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Abstract 

The face inversion effect is a defection in performance in recognizing inverted faces 

compared to faces presented in their usual upright orientation typically believed to be specific 

for facial stimuli. McLaren (1997) was able to demonstrate that 1) An inversion effect could 

be obtained with exemplars drawn from a familiar category, such that upright exemplars were 

better discriminated than inverted exemplars; and 2) That the inversion effect required that 

the familiar category be prototype-defined. He also provided some evidence that this effect 

would generalize to a recognition paradigm by showing that it could be demonstrated in a 

same / different judgment task, and there was an indication that the inversion effect was 

composed of two separable components, an advantage for upright, familiar exemplars, and a 

disadvantage for inverted familiar exemplars, although this latter effect was only significant 

in one of two experiments. In this paper we replicate and extend these findings. We show that 

the inversion effect can be obtained in a standard old/new recognition memory paradigm, 

demonstrate that it is contingent on familiarization with a prototype-defined category, and 

establish that the effect is made up of two components. We confirm the advantage for upright 

exemplars drawn from a familiar, prototype-defined category, and show that there is a 

disadvantage for inverted exemplars drawn from this category relative to suitable controls. 

We also provide evidence that there is an N170 ERP signature for this effect. These results 

allow us to integrate a theory of perceptual learning originally due to McLaren, Kaye and 

Mackintosh (1989) with explanations of the face inversion effect, first reported by Yin 

(1969). 

 

Research key words: Perceptual learning; inversion effect; N170; face recognition; 

associative learning; expertise. 
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Face recognition is perhaps one of the most robust cognitive skills that individuals 

possess. We generally recognize faces with very little effort, despite large variations in 

lighting, viewpoint and expression. Discussion of the nature of face perception has been 

mainly divided between two interpretations: One of which makes the assertion that a large 

body of research supports the notion of specialized mechanisms used to process facial stimuli 

(Farah Tanaka and Drain, 1995; Valentine, 1988; Yin, 1969): Whilst the other points out that 

in the last thirty years there have been many studies showing that face recognition is actually 

based on general mechanisms that can also operate for other non-facial stimuli as well 

(Diamond & Carey, 1986; Tanaka and Farah, 1991). This paper attempts to adduce evidence 

for this latter position, by showing that inversion effects can be obtained under certain 

conditions with checkerboards. It then seeks to establish exactly what these conditions are, 

and to analyze the nature of the inversion effect obtained, so that the parallel with the face 

inversion effect can be better evaluated and to help characterize the mechanisms involved. 

We start with a brief review of some of the evidence for the expertise-based account of the 

FIE, and then report the results of four experiments that bear on these issues. 

One the most reliable phenomena in the study of face perception, and central to this 

debate, is the face-inversion effect (FIE), which is the disproportionate drop in recognition 

performance for upside down (inverted) faces relative to upright faces (Yin, 1969).  On its 

discovery, the FIE was described as a clear consequence of the specialized mechanisms used 

in face processing. This explained why the impairment in recognizing upside down faces was 

significantly larger than that for other objects (Yin, 1969).  However, this interpretation has 

been challenged by the finding that an FIE as large as the one for faces can be also obtained 

with images of dogs (Diamond and Carey, 1986), which suggests that the face inversion 

effect may not be due to the fact that facial stimuli are subject to special processing because 
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they are facial in nature, but instead that there are other factors, such as expertise, which give 

rise to this effect.    

Diamond and Carey suggested that large inversion effects are only obtained if three 

conditions are met. First, the members of the class of stimuli must share a basic 

configuration, the prototype. Second, it must be possible to individuate the members of the 

class by means of second-order information. And third, individuals must have the expertise 

(in other words, the experience with the stimuli) to exploit this configural information (spatial 

relationships between the main features within a face for example). Several additional studies 

have used Diamond and Carey’s  approach to explain robust cognitive effects such as the 

Thatcher illusion (Thompson, 1980), and other studies have investigated the role of feature 

and configural information under inversion, investigating the importance these types of 

information have in determining the FIE (Searcy and Bartlett 1996; Leder and Bruce, 1998; 

Leder, Huber and Bruce, 2001). 

Tanaka and his colleagues (Tanaka & Farah, 1993; Tanaka & Sengco, 1997) asked 

participants to recognize parts of face images or control stimuli (scrambled faces, inverted 

faces, or houses) in a forced-choice procedure in which the parts were shown: i) in their 

original configuration (Jim's nose in Jim's face), ii) in a distorted configuration (Jim's nose in 

Jim's face with his eyes shifted apart), or iii) in isolation (Jim's nose alone). If participants 

used simple feature-based processing to perform the task, there should not have been any 

differences between the three  stimulus’  conditions.  The  results,  however,  showed  that  

features of upright faces were better recognized in their original configuration than in the 

other two conditions. 

          Gauthier and Tarr (1997) showed that this advantage for a configuration (better feature 

identification in the original than in the distorted configuration) could also be obtained with 

Greebles (an artificial category) once the participants became experts with these stimuli. In 
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addition Gauthier and Tarr (1997) as well as Tanaka et al. (1997) showed that experts could 

display a whole/part advantage with stimuli such as Greebles, cars or cells. Tanaka and 

Gauthier (1997) suggested that, although novices may sometimes rely on first-order relational 

information (for a facial stimulus an example of this would be the nose in relation to the 

mouth) only experts seem to rely on second-order relational information (the variations in 

first-order relations relative to the prototype for that stimulus set). 

In an evaluation of the expertise account proposed by Diamond and Carey (1986), 

Robbins and McKone (2007) attempted to replicate the results obtained by Diamond and 

Carey (1986, Experiment 3) using dog experts. Thus the experimental procedure used was 

very similar to that used before, however, the authors ensured that the experts could not name 

or access any other specific information for any of the dog images contained in the stimulus 

set. This was because in Diamond and  Carey’s  (1986)  study  the  dog  images  were  taken  from  

the archives of the American Kennel Club, and the experts were American Kennel Club 

judges. Thus, it could have been that some of the experts had seen some of those dogs before 

they entered the experiment.  The  results  from  Robbins  and  McKone’s  (2007)  Experiment  1  

showed that the inversion effect for dog experts with dog images was smaller than that for 

faces, in contradiction to what Diamond and Carey (1986) had previously found. Thus, the 

authors suggested  that  Diamond  and  Carey’s  (1986)  results  might  have  been  influenced  by  

the pre-experimental familiarity that some of the experts might had for some of the dogs in 

their upright orientation. This initial familiarity might have assisted experts with these stimuli 

in comparison to inverted dog images and to unfamiliar faces. Clearly Robbins and McKone's 

experiment raises the possibility that there is some special processing mechanism for faces, 

whilst leaving open the possibility of an expertise-based contribution to this effect. 

Some of the strongest (and earliest) support for the expertise account of face inversion 

is reported in McLaren (1997). In that study the author demonstrated that inversion effects 
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similar to those found with faces could be obtained with mono-orientated artificial categories 

(that participants had never seen before entering the laboratory) once the participants in the 

experiment were familiarized with those categories. He generated checkerboard exemplars 

that defined a category, by starting with a randomly generated base pattern (that had 50% 

black squares and 50% white), and then randomly changing black squares to white and white 

squares to black. Participants were trained first of all to categorize these stimuli, by requiring 

them to learn, by trial and error, to distinguish between exemplars derived from one base 

pattern or prototype (A), and exemplars from another randomly generated base pattern (B) 

that was constrained to share exactly 50% of it's squares with A. This ensured that 

participants paid careful attention to the exemplars they encountered, whilst in no way 

encouraging them to differentiate between members of the same category, only between 

members of different categories. Nevertheless, on a subsequent discrimination task that 

involved new exemplars from these familiar categories, participants demonstrated an 

enhanced ability to learn to distinguish between upright exemplars from the familiar category 

(relative to performance on exemplars drawn from a novel category) as predicted on the basis 

of the results obtained by McLaren, Leevers and Mackintosh (1994), who observed a similar 

effect. This advantage for upright exemplars was also accompanied by a disadvantage for the 

inverted exemplars (again relative to control stimuli taken from a novel category) in 

Experiment 1 of this paper, but this result was not replicated in Experiment 2 (though the 

numerical effect was in the same direction). The net consequence was demonstration of a 

strong inversion effect in both experiments for the exemplars (which were themselves novel) 

drawn from the familiar category, in the absence of any such effect for exemplars drawn from 

a novel category derived from different base patterns that otherwise possessed the same type 

of stimulus structure. 
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 McLaren was able to explain the advantage for upright exemplars from the familiar 

category in terms of perceptual learning. Exposure to exemplars from the familiar category 

led to greater within-category discriminability for exemplars from that category, as in 

McLaren, Leevers and Mackintosh (1994). The mechanism for this effect was taken to be 

that proposed in McLaren, Kaye and Mackintosh (1989), namely the differential latent 

inhibition of common elements. Exposure to exemplars from a prototype-defined category 

will, on this theory, lead to profound latent inhibition of the prototypical elements for that 

category. Once this has occurred, when an exemplar drawn from that category is 

encountered, the elements that it shares with the prototype (and there will be many of them) 

will be latently inhibited, making them relatively less salient. The elements (what McClelland 

and Rumelhart, 1985 call micro-features) that are unique to that exemplar will not have been 

encountered very often, will not suffer greatly from latent inhibition, and so will be relatively 

salient. As it is these features or elements that allow one exemplar to be discriminated from 

another (on this account it is the prototypical features that constitute the common elements 

that make exemplars confusable), discrimination between exemplars drawn from the familiar 

category will be enhanced. 

