
for high latitudes, standard deviations of the means are also large, and thus,
this apparent decrease may be statistically insignificant. Still, this may need
additional studies to confirm (or disprove) the presence of a peak in tilt angles
in mid-latitudes.
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6.3 Non-Hale polarity regions and δ-spots as highly tilted bipoles

Active regions’ tilt is a weak tendency with significant scatter (for example,
see Fisher et al. 1995). In contrast, Hale polarity law is a strong dependence.
For example, in MWO data set from 1913-1917, annual fraction of non-hale
polarity regions vary between 1.4–6.3% with average of about 3.7% (Hale et al.
1919). More recent data from SOHO/MDI reveal similar fraction of about 4%
(Stenflo and Kosovichev 2012). Li and Ulrich (2012) found a larger fraction
between 6.5% and 9.1% for cycles 21–23. Non-Hale polarity regions could be
interpreted as highly tilted regions, whose main axis is rotated by about 180◦.
In support of that interpretation, Pevtsov and Longcope (1998) described a
linked appearance of Hale and non-Hale polarity regions. Two regions shared a
common polarity, which first appeared as the leading polarity for Hale polarity
BMR and on the sequential solar rotation, it was the following polarity of
a non-Hale active region. López Fuentes et al. (2000) described evolution of
anti-Hale bipolar active region, in which over four solar rotations one magnetic
polarity was gradually moving around the other opposite polarity flux; with the
corresponding BMR changing its orientation from Hale to non-Hale polarity.
Based on the observation that the non-Hale polarity regions develop at any
phase of sunspot cycle, Stenflo and Kosovichev (2012) speculated about the
presence of two toroidal fluxes with opposite orientation in the convection
zone.

δ-spots are another type of irregular sunspots, which show a significant
deviation from Joy’s tilt and Hale polarity rules. A δ-spot consists of two (or
multiple) umbrae with the opposite polarity magnetic field within a single
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Fig. 11 Left: NSO/Kitt Peak line-of-sight magnetogram (b and d) and soft X-ray Yohkoh
image (a and c) showing the overall structure of NOAA AR 7918 and AR 7926. White
indicates positive (N) flux and black negative (S). The contours overlaying the coronal image
correspond to ±100 G of the line-of-sight magnetic field. Arrows indicate two different sets
of the loops. (a) NOAA 7918, 1995 October 28, 18:30:39 UT; (b) NOAA 7918, 1995 October
28, 17:54:37 UT; (c) NOAA 7926, 1995 November 21, 16:34:35 UT; (d) NOAA 7926, 1995
November 21, 16:47:50 UT. Right: Model of Ω-loop with stitch. Arrows show direction of
the magnetic field in the loop. (e) Side view of the loop. The dashed line indicates the
photosphere. (f) Top view of the loop schematically showing sunspots at the places where
the Ω-loop crosses the photosphere. Full lines with arrows show magnetic field lines above
the photosphere projected onto the horizontal plane. Dashed lines indicate subsurface parts
of field lines. Based on figures 2 and 8 from Pevtsov and Longcope (1998).

penumbra. Line connecting opposite polarity umbrae is usually highly tilted
relative to solar equator. Based on change in orientation of δ-spots during their
evolution, this type of sunspot groups has been interpreted in the framework of
the emergence of highly kinked flux tubes. δ-spots show a well-defined pattern
of electric currents with current flowing upward in one umbra and the down-
ward in the other umbra (Pevtsov 2003). This pattern supports the notion
that these sunspots are associated with single (but highly twisted) magnetic
flux tubes.

6.4 Changes in the tilt angle during the lifetime and evolution of active
regions

Observations suggest that active regions do not emerge with the ”right” tilt,
but the tilt develops rapidly during the first few days as the region emerges
through the photosphere (for example, see Pevtsov et al. 2003a). As active re-
gions decay, their tilt relaxes to a mean tilt for a given latitude (Howard 1996;
Kosovichev and Stenflo 2008). The latter was interpreted as an indication that
the tilt is not the result of the Coriolis force action. According to this argument,
since the Coriolis force vanishes once the emergence stopped, the tilt should
relax to East-West direction. Kosovichev and Stenflo (2008) argued that the
relaxation of tilt to a mean (non-zero) value indicates that the tilt represents
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the orientation of toroidal field in the convection zone. However, Longcope and
Welsch (2000) suggested that the evolution of tilt and twist may depend on
how rapidly the active region emerges through the photosphere. This theoret-
ical prediction was later confirmed by the observations (Pevtsov et al. 2003a).
Subsequently, one can argue that tilt may represent writhe component of he-
licity in the magnetic flux tubes forming active regions. Then, the relaxation
of active regions to a mean (non-zero) tilt may be related to helicity content
of active regions for a given latitude (e.g. Canfield and Pevtsov 1998).

