On Boole's formula for factorials

Horst Alzer

Morsbacher Str. 10
51545 Waldbröl
Germany
h.alzer@gmx.de

Robin Chapman

Mathematics
University of Exeter
Exeter EX4 4QF
U.K.
R.J.Chapman@exeter.ac.uk

Abstract

We present a simple new proof and a new generalization of Boole's formula $$
n!=\sum_{j=1}^{n}(-1)^{n-j}\binom{n}{j} j^{n} \quad(n \in \mathbf{N}) .
$$

1 Introduction

The elegant formula

$$
\begin{equation*}
n!=\sum_{j=1}^{n}(-1)^{n-j}\binom{n}{j} j^{n} \quad(n \in \mathbf{N}) \tag{1.1}
\end{equation*}
$$

is given in Boole's classical book "Calculus of Finite Differences" [3, p.5, p.19]. In 2005, Anglani and Barile [2] used methods from real analysis and combinatorics to provide two proofs. An interesting extension of Boole's identity was published in 2008 by Pohoata [3]. He applied Lagrange's interpolating polynomial theorem to establish

$$
a_{0} \cdot b^{n} \cdot n!=\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} P(a+j b) \quad(n \in \mathbf{N})
$$

where a and b are real numbers with $b \neq 0$ and P is a real polynomial of degree n with leading coefficient a_{0}. The special case $a=0, b=1, P(x)=x^{n}$ leads to (1.1).

The aim of this note is twofold. In Section 2, we present a simple new proof of (1.1), and in Section 3, we offer a new generalization of (1.1).

2 A new proof

Here, we apply the method of induction to obtain a short and elementary proof of Boole's identity. We need the following well-known formulas:

$$
\begin{align*}
& j\binom{n+1}{j}=(n+1)\binom{n}{j-1}, \tag{2.1}\\
&\binom{n+1}{j}=\binom{n}{j}+\binom{n}{j-1}, \tag{2.2}\\
& \sum_{j=0}^{n+1}(-1)^{n+1-j}\binom{n+1}{j} j^{\nu}=0 \quad(\nu=0,1, \ldots, n) . \tag{2.3}
\end{align*}
$$

Using the formula

$$
\begin{array}{r}
\sum_{j=0}^{n+2}(-1)^{n+2-j}\binom{n+2}{j} j^{\nu}=(n+2) \sum_{k=0}^{\nu-1}\binom{\nu-1}{k} \sum_{j=0}^{n+1}(-1)^{n+1-j}\binom{n+1}{j} j^{k} \\
(\nu=1,2, \ldots, n+1)
\end{array}
$$

it follows by induction on n that (2.3) is valid; see also [1, chapter 2.4].
Proof of (1.1). If $n=1$, then both sides of (1.1) are equal to 1 . Next, we assume that (1.1) holds. Applying (2.1), (2.2), (2.3) with $\nu=n$, and the induction hypothesis we obtain

$$
\begin{gathered}
\sum_{j=1}^{n+1}(-1)^{n+1-j}\binom{n+1}{j} j^{n+1}=(n+1) \sum_{j=1}^{n+1}(-1)^{n+1-j}\binom{n}{j-1} j^{n} \\
=(n+1) \sum_{j=1}^{n+1}(-1)^{n+1-j}\left[\binom{n+1}{j}-\binom{n}{j}\right] j^{n}=(n+1)\left[0+\sum_{j=1}^{n}(-1)^{n-j}\binom{n}{j} j^{n}\right] \\
=(n+1) \cdot n!=(n+1)!.
\end{gathered}
$$

This reveals that (1.1) is valid if we replace n by $n+1$.

3 A new generalization

We prove the following

Theorem. Let $(f(j))_{j=0}^{\infty}$ be a sequence of complex numbers with $f(0)=1$. Then,

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{\substack{c_{1}+\cdots+c_{j}=m \\ c_{1}, \ldots, c_{j} \geq 0}} f\left(c_{1}\right) \cdots f\left(c_{j}\right)=\sum_{\substack{d_{1}+\ldots+d_{n}=m \\ d_{1}, \ldots, d_{n} \geq 1}} f\left(d_{1}\right) \cdots f\left(d_{n}\right) \quad(m, n \in \mathbf{N}) \tag{3.1}
\end{equation*}
$$

Proof. We define the formal power series

$$
F(X)=\sum_{j=0}^{\infty} f(j) X^{j}
$$

On the one hand we have

$$
\begin{aligned}
(F(X)-1)^{n} & =\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} F(X)^{j} \\
& =\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{c_{1}, \ldots, c_{j}=0}^{\infty} f\left(c_{1}\right) \cdots f\left(c_{j}\right) X^{c_{1}+\cdots+c_{j}} \\
& =\sum_{m=0}^{\infty} X^{m} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{\substack{c_{1}+\cdots+c_{j}=m \\
c_{1}, \ldots, c_{j} \geq 0}} f\left(c_{1}\right) \cdots f\left(c_{j}\right) .
\end{aligned}
$$

On the other hand we obtain

$$
(F(X)-1)^{n}=\left(\sum_{k=1}^{\infty} f(k) X^{k}\right)^{n}=\sum_{m=n}^{\infty} X_{\substack{d_{1}+\ldots+d_{n}=m \\ d_{1}, \ldots, d_{n} \geq 1}} f\left(d_{1}\right) \cdots f\left(d_{n}\right) .
$$

Comparing the coefficients of X^{m} gives (3.1).

Remark

The special case $m=n$ leads to

$$
\begin{equation*}
\sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j} \sum_{\substack{c_{1}+\cdots+c_{j}=n \\ c_{1}, \ldots, c_{j} \geq 0}} f\left(c_{1}\right) \cdots f\left(c_{j}\right)=f(1)^{n} \tag{3.2}
\end{equation*}
$$

Since

$$
\sum_{\substack{c_{1}+\cdots+c_{j}=n \\ c_{1}, \ldots, c_{j} \geq 0}} \frac{1}{c_{1}!\cdots c_{j}!}=\frac{j^{n}}{n!}
$$

we conclude that formula (3.2) with $f(c)=1 / c$! implies (1.1).

References

[1] M. Aigner, Discrete Mathematics, Amer. Math. Soc., Providence, R.I., 2007.
[2] R. Anglani and M. Barile, Two very short proofs of a combinatorial identity, Integers: Elect. J. Comb. Number Th. 5 (2005), article A18.
[3] G. Boole, Calculus of Finite Differences, 4th ed., Chelsea, New York, 1957.
[4] C. Pohoata, Boole's formula as a consequence of Lagrange's interpolating polynomial theorem, Integers: Elect. J. Comb. Number Th. 8 (2008), article A23.