This mechanism gives a good account of the advantage enjoyed by the upright 

exemplars, and it can explain the inversion effect by simply pointing out that this mechanism 

only applies to what it has been experienced, and participants have not experienced inverted 

exemplars during the earlier familiarization phase. It also predicts that if the category is not 

prototype-defined, but instead designed to a) allow categorization on the basis of similarity, 

but b) in such a way that the differential latent inhibition of common elements mechanism 

cannot gain any traction, then no inversion effect should be obtained, and this was found to 

be the case in Experiment 1b. Thus, these results provided an account of inversion effects for 

familiar prototype-defined categories that promised to generalize to other cases such as faces, 
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in line with the expertise-based explanation of the face inversion effect (FIE) pioneered by 

Diamond and Carey (1986). 

As matters stand, however, there are some obstacles in integrating this theory of 

perceptual learning and these results with our understanding of the FIE. The first is that none 

of McLaren's (1997) experiments used the standard old/new recognition memory paradigm 

that is typically used to demonstrate the face inversion effect. To make the connection 

between inversion effects with this artificial category and faces, we need to demonstrate that, 

after exposure, an inversion effect can be obtained with checkerboards drawn from the 

familiar category in this standard paradigm. We also need to confirm that any such effect 

depends on the structure of the category in question, as this would be a result of considerable 

theoretical significance that would rule out a number of other accounts of the role of expertise 

in producing this phenomenon1. Another lacuna that needs to be addressed is whether or not 

the disadvantage observed for inverted exemplars taken from the familiar category is reliable. 

If it is, then this result would be of considerable significance. It would establish that the 

inversion effect had two components (rather than being solely due to an advantage for upright 

exemplars) something that could not easily be demonstrated by any other means given the 

difficulty in establishing the appropriate control baseline for comparison with faces for 

example. If both these issues could be addressed, then this would enhance our understanding 

of perceptual learning and inversion effects, and might also improve our understanding of the 

basis for the FIE. Experiment 1a set out to do just this. 

 

                                                 
1 An example of such a theory would be one that claimed that simple familiarization with a category, 

subsequently enhanced attention to exemplars from that category, which improved later recognition 
performance on those exemplars. 
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Experiment 1a 

Materials 

The stimuli were 16 x 16 checkerboards containing roughly half black and half white 

squares. Four prototypes were randomly generated with the constraint that they shared 50% 

of their squares with each of the other prototypes, and were 50% black squares and 50% 

white. Exemplars were generated from these prototypes by randomly changing squares as 

described in Figure 1. 

Participants 

32 students at the University of Exeter took part in the experiment. The study was 

counterbalanced across participants by splitting them into eight groups. 

 

 

Figure 1 about here please 

 

Procedure 

The  study  consisted  of  a  ‘categorization  phase’,  a  ‘study  phase’,  and  an old vs. new 

recognition  ‘test  phase’.  In  the  categorization  phase,  the  subjects  were  instructed  that  once  

they pressed any key on the keyboard, a set of checkerboard stimuli would appear on the 

screen, one at a time in a random order. Their task was to sort these stimuli into two 

categories  by  pressing  one  of  the  two  keys  (“x”  or  “.”),  and  they  would  get  immediate  

feedback as to whether their response was correct or not. If they did not respond within 4 

seconds, they would be timed out. The presentation of each stimulus was signaled by a 

warning cue (a fixation cross in the centre of the screen) presented for 1 sec. Each participant 

was shown 128 exemplars drawn from two different, prototype-defined categories, with 64 
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exemplars in each category. Subjects were encouraged to scan the whole of each 

checkerboard before categorizing it.  

In order to counterbalance our stimuli, we used 8 participant groups. The first 4 of 

those were presented, during the categorization task, with 64 exemplars drawn from category 

A and 64 exemplars drawn from category B. The second 4 were presented with 64 exemplars 

drawn from each of the C and D categories. After the categorization phase concluded, 

participants proceeded to the study phase. For each participant, the task was to look at a 

number of new exemplars (i.e. exemplars not used during categorization) from one of the two 

familiar categories seen in the categorization task, plus novel exemplars from a category not 

previously encountered.  Thus, for example, Participant Group 1 was presented with a set of 

stimuli that included 32 exemplars (16 upright and 16 inverted) drawn from category A (the 

familiar category for these participants) and 32 exemplars (16 in each of the two orientations) 

drawn from category C (which was novel for them). To counterbalance this, Participant 

Group 5 was presented with 32 exemplars (16 upright and 16 inverted) drawn from category 

C (familiar) and 32 exemplars (16 in both orientations) drawn from category A (novel for that 

group).   

In the study phase each participant was shown with 4 types of exemplars each 

containing 16 stimuli giving a total of 64 exemplars. These were presented one at a time at 

random for 3 seconds. The study conditions were: Familiar Inverted exemplars (by which we 

mean exemplars that had been drawn from a familiar category and then inverted), Familiar 

Upright exemplars (exemplars drawn from the same familiar category without any inversion), 

Novel Inverted exemplars (by which we mean exemplars that had been drawn from a novel 

category and then inverted), and Novel Upright exemplars (exemplars that had been drawn 

from the same novel category and were not inverted). Following the study phase, participants 

were given an old/new recognition task. This involved the 64 exemplars seen in the study 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 
 

phase (32 in an upright and 32 in an inverted orientation, as presented in the study phase), 

plus 64 new exemplars (32 in an upright and 32 in an inverted orientation) split across the 

same four conditions used in the study phase. Each participant saw the stimuli corresponding 

to their participant group in a random order. Participants in the test phase were asked to press 

“.”  on the computer keyboard  if they had seen that checkerboard before in the study phase, 

or  “x”  if  they  had  not seen it, and had 4 seconds in which to do so. Data was collected on 

accuracy and latency for recognition performance across the test recognition phase.   

Results 

In all the experiments reported in this paper, the analysis of the response latencies 

does not add anything to the analysis of the accuracy scores (which were our primary 

measure), and nor do they imply any speed/accuracy trade-off that might complicate our 

interpretation of the accuracy data. Following McLaren (1997), we expected an inversion 

effect (higher score for upright than for inverted) for exemplars drawn from the familiar 

category, no inversion effect for those from the novel category, and a significant difference 

between the effects of inversion for familiar and novel categories (i.e. an interaction). We 

also expected performance on upright exemplars from the familiar category to be better than 

on those drawn from the novel category, and inverted exemplars drawn from a familiar 

category to be worse than their controls based on the 1997 Experiment 1 results.  In all the 

behavioral experiments reported here the statistical tests are one-tailed with an alpha of .05 

unless otherwise noted, as in most cases we have a clear basis for predicting the direction of 

effect expected. We give the relevant F ratios and MSE, or the t value and the standard error 

for the effect tested. Simple effects analyses are uncorrected for multiple comparisons, and 

are also those used in McLaren (1997). We also offer an estimate of effect size based on 

Cohen's d for all comparisons that are p<.1 or better. This is computed using the pooled 

variance formula employing the between-subject variances (even when the comparison itself 
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uses a paired-samples test, as by doing this we avoid inflation of the effect size due to the 

correlation between samples), and we also give the appropriate confidence interval. 

For completeness, the mean latencies for each condition in this experiment were (in 

msec): Familiar Upright = 2820; Familiar Inverted = 2817; Novel Upright = 2802; Novel 

Inverted = 2769. The data from all 32 participants were used in the signal detection d' 

analysis of the test phase where a d’ of 0 indicates chance level performance. In the 

categorization phase, the mean percentage correct was 67% (but note that this is a figure 

across the entire 128 trials of trial and error learning, and that the purpose of this phase is to 

expose participants to the stimuli, we are not especially concerned about categorization 

accuracy). As predicted, ANOVA revealed a significant interaction between category type 

and orientation, F(1, 31) = 3.64, MSE = 0.170, p = .032, d = 0.53, 95% CI = 0.35, 0.71. 

Figure 2 gives the results from the test phase. As expected, a significant difference in d’  was 

found for the upright versus inverted familiar category exemplars, t(31) = 1.895, SE = 0.098, 

p = .033, d = 0.40, 95% CI = 0.24, 0.56. No significant inversion effect was found for novel 

category exemplars, t(31) = 1.08, SE = 0.83, p = .29. To explore these results further the 

effect of category type on the recognition of upright exemplars was also analyzed by means 

of planned comparisons on d’ scores. Familiar upright exemplars were not recognized 

significantly better than unfamiliar upright exemplars, t(31) = 1.441, d = 0.35 lower limit = 

0.19 upper limit = 0.52, SE = 0.115, p =.08, though there was a clear trend in that direction. 

There was also a non-significant trend for familiar inverted exemplars to be worse than novel 

ones, t(31) = 0.963, SE = 0.116 , p = .1712.  