The presence of a global twist in emerging flux tube can modify the tilt
angle of the emerging bipole when it is measured in magnetic data. Luoni
et al. (2011) show that while the flux rope is breaking through the photo-
sphere, a characteristic elongated asymmetric polarity pattern, dubbed mag-
netic tongues or tails, develops in the line-of-sight magnetograms owing to the
presence of azimuthal field components. The pattern is dependent on the sign
of the global twist and thus provides a simple proxy for it (López Fuentes
et al. 2000; Luoni et al. 2011). In magnetograms magnetic tongues or tails
may mask the true tilt angle of the bipole, since the tongue pattern resulting
from e.g. negative/positive global twist on the northern/southern hemisphere
shifts the centre of gravity of magnetic polarities introducing an angle which
is opposite to that of Joy’s law (cf. Figure 12). Therefore the tilt angle of those
bipoles, which obey the hemispheric helicity rule, may be cancelled or reduced
(while the tilt angle of those bipoles, which disobey the hemispheric helicity
rule are enhanced) by this effect during the emergence process and the bipole
will only assume the Coriolis-induced tilt when the entire flux rope has crossed
the photosphere and the tongues/tails have retracted.

6.5 Variations with cycle, size of active region, magnetic flux

Several studies searched for a correlation between the active region tilt and
the amplitude of solar cycle. While the studies showed some indication of such
dependency, overall the results are still not well-understood. Dasi-Espuig et al.
(2010) found a strong negative correlation between the strength of solar cycle
and the area-weighted mean tilt value normalized by latitude. Both MWO and
KK data exhibited equally strong correlation. This is a very interesting idea
that a strong cycle would produce bipolar active regions with lower average
tilt-angles and therefore a lower polar flux amplitude (and vice versa for a
weak cycle producing more highly tilted regions), as such creating a mecha-
nism that is self-regulating the cycle amplitude since many dynamo models
consider the polar flux amplitude to be the seed field by which the strength
of the solar cycle is set. Later, however, Ivanov (2012) and McClintock and
Norton (2013) were not able to reproduce the exact dependency found in
Dasi-Espuig et al. (2010) for MWO data. Dasi-Espuig et al. (2013) revised
their results in agreement with Ivanov (2012) and McClintock and Norton
(2013) findings. Dependency between the amplitude of solar cycle and the tilt
angle found by McClintock and Norton (2013) is in a general agreement with
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Fig. 12 Top: Sketches of magnetic ”tongue” patterns in longitudinal magnetograms with
(left) positive and (right) negative global twist in the emerging flux rope, which develop
owing to the presence of the transverse magnetic field component. Representative field lines
of the enveloping arcade and internal (dipped) field lines are also shown, so is the polarity in-
version line (PIL). Bottom: Two examples of magnetic tongue pattern during the emergence
of AR 8171 (left) and AR 8015 (right) corresponding to the helicity sign as the sketches
above them. Both the sketches and the SOHO/MDI observations were adapted from Luoni
et al. (2011)
.

Ivanov (2012) and the revised findings by Dasi-Espuig et al. (2010). However,
the McClintock and Norton (2013) analysis separated the data by hemisphere
and found that the correlation of cycle strength and area-weighted mean tilt
angle normalized by latitude only held for the Southern hemisphere for cycles
15-21. The dependence was insignificant for the Northern hemisphere data.
One can question the validity of the proposed dependency if both hemispheres
do not exhibit it. Also, the negative correlation between the amplitude of solar
cycle and the normalized tilt angle for MWO data appears primarily due to
the data point corresponding to solar cycle 19. If this data point is excluded,
MWO data show no correlation with solar cycle.

