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On Boole’s formula for factorials
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Abstract

We present a simple new proof and a new generalization of Boole’s for-
mula

n! =

n∑
j=1

(−1)n−j

(
n

j

)
jn (n ∈ N).

1 Introduction

The elegant formula

n! =

n∑
j=1

(−1)n−j

(
n

j

)
jn (n ∈ N) (1.1)

is given in Boole’s classical book “Calculus of Finite Differences” [3, p.5, p.19]. In
2005, Anglani and Barile [2] used methods from real analysis and combinatorics to
provide two proofs. An interesting extension of Boole’s identity was published in
2008 by Pohoata [3]. He applied Lagrange’s interpolating polynomial theorem to
establish
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P (a + jb) (n ∈ N),
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where a and b are real numbers with b �= 0 and P is a real polynomial of degree n
with leading coefficient a0. The special case a = 0, b = 1, P (x) = xn leads to (1.1).

The aim of this note is twofold. In Section 2, we present a simple new proof of (1.1),
and in Section 3, we offer a new generalization of (1.1).

2 A new proof

Here, we apply the method of induction to obtain a short and elementary proof of
Boole’s identity. We need the following well-known formulas:
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jν = 0 (ν = 0, 1, ..., n). (2.3)

Using the formula
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(ν = 1, 2, ..., n + 1)

it follows by induction on n that (2.3) is valid; see also [1, chapter 2.4].

Proof of (1.1). If n = 1, then both sides of (1.1) are equal to 1. Next, we assume that
(1.1) holds. Applying (2.1), (2.2), (2.3) with ν = n, and the induction hypothesis we
obtain
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= (n + 1) · n! = (n + 1)!.

This reveals that (1.1) is valid if we replace n by n + 1.

3 A new generalization

We prove the following
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Theorem. Let
(
f(j)

)∞
j=0

be a sequence of complex numbers with f(0) = 1. Then,

n∑
j=0

(−1)n−j

(
n

j

) ∑
c1+···+cj=m

c1,...,cj≥0

f(c1) · · ·f(cj) =
∑

d1+···+dn=m
d1,...,dn≥1

f(d1) · · ·f(dn) (m, n ∈ N).

(3.1)

Proof. We define the formal power series

F (X) =
∞∑

j=0

f(j)Xj.

On the one hand we have
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On the other hand we obtain

(
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)n
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)n

=
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∑
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f(d1) · · ·f(dn).

Comparing the coefficients of Xm gives (3.1).

Remark

The special case m = n leads to

n∑
j=0

(−1)n−j
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) ∑
c1+···+cj=n

c1,...,cj≥0

f(c1) · · ·f(cj) = f(1)n. (3.2)

Since ∑
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1
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=
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n!
,

we conclude that formula (3.2) with f(c) = 1/c! implies (1.1).
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