We also performed a complementary Bayesian analysis on our data to provide 

additional information on the extent to which they provide evidence that either increases or 
                                                 
2 The reason why we compare the upright checkerboards from familiar and novel categories, and inverted 

exemplars in the same way, is that, because of the counterbalancing, these sets of stimuli correspond to one 
another across participants, thus controlling for random variations in difficulty due to fluctuations in stimulus 
similarity. In other words, the set of Upright Familiar exemplars for one participant are the Upright Novel 
exemplars for another etc. 
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decreases our confidence in the effects reported in the 1997 paper. Our assumptions in 

running these analyses were that 1) the direction of the effect could be specified and would 

be that observed in the 1997 paper, and 2) that the d' differences were normally distributed 

with a standard deviation corresponding to the differences observed in the most comparable 

study from the 1997 paper. We felt that this was the right approach given that the stimuli 

were generated according to the same principles as used in 1997, but the procedures used in 

this experiment are rather different to those employed by McLaren (1997). Using these 

assumptions, we employed the Bayes factor calculator provided by Dienes (2011) with a 

half-normal distribution, and this gave a Bayes factor of 3.18 for the contrast between upright 

familiar and inverted familiar category exemplars, confirming that we can be confident of 

this inversion effect. The Bayes factor for the comparison between upright familiar and 

upright novel exemplars was 1.75, again indicating that we have more evidence (though we 

could not describe it as compelling at this point) for the 1997 effect. The Bayes factor 

obtained by contrasting novel inverted and familiar inverted exemplars (1.35) suggests that 

we have some fairly weak additional evidence for this effect as well. We will continue to 

provide Bayes factors for these effects as we present the evidence from the studies reported in 

this paper, in order to allow a judgment to be made on whether the 1997 results are confirmed 

by the current set of experiments.  

 

Figure 2 about here please 

 

Discussion 

We have replicated the original McLaren (1997) effect with checkerboards, but this 

time using exactly the same recognition paradigm as is normally used for face recognition 

studies. There is a significant inversion effect for the familiar checkerboards, but no inversion 
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effect for novel checkerboards. Numerically the results of this experiment are entirely in line 

with those of Experiment 1a in the 1997 paper, but the advantage for upright exemplars just 

fails to reach significance here, and the disadvantage is also unreliable. Nevertheless, these 

results do increase our confidence in the first of these effects, and do not undermine our 

confidence in the second (whilst not providing much additional support for it either). Before 

going on to consider these issues further, we first report a replication of Experiment 1b from 

the 1997 paper using the current recognition memory procedures, so that we are in a position 

to make as full a comparison as possible between our results now and the data reported then. 

 

Experiment 1b 

The same procedure was used again, but this time there was an alteration in the 

method used to generate the stimuli. We used a variant of the algorithm for generating 

‘shuffled’  stimuli  outlined  in  McLaren  (1997),  as  this  produced  stimuli  that  were  as  easy  to  

classify as prototype-defined stimuli, but they did not average to the base pattern used to 

generate them, and so did not, as a class, possess a prototype themselves. In McLaren (1997) 

all 16 rows of a base pattern were randomly re-ordered to create each exemplar, which 

guaranteed there was not prototype for that category. The result was no reliable inversion 

effect, and the inversion effect obtained with prototype-defined categories was significantly 

larger than the inversion effect with shuffled categories, confirming that this effect depended 

on familiarity with a prototype-defined category. This time we used a restricted version of 

this algorithm in which exemplars were constructed by performing a random permutation of 

3 horizontal lines of a base pattern (we used the prototypes from Experiment 1a) to give an 

exemplar of that category.  We only shuffled three rows, to keep the number of squares that 

(on average) changed the same as in Experiment 1a. The procedure was that two rows were 

identified at random and swapped, and then a new row was identified, and swapped with one 
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of the previous two. The result was that on average half the squares in each of the three rows 

would be altered, making 24 in all. Thus, this experiment is, in some sense, the control for 

Experiment 1a, though as will become apparent the ease of classification produced by using 

these materials more nearly matched that of Experiment 2. Because this algorithm was based 

on the McLaren (1997) shuffling algorithm, we predicted no inversion effect for either 

familiar or novel category exemplars, and predicted an interaction with Experiment 1a similar 

to that in McLaren (1997). We return to this point in the discussion. 

Participants 

32 students at the University of Exeter took part in the experiment. The study was 

counterbalanced, as in Experiment 1a, by splitting participants into 8 groups. 

Results 

The data from all 32 subjects was used for the analysis. In the categorization phase, 

the mean percentage correct was 77%. Thus, as we predicted, the stimuli were at least as easy 

to categorize as stimuli in Experiment 9a. Equally however, as Figure 3 suggests, there was 

no significant difference in d-prime means for familiar category exemplars, or for novel 

category exemplars, confirming our predictions. The crucial interaction, of course, is not that 

within Experiment 1b, but emerges when we compare the results of Experiment 1b with those 

of Experiment 1a. In McLaren (1997) a similar comparison showed that the inversion effect, 

defined as the familiarity by orientation interaction, obtained with exemplars drawn from a 

prototype-defined category, was significantly greater than that obtained with exemplars 

drawn from a category that was not defined by a prototype. If we compute a 2x2x2 ANOVA, 

to find the Experiment by Familiarity by Orientation interaction for Experiments 1a and 1b, 

we find a marginally significant result, F(1, 62) = 2.721, MSE = 0.215, p = .052, d = 0.50, 

95% CI = 0.27, 0.91, suggesting that this might be the case here as well. Thus, we have some 

supporting evidence enabling us to claim that the inversion effect depends on both the 
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category being familiar and being based on a prototype. Calculating the Bayes factor for this 

analysis based on the 1997 priors gives a Bayes factor of 2.50, also suggesting that there is 

good, but not conclusive evidence for this effect. 

 

Figure 3 about here please 

 

Discussion 

Experiment 1b did not produce any of the effects observed in Experiment 1a, despite 

our controlling for the number of squares changed to produce the exemplars and ensuring that 

the categorization task was at least as easy in 1b as it was in 1a. Our argument is that this is 

because the different algorithm for generating exemplars produces a category with a different 

structure, one in which the influence of any prototype is considerably weaker. We defer a 

detailed discussion of how the theory of perceptual learning in McLaren, Kaye and 

Mackintosh (1989), which was further developed in McLaren and Mackintosh (2002), and 

McLaren, Forrest and McLaren (2012) can explain these effects until the General Discussion 

later on, because our first priority is to establish this theoretically important result beyond 

reasonable doubt. Experiments 1a and 1b were a replication of Experiment 1 from McLaren 

(1997) using our recognition memory paradigm; we now varied our stimuli and experimental 

design so as to strengthen our effect size and eliminate some possible alternative explanations 

of this result. 

The first issue we tackled was that the inversion effect in Experiment 1a was not as 

substantial as we would like, and we speculated that this may be because participants found it 

too hard to recognize the checkerboards in this experiment. Because of this, performance on 

all the different types of checkerboard became too close to floor to make it possible to decide 

if inverted checkerboards from the familiar category were actually harder to recognize than 
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inverted checkerboards from the novel category, i.e. to detect whether the disadvantage for 

inverted checkerboards drawn from a familiar category reported in McLaren (1997) was real. 

Experiment 2 aimed to address this issue. 

 

Experiment 2 

Experiment 2 was a replication of Experiment 1a, but this time we tried to make the 

checkerboards  “clumpier”,  with  the  intention  of  making  the stimuli easier to recognize (see 

Figure 4). We hoped to obtain a stronger inversion effect for familiar checkerboards than the 

one obtained in Experiment 1a. 

Materials 

In this experiment a randomly chosen 96 squares (up from the 48 used in Experiment 

1a) were set at random to generate each exemplar from the base prototype, and the prototypes 

themselves had stronger differentiation into black and white areas (see Figure 4). This was 

accomplished by making the probability of a single square being a particular color depending 

on the color of its neighbors, so that if they were predominantly black, then that square had a 

greater chance of being black, and vv. for white. The result was a set of prototype patterns 

that were still 50% black and 50% white, and still overlapped 50% with one another, but with 

the squares of a particular color clumped together. 

 

Figure 4 about here please 

Participants  

32 students at the University of Exeter took part in the experiment. The study was 

counterbalanced, as in Experiment 1a, by splitting participants into 8 groups. 
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Procedure 

This was exactly the same as that used in Experiment 1a.  

Results 

For completeness, the mean latencies for each condition in this experiment were (in 

msec): Familiar Upright = 2787; Familiar Inverted = 2804; Novel Upright = 2796; Novel 

Inverted = 2860. The data from all 32 subjects was used in the analysis. In the categorization 

phase, the mean percentage correct was 77%, indicating that our manipulation of the stimuli 

had made them easier to classify compared to Experiment 1a (and identical, in terms of ease 

of classification, to Experiment 1b). Results from ANOVA once again showed a significant 

interaction between category type and orientation, F(1, 31) = 4.13, MSE = 0.182, p =.025, d 

= 0.50, 95% CI = 0.28, 0.71. Figure 5 gives the results for the mean d' score by stimulus type. 

Planned comparisons were used to examine whether or not there was a significant inversion 

effect for familiar category exemplars. A reliable difference in d' emerged for the upright 

versus the inverted familiar category exemplars, t(31) = 2.845, SE = 0.095, p = .004, d = 

0.65, 95% CI = 0.50, 0.79. No significant inversion effect was found for novel category 

exemplars, t(31) = 0.284, SE = 0.119, p = .77. To explore this further the effect of category 

type on the recognition of upright exemplars was also analyzed. Familiar upright exemplars 

were not recognized significantly better than unfamiliar upright exemplars, t(31) = 0.977, SE 

= 0.091, p=.17, but novel inverted exemplars were  recognized better than familiar inverted 

exemplars, t(31) = 2.030, SE = 0.106, p =.025, d = 0.49, 95% CI = 0.34, 0.64.  

