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Altered expression of oxidative metabolism genes has been described in the skeletal muscle of individuals with type 2 diabetes.
Pancreatic beta cells contain low levels of antioxidant enzymes and are particularly susceptible to oxidative stress. In this study,
we explored the effect of hyperglycemia-induced oxidative stress on a panel of oxidative metabolism genes in a rodent beta cell
line. We exposed INS-1 rodent beta cells to low (5.6 mmol/L), ambient (11 mmol/L), and high (28 mmol/L) glucose conditions for
48 hours. Increases in oxidative stress were measured using the fluorescent probe dihydrorhodamine 123. We then measured the
expression levels of a panel of 90 oxidative metabolism genes by real-time PCR. Elevated reactive oxygen species (ROS) production
was evident in INS-1 cells after 48 hours (P < 0.05). TLDA analysis revealed a significant (P < 0.05) upregulation of 16 of the 90
genes under hyperglycemic conditions, although these expression differences did not reflect differences in ROS. We conclude that
although altered glycemia may influence the expression of some oxidative metabolism genes, this effect is probably not mediated by
increased ROS production. The alterations to the expression of oxidative metabolism genes previously observed in human diabetic
skeletal muscle do not appear to be mirrored in rodent pancreatic beta cells.

1. Introduction

Type 2 diabetes (T2D) occurs when the pancreatic beta cells
can no longer compensate for peripheral insulin resistance
by increasing insulin production and is associated with
hyperglycemia and an altered lipid profile (dyslipidemia)
[1]. The T2D “microenvironment” is detrimental to cells
and tissues and is thought to contribute to further beta cell
dysfunction and reduced beta cell mass, as well as micro-
vascular and macrovascular complications. Increased levels
of reactive oxygen species (ROS) are hypothesized to have a
role in causing beta cell dysfunction due to altered glucose
levels and lipid profiles, leading to T2D [2]. ROS have a phys-
iological role in normal intracellular signal transduction.
However, excessive ROS production causes damage to cel-
lular components, of which RNA is especially vulnerable,
potentially leading to gene expression changes [3].

Mitochondrial dysfunction is thought to contribute to
beta cell dysfunction and has been observed in beta cells and
in other tissues of individuals with T2D [4, 5]. Moreover,

several groups have found that components of the electron
transport chain and other genes involved in oxidative meta-
bolism were altered in tissues from individuals with T2D
[6–8]. For example, decreases in the expression of oxidative
phosphorylation genes regulated by the transcriptional coac-
tivator PGC1 (PPARGC1A), which is involved in regulation
of energy metabolism, have been observed in T2D skeletal
muscle [6, 7]. Increases in the expression of these genes were
observed in liver from patients with T2D and were correlated
with blood glucose levels [8].

The beta cells of the pancreas are particularly vulnerable
to the effects of ROS as they contain lower levels of anti-
oxidant enzymes (catalase, superoxide dismutase, glu-
tathione peroxidase) compared with other tissues, including
skeletal muscle and liver [9]. ROS-mediated mitochondrial
dysfunction, as observed in T2D islets, has been shown to
disrupt glucose-induced insulin secretion from beta cells
[10]. Therefore, the beta cells, as well as being the central
tissue in T2D pathogenesis, might be expected to be particu-
larly susceptible to ROS-mediated gene expression changes.
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The vulnerable state of the beta cell and the importance
of oxidative metabolism in relation to insulin secretion and
ROS production led us to investigate whether the expression
of genes involved in oxidative metabolism is altered in
response to hyperglycemia-induced oxidative stress in a
rodent pancreatic beta cell line INS-1. We hypothesized that
hyperglycemia-induced oxidative stress in the pancreatic beta
cell may contribute to beta cell dysfunction and impaired
insulin secretion because of deregulation in the expression
of oxidative metabolism genes.

2. Materials and Methods

2.1. Cell Culture and Experimental Procedure. The rat pan-
creatic beta cell line INS-1 was cultured in RPMI 1640
medium (Invitrogen) supplemented with 11 mmol/L glu-
cose, 10% fetal calf serum and 1% penicillin/streptomycin
at 37◦C in a humidified atmosphere. After 72 hours, the
cells were seeded in 25 cm2 flasks at a density of 3.5 × 105

cells/flask (for gene expression analysis) or in 96-well plates
at a density of 2 × 104 cells/well (for cell viability and ROS
production measurements). Cells were then incubated under
the conditions already described but with low (5.6 mmol/L),
ambient (11 mmol/L) or high (28 mmol/L) glucose for a fur-
ther 48 hours (conditions previously used to model hyper-
glycemia in T2D) [11].

