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Modeling the geometry and dynamics of the
Endoplasmic Reticulum network
Congping Lin, Laurent Lemarchand, Reinhardt Euler, Imogen Sparkes

Abstract—The endoplasmic reticulum (ER) is an intricate network that pervades the entire cortex of plant cells and its geometric shape
undergoes drastic changes. This paper proposes a mathematical model to reconstruct geometric network dynamics by combining the
node movements within the network and topological changes engendered by these nodes. The network topology in the model is
determined by a modified optimization procedure from the work (Lemarchand, et. al. 2014) which minimizes the total length taking
into account both degree and angle constraints, beyond the conditions of connectedness and planarity. A novel feature for solving our
optimization problem is the use of ’lifted’ angle constraints, which allows one to considerably reduce the solution runtimes. Using this
optimization technique and a Langevin approach for the branching node movement, the simulated network dynamics represent the ER
network dynamics observed under latrunculin B treated condition and recaptures features such as the appearance/disappearance of
loops within the ER under the native condition. The proposed modeling approach allows quantitative comparison of networks between
the model and experimental data based on topological changes induced by node dynamics. An increased temporal resolution of
experimental data will allow a more detailed comparison of network dynamics using this modeling approach.

Index Terms—Endoplasmic Reticulum, Network Dynamics, 0-1 Programming, Cutting Planes

✦

1 INTRODUCTION

The endoplasmic reticulum (ER) is the largest membrane
bound organelle in most eukaryotic cells, and forms a
highly complicated interconnected network of tubules
and flattened sacs (known as cisternae) [1], [2]. It serves
important biological functions including protein and
phospholipid synthesis, quality control and export, and
calcium storage [3]. In addition to its complicated shape,
the ER network is highly dynamic, transiting between
tubules and cisternae and dynamically changing their
polygonal network [1]. Figure 1 (left panels) shows an
example of ER network dynamics. The dynamic ER
shape is suggested to be adaptable to the cell’s require-
ments for ER function [4]. Mechanisms governing the ER
network changes and the biological significance of these
changes remain unclear.

Tools for investigating the ER morphology have been
developed. Sparkes et al. [5] constructed an image analy-
sis method for pulling out persistent or static elements of
the ER network in tobacco leaf epidermal cells. Persistent
elements such as static points, may have important roles
in anchoring the network to the plasma membrane [5],
[6], [7], [8]. Lin et al. [9] developed an image processing
method to abstract ER tubule networks into geomet-
ric graphs between persistent and non-persistent nodes
from a series of ER images. In addition, Bouchekhima
and co-workers [10] have analyzed the network of ER
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Fig. 1. Illustration of the ER networks at two different
time points and the corresponding abstracted geometric
graphs. The rectangle regions in left panels highlight a
region with no ER cisternae and the right panels show
their geometric graphs for the largest connected compo-
nent. The abstracted graphs are obtained using the image
processing method introduced in [9], where markers ’*’,
’�’ and ’o’ represent persistent, non-persistent branching,
non-persistent end nodes, respectively, and lines rep-
resent edges. The experimental ER images are taken
from [5] (www.plantcell.org, Copyright American Society
of Plant Biologists).

cisternae.

In nature, networks (e.g., the skeletons of radiolarians
or cell transport networks) are commonly structured
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in an economic way, minimizing the length or surface;
biophysical mechanisms (such as surface energies or
interfacial tensions) can easily drive processes that result
in minimal networks [11]. Indeed, the structure of tightly
stacked ER sheets (cisternae) has been modeled as a
minimum of elastic energy of sheet edges and surface
[12]. In addition, the structure of the ER tubule networks
in tobacco leaf epidermal cells is well modeled as a
Euclidean Steiner network, a locally optimal network
in which any local perturbation of non-terminal nodes
would increase the total length of the network [9]. This
is analogous to the notion of Euclidean Steiner trees [13]
in which the non-terminals (called Steiner points) have
degree 3 and each pair of edges at the Steiner points
has an angle of degree 120o. Note, that the local optima
might not give a unique network topology. In [14] we
have proposed an optimization problem to construct
an optimal network minimizing the total length with
constraints on angles and degrees of nodes; such optimal
networks are globally optimal and are close to the ER
networks from experimental data.

To investigate ER network dynamics, the nodes were
classified into persistent and non-persistent nodes [9]. The
persistent nodes are those static ER points while the non-
persistent nodes are either mobile ER junctions (referred
to as non-persistent branching nodes) or ends of mobile
tubules (referred to as non-persistent end nodes). In the
following “non-persistent” is omitted in case of non-
ambiguity. For the latrunculin B (treated) cells where the
ER network was less dynamic, dynamics of branching
nodes in a small network observed from experimental
data were well modeled using a Langevin approach [9];
the network structure there was either fixed or changing
among a small number of known topologies. The ER
network in the native state is highly dynamic; dramatic
remodeling (i.e., highly dynamic changes of network
topology) and transitions between tubules and cisternae
are observed. We have not attempted to model ER
dynamics in the native state, but we prefer to extend the
Langevin approach studied in [9] to model ER network
dynamics by including the dynamics of end nodes and
an optimization procedure for topology determination.