 

Figure 5 about here please 
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We also computed Bayes factors for these contrasts using priors based on Experiment 

1a. The Bayes factor for the inversion effect in the familiar category was 20.88, indicating 

that we can now have a great deal of confidence in this finding. For the novel category, the 

Bayes factor for the inversion effect was 0.25, indicating that the evidence supports the null 

hypothesis of no effect. The interaction for these two effects has an associated Bayes factor 

of 4.47, suggesting that we can also be confident that the inversion effect in the familiar 

category is bigger than that in the novel category. The Bayes factor for the contrast between 

upright exemplars from the familiar and novel categories is 1.15, suggesting that we have no 

decisive evidence on this effect, but that for comparison of the inverted stimuli is 3.74, 

indicating that we are now in a position to be confident that performance in the recognition 

task on the inverted exemplars drawn from the novel category is superior to that on the 

inverted exemplars drawn from the familiar category. 

Discussion 

Experiment 2 replicated and strengthened the findings obtained in Experiment 1a. We 

were able to increase the size of the inversion effect for checkerboards drawn from a familiar 

category by making them easier to recognize. Thus, our results confirm that an inversion 

effect can be obtained after familiarizing participants with a prototype-defined category. We 

are also able to comment further on the basis for this effect. The trend for familiar upright 

exemplars to be better recognized than novel upright exemplars was not significant (though 

the effect was once again numerically in the same direction), but this time inverted familiar 

exemplars were significantly worse recognized than novel inverted exemplars. Our analysis 

is that the basis of the inversion effect obtained with prototype-definedcategories may well 

be, in part, due to some advantage for the upright exemplars from the familiar category, but 

also has a component due to the disadvantage suffered by inverted exemplars from a familiar 

category. The former effect was significant in McLaren's (1997) results, and though not 
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independently significant in the two relevant studies reported so far, the combined Bayes 

factor for this effect is now over 2. Thus, our evidence on this point, whilst still not 

compelling, is in line with that in McLaren (1997). If we perform a similar analysis for the 

disadvantage accruing to inverted exemplars drawn from a familiar category and combine the 

two experiments we get a Bayes factor of over 5, suggesting we can have confidence in this 

effect. This strongly suggests that the effect observed by McLaren (1997) in one of his 

experiments was real.  

With this in mind, if  we  look  back  at  Yin’s  (1969)  study, and focus on his Experiment 

1, we note that he found that normal faces in an inverted orientation were more difficult to 

recognize than other inverted sets of stimuli. A major criticism that can be (and was) leveled 

at  this  finding  is  that  the  sets  of  stimuli  used  in  Yin’s  (1969)  study  i.e.  for  example  pictures  of  

houses or airplanes, did not match normal faces in terms of structure and the information 

contained in the stimuli. For example, the number of features and the complexity of their 

configurations varied widely across these stimuli. However, given that in our experiments we 

have found a substantial disadvantage for inverted checkerboards taken from a familiar 

category, this suggests that Yin's (1969) finding reflected some underlying reality, despite the 

lack of control in his experiment.  

 

Experiment 3 

Our conclusions from Experiments 1a and 1b depend, in part, on the cross-experiment 

comparison between them. The aim of Experiments 1a and 1b was to replicate McLaren's 

(1997) result, and demonstrate that the inversion effect requires that the exemplars belong to 

familiar categories defined by a prototype, and will not occur for rather similar sets of stimuli 

that lack this property. But, as matters stand, it could be that our result (and McLaren's 

original result) was due to the two experiments drawing on different populations by virtue of 
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their being run at different times. We would also concede that the effect size in these 

experiments was not large, and that this is probably due to using the less "clumpy" 

checkerboards employed by McLaren (1997). Thus, in the next experiment (Experiment 3) 

the logical step was to run a replication of Experiments 1a and 1b, but this time using the type 

of checkerboards used for Experiment 2, and to ensure that the two conditions were run 

together within the same experiment.  

Materials 

For Experiment 3 the categories of checkerboards used in were the same as used in 

Experiment 2. Thus, we already had the four sets of exemplars generated from Category 

prototypes A, B, C and D. Our next task was to construct matched sets of shuffled exemplars. 

Recall that in Experiment 1b, to change 24 squares (on average) we shuffled three rows. First 

two  were  selected  and  swapped  (let’s  call  them  1  and  2),  then  a  new  row  was  selected  (call  it  

3) and 2 and 3 were swapped. This meant that a maximum of 48 squares could change, and 

on average 24 would. In what we will call the New Shuffled exemplars used in Experiment 

3b, on average 48 squares are changed, with a maximum of 96 possible, in order to match the 

similarity structure of the prototype-defined sets of exemplars. This was done by iterating the 

procedure employed in Experiment 1b. Given that each time we selected another row, we 

changed (on average) another 8 squares, 6 rows had to be altered in total to change an 

average of 48 squares. 

Participants 

48 students at the East China Normal University took part in the experiment.  

Procedure 

The procedure within the different experimental conditions was exactly the same as in 

the previous experiments reported in this paper. Thus, the participants were presented with a 
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categorization task, followed by a study phase and finally there was an old/new recognition 

task. However this time 24 of the participants performed the task with prototype-defined 

checkerboards, and 24 participants performed the task with shuffled checkerboards. The 

participants in each group were matched in terms of the stimuli used (i.e. in the allocation of 

prototypes to conditions for that participant). The only difference is in how the exemplars 

were generated from those prototypes.  

Results 

The data from all 48 subjects was used in the analysis. The results from Experiment 

3a show that in the categorization phase, the mean percentage correct was 82%, confirming 

what was already obvious in Experiment 2, thus that our construction of the stimuli had made 

them easier to classify compared to Experiment 1a. The mean latencies for each condition in 

this experiment were (in msec): Familiar Upright = 2785; Familiar Inverted = 2851; Novel 

Upright = 2820; Novel Inverted = 2720. ANOVA on the test d' revealed a significant 

interaction between category type and orientation, F(1, 23) = 5.389, MSE = 0.430, p =.014, d 

= 0.74, 95% CI = 0.41, 1.08. Figure 6 gives the results for the mean d' score by stimulus type 

for this experiment. Planned comparisons were used to examine whether or not there was a 

significant inversion effect for familiar category exemplars. A reliable difference in d' 

emerged for the upright versus the inverted familiar category exemplars, t(23) = 3.381, SE = 

0.146, p = .001, d = 0.94, 95% CI = 0.73, 1.15. No significant inversion effect was found for 

novel category exemplars, t(23) = 0.659, SE = 0.192, p = .51. To explore the reliable 

inversion effect further the effect of category type on the recognition of upright exemplars 

was also analyzed. Familiar upright exemplars in this experiment were not recognized 

significantly better than unfamiliar upright exemplars, t(23) = 0.737, SE = 0.226, p = .23, but 

novel inverted exemplars were  recognized  better than familiar inverted exemplars, t(23) = 

2.295, SE = 0.198, p =.015, d = 0.73, 95% CI = 0.47, 0.98.  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



23 
 

Turning to Experiment 3b, in the categorization phase, the mean percentage correct 

was 88%. Thus, these stimuli were at least as easy to categorize as the stimuli in Experiment 

3a. However, as Figure 6 suggests, there was no significant difference in d-prime means for 

familiar category exemplars, or for novel category exemplars, confirming our predictions. 

The 2x2x2 (Experiment by Familiarity by Orientation) ANOVA gave an F(1, 46) = 3.253, 

MSE = 316, p = .039, d = 0.52, 95% CI = 0.07, 0.97. However, in this case because 3a and 3b 

are actually in the same experiment, and, as mentioned previously, each participant in one 

group can be matched in terms of the stimuli used (i.e. the allocation of prototypes to 

condition) to a participant in the other, we can also analyze this result by using a matched 

samples test. The results of the Experiment (a vs. b) by Familiarity by Orientation interaction 

using this approach gives a t(46) = 2.060, SE = 0.276, p = .022, strongly supporting the claim 

that the inversion effect depends on both the category being familiar and its being based on a 

prototype.  

 

Figure 6 about here please 

 

Calculating the Bayes factor for this analysis based on the Experiment 1a and 1b 

priors now gives a Bayes factor = 6.11, suggesting that there is strong evidence for this effect. 

The Bayes factor for the inversion effect in the familiar category in Experiment 3a was 55.38, 

indicating that we can have a great deal of confidence in this finding. For the novel category, 

the Bayes factor for the inversion effect was 1.12, indicating that the evidence is indifferent 

with respect to the null hypothesis of no effect. The interaction for these two effects has an 

associated Bayes factor of 6.92, suggesting that we can also be confident that the inversion 

effect in the familiar category is bigger than that in the novel category. The Bayes factor for 
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the contrast between upright exemplars from the familiar and novel categories is 1.17, 

suggesting that we have no evidence either way on this effect from this result (but the 

cumulative effect of these Bayes factors being over 1 is starting to tell as we shall see). The 

Bayes factor for the comparison of the inverted stimuli in Experiment 3a is 3.90, confirming 

that performance in the recognition task on the inverted exemplars drawn from the novel 

category is superior to that on the inverted exemplars drawn from the familiar category. 

