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We all developed from an embryo: along this long way many billions of cells were making 

decisions on how to differentiate, proliferate or undergo apoptosis. Along the way, these cells 

take cues from each other in order to differentiate into different tissues, organs and patterns. 

Pattern formation is one of the most visible forms of decision making and has been widely 

studied; for example, in chemotactic pattern formation (1). The seminal work of Turing (2) 

showed the basic principle that patterns can form in homogeneous tissue through a generic 

instability in a system that involves at least two interacting chemical species. Although cells are 

much more complicated, it is well-accepted that a cell’s decisions about pattern formation are 

controlled by gene regulatory networks that coordinate the action of many genes involved in the 

decision making, in conjunction with signals from other interacting cells or external media. But 

precisely which factors affect these decisions? In particular, if there are several stable patterns, 

which emergent pattern will be “selected” by the cells that make up a tissue? 

 

A common belief is that the eventual pattern chosen depends primarily on initial conditions. 

Palau-Ortin et al. (3) suggest a different view, from a theoretical study of pattern-formation for 

the Notch signaling pathway in the Drosophila embryo. Surprisingly, their research shows that 

the pattern chosen may depend more on the dynamical mechanism of spatio-temporal changes of 

the control parameters than on the initial conditions; a dynamical path in the space of signals 

may steer the system into one of a number of possible stable patterns. Indeed, according to 

Palau-Ortin et al. (3), pattern formation seems to be as much about “how you get there” as 

“where you start”! 
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Decisions in biological systems often need to be made rapidly and consistently, for example 

during the development of an embryo, and the outcome may depend not only on the path taken 

but on how fast you traverse the path. A mechanism explaining how the final state can depend on 

the speed is illustrated in Fig.1. Let us consider a system governed by the asymmetric bifurcation 

scenario: if we start in state A and change the control parameter slowly, state B will be reached. 

However, a fast change of the control parameter will move a system into the state D. This simple 

example illustrates that rate of the decision making can be just as important as any bifurcation 

scenario or initial conditions.  In this case, the selection of final state can be understood in the 

context of a rate-induced tipping point in an open system (4). 

 

Cellular decisions are fundamental for key cellular processes, including developmental pattern 

formation, cell differentiation and the maintenance of pluripotency. In the presence of several 

stable conditions (and the absence of any clear mechanisms to set initial conditions), these 

decisions must somehow depend on the form and rate of the dynamical path in the space of 

controlling parameters. For example, a common genetic switch that sustains decision making 

consists of two mutually inhibiting genes under the action of two external signals. Such a switch, 

because of its bistability (where stable states correspond to the genes in the states “On-Off” or 

“Off-On”), can be considered as a simple model of the cell differentiation. This genetic switch 

may be engineered by tools of Synthetic Biology and there are many possible implications for 

biotechnology, biocomputing or gene therapy. When the external signals are sufficiently 

symmetric, the circuit may exhibit bistability which is associated with two distinct cell fates 

chosen with equal probability because of noise involved in gene expression. If, however, the 

input signals provide a transient asymmetry, the switch will be biased by the rate of the external 

signals and the effect of speed-dependent cellular decision making can be observed (5), in which 
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slow and fast decisions will results in a different probability to choose the corresponding cell 

fate.  The speed at which the system crosses a critical region strongly influences the sensitivity to 

transient asymmetry of the external signals. For high speed changes, the system may not notice a 

transient asymmetry but for slow changes, bifurcation delay may increase the probability of one 

of the states being selected (6). 

 

Palau-Ortin et al. (3) study a number of scenarios in their paper that enable them to control the 

system into a target pattern that may be homogeneous (H), periodic “salt-and-pepper” (P) or 

stripe (S) patterns in an idealized 2D tissue. They consider three types of control, (1) the control 

is homogeneous, (2) the control acts locally in space and (3) the control propagates across the 

tissue. By a number of computational experiments the authors give recipes of how to rapidly and 

reliably move the system into one of the three target patterns by a path that may be transient. As 

Palau-Ortin et al. (3)  state; “the key elements for pattern selection are the destabilization of the 

initial pattern, the subsequent exploration of other patterns determined by the spatio–temporal 

symmetry of the parameter changes and the speeds of the path compared to the time scales of the 

pattern formation process itself”. 

 

Study of time-dependent bifurcation problems has long history and there is a considerable 

literature on noise and rate induced escape from attractors in dynamical models. To mention a 

few of these, Kondepudi et al. (7) considered the combined effect of noise and parameter 

changes on the related problem of  “attractor selection” in a noisy system, while Nicolis and 

Prigogine described a mechanism enabling symmetry breaking and pattern selection in non-

equilibrium systems (8). Dynamic bifurcations (9) are a useful approach to the quantitative 

description of solutions to systems of stochastic differential equations evolving on well-separated 
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timescales.  Symmetry breaking and state selection have been shown to play an important role in 

noisy electronic systems (7) while Alagha et al. considered an interplay between asymmetry and 

noise in erythroid-myeloid differentiation switch and have shown that timing in a binary cell-fate 

decision may have important contributions to the immune system when the bias is in favor of the 

cell fate which gives rise to non-immune cells (10). 

 

The finding of Palau-Ortin et al. (3) that dynamics and shape of the parameter path can crucially 

affect the selection of the final pattern seems to be an important and generic mechanism. These 

effects should allow us to account for rapid pattern formation in developmental biology, clinical 

diagnostics and synthetic biology. A next step in the study of path dependent pattern formation 

(3) will be a testing of these theoretical findings into experimental and practical applications. 

Questions that need to be addressed include: Which signals give rise to a specific patterned 

outcome? How are they generated by the cell? How can parameter paths through bifurcations 

suggest engineering principles underlying biological systems? Taking parameter paths and 

timing into account may explain many features of dynamic pattern formation and gives us a hope 

of new methods, for example, to treat diseases associated with malfunctioning of these 

mechanisms. Many related interesting questions are ripe for exploration, including, for example, 

counter-intuitive behavior resulting from the interplay between the system and input 

asymmetries, the noise and the spatio-temporal features of the path in parameter space.  
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Figure 1 An illustration of a simple mechanism responsible for speed dependent decision 

making in terms of a bifurcation diagram where the horizontal axis represents a time-dependent 

input that changes from λ = λ0 to λ1. The vertical axis represents the state of the system X; in this 

illustration the system for λ0 has only one attracting state, while for λ1 there is bistability. If the 

control parameter λ changes slowly enough, the system will move from state A to state B. If the 

change is sufficiently fast, then the system will move to state D; for intermediate rates of change 

the details of noise in the system will become significant. 