In this paper, we use live cell confocal microscopy
data of ER networks in tobacco leaf epidermal cells taken
from [5]. As the cortical ER in plant cells occupies a very
thin, almost two-dimensional layer of cytoplasm beneath
the plasma membrane, our study of the ER network is
based on its 2D approximations. Figure 1 shows two in-
stances of live cell images and corresponding abstracted
geometric graphs from an ER recording of 50 frames
with a time resolution of 1.6 s and a spatial resolution
of 0.11µm per pixel; the geometric graph abstraction
(including node positions of each type and edges) is
obtained using the image processing method introduced
in [9]. For the native state ER networks, due to the highly
dynamic transition between tubule and cisternae, we
select regions which do not contain cisternae for analysis.

2 MODEL

We follow the node classification from [9]; the persistent
nodes Vp have degree no more than 3, the non-persistent
branching nodes Vb have degree 3 and the non-persistent
end nodes Ve have degree 1. In [14], we have formu-
lated an optimization problem to construct the network
topology with degree constraints (either degree 3 or
degree no more than 3) and angle constraints for given
degree-3 nodes. Note that in the ER network dynamics,
the set of degree-3 nodes may change as they may
include some persistent nodes. We also aim to include
the dynamics of end nodes. Thus, a degree constraint
for end nodes might be necessary. In the following we
illustrate a modified optimization problem from [14] for
constructing the network topology and the dynamics for
each type of nodes.

2.1 Topology optimization

Given a set of nodes V and a classification V = Vp ∪
Vb ∪Ve, the problem is to find an undirected, connected,
spanning and plane subgraph, whose nodes in Vb have
degree 3, those in Ve have degree 1 and those in Vp have
degree no more than 3, which minimizes the sum of
the Euclidean distances associated with the connecting
edges, and which satisfies an angle constraint for all
degree-3 nodes (including persistent nodes if they are
branching in the solution). More precisely, by an angle
constraint we mean that, for a branching node u ∈ V ,
and its neighbours v1, v2, v3, any two angles at the node
u formed from edges uvi(i = 1, 2, 3) have a sum no less
than θ where θ is a given angle around 180o. The idea
comes from the concern of force balance acting on the
branching node. For each branching node (ER junction),
as modeled in [9], each of the three ER filaments is
assumed to apply a membrane tension force on this
tubule junction. Thus, it is unlikely that the tension forces
are in the same direction of a half plane, i.e., the sum of
two angles of the branching node is less than 180o. This
optimization problem is formulated as follows:

minimize
∑

xuv∈E

wuvxuv (1)

subject to 1 ≤
∑

v 6=u

xuv ≤ 3, ∀u ∈ Vp. (2)

∑

v 6=u

xuv = 1 , ∀u ∈ Ve. (3)

∑

v 6=u

xuv = 3 , ∀u ∈ Vb. (4)

δ(W ) ≥ 1 , ∀W ⊂ V

|W | ≥ 2. (5)

xuv ∈ {0, 1} , ∀uv ∈ E. (6)
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xuv + xuw + xuz ≤ 2, ∀u ∈ V \ Ve

v, w, z ∈ V \ {u}
v̂uw + ŵuz ≤ θ. (7)

xuv + xwz ≤ 1 , ∀u, v, w, z ∈ V

u 6= v 6= w 6= z

uv and wz are

crossing. (8)

where

• the objective function (1) represents the total Eu-
clidean distance of the connecting subgraph;

• (2) and (3,4) represent the degree constraints on
nodes;

• (5) ensures the connectivity of the resulting sub-
graph, where δ(W ) =

∑
i∈W,j /∈W xij ;

• (7) ensures that nodes of degree 3 in the resulting
subgraph have edges that are spanned over an angle
of more than θ degree;

• (8) ensures that the resulting graph is plane;
• xuv and xvu represent the same variable, and xuv =

1 iff edge uv is selected in the solution.

We remark that in general for a fixed θ, the constraint
(7) may lead to infeasibility, in particular for degree-3
nodes near the border of the graph.