2.2. Cell Viability. Cell viability was measured using (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) assay [12]. Briefly, MTT was added to cells at a final
concentration of 0.5 mg/mL. Cells were incubated for 1 hour
at 37◦C. The medium was then aspirated and 100 μL DMSO
added to each well to solubilize the blue formazan product.
Absorbance was measured using an OPTIMA reader (BMG
LABTECH) at an excitation wavelength of 540 nm. Three
biological replicates were carried out, each with five technical
replicates.

2.3. ROS Production. Intracellular ROS production was
measured using the fluorescent probe dihydrorhodamine 123
(DHR123) (Invitrogen), which, when oxidized, localizes in
the mitochondria and fluoresces green, indicating the pre-
sence of ROS. In brief, DHR was added to cells in 100 μL
fresh RPMI medium to a final concentration of 1 μM. Cells
were incubated for 30 minutes at 37◦C. Fluorescence was
measured using a PHERAstar reader (BMG LABTECH) at an
excitation wavelength of 485 nm and an emission wavelength
of 520 nm. Three biological replicates were carried out, each
with five technical replicates.

2.4. Gene Expression Analysis. The genes selected for this
study are given in Table 1. Choice of targets was made on the
basis that these 90 genes have shown evidence in the litera-
ture that they may be effected by some of the physiological
changes that occur with T2D. The first set of targets (indi-
cated in Table 1 by bold type) were taken from a study where
microarray analysis of skeletal muscle samples from matched
diabetic and nondiabetic subjects was undertaken [7]. Using
a pathways analysis approach, they identified a set of genes

involved in oxidative phosphorylation whose expression was
decreased in diabetic muscle. The majority of these targets
were genes responsive to the transcriptional coactivator
PGC1. We therefore chose to study these, together with other
PPAR genes (Ppara, Ppard, and Pparg) and their targets. This
is relevant because the Pro12Ala variant of PPARG has been
associated with T2D [13]. A very similar pattern of gene
expression was also noted by a second group, who carried
out an analogous experiment, also in skeletal muscle [6]. In
concordance with the Mootha study, this study demonstrated
deregulation of a group of genes involved in oxidative
phosphorylation regulated by nuclear respiratory factor-1
(NRF1) and PGC1 (indicated in Table 1 by underlined type).
Genes that appear in both studies are marked in Table 1 by
bold and underlined type. Other targets have been selected
on the basis of involvement in response to oxidative stress
and with roles in oxidative metabolism. Most of these genes
can be subdivided into activation of the antioxidant defense
system, cell cycle arrest, DNA repair, damaged protein repair,
or activation of the NFκB pathway. The final category of
genes were selected on the basis that they are key players
in pathways involved in T2D. These include genes involved
in cell cycle and apoptosis, immune and inflammatory pro-
cesses, energy metabolism and homeostasis, including glu-
cose metabolism, and insulin signaling and homeostasis. Ex-
pression of the 90 target genes were analyzed with the Micro
Fluidic Card system (Taqman low density array (TLDA)
custom array, Applied Biosystems).

2.5. Statistical Analysis. Comparisons of ROS production
and gene expression between the three glucose culture condi-
tions were determined using the Kruskal-Wallis H test.

3. Results and Discussion

We found that although ROS were increased at both high
and low glucose compared with ambient glucose (P <
0.05) (Figure 1), this was not accompanied by concomitant
alterations in the expression levels of the 90 test genes. TLDA
analysis revealed deregulation of 16 out of 90 (18%) of
genes analyzed (P < 0.05) (Figure 2), but the patterns of
deregulation did not mirror changes in ROS production. If
increased ROS production was responsible for the changes in
gene expression, then we would expect the pattern of ROS
production to mirror the pattern of gene expression. This,
however, was not the case, which leads us to conclude that the
expression changes are probably due to effects of glycemia,
rather than a specific effect of ROS. The lack of response in
the remaining 82% of genes tested may indicate that these
genes are not responsive to ROS or glucose in beta cells. A
decrease in cell viability was observed at low glucose after 48
hours, whereas high glucose increased cell viability compared
with ambient glucose (results not shown). The effects on cell
viability could explain some of the gene expression changes
observed.