Action of the Coriolis force on emerging flux tube depends on several pa-
rameters including total magnetic flux and the field strength at the axis of
flux tube. Fan et al. (1994) predicted that the tilt angle γ will depend on total
magnetic flux Φ, maximum field strength B0 at the bottom of the convection
zone, and latitude ϕ as following: γ ∝ Φ0.25 ·B−1.25

0 ·sin ϕ. Since both the max-
imum field strength and the magnetic flux in sunspots correlate with their size
(e.g., Tlatov and Pevtsov 2014), one would also expect to see a correlation
between tilt angle and active region area. Study of tilt properties of 27,701
active regions from MWO data set (Fisher et al. 1995) concluded that the
functional dependency of tilt on foot-point separation and sine of latitude ap-
pears to be in agreement with the predictions of Fan et al. (1994) model. They
also estimated the field strength in flux tubes at the bottom of the convection
zone B0 = 20-30 kG.
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It has been noted (Howard 1991; Sivaraman et al. 1999) that it is large ac-
tive regions that follow the Joy’s law most closely. On the other hand, Ivanov
(2012) found that CSA data set deviates from that dependency. Tlatov et al.
(2010) analyzed the orientation of magnetic bipoles over three solar cycles 21-
23 using NSO/KP and SOHO/MDI longitudinal magnetograms. The bipoles
were classified by their area as quiet Sun bipoles (QSBs, area, A, smaller than
50 millionth of solar hemisphere, MSH), ephemeral regions (ERs, 100 MSH
≤A< 500 MSH), and regular active regions (ARs, A≥ 500 MSH). QSBs were
found to exhibit a random orientation independent of latitude, which sug-
gests their formation via a random encounter of their foot-points. ERs and
ARs followed the Joy’s law in their orientation, with ERs showing larger scat-
ter in their tilt angles relative to the mean. Scatter in tilt angles is usually
contributed to convective buffeting, or interaction of magnetic flux tube with
turbulent convection as it rises through the convection zone. Longcope and
Fisher (1996) found that the amplitude of fluctuations in tilt angles should
be inversely proportional to foot-point separation, and thus, smaller bipoles
should exhibit much larger fluctuations in their tilts. The latter supports Tla-
tov et al. (2010) findings for ERs scatter in their orientation. Tlatov et al.
(2010) also found that around the maximum of previous cycle, high latitude
ERs had their polarity orientation (Hale polarity rule) corresponding to a sub-
sequent solar cycle. The latter was interpreted as the indication of extended
solar cycle (Wilson et al. 1988).

Time variation of active region tilt within solar cycle follows the proper-
ties of active regions. As new cycle starts, the active regions appear at high
latitudes with their tilt and polarity orientation corresponding to this cycle.
As cycle progresses, the latitude of active region emergence moves towards the
equator. In that respect, the time variation of tilt angles is more reminiscent
to the butterfly diagram of sunspots, and is dissimilar to a sunspot number
plot.

A possible difference in Joy’s law between northern and southern hemi-
spheres was noted by several researchers (Dasi-Espuig et al. 2010; McClintock
and Norton 2013; Li and Ulrich 2012). Based on the analysis of the tilt angle
data separated by hemisphere, McClintock and Norton (2013) recommend a
revision of Joy’s law toward a weaker dependence on latitude (slope of 0.13–
0.26) and without forcing the tilt to zero at the equator. They determined
that the hemispheric mean tilt value of active regions varies with each solar
cycle, although the noise from a stochastic process dominates and does not
allow for a determination of the slope of Joy’s law on an 11-year time-scale.
The hemispheric difference in mean tilt angles, 1.1◦±0.27, over Cycles 16 to
21 was significant to a three-σ level, with average tilt angles in the northern
and southern hemispheres of 4.7◦±0.26 and 3.6◦±0.27 respectively.

When analyzing the active regions of a single hemisphere in a single solar
cycle, Joy’s law only appears weakly (see figure 13, McClintock and Norton,
2013). A linear function is a poor fit to the data in most cases. The linear
correlation coefficients range from r = 0.18 (cycle 17 North, cycle 19 South)
to r = 0.86 (cycle 20 North). The large amount of scatter and high noise
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Fig. 13 Tilt angle of bipolar active regions as a function of latitude for the North (diamond)
and South (triangle) hemispheres for cycles 16 21 are shown in panels (a)-(f), respectively.
Data were binned in 3◦ of latitude. Standard errors of the mean are overplotted as error bars.
Linear fits to Northern (dash) and Southern (dot) hemisphere data are shown with linear
correlation coefficients [rN , rS ] included in the legends. The fits were not forced through the
origin. Courtesy McClintock and Norton (2013).

apparent in Joy’s law is interesting, because it indicates that a stochastic
process is competing with the mechanism that determines the tilt angles. The
stochastic process dominating Joy’s law on the short time scale is considered
to be turbulent convection imparting random tilt angles to the rising flux
tubes (Fisher, Fan, and Howard, 1995; Weber, Fan, and Miesch, 2012). Dasi-
Espuig et al. (2010) also state that ”no clear difference could be determined
between the slopes of Joy’s law from cycle to cycle,” as can be seen in figure
13; therefore, we use the mean tilt value from each hemisphere for each cycle
to analyze the hemispheric differences.