2.2 Network dynamics

We extend the Langevin model in [9] which concerns
the balance between the tension and Stokes drag forces
and the Brownian forces for the non-persistent branch-
ing nodes. In particular, we construct a mathematical
model including end-node movement and dynamic at-
tachment/detachment of persistent nodes as well as el-
ements of topological changes determined by optimiza-
tion as described in Section 2.1, assuming no changes of
node types and the total node number of nodes in the
evolution of time. The node dynamics of each type is as
follows:

1) branching node movements. By balancing the ten-
sion and Stokes drag forces with the Brown-
ian forces, the perturbation for the non-persistent
branching node is modeled as in [9] by

dxi

dt
= −a∇xi

f(x1, x2, ..., xn) +
√
2σξ(t) (9)

where f is the total length of the network be-
tween nodes (µm), ∇ is the gradient, a is the
drift coefficient (µm/s), σ is the diffusion coefficient
(µm2/s), ξ(t) is the white noise with zero mean and
autocorrelation 〈ξ(t), ξ(t′)〉 = δ(t− t′), and xi ∈ R2

is the position of nodes (µm).
2) persistent node dynamics. Some of the persistent

nodes are observed only to be visible for part of
the time during remodeling [9]. We model this as a
random process and assume the invisible persistent
nodes appear with rate pa and visible persistent

nodes disappear with rate pd. The invisible per-
sistent nodes are isolated from other nodes in the
remaining network. We remark here that the set
Vp in the optimization procedure is for the set of
visible persistent nodes.

3) end node movements. The non-persistent end
nodes (of degree one) can shrink or grow in the
network [5]. We assume that growing and shrink-
ing velocities are equal and denote them as v ∈ R;
we assume that the end node can switch between
growing and shrinking stochastically and denote
the transition rate from shrinking to growing as ps
and that from growing to shrinking as pg . More
explicitly, the shrinking and growing process is
modeled as

dxi

dt
= −v∇xi

f(x1, x2, ..., xn) +
√
2σeξ(t) (10)

dxi

dt
= v∇xi

f(x1, x2, ..., xn) +
√
2σeξ(t) (11)

where the first term accounts the velocity while the
second term

√
2σeξ(t) represents the perturbation

from the noise just as for the branching nodes in 1.

The parameters v = 0, pd = 0, pa = ∞, σe = 0 reduce
to the Langevin approach in [9] modeling the non-
persistent branching nodes. Considering the computing
time, we choose a time step of dt = 0.1s. We use the
parameters a = 0.2µm/s and σ = 0.008µm2/s from the
estimation in [9]. For other parameters, we have not yet
obtained any estimations from live cell imaging data.
Intuitively, we assume pa ≫ pd and set pd = 0.01/s, pa =
0.7/s, ps = pg = 0.1/s, σe = σ and v = 0.1µm/s if the
corresponding dynamics is applied. Estimation of these
parameters will be possible when high resolution of
experimental data are available. We are not attempting to
explore the parameter space for the dynamic modeling,
but we do compare network dynamics with/without
persistent node dynamics and/or end-node movements.

In the simulation, we abstract locations and types of
nodes in a self-contained ER network (where no ER junc-
tions are connected to the nodes outside the network) us-
ing the image processing method in [9]. Considering this
set of nodes and their types V (0) = (Vp(0), Vb(0), Ve(0))
as an initial state, we find its optimal graph G(0) from
the optimization problem formulated in Section 2.1. Then
we apply the above node dynamics to each node accord-
ing to its node type and find the corresponding optimal
graph for nodes V . Following this way, we obtain a series
of networks G(t) = (V (t), E(t)). We remark that degree
θ in the angle constraint (7) for topology optimization is
fixed during the dynamics, and at an infeasible step, we
use the topology of the previous step; though this may
avoid the angle constraint for some nodes, the sum of
angles for those nodes are expected to be close to the
given θ.
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θ BN only Neighbours lifted
20 10 20 all all

160
o 11619 4582 37571 599357 1435

170
o 12521 4902 39747 621560 1437

180
o 13378 5235 41918 643168 1439

TABLE 1
Average number of angle constraints according to the

number of neighbours considered and the angle
threshold θ for a set of 50 real-life test cases. Column
“BN only” corresponds to the number of constraints

added in the full model of paper [14] when angle
constraints are applied to branching nodes only, with a
neighbourhood threshold of 20. The last column shows
the number of equivalent constraints generated with the

lifting technique of section 3.1

3 MANAGING THE MODEL

In [14], the constraints in minimizing the total length of
the network are:

• branching nodes (either persistent or non-persistent)
have degree 3;

• other nodes have degree 1 to 3;
• the network is connected;
• no edges cross (plane graph);
• incompatibility triplets of edges are not selected

simultaneously. This set of incompatibility triplets is
built according to an angle threshold (e.g. θ = 180o)
and the number of closest neighbours to take into
account (20 in the paper). This choice of 20 neigh-
bours is sufficient to produce the optimal solution
satisfying the angle constraint for the real-life test
cases [14].

Comparatively, we extend the optimization problem in
the following aspects:

• the angle constraints are applied to all nodes that
have degree 3 in the solution, not only the initially
determined branching nodes; moreover, angle con-
straints are checked for all possible neighbours of
each degree-3 node.