This study provides evidence that increasing glycemia
affects expression of a proportion of genes involved in
oxidative metabolism in the pancreatic beta cell line INS-1.
A number of genes were upregulated in response to
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Table 1: Panel of 90 target genes for analysis by TLDA expression profiling. Candidate genes have been shown by pathway-based
microanalysis to be deregulated in T2D skeletal muscle, are reported in the literature to be involved in oxidative metabolism or the oxidative
stress response, or are reported in the literature to be key players in diabetes pathways/deregulated in T2D.

Panel of 90 target genes for analysis by TLDA expression profiling

Deregulated in T2D skeletal
muscle

Alas1 Atp5c1 Atp5g1 Atp5g2 Atp5g3 Ckmt1 Cox4i1

Cox6a1 Cox6c Nrf1 Pdx1 Pkm2 Por Sdhc

Slc25a4 Ucp2 Uros Eif2ak3 Sdhb Uqcrc1 Cox5b

Atp5o Cox7b Cyc1 Atp5j Ndufa5 Ndufa8 Ndufb5

Ndufb6 Ndufs2 Ndufs3 Ppara Ppard Pparg Ppargc1a

Sdha

Involved in oxidative
metabolism and the oxidative
stress response

Aco1 Ccng1 Cdkn1a Cxcl10 Ddit3 Dnaja1 Fmo1

Gck Gsr Hspa4 Hspa5 Igfbp2 Il18 Ins1

Ireb2 Nfkb1 Nfkbia Pck1 Rad23a Sod1 Tnf

Tp53 Txn2 Txnip Ung Xbp1 Ercc1 Mtor

Nampt Ndufaf1 Nfe2l2 Prkcd Prkcz Shc1

Key players in T2D pathways

Cell cycle and apoptosis Crls1 Hdac4 Hdac5 Hgf Igf1 Suv39h1

Cellular and energy
metabolism and homeostasis,
including glucose homeostasis

Foxo1 Gckr Hagh Hk1 Prkaa2 Sirt1

Immune and inflammatory
processes

Crp Il1b Il1rn Il6 Rage

Insulin signaling and
homeostasis

Gcg Insr Kcnj11
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Figure 1: The production of ROS in INS-1 cells cultured in
low, ambient, and high glucose concentrations for 48 hours.
Intracellular ROS production was measured using the fluorogenic
probe dihydrorhodamine 123. Differences in ROS production were
statistically analyzed by the Kruskal-Wallis H test. Significant results
(P < 0.05) relative to control are indicated by∗.

increasing glycemia, including several components of the
electron transport chain (Atp5g3, Atp5g2, Cox4i1, Cox6a1,
Ndufs2, Sdhb) (Figures 2(a)–2(f)) and genes involved in
oxidative metabolism or cellular antioxidant defense (Gsr,
Nfkb1, Sod1). Also upregulated with high glucose were
genes involved in energy homeostasis or metabolism (Pkm2,
Prkaa2) (Figures 2(g)–2(k)). Deregulation of these genes in

beta cells could potentially contribute to impaired mitochon-
drial metabolism and insulin secretion. Prkaa2 is a catalytic
subunit of the AMP-activated protein kinase (AMPK), a key
regulator of energy homeostasis, which has been shown to
decrease glucose-stimulated insulin secretion, insulin con-
tent, and mitochondrial metabolism [14].

Also up-regulated in response to increasing glycemia are
Cdkn1a which is involved in p53-mediated cell cycle arrest in
response to cellular stress and has already been shown to be
induced by H2O2 [15], Crls1 which is important in main-
taining the integrity of the mitochondrial membrane, and
is thought to be involved in apoptosis, Gcg which encodes
four distinct proteins including glucagon, and the in-
flammatory marker Crp (Figures 2(l)–2(o)). Interestingly,
the only gene that is significantly downregulated in response
to high glucose, compared with ambient glucose, is the pro-
moter of beta cell function and survival, Pdx1 (Figure 2(p)).
It has been shown previously that Pdx1 deficiency causes beta
cell dysfunction and beta cell death and that both hyper-
glycemia and hyperlipidemia lead to decreased Pdx1 expres-
sion and consequent beta cell dysfunction [16]. The glycoly-
sis gene Pkm2 is worth mentioning in more detail, as it was
the only gene which was significantly deregulated between
low and ambient glucose, ambient and high glucose, and
low and high glucose (Figure 2(j)). Pkm2 has previously been
shown to be glucose-responsive so acts here as a positive con-
trol [17].