McClintock and Norton (2013) argue it is possible that the recovery of a
mean bipolar region tilt angle and scatter for a given solar cycle can be used
as a diagnostic for that cycle, i.e. the strength of the cycle as indicated by
Dasi-Espuig et al. (2010) or the geometry/orientation of the toroidal fields
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from which the flux ropes begin their initial rise (Babcock, 1961; Norton and
Gilman, 2004).

They also point out why specific bins in the Southern hemisphere in Fig-
ure 13 showed such different behavior from the other bins. For example, late
in all solar cycles (except cycle 20) aberrant activity occurred at the 18–21◦

latitudes. In particular, the Southern hemisphere during cycle 19 is very disor-
ganized, with the high-latitude bins of 18–21◦ (304 regions, 24%) and 24–27◦

(150 regions, 12%) having negative mean tilt values, meaning that these bipo-
lar regions have a following spot closer to the Equator than the leading spot.
It would be interesting to study this in more detail and better understand the
conditions favorable for aberrant configurations, i.e. anti-Hale and negative
tilt angles, to occur.

McClintock and Norton (2013) found that cycles 18 and 19, as well as
the data averaged over all cycles 16–21, show that the mean tilt angles differ
significantly between the hemispheres. For example, they found an average
value of mean tilt for cycle 18 to be 5.7±0.61 in the Northern hemisphere while
the mean tilt value was 2.9±0.6 in the Southern hemisphere. The different
hemispheric and cycle mean tilts, and different slopes of Joy’s law, warrant
closer scrutiny.

6.6 Tilt and helicity

The action of an external force (e.g., Coriolis force) that distorts the shape of a
flux tube will introduce writhe, Wr and twist components of helicity, Tw into
the flux tube. If initially the flux tube had zero helicity H = Tw + Wr = 0,
the twist and writhe will have an opposite sign (sign(Tw) = −sign(Wr)). If,
on the other hand, the flux tube had a non-zero (say, positive) helicity, and
the writhe developed as the result of kink-instability, then part of the internal
twist was traded for writhe, and the two should have the same sign (0 < H =
Tw +Wr; sign(Tw) = sign(Wr)). These arguments were first put forward by
Canfield and Pevtsov (1998) and Pevtsov and Canfield (1999), who studied
the correlation between tilt and helicity density proxy of 99 ARs observed by
the Haleakala Stokes Polarimeter (HSP). The helicity proxy was represented
by average α coefficient in force-free field fit to the observed magnetic field. A
weak negative correlation between sign of tilt and sign of α was found for active
regions that significantly deviate from Joy’s law. This negative correlation is
contrary to the expected dependence introduced by the action of the Coriolis
force on a rising flux tube. Hence, Pevtsov and Canfield (1999) concluded
that at least in some cases, the tilt of active regions could be the result of
kink-instability of active regions with non-zero helicity. (In this study, the
writhe was defined as being positive in counter-clockwise direction from E-W
direction. This definition is similar to a regular Cartesian coordinate system.
On the other had, traditionally, active region’s tilt is defined as positive angle
in clockwise direction from W-E direction. Thus, positive tilt will correspond
to negative writhe).
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On the other hand, Tian et al. (2001) compared the sign of tilt and twist
and found a positive correlation. They concluded that twist in active region
magnetic fields is the result of the Coriolis force acting on the apex of emerging-
loops, which introduces both twist and writhe in originally untwisted magnetic
fields. In a later study, Tian and Liu (2003) found evidence of kink-instability
in their study of tilt–twist relation for 86 flare-productive active regions. Study
of tilt–twist relation for 22 active regions, López Fuentes et al. (2003) found
both twist and writhe with the same sign (supporting kinking) and with oppo-
site signs (Coriolis force action) in about 35% and 41% of cases, respectively.
Holder et al. (2004) conducted an extensive study of tilt–twist (helicity) re-
lation for 356 active regions. Helicity proxy α coefficient was computed using
vector magnetograms from the Haleakala Stokes Polarimeter (HSP) and tilt
angles were taken from MWO data set. They found weak (but statistically
significant) negative correlation (opposite sign of tilt and twist) supporting
the the kink-instability scenario. The correlation was even stronger for ac-
tive regions deviating from the general tendency for the hemispheric helicity
rule, which further supports the kink-instability as the origin of tilt for these
regions. Non-Hale polarity regions were found having a positive correlation
(same sign of tilt and twist). Again, the latter supports the kink-instability
scenario if non-Hale regions are interpreted as bipolar structures tilted in ex-
cess of 90 degrees relative to direction parallel to equator. For active regions
that follow Joy’s tilt law, Holder et al. (2004) found no twist-tilt dependence.
They also concluded that the scatter in tilt angles and the dispersion in twist
are uncorrelated with each other. Both of these results are in agreement with
the effects of convective buffeting of initially untwisted and unwrithed flux
tubes, or Σ-effect (Longcope et al. 1998).