Discussion 

Experiment 3 has essentially confirmed our predictions. Thus, the results show that 

the inversion effect requires that the exemplars are drawn from a familiar, prototype-defined 

category. Experiment 3 supports the main findings of Experiments 1a and 1b, and of 

Experiment 1 in McLaren (1997). It also confirms that the sets of checkerboards used in 

Experiment 2 are easier to recognize and show stronger effects compared to the effect size in 

Experiment 1a. We defer any further discussion of these effects until we have considered our 

final experiment, which seeks to investigate the neural correlates of the inversion effect with 

checkerboards drawn from a familiar, prototype-defined category, now that we are quite sure 

that this combination of factors is necessary to produce this effect. Our hypothesis is that we 

will see an effect of inversion in the N170 to the familiar checkerboards, and we begin with a 

short review of the literature germane to this hypothesis. 

 

Experiment 4 

Several studies on face recognition using ERPs have demonstrated a difference in the 

ERPs to faces and objects at between 150-200 ms in bilateral occipito-temporal regions 

(Eimer, 2000; Rossion, Gauthier, Tarr, Despland, Bruyer, Linotte, & Crommelinck, 2000). 

Bentin, Allison, Puce, Perez, McCarthy (1996) investigated the response characteristics of the 
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N170 using a target detection task in which various pictures of faces and other objects (e.g. 

flowers,  cars)  were  presented  and  participants were monitored for the appearance of 

butterflies  (target)  in  the  sequence.  In  that  early study, the N170 response was small for non-

face stimuli, as the negative  deflection  did  not  cross  the  zero  baseline  level  of  the  EEG.  Since  

then, ERP studies have obtained large and clear negative N170 components following the 

presentation of faces as well as non-face objects (De Haan, Pascalis, & Johnson, 2002; 

Tanaka & Curran, 2001; Rossion, Gauthier, Goffaux, Tarr, & Crommelinck, 2002). N170 

responses have been shown for objects (e.g. houses, chairs, cars) at latencies comparable to 

those for images of faces, but always at smaller amplitudes. 

Rossion et al. (2000) found that the N170 is both increased and delayed when faces 

were presented after inversion, but that this difference was not obtained for inverted classes 

of objects for which participants were not experts e.g., shoes. This effect of inversion on the 

N170 for faces is robust, and it has been obtained in several ERP studies (Rossion, Delvenne, 

Debatisse, Goffaux, Bruyer, Crommelinck, Guerit, 1999; Rossion et al., 2000; Taylor, 

McCarthy, Saliba, & Degiovanni, 1999).  

In 2002 Rossion et al., investigated whether this inversion effect reflects mechanisms 

specific to faces, or whether it could be extended to other stimuli as a function of visual 

expertise. ERPs were recorded in response to upright and inverted images of faces and novel 

objects (Greebles). The study used 10 subjects before and after 2 weeks of expertise training 

with Greebles. The N170 component was elicited for both faces and Greebles. The results 

confirmed the previous findings in the literature, in that the N170 was delayed and larger for 

inverted faces compared to upright ones at recording sites (T5 and T6) in both hemispheres. 

The new finding was that Greebles elicited the same effect on inversion, but only for experts 

and primarily in the left hemisphere. The authors proposed that the mechanisms underlying 

the FIE on the N170 can be extended to visually homogeneous (share a configuration) non-
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face object categories, at least in the left hemisphere, but only when such mechanisms are 

recruited by expertise. However the main issue that arises from these results is that it could be 

objected that stimuli such as Greebles are still quite similar to faces; in the way that they 

share a basic configuration of features which varies, and in that both can be considered 

mono-oriented stimuli. More recently Busey and Vanderkolk (2005) investigated the effect of 

visual  expertise on the N170 using mono-oriented fingerprint stimuli. In Experiment 2 of 

their study, upright and inverted images of faces and fingerprints were shown to experts and 

novices. The N170 component was reliably elicited but somewhat delayed over the right 

parietal-temporal regions when faces were presented in an inverted orientation, confirming 

other the findings in the literature. In addition   the inverted fingerprints elicited a similarly 

delayed N170 over the right parietal-temporal region in experts, but not in novices.  

Thus, in Experiment 4, we investigated the electrophysiological correlates of our 

behavioral results, by looking to see if we could find an N170 for our familiar checkerboards 

that was increased and delayed by inversion. We also noted any left-right localization for any 

such effect. 

Materials 

The categories of checkerboards used in Experiment 4 were the same as those used in 

Experiments 2 and 3a.  

Participants 

32 students at the University of Exeter took part in the experiment.  

Procedure 

The experimental procedure was identical to the one used in Experiment 2, except 

that we doubled up the number of trials to allow for better signal averaging and to obtain a 

more reliable ERP. To make this possible, the experiment was split into two parts: each 
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including a categorization task followed by a study phase and an old / new recognition task. 

Straight after the first part participants were presented with the second part that used a 

different set of stimuli. The categories of stimuli were counterbalanced across the two 

experimental parts in such a way that if a category was processed in the first part then that 

category was not presented again in the second part.  

EEG apparatus. 

The EEG was sampled continuously at 500 Hz with a bandpass of 0.016-100 Hz, the 

reference was at Cz and the ground at AFz using 64 Ag/AgCl active electrodes (ActiCap, 

Brain Products, Munich, Germany) and BrainAmp amplifiers (Brain Products, Munich, 

Germany). There were 61 electrodes on the scalp in an extended 10-20 configuration and one 

on each earlobe.  Their  impedances  were  kept  below  10kΩ.  The  EEG  was  filtered  offline  with  

a 20 Hz low-pass filter (24 dB/oct) and re-referenced to the linked ears.  

EEG analysis. 

Peak amplitudes of the N170 in study and recognition phase were examined for 

differences between the experimental conditions. To improve the estimates of N170 

amplitude and latency given the relatively small number of ERP segments in each condition 

(leading to a low signal-to-noise ratio), N170 extraction was aided by linear decomposition of 

the EEG by means of Independent Component Analysis (ICA, Bell & Sejnowski, 1995; for 

the application of ICA for the identification of ERP components, see Debener, Ullsperger, 

Siegel, Fieler, Von Cramon, & Engel, 2005, and Lavric, Bregadze, & Benattayallah, 2010). 

ICA is predicated on the assumption that the EEG at each electrode represents a mixture of 

temporally  independent  signals  (components).  It  thus  attempts  to  determine  the  ‘unmixing’  

square  matrix  whose  multiplication  with  the  data  results  in  the  ‘original’  independent  

components. The number of entries for each dimension of the unmixing matrix is equal to the 

number  of  EEG  electrodes,  meaning  that  each  row  is  a  spatial  filter  that  ‘unmixes’  one  
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independent component from the EEG electrode data and the number of recovered 

components is equal to that of the electrodes. Because the unmixing matrix values relate 

electrodes to components, they are also  referred  to  as  ‘ICA  weights’.  An  important  aspect  of  

the  procedure  is  what  constitutes  ‘independence’of  the extracted components. We used the 

Infomax version of ICA (Bell &Sejnowski, 1995; implemented in the Brain Analyzer 

software), which minimizes the mutual information (maximizes entropy) between 

components. Infomax comprises a neural network algorithm, with the EEG data at each 

electrode as input, a sigmoidal function of each independent component as output, and the 

unmixing matrix as the input-output connection weights. The algorithm iteratively adjusts the 

weights using gradient descent to maximize the entropy (independence) of the output (the 

components) (see Brown, Yamada, & Sejnowski, 2001). 

ICA was run separately for each participant using all scalp channels and the entire 

dataset (not only the target ERP segments). The resulting ICA components were segmented 

into 600-ms epochs time-locked to stimulus onset and baseline-corrected relative to the mean 

amplitude in the 100 ms preceding the stimulus. For analyses of the recognition phase, 

segments associated with incorrect responses were discarded (there were no responses in the 

study phase). The remaining EEG segments were averaged for every participant and 

experimental condition. In each participant, we identified ICA components that: (1) showed a 

deflection (peak) in the N170 time-range (at 150-200 ms following stimulus onset), and (2) 

had a scalp distribution containing an occipital-temporal negativity characteristic of the N170 

(the scalp distributions of components are the columns of the inverted unmixing matrix). This 

resulted in 1-4 ICA components corresponding to the N170 identified in most participants 

(mean 2.6; SD 1) - these were back-transformed into the EEG electrode space (by 

multiplying the components with the inverted unmixing matrix that had the columns 
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corresponding to other components set to zero) and submitted to statistical analysis of N170 

peak amplitude and latency. 

Results 

Behavioral results.  