Although we saw evidence of deregulated gene expression
in response to altered glycemia, we found little evidence
to suggest that ROS were involved in mediating these gene
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Figure 2: Gene expression in INS-1 cells cultured in low (5.6 mmol/L), ambient (11 mmol/L), and high (28 mmol/L) glucose concentrations
for 48 hours (gene name above each graph). Gene expression changes were analyzed using TLDA expression profiling on a panel of 90 target
genes. Gene expression differences were statistically analyzed by the Kruskal-Wallis H test and were normalized to the mean expression of
the endogenous controls B2m and Tbp, as they were found to be most stable using the GeNorm algorithm (Statminer, Integromics). Note
that the scales of the graphs differ between genes as the expression is shown relative to mean expression across all genes. Significant results
(P < 0.05) are indicated by∗.

expression changes. This is interesting because ROS produc-
tion and oxidative stress have been strongly associated with
mitochondrial dysfunction, and H2O2-induced oxidative
stress has previously been shown to alter expression of some
of these genes in beta cells [15, 18]. For instance, H2O2-
induced oxidative stress in rat pancreatic islet cells has been
demonstrated to induce Cdkn1a mRNA expression [15]. Ele-
vated Cdkn1a expression may result in a suppression of
beta cell proliferation and insulin biosynthesis, which pro-
vides an important link between oxidative stress and beta
cell dysfunction in T2D [15]. A transient exposure of the
rat insulinoma cell line INS-1E to H2O2 significantly in-
creased mitochondrial ROS production and impaired glu-
cose-stimulated insulin secretion, which persisted for several
days after the exposure [18]. This occurred alongside a
concomitant decrease in expression of genes involved in

mitochondrial biogenesis and a compensatory increase in
expression of respiratory chain subunit mRNAs [18].

Moreover, there are examples of ROS altering signaling
pathways in other tissues which are relevant to diabetes, such
as adipose tissue and liver. For instance, in vivo exposure to
high glucose in rats increased the mRNA levels of several in-
flammatory genes in the adipose, and this effect was partially
prevented by the free radical scavenger N-acetyl-cysteine
[19]. The authors suggest that exposure to ROS-induced
damage over the lifetime of an adipocyte could contribute
to the pathological state seen in metabolic disorders such as
T2D [19]. ROS levels have been shown to be elevated in the
liver of db/db mice and in a human hepatic cell line treated
with the fatty acid palmitate. The NADPH oxidase NOX3 was
found to be the predominant source of ROS production, and
the increase in ROS was found to induce p38MAPK and JNK
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pathways, which was shown to contribute to hepatic insulin
resistance [20].

Our panel of 90 genes were selected on the basis that they
have already been shown to be deregulated in T2D tissues
or are involved in the oxidative stress response, therefore,
were strong candidates for this study. Although ROS appear
to have little role in mediating the expression of these genes
under the conditions described, it should be highlighted that
ROS may influence the expression of other genes involved in
beta cell function. It would be interesting to further inves-
tigate the effect of hyperglycemia-induced ROS production
on expression of other genes with important roles in beta
cell function, such as maintenance of beta cell mass and
regulation of apoptosis, as both hyperglycemia and oxidative
stress are thought to be crucial in mediating beta cell
apoptosis and subsequent loss of beta cell mass in T2D [21].

In conclusion, our study provides further evidence that
hyperglycemia induces ROS production in the pancreatic
beta cell. Although 18% of the oxidative metabolism genes
tested were shown to be deregulated in response to increasing
glycemia, there was little evidence that ROS or oxidative
stress was involved in mediating these gene expression
changes, indicating that gene expression changes noted in
diabetic tissues may be more attributable to differences in
glucose or lipid concentration than to increases in oxidative
stress.
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