Liu et al. (2014) used the relation between tilt and writhe in their study
of the strength of hemispheric helicity rule. Observations of 151 active re-
gions from Helioseismic and Magnetic Imager (HMI) were used to derive both
twist and writhe. The data showed both the hemispheric helicity rule and the
Joy’s law. However, the hemispheric helicity rule was found to be significantly
stronger for a sub-group of active regions with the same sign of twist and
writhe. Liu et al. (2014) concluded that either the flux tubes do not have a
hemispheric preference for twist prior to their emergence from the base of the
convection zone, or that the initial twist is weak.

6.7 Importance of tilt for solar dynamo

In flux-transport models of solar dynamo (Wang and Sheeley 1991), the mag-
netic field of following polarity active regions is transported to solar poles,
where it interacts with the existing polar field leading to polar field reversal.
The polar field may also establish the strength of the next solar cycle (Upton
and Hathaway 2014). In this process, tilt of active regions may play impor-
tant role by either facilitating the creation of polar field (by placing following
polarities higher in latitudes via larger tilt) or eroding it. In periods of high
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activity active regions are more closely packed, which increases the cancella-
tion rate, including that of across the equator. With increasing tilt angles of
active regions opposite polarities of neighboring active regions are more sep-
arated in latitude, which decreases inter-active region cancellations. However,
cross-equatorial cancellation of the preceding polarities are enhanced.

This will allow more following-polarity flux to be transported to the poles.
This was investigated in a parameter study by Baumann et al. (2004) whose
model predicted a strong dependency between tilt angle (normalized to lati-
tude of emerging bipole) and the strength of polar magnetic field. This model
simulations catalysed search for correlation between mean tilt angle and the
strength of sunspot cycle. So far, no conclusive correlation was found (see, Sec-
tion 6.5). Even if present, the correlation between tilt angle and the strength of
solar cycle can be masked by several factors. For example, the strength of polar
field from previous cycle may negate the effect of higher tilt angle of active re-
gions from the present cycle. Even though with higher tilts, the magnetic flux
of trailing polarity will be transported to the poles in a more efficient manner,
it would have to cancel out stronger polar flux. Such effects would need to be
taken into consideration in future numerical modelling. Petrie (2012) found in
cycle 23 the net poloidal contribution of active regions effectively disappeared
in 2004, thereby lowering the polar field strengths significantly as the Sun
headed towards the minimum and the beginning of cycle 24. From his analysis
he could not determine whether the reduction in net poloidal field was due to
a lowering of average tilt angles of active regions or another cause. He notes,
however, that there was a notable N-S hemispheric asymmetry present from
2004 and that faster-than-average meridional flows at active latitudes (another
mechanism that could produce weak polar fields) were not detected.

6.8 Interpretation of Joy’s law

Active region tilt has been interpreted in the framework of three different main
underlying causes: toroidal field orientation, action of Coriolis force, and more
recently, as signature of kink-instability.