• potential end nodes are included;

The introduction of end nodes only requires a modi-
fication of bounds on corresponding edge variables. On
the contrary, the angle constraints in this paper lead to a
great number of additional constraints. In fact,we have
C3

n−n1
exclusion constraints to take into account where

n = |V | and n1 = |Ve|. We take a set of real-life test
cases as an example. Compared to the model in [14], the
number of angle constraints can increase considerably
(shown in Table 1): for the same neighborhood limit, the
angle constraints number is roughly multiplied by 3 on
average, because of taking into account the persistent
nodes, and by more than 50 if all nodes are considered
for the neighbourhood. This has also an impact on the
runtimes, as shown in Section 3.3 devoted to tests.

Section 3.1 shows how to take account of all the
neighbours of a node. Angle checking is managed, as

compared to the model and strategy used in [14], in a
more complete and more efficient way. Section 3.3 shows
the results in terms of computation runtimes for the
different algorithms applied to a series of data sets.

3.1 Angle constraints lifting

To reduce the number of angle constraints and enhance
the runtimes of the optimization process, lifting tech-
niques can be used.

For any node v, neighbour of u, let

U(v) = {w ∈ V |w is a neighbour of u, clockwise v̂uw ≤ θ}.
Then, the inequality

∑

w∈U(v)

xuw ≤ 2 (12)

is valid for all 0-1 solutions of our problem (BP), cov-
ering in particular all angle constraints (7) with all 3
nodes in U(v). Observe, that starting from such an
angle constraint, we can also obtain inequality (12) by
sequential lifting, a well-known operation from polyhe-
dral combinatorics [15]. It is used to strengthen valid
inequalities both for a tight linear description of 0-1
solutions and to speed up solution times within a branch
and cut-framework for instance. These effects have been
very clearly confirmed by our computational experience.
To generate all these ”lifted angle constraints” (12) in
an irredundant way, one could imagine the following
procedure:

1. Let the neighbours of node u be v(1), ..., v(p) in
clockwise order; set i := 1 and q(0) := 0;

2. calculate the maximum value q(i) modulo p such

that ̂v(i)uv(q(i)) ≤ Θ;
3. if q(i) > q(i − 1), add the corresponding constraint

(12), (but discard the (redundant) inequality for
j = 1 and q(1) whenever q(j) = q(1) for some
j > 1); else discard the corresponding constraint
(12), which will be redundant;

4. if i = p, stop; else set i := i+ 1 and go to 2.

This procedure requires the neighbours of any node
to be sorted. To save runtime we have implemented
the generation of lifted angle constraints directly, con-
sidering each node u, each neighbour v of u, and the
associated set U(v) together with inequality (12). The
number of inequalities can be further reduced by check-
ing dominance1 between angle constraints. Some tests
(not presented here) show that dominance checking is
costly in terms of runtimes and does not help to decrease
the overall runtime of the optimization process.

3.2 Problem resolution

In [14] we have detailed a series of resolution techniques,
which were based on either LP relaxation or BP for solv-
ing the topology optimization problem. The reference

1. Given two vectors x, y ∈ {0− 1}n, we say that x dominates y if
xi ≥ yi for all i = 1, ..., n [15].



5

method is BP. It works as follows : The initial BP is
given by the objective function (1) and constraints (2),
(3), (4) and (6). It iteratively solves this problem, checking
the resulting subgraph for crossing edges, a subset of
angle constraints, and connectivity constraints. In the
case of crossing or angle constraints not being satisfied,
the corresponding inequalities (8) and (7) are added to
the binary problem. Connectivity is ensured by comput-
ing connected components, and adding an inequality
of type (5) for each of them. The problem is solved
again, until the resulting subgraph is plane, connected
and respects all of the considered angle constraints. The
most efficient combination determined in [14] is based
on a relaxation technique starting with the same initial
problem except the binary constraints (6) that we replace
by their linear relaxations 0 ≤ xuv ≤ 1. It is coupled with
different separation procedures for the root node of the
branch & cut search procedure. When separation proce-
dures fail to find the cutting planes, the BP algorithm is
applied, which itself relies on the branch & cut tool of
the MIPS. The best combination for LP resolution uses
recursive and parametric cuts, and is referred to as LPrk

in [14]. It corresponds to the relax option of the General
Algorithm 1.

The use of the LP solver implies the possibility of
fractional optimal solutions. The basic procedure to ”cut
off” such fractional solutions is based on a min-cut
algorithm. If an s − t-cut leads to a cut value < 1,
the connectivity constraint is violated. This situation
is detected using the Stoer-Wagner algorithm [16]. If
V1, V2 is the corresponding partition of V , we add the
constraint

δ(V1) ≥ 1 (13)

The separation procedures we use are extensions of
this basic technique. They rely on a p-partition P =
{V1, V2, ..., Vp} of the node set V . In such a case we add
the constraint

1

2

∑
δ(Vi) ≥ (p− 1) (14)

The problem is now to find a partition of V , whose in-
equality is violated by the current optimal and fractional
solution.