The data from all 32 subjects was averaged across the two parts of the experiment and 

used in the analysis.  In the categorization phase, the mean percentage correct was 88%. The 

mean latencies for each condition in this experiment were (in msec): Familiar Upright = 

2920; Familiar Inverted = 2847; Novel Upright = 2877; Novel Inverted = 2893. ANOVA on 

the d' scores from the test phase showed a significant interaction between category type and 

orientation, F(1, 31) = 4.91, MSE = 0.101, p =.017, d = 0.51, 95% CI = 0.34, 0.68. Planned 

comparisons were used to examine whether or not there was a significant inversion effect for 

familiar category exemplars. A reliable difference in d' emerged for the upright versus the 

inverted familiar category exemplars, t(31) = 2.988, SE = 0.083, p=.002, d = 0.76, 95% CI = 

0.64, 0.87. No significant inversion effect was found for novel category exemplars, t(31) = 

0.003, SE = 0.087, p = .498. To explore this further, the effect of category type on the 

recognition of upright exemplars was also analyzed. Familiar upright exemplars were not 

recognized significantly better than unfamiliar upright exemplars, t(31) = 1.179, SE = 0.076, 

p = .12, but there was a significant tendency for novel inverted exemplars to be better 

recognized than familiar inverted exemplars, t(31) = 1.803, SE = 0.088, p = .04, d = 0.47, 

95% CI = 0.35, 0.48. The upshot of these results is that the behavioral data for this 

experiment strongly resembles that of our previous experiments when no ERPs were 

recorded. 

A complementary Bayesian analysis using Experiment 2 to generate priors revealed 

that the Bayes factor for the effect of inversion on familiar checkerboards was 35.74, the 

effect of inversion on novel checkerboards had an associated Bayes factor of 0.50 and that 
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the Bayes factor for the interaction was 5.97. The Bayes factor for the comparison between 

upright stimuli was 1.59, and that for inverted stimuli was 2.86. Thus, the overall Bayes 

factor (obtained by multiplying the individual Bayes factors from each experiment) for the 

comparison between familiar upright stimuli and novel upright stimuli is now 3.74 and hence 

we can be confident that our procedures produce an inversion effect that has a component 

attributable to an advantage for the familiar upright stimuli; and as the Bayes factor for the 

comparison between the inverted stimuli now comfortably exceeds 10 (it's actually 56.31), 

we can be very confident that there is a component attributable to a disadvantage for familiar 

inverted stimuli. Figure 7 shows the results for the mean d' score by stimulus type, and the 

pattern is very similar to that obtained in Experiments 1a, 2 and 3a. 

 

Figure 7 about here please 

 

N170 analysis. 

 N170 latency and amplitude analyses were run on electrode PO7 (Left occipito-

temporal site) and on electrode PO8 (Right occipito-temporal site). We report the analysis 

from the study phase of Experiment 4. This is because significant differences on the N170 

were not found in the recognition task; not an entirely unexpected result given that, if the 

modulation of the N170 reflects an effect of perceptual expertise, then this should occur when 

simply perceiving the stimulus, and should be easiest to detect during the study phase. This is 

because the effect should not be tied to having to do anything in particular, except perhaps 

attend to the stimulus, and by the recognition phase our familiarity manipulation will have 

been somewhat diluted by experience of all the stimuli in the study phase. Figure 7 shows the 

N170 recorded during the study phase of this experiment. Table 1 gives latency and 
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amplitude values for both the study and recognition phases of Experiment 4. All analyses 

reported are two-tail (because we do not have prior data for ERPs to these stimuli). 

Latency analysis on PO7.  

There was a trend for the Orientation by Familiarity interaction, F (1, 31) = 2.884, 

MSE = 65.931, p = .09, d = -0.20, 95% CI = -4.95, 4.51. There was also trend for the N170 to 

familiar inverted stimuli to peak later than the one for familiar upright stimuli, t(31) = 1.656, 

SE = 2.302, p = .10, d = 0.31  95% CI = -3.90, 4.52. No significant difference in latency was 

found for novel stimuli t(31) = 0.419, SE = 2.538, p = .339.  

 Peak amplitude analysis for PO7.  

ANOVA revealed a trend for the main effect of Familiarity, F(1, 31) = 3.730, MSE = 

0.563, p = .06, and a main effect of Orientation, F(1, 31) = 13.094, MSE =0.188, p = .001. 

The difference in peak amplitudes between upright and inverted checkerboards was 

significantly larger when the stimuli were drawn from a familiar category than from a novel 

one, Orientation by Familiarity interaction, F(1, 31)= 4.469, MSE = 0.282, p = 0.033, d = 

0.61, 95% CI = 0.34, 0.87. The effect of inversion was reliable for familiar categories, t(31) = 

3.934, SE = 0.123, p < .001, d = 0.73, 95% CI = 0.50, 0.96; with more negative amplitudes 

for inverted (-0.558V) compared to upright (-0.072V) checkerboards. For novel categories 

the inversion effect did not approach significance t(31) = 0.574, SE = 0.118, p = .285. 

Finally, there was a significant difference between novel inverted stimuli and familiar 

inverted stimuli, t(31) = 2.605, SE = 0.178, p = .014, d = 0.62, 95% CI = 0.36, 0.88; with 

more negative amplitudes for familiar inverted (-0.558V) compared to novel ones (-

0.093V). 

Latency analysis on PO8.  

ANOVA revealed a trend for the Orientation by Familiarity interaction F(1, 31) = 

3.619, MSE = 63.123, p = .06, d = -0.35, 95% CI = -.5.54, 4.82. A significant delay in the 
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N170 was found for familiar inverted checkerboards, with them peaking 6ms later than 

familiar upright stimuli, t(31) =  2.539, SE = 2.215, p = .016, d = -0.43, 95% CI = -.4.01, 

4.88. No significant difference in latency was found for novel stimuli t(31) = 0.093,  SE = 

3.014, p = .46.  

 Peak amplitude analysis for PO8. 

ANOVA revealed a main effect of Familiarity, F(1, 31) = 6.077, MSE = 0.384, p = 

.019, and a main effect of Orientation, F(1, 31) = 7.229, MSE = 0.370, p = .011. Here as well 

the difference in peak amplitudes between upright and inverted checkerboards was 

significantly larger when the stimuli were drawn from a familiar category rather than from a 

novel one, Orientation by Familiarity interaction F(1, 31) = 6.66, MSE = 0.360, p = .015, d = 

0.64, 95% CI = 0.34, 0.93. The effect of inversion was reliable for familiar categories, t(31) = 

4.178, SE = 0.134, p < .001, d = 0.71, 95% CI = 0.44, 0.98; with more negative amplitudes 

for inverted (-0.557V) compared to upright (0.005V) checkerboards.  For novel categories 

the inversion effect did not approach significance t(31) = 0.094, SE = 0.165, p = .46. Finally 

there was a highly significant difference between novel inverted stimuli compared to familiar 

inverted stimuli, t(31) = 3.800, SE = 0.143, p < .001, d = 0.67, 95% CI = 0.40, 0.96; with 

more negative amplitudes for familiar inverted (-0.557V) compared to novel inverted 

stimuli (-0.013V). 

 

 

Figure 8 about here please 

 

 

Table 1 about here please 
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Discussion 

The behavioral results of Experiment 4 confirm that we can obtain a significant 

inversion effect using stimuli drawn from familiar prototype-defined categories of 

checkerboards, and that this inversion effect is significantly greater than that for novel 

categories of checkerboards. Correspondingly, the ERP results show that checkerboards from 

familiar categories elicit a significant inversion effect in the N170, which is larger than that 

elicited by checkerboards from novel categories. It would seem, then, that the N170 can serve 

as a neural signature of the inversion effect obtained with checkerboards drawn from 

familiar, prototype-defined categories. Hence, we conclude that we have clear evidence of an 

electrophysiological inversion effect on the N170 for a set of stimuli entirely different from 

faces, other "natural" categories or Greebles. Additionally, the effect on the N170 found for 

Greebles was typically limited to the left hemisphere, whereas the analogous effect for faces 

is usually bilateral; our results show a strong effect of inversion on the N170 for both left and 

right occipito-temporal sites, providing a good match to the face data. We also note that the 

inverted checkerboards drawn from the familiar category produce a larger and delayed (in 

PO8) N170, also in line with the face inversion literature.  The final point to make is that 

upright familiar categories and novel categories in both orientations elicited a similar N170. 

The real difference in the N170 is between the ERP to inverted checkerboards drawn from 

familiar category and the other stimuli in this experiment, which suggests that it may be 

driven by the disadvantage consequent on seeing familiar checkerboards presented upside 

down that we also see in our behavioral data.  

 

General Discussion 

Experiments 1a & 1b and 3a & 3b support the hypothesis that familiarity with a 

category defined by a prototype leads to an inversion effect in standard recognition 
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paradigms with novel stimuli drawn from that category, and this does not happen after 

experience with a category that cannot be defined in terms of a prototype. Before accepting 

this assertion, however, we must establish that the pattern of performance seen in Experiment 

1 was not simply a floor effect. In fact, the data argue against this interpretation. Performance 

overall in Experiment 1a was only marginally better than chance F(1, 31) = 2.64, p = .057, 

confirming the impression that the participants found the task very difficult. Overall 

performance in Experiment 1b was, however, significantly above chance, F(1, 31) = 8.00, p < 

.005, so, if anything, the task with the shuffled checkerboards was easier, and this is 

consistent with the categorization data as well. It is unlikely, therefore, that the lack of an 

inversion effect with the shuffled checkerboards is due to a floor effect. Experiments 3a and 

3b offer additional reassurance that this result was not due to any artifact induced by near 

floor performance.  