Tilt as a signature of toroidal flux orientation. In the Babcock-Leighton model,
at the beginning of cycle, the magnetic field is mostly poloidal (oriented in
North-South direction parallel to solar meridian). As the solar equator rotates
faster then higher latitudes, the differential rotation action gradually changes
the orientation of magnetic field to be more aligned with latitudinal circles.
When portion of subphotospheric toroidal flux tube erupts through the pho-
tosphere, it forms an active region, whose tilt may reflect a general orientation
of the toroidal flux tube (Babcock 1961). Some researchers (e.g., Kosovichev
and Stenflo 2008) argued that since the tilt of active regions after the complete
emergence does not relax to East-West direction, the tilt must represent the
orientation of toroidal field in the convection zone.
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To evaluate the validity of this mechanism, we consider a very simplified
model, in which two footprints of a flux tube are separated by 2 degrees in
latitude and the orientation of the footpoints is that one is northward of the
other (in other words, a N-S orientation). Note that we are not discussing
the wreath of flux in the interior, but more a cartoon of a thin flux tube. If
we assume that the tilt angle (or geometry of the footpoints) is determined
only by the difference in rotation rates (differential rotation) for these two
latitudes, then we can easily calculate how long it would take to turn a N-S
flux tube into an E-W flux tube. This is a simplified example but is worth
considering. Figure 14 shows the resulting tilt angles for different latitudes
after 1, 5, and 10 solar rotations. After just five solar rations, the toroidal flux
tube will be oriented at about 10 degrees relative to the equator, and after ten
rotations, the tilt will be less than 5 degrees. Thus, in just a few years after the
beginning of solar cycle, the toroidal flux tube should become oriented nearly
parallel to solar equator over all latitudes of active region formation. In low
latitudes, however, the tilt will remain higher in amplitude as compared with
mid-latitudes, opposite to the trend observed. This is one argument against
a tilted toroidal flux playing a significant role in orientation (tilt) of active
regions at the photosphere. However, this does not take into account that
the flux wreath may have an E-W orientation in general, but that individual
tubes within the wreath may have a tilt or be more complexly oriented than
the larger structure.

The idea that active region tilt may reflect the orientation of subphoto-
spheric toroidal field was further explored by Norton and Gilman (2005) in
respect to possible tipping and warping instabilities that may develop in a ro-
tating ring-like magnetic flux tube due to an instability of differential rotation
and concentrated magnetic fields. Development of these modes was carried out
by Cally et al. (2003), Gilman and Fox (1997) and Gilman and Dikpati (2000)
who found that narrow toroidal bands tip about their axis (m = 1) if they
are ≈100kG while toroidal bands of lesser field strengths may deform or warp
(m > 1). A toroidal field tipped with respect to the equator would increase the
scatter of the mean tilt angle, but not the average value of tilt angle. Norton
and Gilman (2005) analyzed extensive data from longitudinal magnetograms
from NSO/KP and SOHO/MDI and found the presence of tipping and warp-
ing instabilities from the location of active regions, but they did not examine
the tilt angles. Note that this model and corresponding analysis is examining
the non-axisymmetric nature of the solar dynamo. This is a further complexity
in the model and analysis - not only are the hemispheres thought to progress
slightly differently during the solar cycle, but the signatures are not averaged
over all longitudes. McClintock and Norton (2013) searched for evidence of
the tilt and warp (deformation) of the toroidal band from the active region
tilt angle data. They found no significant signal in average tilt angle values or
tilt angle scatter as a function of longitude. However, this does not prove that
the geometry of the toroidal band does not influence the tilt angle, or that the
toroidal band in the interior is axisymmetric, only that the variation of tilt
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Fig. 14 We assume a simple flux tube were oriented in the N-S direction, horizontal to the
solar surface, with the footpoints separated by two degrees of latitude, this plot shows the
orientation of the flux tube from the effect of differential rotation after one (dotted), five
(solid) and ten (dashed line) solar rotations. This plot is a simplification but is intended
to show how quickly flux in the interior becomes purely toroidal and would not maintain a
significant tilted geometry unless other factors were considered.

angles as a function of longitude can not be distinguished from the noise in
this data.