We have implemented 2 separation procedures for this
type. The r-cut procedure is based on a recursive splitting
of partitions using a min-cut algorithm, whereas the k-
cut procedure is a 1-edge-like contraction procedure.

• The r-cut procedure for multi-cuts is inspired by
[17]. Given a p-partition, find a minimum cut in each
part of it. For the cut with minimum value among
all these min-cuts, break the associated component
to obtain a (p+ 1)-partition.

• The k-cut procedure for multi-cuts goes as follows.
The partition is induced by the components of the
graph G′ = (V,E′ = {e ∈ E|xe ≥ α}), with α ∈
[0..1] as given by the current optimal solution. This
separation procedure is applied for α = 0.8, 0.6, 0.4.

In order to further reduce the resolution time, we
can also apply these separation procedures to the inner
nodes of the branch & cut search tree. This procedure
corresponds to the fullBC option of the General Algo-
rithm. 2

Algorithm 1: General Algorithm

Data: a set of points V = Vb ∪ Ve ∪ Vp, a number of
iterations I , an angle value θ, and options
relax and/or fullBC

Result: a series of connected plane subgraphs
1 begin
2 Vs := V
3 i := 1
4 graph G := (Vs, E, w), with E := V 2

s , wuv the
Euclidean distance between u and v

5 generate problem P with constraints (2), (3) and
(4)

6 add lifted angle constraints of section 3.1
obtained from (7) add constraints (6) to P

7 f := solve (P , options)
8 if Gf = ∅ then
9 restore Gf from iteration i− 1

10 compute objective function according to
current node locations

11 goto 25
12 end
13 if Gf = (V, f) is connected then
14 if checkP lanarity(f) = OK then goto 25
15 else add corresponding constraints (8)
16 end
17 if Gf = (V, f) is not connected then
18 compute connected component set

W = {W1, ...,Wp}
19 add corresponding constraints (5)
20 end
21 goto 7
22

23 if i = N + 1 then goto 27
24 else i := i+ 1
25 apply dynamics rules
26 goto 4
27 end

The next section shows our results in terms of compu-
tation runtimes for the different algorithms applied to a
series of data sets.

3.3 Tests

We apply the different versions of our General Algo-
rithm for ER dynamics to a series of 50 data sets. We first
compare the runtimes of the best approach presented

2. In fact, only integral constraints are checked at each inner node
of the B & C search tree because tests show that other separation
procedures are too costly for both BP and LPrk strategies in root node
solving.
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in [14], by using non-lifted angle constraints, to the
runtimes obtained with lifted constraints for initial and
optimal network determination of the 50 data sets. Then,
we compare the runtimes of the different algorithms on
the same 50 data sets for dynamics algorithm testing. For
each of them, 10 iterations of the dynamics algorithm
are run, and overall runtimes are reported. Missing data
correspond to infeasible initial problems.

1) Incompatibility vs lifted angle constraints. The al-
gorithm LPrk of [14] considers angle incompatibil-
ities generated by the 20 closest neighbours of a
node. We consider here all of the node neighbours,
with lifted angle inequalities. The same separation
procedures are used (LPrk algorithm from [14]
and BP + relax option of the General Algorithm
1). Figure 2 shows the runtimes for the data set
processing (one iteration). A limit of 5 minutes (300
secs) is set for the runtime.
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Fig. 2. (top) Runtimes for data sets with angle constraints
on limited (20) neighbourhood from [14] and with lifted
angle constraints of section 3.1. (bottom) ratio between
the runtimes of the 2 approaches. Here, the angle θ =
170o is used.

As expected, a huge reduction of inequalities in the
BP and LP formulation (see table 1) leads to a large
improvement of runtimes. And this is realized con-
jointly with the consideration of all nodes instead
of just a number of closest neighbours as in [14].

2) Runtimes comparison for dynamics processing. We

apply the different versions of the General Al-
gorithm for computing the dynamics of 50 data
sets over 10 iterations for an angle constraint of
θ = 180o. Tested versions are 1) BP, the general
algorithm without options, 2) BP+BaC, with full
branch & cut option, 3) LP, i.e., BP with relax
option, and 4) LP+BaC, i.e., BP + both relax and full
branch & cut options. Tests have been performed
on a 24 core SMP linux system with 120 GB of
memory. The average runtime ratio relative to the
BP algorithm runtime for the feasible data sets is,
respectively, 18.7% for BP+BaC, 16.9% for LP, and
95.7% for LP+BaC. Thus, both BP+BaC and LP are
approximatively 5 to 6 times faster than the direct
BP solver.
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Fig. 3. (top) Runtimes in seconds for the data set with
lifted angle constraints and the different option combi-
nations from General Algorithm. (bottom) Ratio to the
reference algorithm BP (without options). Here θ = 180o

is used.