The conclusion that the inversion effect that can be obtained with checkerboards 

drawn from a familiar category (even though those checkerboards are themselves novel) 

depends on the category being defined in terms of a prototype has strong theoretical 

consequences. It immediately invalidates any theory that proposes that the effect is simply 

consequent on experience with a category to the point that new exemplars can be identified as 

being from that category. For example, it might be supposed that being able to label an 

exemplar as a member of category A resulted in more attention being paid to that exemplar, 

and that this aided subsequent recognition. But this account would also predict a similar 

effect in the shuffled checkerboards (that were just as easy to classify as the prototype-

defined ones) and this was not found to be the case. As far as we are aware, this is the only 

result of this type in the literature, where what are in some sense the same type of stimuli 

(they are all checkerboards), which are experienced in the same way, gives rise to such 

different consequences for later learning and memory. If the previous sentence seems to 
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overstate our result, consider this: Any participant given just one exemplar from either a 

shuffled or a prototype-defined category could not tell which type of category it came from in 

the absence of any further information. In this sense, the two sets of stimuli, shuffled and 

prototype-defined, act as perfect controls for one another. It is only experience with a set of 

exemplars that can bring the category structure into play, and here we have the clearest 

evidence possible that the effects of that experience depend crucially on category structure. 

There is, of course, one aspect of the stimulus construction used this time in the case 

of the shuffled checkerboards that does require further discussion. In the McLaren (1997) 

experiments, the rows were shuffled completely, and as such the likelihood of any given row 

remaining in its base position was rather low. This meant that the average of all the shuffled 

patterns was a set of vertical bands of varying degrees of grey (depending on the proportion 

of black squares in any given column), and this average was not actually a checkerboard, and 

so could not be considered as a prototype of the category. In the current experiments we only 

shuffled three rows (in 1b) and six rows (in 3b), to equate the number of squares changed (on 

average) with Experiments 1a and 3a, and this means that the chance of a row not being 

changed from its base position is rather high. Given this, the average of all the shuffled 

exemplars will now approximate a (somewhat blurry) checkerboard, and the claim that this is 

no longer a prototype-defined category is harder to sustain. Nevertheless, there is no doubt 

that the procedures with these stimuli lead to a quite different set of results to those obtained 

with the standard prototype + noise stimuli used in Experiments 1a and 3a.  

A more detailed application of the MKM (McLaren, Kaye and Mackintosh, 1989; 

further developed in McLaren and Mackintosh, 2000; and McLaren, Forrest and McLaren, 

2012) model to these stimuli helps make it clear why this should be so (see also Wills, Suret 

and McLaren, 2004 for a discussion of these issues in the context of categorisation rather 

than recognition). Take the stimuli of Experiment 1a first. Starting with a base pattern (the 
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prototype), 48 squares are randomly chosen and then set to black or white at random to create 

each exemplar that will, on average, differ by 24 squares from the prototype. Consider a 

typical changed square in the middle of the stimulus. It will be surrounded by 8 squares that 

will mostly be those of the base pattern (on average 0.75 of a square of these 8 will have been 

changed). As a consequence of category pre-exposure, the MKM model tells us that the 

elements of a stimulus associate to one another, and that this allows them to predict one 

another, reducing their error scores, and that as a consequence their salience decreases. But, 

for a changed square, the predictions from the surrounding elements (which as near 

neighbours we assume will be important predictors for this square) will be incorrect, and so 

the square will have a relatively high salience because of its relatively high error score. This 

facilitates discrimination and recognition based on these changed features (which uniquely 

define the exemplars). In the case of the shuffled stimuli in Experiment 1b and 3b, because a 

row is moved as a whole, the squares either side of a changed square will be the same as 

usual for that square, and are good predictors of that square, even though its location in the 

stimulus has altered. The other surrounding squares are not such good predictors, and hence 

their influence will be less. The essential difference captured by this analysis is that shuffling 

rows leaves the changed squares in an exemplar relatively well predicted by other squares 

nearby, and this acts to mitigate any salience increase that would be gained from location 

specific prediction effects. Thus, category pre-exposure will not be expected to be that 

beneficial in the shuffled case, especially if we add in the fact that the location-specific 

predictions are themselves somewhat degraded by the shuffling process. Our conclusion from 

this analysis is that, despite the somewhat restricted shuffling algorithm used in the current 

experiments, the prediction that there should be no perceptual learning, and hence no 

inversion effect for the shuffled checkerboards in Experiment 1b and 3b still holds. This 

brings us to the basis for the inversion effect in Experiment1a. 
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Experiments 2 and 3a and 4 confirm the existence of the inversion effect found in 

Experiment 1a, and strongly suggest that it is made up of two components. These seem to be 

an advantage for the upright exemplars from the familiar category, and a disadvantage for the 

inverted exemplars taken from the familiar category. The explanation of the advantage for the 

upright exemplars drawn from the familiar category has already been given, but bears some 

repetition. During categorization, the prototypical elements common to the exemplars of a 

given category will be routinely exposed, and so will lose salience according to the MKM 

model. By way of contrast, the elements unique to each exemplar (which the subjects will 

have less exposure to and will be less well predicted by other elements of the stimulus), will 

still have relatively high salience. Hence, the structure of this prototype-defined category will 

ensure that differential latent inhibition of common and unique elements can occur, and this 

leads to perceptual learning, which in turn leads to an improved ability to recognize upright 

exemplars of the familiar category, because this depends on using the unique elements of 

exemplars rather than the ones they share in common. This simply represents an instance of 

the type of effect reported by McLaren, Leevers and Mackintosh (1994), and also seen in 

Graham and McLaren (1998). This advantage would be lost on inversion, because 

participants are not familiar with those exemplars in an inverted orientation, and hence the 

unique elements of an exemplar would no longer enjoy any salience advantage over the 

elements common to most exemplars and the prototype. On the other hand, when subjects are 

presented with exemplars of a novel category that they have not been pre-exposed to, these 

mechanisms do not apply (at least not straight away), so there will not be any benefit in 

recognizing exemplars of that novel category in their upright orientation. Thus, no significant 

inversion effect would be expected, because an inverted novel checkerboard is just another 

novel checkerboard. 
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The explanation just given of the inversion effect found with exemplars drawn from a 

familiar category in terms of perceptual learning works well when considering the advantage 

enjoyed by upright exemplars drawn from that category. And we now have further evidence 

that this advantage is real. But this leaves us with evidence across five studies that familiarity 

with a prototype-defined category will lead to inverted members of that category being less 

easily discriminated (McLaren, 1997) or recognized (Experiments 1a, 2, 3a and 4 of this 

paper) than novel controls. The implications of this finding are far-reaching, because they 

suggest that the standard face inversion effect could also be due to a combination of two 

components, an advantage for upright faces (relative to other classes of stimuli), and a 

disadvantage for inverted faces. In fact, we note that it is only experiments of the type 

reported here which can establish this possibility, as the baseline for standard face inversion 

experiments is otherwise hard to determine. But how are we to explain this disadvantage? 

The perceptual learning analysis offered so far simply suggests a return to baseline 

performance, not something worse. What is it about familiarity with a prototype-defined 

category that leads to poorer discrimination or recognition of inverted exemplars drawn from 

that category? 

McLaren (1997) speculated that this effect might be connected with the finding that 

participants were able to categorize exemplars even when they were inverted. Tests 

administered at the end of the experiments in that paper revealed that for both prototype-

defined categories and shuffled categories, participants were able to classify inverted 

exemplars as members of the correct category with above chance accuracy (59% in both 

cases, compared to 66% and 70% for upright exemplars). We can see two possible 

mechanisms that might follow from this and explain the disadvantage for inverted exemplars 

drawn from a familiar category. The first is that, if participants are able to classify inverted 

exemplars as an "A" or "B", then this in its own can have consequences. If discrimination 
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between an exemplar from one category and an exemplar from the other is required then a 

"learned distinctiveness" effect (Honey and Hall, 1989) can be expected, whereby the 

different labels attached to each exemplar aid in their discrimination. But when the 

discrimination is within category, a "learned equivalence" effect can be expected instead 

(ibid), which enhances generalization between the stimuli making discrimination more 

difficult. Admittedly this effect can be expected for both upright and inverted exemplars 

drawn from a familiar category, but the upright exemplars benefit from perceptual learning as 

already outlined, which more than compensates for this effect. When this compensatory 

effect disappears on inversion, the cost of "equivalence" manifests and this is why the 

familiar inverted exemplars are poorly recognized compared to novel exemplars. This 

account is plausible, and there is evidence for the mechanisms involved, but it does suffer 

from the observation that no such effect was noticeable in Experiments 1b and 3b (or in 

Experiment 1b in 1997), and the effect would not be expected to be dependent on the 

category being prototype-defined. 

The second possible mechanism does depend on category structure. In the case of 

prototype-defined categories, the ability to categorize inverted exemplars implies that 

features present in the these exemplars are capable of calling to mind some representation of 

the structure of that category, which will correspond to the upright, prototypical structure 

experienced during training. According to the MKM theory, it is exactly this ability that 

allows the differential salience of the unique elements of an exemplar to manifest and support 

better learning and memory. But, in the case of the inverted exemplars, the predictions made 

by retrieval of the prototypical structure will often be incorrect, and will not correspond to the 

layout of the black and white squares. Thus the elements that become differentially salient 

will be randomly determined, and will more often be those that are common to most 

exemplars (simply because there are more of them), rather than unique to any one of them. 
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This will have the effect of adding unwanted noise to the discrimination, making it more 

difficult – hence a disadvantage for inverted exemplars drawn from a familiar category will 

emerge. Note that this effect will be beyond that expected for novel stimuli, as in that case the 

elements will be uniformly unpredicted rather than randomly (and often incorrectly) 

predicted.  