Tilt as the result of Coriolis force action. The role of the Coriolis force in
formation of active region tilt was mentioned by Babcock (1961) and Schmidt
(1968). Wang and Sheeley (1991) proposed that as the magnetic flux tube
rises through the convection zone and expands, the Coriolis force distorts the
apex of the tube tilting it in the way it can explain Joy’s law. The scenario
was further developed in the framework of 3D thin flux tube model (D’Silva
and Choudhuri 1993; Schüssler et al. 1994; Fan et al. 1994). The high scat-
ter observed in tilt angles is generally thought to be caused by the turbulent
nature of flow in the convection zone imparting a large variation into the tilt
angle values. Later model developments were very successful in reproducing
many observational properties of active regions including their tilt, asymmetry
between leading and following polarity sunspots in compactness and inclina-
tion of magnetic field relative to vertical direction, and large scatter in tilt
angles (Weber et al. 2011). By fitting the model predictions with the obser-
vations, field strength of toroidal flux is estimated at 40-50 kG at the bottom
of the convection zone. The effect of the Coriolis force on active region tilt
depends on total rise time of flux tube through the convection zone, which in
turn depends on magnetic flux. By varying the magnetic flux, Weber et al.
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(2013) were able to explain some differences in tilt-latitude tendencies found
by different studies. They argued, for example, that since magnetograms en-
able selecting structures with weaker magnetic fields, they may show steeper
tilt vs. latitude trends as compared with white light images, which are more
likely to select solar features with stronger magnetic flux. On the other hand,
taking into account the scatter in tilts derived from model calculations, Weber
et al. (2013) did not find a strong dependence of tilt on field strength. These
later simulations also found about 6.9% of emerging bipoles having non-Hale
polarity orientation, which is in a very good agreement with the observations.
One of the most interesting aspects of the work done by Weber et al. (2013) is
that the simulations of the rise of a thin flux tube in a turbulent, convecting,
rotating shell enables an estimation of the expected standard deviations of the
tilt angles for a given combination of toroidal field strength in the tachocline
and flux in the rising tube.

Tilt as the result of kink-instability. Leighton (1969) was the first to note that
kinking of a twisted flux tube may form a tilted pattern that can explain
the axial tilt of active regions. This idea was observationally explored by sev-
eral researchers as described in Section 6.6. The presence of non-zero twist
(helicity) in flux tubes forming active regions may explain why active region
tilt does not relax to a purely East-West direction. Longcope et al. (1999)
compared the amplitude of twist (helicity proxy α coefficient) derived from
the observations of vector magnetic field in the photosphere with the esti-
mated contribution from different mechanisms, and concluded that majority
of helicity originates from the interaction of magnetic flux tubes with tur-
bulent convection (Σ-effect). The contribution of subphotospheric (interface)
dynamo is minor. While the Σ-effect only ”creates” helicity in the upper por-
tion of a flux tube, the amount of this injected helicity is sufficient to explain
statistical properties of Joy’s law. Other mechanism of helicity injection into
rising flux tube was recently proposed by Wang (2013), who considered the
effects of the Coriolis force separately on each foot-point (sunspot) of rising
flux tube. He concluded that as the flux tube foot-points expand, the action
of the Coriolis force will inject helicity in each foot-point independently. This
mechanism could produce a strong hemispheric helicity rule.

7 Summary

As magnetic field propagates from the dynamo region, evolves and dissipates,
its changes also reflect the transport of helicity through solar interior and upper
atmosphere. While helicity does not play a major role in all solar processes,
it may affect many important processes from dynamo, magnetic reconnection,
stability of magnetic systems and their eruption. In respect to tilt of active
regions (Joy’s law), the presence of non-zero helicity may explain why in their
evolution, active regions evolve to a mean tilt (but not to a zero tilt), or
why active regions at equatorial areas may still exhibit non-zero tilt. It seems
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that helicity concept adds an additional level of ”fine detail” to many solar
processes, and this level of details requires considering the solar magnetic
fields as a unified system, not as a collection of unrelated features. As such,
potentially the concept of helicity may bring a much better understanding of
”how our nearest star works.”

Acknowledgements The National Solar Observatory (NSO) is operated by the Associ-
ation of Universities for Research in Astronomy, AURA Inc under cooperative agreement
with the National Science Foundation (NSF). AN’s research has been partly co-financed
by the European Union (European Social Fund -ESF) and Greek national funds through
the Operational Program “Education and Lifelong Learning” of the National Strategic Ref-
erence Framework (NSRF) -Research Funding Program: “Thales. Investing in knowledge
society through the European Social Fund”. Data used in figure 9 were acquired by SOLIS
instruments operated by NISP/NSO/AURA/NSF.