The fastest is LP for 55% of the testcases, BP+BAC for
30% and LP+BAC for 8% of the testcases. The remaining
7% are infeasible ones. So even if it is not the fastest for
every data set of the testbench, LP provides an overall
good performance in terms of runtimes. The utility of
the full branch & cut strategy is only relevant when
the solver MIPS is solely used (BP+BaC algorithm). In
addition, when LP is used, it implies inefficient cut
searches. A possible reason is that most of them are
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dominated by the ones found during the relaxed phase
of the LP algorithm.

To conclude, the LP approach is efficient, and
appears to be more performant in terms of runtimes, as
compared to the second best candidate BP+BaC, for the
considered testbench. It is also more robust, in the sense
that no case implies excessive runtimes: the cumulated
runtime for the whole testbench is 96 secs for LP and
419 secs for BP+BaC.

Concerning network optimization, the techniques de-
veloped in [14] are applicable, but they necessitate an
adaptation in order to take into account complete angle
constraints. The lifted angle formulation has shown to be
effective for our data sets. Runtimes are low enough for
the technique to be applied on series of successive net-
works, modified according to the ER network dynamics.
At each step, the network is considered independently.
However, solutions found by the solver in previous
steps are not taken into account (except infeasible cases).
This should be exploited to speed up resolution times.
However, this is not straightforward, since crossing and
angle constraints are not the same from one step to an-
other. Furthermore, even if constraints are still satisfied,
modifications of distances imply modifications of the
objective value. A preliminary sensitivity analysis shows
that most often, there is no slack in the solution values,
thanks to the BP formulation of the problem.

4 ER NETWORK DYNAMICS

We now apply the proposed optimization technique to
the real experimental data. We first solve the problem
described in Section 2.1 for instantaneous ER networks
from experiments in the native condition and then use
our optimization procedure to model the ER network
dynamics starting with an initial state of nodes being
abstracted from the experimental data. Initially, infeasi-
ble cases are excluded for the whole analysis.

4.1 Instantaneous network topology

Figure 4 shows examples of optimal graphs for given
sets of nodes together with the abstracted ER network
for different values of θ in the angle constraints. To
quantify the difference between these optimal graphs
and the abstracted ER network we may use the concepts
of effective similarity, error correcting matching and angle
distribution.

We call effective similarity [14] s(G1, G2) between two
graphs G1, G2, the average of two percentages: percent-
age of edges in G1 that do appear in G2 and percentage
of edges in G2 that do appear in G1. This measurement
can be calculated via the adjacency matrices of the two
graphs and it ranges from 0 to 1; it equals 0 if none
of the edges coincides in the two graphs and it equals
1 if the connecting structures between the two graphs
are the same. Meanwhile, in analogy to the notion of
error correcting graph matching [18], we call normalized
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Fig. 4. A comparison between: an abstracted ER network
(a), an optimal graph from the model with θ = 0o (b),
θ = 170o (c) or θ = 180o (d). Their total lengths of
graphs are 49.73µm, 54.64µm, 47.54µm and 47.70µm, re-
spectively. The effective similarities of graphs in (b-d) with
respect to the abstracted network in (a) are 0.88, 0.95 and
0.99, respectively, while the normalized error correcting
matchings with respect to the abstracted network in (a)
are 0.011, 0.004 and 0.001, respectively. The underlying
ER image in (a) is from the imaging data in [5] while its
geometric graph is abstracted using the image processing
method in [9].

error correcting matching [14] m(G1, G2) between two
graphs G1, G2 over the same set of nodes, the ratio of
the minimum number of edit operations (edge addition
and edge deletion) necessary to transform one graph into
the other, to the number of edges of the complete graph
with the same set of nodes. This measurement can be
calculated via the adjacency matrices as well.

Table 2 shows that overall the optimal graphs with θ
close to 180o show a higher similarity and a lower error
correcting matching than those with no angle constraint
(θ = 0o). In addition, Figure 5 shows that the distribution
of angles of degree-3 nodes in the model with both
degree and angle constraints is not significantly different
from that of the abstracted ER networks. Consistent
with [14], these results suggest that he optimal graphs
from the proposed optimization problem with θ around
180o is close to the corresponding ER networks, and
that beyond degree constraints, angle constraints are
necessary for understanding the principles governing
the ER network geometry.
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Fig. 5. Angle distribution of degree-3 nodes from the
experimental data in the native state and from the opti-
mal graphs with the instantaneous abstracted nodes. A
two-sample Kolmogorov-Smirnov test suggests that the
distribution from the experimental data is the same as
that from the optimal graph with θ = 180o (p=0.0672)
and is different to that from the optimal graph with θ = 0o

(p=0.9647).

θ = 0
o θ = 170

o θ = 180
o

s 0.904± 0.0097 0.939± 0.0077 0.934± 0.0188

m 0.011± 0.0014 0.007± 0.0005 0.008± 0.0014

TABLE 2
A comparison of optimal solutions G1 from different
models to the abstracted ER network G in terms of

similarity s(G,G1) and error correcting matching
m(G,G1). Data indicate the mean±sem. T tests show
there is a significant difference on s(G,G1),m(G,G1)
between the case where G1 is the optimal graph for
θ = 0 and the case where G1 is an optimal graph for
θ = 170o (p = 0.0063, p = 0.0199) and no significant

difference between θ = 170 and θ = 180o

(p = 0.668, p = 0.504); sample size n = 46− 50
(infeasibile problems are excluded).

4.2 Network dynamics

We first apply our dynamics model to a small ER
network in latrunculin B (treated) cells where networks
dynamics are independent of actin and myosin and are
less dynamic and observations of ER tubule network
dynamics are possible. In particular, we revisit a region
with 6 persistent nodes and 2 non-persistent branch-
ing nodes, as shown in Figure 6 (top panels) in the
treated condition. Note that the network topologies are
changing among a set of Steiner tree topologies [9].
The dynamics in this region has been modeled in [9]
by using a Langevin approach where network topology
is determined simply by comparison with the possible

Experimental data

Simulations

1µm

Fig. 6. Top: four different graph structures observed from
treated ER network in a small region of experimental data.
Bottom: five network topologies observed from stochastic
simulations up to 200 s; four of them relate to those
in experimental observed topologies (indicated by the
arrows). The markers “*” and “�” are the same as in
Figure 1. The top panels are modified from figures in [9].

Steiner trees. Here, we construct the network topology
from the optimization problem proposed in Section 2.1 at
each time step during the dynamics, and this proposed
approach represents the network remodeling observed
from experimental data as shown in Figure 6. The ad-
ditional topology observed in simulation may be not
necessarily observed in the experimental data due to the
limited spatial resolution and the short time recording.

Next, we apply the simulation to larger regions of
the ER networks. These regions were chosen from the
experimental data in the native state; note, that larger
regions of ER networks with no cisternae are not avail-
able in the treated experimental data. With the initial
state of nodes determined from the experimental data at
one frame in a region with no cisternae, we simulate the
time evolution of the network by applying the dynamics
of branching nodes. We find that the angles of the
branching nodes from optimal graphs (with θ = 180o)
in the dynamics statistically follow the same distribu-
tion as that in the experimental data (data not shown,
with p=0.9998 in a two-sample Kolmogorov-Smirnov
test). This suggests that the proposed dynamic modeling
approach does exhibit quantitative agreement with the
experimental data as far as angle distribution is con-
cerned. In addition, by moving the branching nodes, the
network topology changes accordingly, and represents
features observed from experimental data, such as the
loop closing/opening (i.e., appearing/disappearing of a
cycle within the network) as shown in Figure 7.

Analogous to small network dynamics in Figure 6, for
a larger set of nodes the network topology during dy-
namics also changes among a set of topologies; from [9]
we know that these topologies are expected to be those
from Euclidean Steiner networks. Figure 8 illustrates an
example of network dynamics showing the oscillation
of the total length of networks (in the geometric aspect)
and its error correcting matching with the initial net-
work topology (in the topological aspect) in the time
evolution. We further characterize the dynamics of the
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network by the number of topologies Ntop that could be
observed during the dynamics for a given initial state of
the network nodes. Note, that Ntop = limt→∞{Ntop(t)}
where Ntop(t) is the number of topologies observed up
to time t. In the dynamics, the quantity Ntop(t) is a
random variable. For a given initial state, it is clear
that the topology number Ntop is finite. In contrast to
small networks, this quantity could be much larger for
larger networks; see the bottom panel in Figure 8 (b) in
comparison to that in Figure 6. In addition, comparing
Ntop(t) and the matching in particular during the time
[10s−25s] where number of topologies remain the same
whereas the matching is oscillating; this again suggest
changes of the network topologies.
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Fig. 7. Two examples of loop closing/opening from the
network dynamics by moving non-persistent branching
nodes in the simulations. The imaging data for the initial
states of network nodes is taken from [5].