References

V.I. Abramenko, T. Wang, V.B. Yurchishin, Analysis of Electric Current Helicity in Ac-
tive Regions on the Basis of Vector Magnetograms. Solar Phys. 168, 75–89 (1996).
doi:10.1007/BF00145826

V.I. Abramenko, T. Wang, V.B. Yurchishin, Electric Current Helicity in 40 Active
Regions in the Maximum of Solar Cycle 22. Solar Phys. 174, 291–296 (1997).
doi:10.1023/A:1004957515498

T. Amari, J.F. Luciani, J.J. Aly, Z. Mikic, J. Linker, Coronal Mass Ejection: Initiation,
Magnetic Helicity, and Flux Ropes. I. Boundary Motion-driven Evolution. Astrophys.
J. 585, 1073–1086 (2003a). doi:10.1086/345501

T. Amari, J.F. Luciani, J.J. Aly, Z. Mikic, J. Linker, Coronal Mass Ejection: Initiation,
Magnetic Helicity, and Flux Ropes. II. Turbulent Diffusion-driven Evolution. Astrophys.
J. 595, 1231–1250 (2003b). doi:10.1086/377444

S.K. Antiochos, C.R. DeVore, J.A. Klimchuk, A Model for Solar Coronal Mass Ejections.
Astrophys. J. 510, 485–493 (1999). doi:10.1086/306563

G. Attrill, M.S. Nakwacki, L.K. Harra, L. van Driel-Gesztelyi, C.H. Mandrini, S. Dasso, J.
Wang, Using the Evolution of Coronal Dimming Regions to Probe the Global Magnetic
Field Topology. Solar Phys. 238, 117–139 (2006). doi:10.1007/s11207-006-0167-5

H.W. Babcock, The Topology of the Sun’s Magnetic Field and the 22-YEAR Cycle. Astro-
phys. J. 133, 572 (1961). doi:10.1086/147060

S. Bao, H. Zhang, Patterns of Current Helicity for the Twenty-second Solar Cycle. Astrophys.
J. Letters 496, 43 (1998). doi:10.1086/311232

S.D. Bao, A.A. Pevtsov, T.J. Wang, H.Q. Zhang, Helicity Computation Using Observa-
tions From two Different Polarimetric Instruments. Solar Phys. 195, 75–87 (2000).
doi:10.1023/A:1005244700895

I. Baumann, D. Schmitt, M. Schüssler, S.K. Solanki, Evolution of the large-scale magnetic
field on the solar surface: A parameter study. Astron. Astrophys. 426, 1075–1091 (2004).
doi:10.1051/0004-6361:20048024

M.A. Berger, Structure and stability of constant-alpha force-free fields. Astrophys. J. Supp.
59, 433–444 (1985). doi:10.1086/191079

M.A. Berger, G.B. Field, The topological properties of magnetic helicity. Jour. Fluid Me-
chanics 147, 133–148 (1984)

M.A. Berger, C. Prior, The writhe of open and closed curves. Journal of Physics A Mathe-
matical General 39, 8321–8348 (2006). doi:10.1088/0305-4470/39/26/005

M.A. Berger, A. Ruzmaikin, Rate of helicity production by solar rotation. Jour. Geophys.
Res. 105, 10481–10490 (2000). doi:10.1029/1999JA900392

M.A. Berger, Magnetic Helicity in Space Physics. Washington DC American Geophysical
Union Geophysical Monograph Series 111, 1–11 (1999)



Magnetic Helicity, Tilt, and Twist. 43

M.A. Berger, Rigorous new limits on magnetic helicity dissi-
pation in the solar corona. Geophys. Astrophys. Fluid Dy-
namics 30(1-2), 79–104 (1984). doi:10.1080/03091928408210078.
http://www.tandfonline.com/doi/abs/10.1080/03091928408210078

P.N. Bernasconi, D.M. Rust, D. Hakim, Advanced Automated Solar Filament Detection
And Characterization Code: Description, Performance, And Results. Solar Phys. 228,
97–117 (2005). doi:10.1007/s11207-005-2766-y

A. Brandenburg, C. Sandin, Catastrophic alpha quenching alleviated by helicity flux and
shear. Astron. Astrophys. 427, 13–21 (2004). doi:10.1051/0004-6361:20047086

M.T. Brown, R.C. Canfield, A.A. Pevtsov (eds.), Magnetic Helicity in Space abnd Labora-
tory Plasmas, in Geophysical Monograph (AGU, Washington, D. C., 1999)
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tilt angles and the strength of the solar cycle. Astron. Astrophys. 518, 7 (2010).
doi:10.1051/0004-6361/201014301

M. Dasi-Espuig, S.K. Solanki, N.A. Krivova, R. Cameron, T. Peñuela, Sunspot group tilt
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