We now use the quantity Ntop(t) to compare net-
work dynamics when applying different dynamics. In
particular, we consider time evolution of networks
with/without dynamics of persistent nodes and/or dy-
namics of end nodes in addition to the movement of
branching nodes. Figure 9 shows an example of the
comparison where the number of topologies is averaged
over three simulations for a given initial state. This
example illustrates an increase in the number of network
topologies when adding dynamics of persistent nodes
or end nodes. We calculate the averaged number of
Ntop(t) for each real data set and found that about 62%
cases, 73% and 77% of the initially feasible cases have
an increase in the number of topologies when adding
dynamics of persistent nodes (case I), dynamics of end
nodes (case II), or dynamics of both persistent and end
nodes (case III), up to time t = 10s. In addition, we
calculate the differences between each of the three cases
and that with dynamics of branching nodes only on the
quantity Ntop(t) and find that the average differences
are 0.6, 4.4 and 4.2 topologies up to time t = 10s and
are 4.4, 15.1 and 20.2 topologies up to time t = 50s,
respectively. These suggest that for the abstracted ER
networks in the native state, with additional dynamics of
end nodes or persistent nodes, the network remodeling
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Fig. 8. Illustration of network dynamics from simulations
when applying movement of non-persistent branching
nodes only. (a) shows the initial network together with
the experimental data whose total length is 37.3µm; (b)
shows the oscillation pattern in terms of the dynamics of
the total length (top), that of the error correcting match-
ing m(G(t), G(0)) (middle) and the number of topologies
(bottom) up to the time t where G(t) is the optimal graph
at time t from simulations. The underling imaging data is
taken from [5].

could be enhanced, even without taking into account
active components (such as actin and myosin motors)
that drives the network dynamics.

5 DISCUSSION

ER network remodeling and the dynamic nature of this
process have not been adequately described in a quan-
titative manner except for small networks in latrunculin
B (treated) conditions. Questions relating to whether
the entire ER network maintains an optimal configura-
tion/topology in terms of length minimization remain
unanswered. Understanding these basic properties of the
ER provides a platform from which to determine and
measure the effects of the molecular components (such as
actin, myosin and reticulons) controlling network mod-
eling. In this article, we focus on ER networks formed
by tubules and introduce a computationally manageable
approach to construct the ER network dynamics in a
considerable large domain. In particular, we consider
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Fig. 9. Illustration of dynamic variability characterized
by the number of topologies applying different dynamics.
Each data point is the average from three simulations.

both the dynamics of network movement and changes
of network topologies. The network movement extends
the Langevin approach used in [9] by including dynam-
ics of end nodes and persistent nodes while network
topologies are determined by minimizing the network
length with angle and degree constraints, extending the
optimization procedure in [14]. Note that dynamics of
the nodes within the network generate the remodeling
of the network.

The proposed optimization problem for network
topology gives optimal solutions close to the actual
network geometry in single snap shots (i.e., time points)
of the experimental data. Differences between the actual
network and the optimal graphs (if any) will allow future
investigation into new features governing network dy-
namics. In addition, the simulation of network dynamics
recaptures ER network features observed from the native
experimental data such as the angle distribution and
loop closing/opening. Quantities have been developed
to analyze the network dynamics by calculating the
number of topologies during network remodeling and
have been compared between different dynamics. In
particular, we show that network remodeling could be
enhanced by including dynamics of end or/and per-
sistent nodes in addition to the dynamics of branching
nodes.

We have not yet been able to relate this type of quan-
tification of network dynamics to the dynamics of the
native experimental data. This is due to the highly motile
nature of the native ER network and the current limited
time resolution in the experimental data preventing de-
tailed observations of node dynamics. Also, our current
type of analysis is based on tubule dynamics, whereas
in fact the native network can readily change to cisternal
forms preventing such modeling to be undertaken. The
highly dynamic ER is also expected to be influenced by
the actin and myosin dependent processes as well as cy-
toplasmic streaming [5], [8]. Under the treated condition
the role of myosin, motors that traverse the actin, and
actin dynamics are absent. Modeling elements related

with the actin and myosin activities are beyond the
scope of this work as the specific molecular components
involved in these processes and the mechanochemical
characteristics of the myosin motors (e.g., step length,
processivity, directionality, force generation) that drive
the motion of the ER are unknown ([5], [19], [20] and
references therein). However, it does go beyond our
current understanding and provides an approach to
model the ER which solely contains tubules and does not
undergo drastic remodeling (e.g. keeping the same set of
nodes). Using an increased time resolution for record-
ing ER images (when available), a detailed quantitative
comparison at a local time of the actual tubule network
dynamics and simulated network dynamics would then
be possible.

In addition, this model could be generalized to in-
corporate a number of features that may be impor-
tant for the ER network dynamics in the native state.
This includes: 1) deterministic cytoplasmic streaming,
2) Brownian forces from the cytoplasm (which might
be heterogeneous); 3) creation/destruction of nodes (be-
sides the persistent nodes); 4) active molecular motors
(e.g., myosin); 5) dramatic transition between tubules
and sheets. By including the above elements when nec-
essary, a more robust model of ER network dynamics
will be generated. This can then be used to understand
how small genetic perturbations can drastically alter the
network. Since the ER network in plants plays pivotal
roles in processes which may be affected by ER network
morphology and remodeling (such as protein synthesis
and viral trafficking), a greater understanding and long
term quantitative measures of the network are essential.
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