The ERP results from Experiment 4 also allow us to say a little more about the effect 

of familiarity with a prototype-defined category on inverted exemplars drawn from that 

category. It would seem to strongly affect the N170 for those stimuli, delaying it and 

increasing its amplitude. We speculate that this may be a direct neural correlate of the 

recognition / discrimination disadvantage suffered by these stimuli, but this is an issue that 

will have to await further research for confirmation. What we can say is that the effect on the 

N170 clearly correlates with the inversion effect found with familiar checkerboards, and that 

this replicates and extends the earlier demonstrations of such a correlation with Greebles 

(Rossion et al., 2002). It also fits in rather well with the effect on the N170 of disrupting the 

configural information in a face recently reported by ourselves (Civile, Elchlepp, McLaren, 

Lavric and McLaren, 2012), which is to attenuate the effect of inversion on the N170 by 

bringing the ERPs for the disrupted faces nearer to the upright normal face. We showed that 

by presenting different categories of novel faces in both upright and inverted orientations the 

FIE was reduced, and the elicited N170 was significantly smaller compared to normal 

inverted faces. Roxane Latimus, Taylor (2006), found a larger N170 for inverted faces 

compared to other objects (e.g. chairs, houses, cars) and animals (apes) in both upright and 

inverted orientations, all of which elicited a significantly smaller N170 (in some cases even 

smaller than that for upright human faces). More evidence in support of this finding comes 

from studies of inversion as modulated by ethnicity on the N170.  Vizioli, Foreman, 

Rousselet, Caladara (2010) showed that the N170 amplitude for same race inverted faces was 
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significantly larger compared with upright same race and upright and inverted other race 

stimuli. Thus, the presentation of unfamiliar faces, in this case faces taken from an unfamiliar 

ethnic group, attenuates the effect of inversion on the N170. Additionally, the behavioral test 

showed that accuracy for inverted familiar race faces was significantly lower than for the 

other stimuli. These results, taken together with ours (Experiment 4) seem to suggest that the 

largest amplitude for the N170 is correlated with the lowest behavioral performance, in this 

case for familiar inverted exemplars.  

We will conclude by considering some of the implications of our research for theories 

of perceptual learning in general. The advantage of the approach we have taken in extending 

the account given by McLaren (1997) to our current data, is that it does seem to have the 

potential to explain our results and to explain the role of perceptual learning in the face 

inversion effect. Can other theories of perceptual learning provide different explanations of 

the phenomena reported in this paper? We particularly have in mind here recent research by 

Mundy, Dwyer and Honey (2006), Mundy, Honey and Dwyer (2007), Dwyer and Vladeanu 

(2009) and Mundy, Honey and Dwyer (2009) that makes a case for a comparison process in 

perceptual learning in humans. This research with human participants (often using faces as 

stimuli) shows that simultaneous or alternated presentation of similar stimuli leads to better 

discrimination in a subsequent test phase. The inference is that the ability to compare the 

stimuli that have to be discriminated later leads to stronger perceptual learning compared to 

controls that are exposed to these stimuli equally often, but without the opportunity for 

comparison (often referred to as a "blocked" schedule of exposure). 

Our response to these studies is to first note that McLaren, Forrest and McLaren 

(2012) have shown that the most recent version of MKM, in the form of the MKM-APECS 

hybrid model, can simulate the blocked vs. alternated effect. Thus, the evidence for a 

comparison process based on this type of result is not compelling. But if we take the 
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comparison process account as given, what are the implications for our present results? 

During categorization, our participants have the opportunity to compare exemplars both 

across and within categories. This would lead to them being better able to discriminate both 

within and between categories as a result of this opportunity for comparison (assuming it 

somehow generalizes to new exemplars) and could then predict an advantage for upright 

exemplars drawn from a familiar category in later recognition. In this respect the comparison 

account's predictions do not differ greatly from those already in plays, and they would 

doubtless go on to predict that inversion would lead to a loss of perceptual learning. We 

cannot, however, find any particular reason for them to predict that inversion of exemplars 

drawn from a familiar category would lead to worse performance than to novel exemplars 

(beyond some general account in terms of learned equivalence), and this seems to us 

something of a challenge for this class of theory. Given that this result is now established, it 

would be greatly to the credit of any theory of perceptual learning to offer at least some 

explanation for the effect. At present, to our knowledge, only the MKM based theories seem 

capable of doing this. A further difficulty for the comparison account would then be to 

explain why experience with the shuffled stimuli did not lead to perceptual learning? Surely, 

if people can learn to categorize these stimuli, then they should benefit from the opportunity 

to compare them in the same way that those exposed to prototype-defined exemplars would? 

We will leave it for the researchers actively involved in developing these theories to respond 

to these challenges, but at present do not feel able to give an account of our results in these 

terms.  

Our final issue concerns a number of recent studies that have shown that perceptual 

learning can, under some conditions, simply involve participants learning where to look, 

rather than in any way implying some enhancement of stimulus discriminability (Jones and 

Dwyer, 2013; Wang, Lavis, Hall and Mitchell, 2012). Could this explanation apply to the 
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experiments reported in this paper, so that the inversion effect is due to participants learning 

where to look during categorization training, and applying this strategy during the recognition 

experiment, with some success in the case of the upright familiar exemplars, but suffering 

because of it when dealing with inverted familiar exemplars? Whilst we would readily 

acknowledge that strategies of this kind are possible in many perceptual learning 

experiments, we do not believe that they are in play here. The stimuli are all randomly 

generated in our experiments, and there is no particular region to focus on to detect 

individuating features for any stimulus set. The squares changed vary from stimulus to 

stimulus, making any such strategy unlikely to succeed. It might be that categorization 

training encourages participants to look at certain regions of a stimulus to distinguish 

members of category A from those of category B, but this is unlikely to have any relevance to 

discrimination within one of these categories, which is what is tested in the recognition 

phase. We ensured that only one of the familiar categories was ever used in a given study / 

recognition phase cycle of our experiments, so that any enhancement of the ability to 

distinguish between categories A and B as a result of experience with them, would not in 

itself improve recognition performance.  Finally, given that the shuffled stimuli were more 

easily categorized, and if this is to be taken as an index of success in learning the necessary 

strategy, surely the inversion effect should have been larger in Experiment 1b rather than 

non-existent? We conclude that we have no evidence in our data that the  participants’ 

enhanced performance on exemplars drawn from a familiar category is due to learning where 

to look, or that their impaired performance on inverted exemplars from the same category is 

due to this type of learning. Rather, it would seem that an explanation in terms of enhanced 

stimulus discriminability is to be preferred. 

In conclusion: In four experiments we have demonstrated that we can obtain a strong 

inversion effect in a recognition task contingent on use of exemplars drawn from a familiar 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



44 
 

prototype-defined category. This effect can be decomposed into an advantage for upright 

exemplars drawn from a familiar category, and a disadvantage for inverted exemplars drawn 

from a familiar category, and has a neural correlate in the N170, which seems to 

predominantly reflect the disadvantage for inverted exemplars drawn from a familiar 

category. An explanation based on enhanced stimulus discriminability as a consequence of 

the differential latent inhibition of common elements is our current best attempt at explaining 

these phenomena, and our next step will be to implement further tests of this theoretical 

account. 
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Table 1: Latency and Amplitude data for the N170 in Experiment 4. 
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Figure 1: The prototypes for categories A, B, C and D. 48 of the squares were randomly 

changed to generate each exemplar, thus, on average, 24 squares would be expected to alter 

from black to white or white to black.  
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Figure 2: The x-axis represents the four different stimulus conditions, and the y-axis gives 

the mean d' for the old/new recognition task of Experiment 1a. 
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Figure 3: The x-axis shows the four different stimulus conditions, and the y-axis shows the d' 

scores for the test phase of Experiment 1b. 
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Figure 4: The prototypes and some example exemplars for category A in Experiment 1a and 

for category A in Experiment 2.  
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Figure 5: The x-axis gives  the  four  different  stimulus’  conditions,  and  the y-axis shows the 

mean d-prime scores for the old/new recognition phase in Experiment 2. 
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Figure 6: Panel a) represents the results obtained in Experiment 3a. Panel b) represents the 

results obtained in Experiment 3b. Thus in both panels the x-axis gives the four different 

stimulus’  conditions,  and  the  y-axis shows the mean d-prime scores for the old/new 

recognition phase in the experiment. 
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Figure 7: The x-axis gives the four different stimulus’  conditions,  and  the  y-axis shows the 

mean d-prime scores for the old/new recognition phase in Experiment 4. 
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Figure 8: Waveforms obtained at electrode PO7 and PO8 during the study phase of 

Experiment 4. 
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Table 1: Latency and Amplitude data for the N170 in Experiment 4. 
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Figure 1: The prototypes for categories A, B, C and D. 48 of the squares were randomly changed to 

generate each exemplar, thus, on average, 24 squares would be expected to alter from black to white or 

white to black.  
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Figure 2: The x-axis represents the four different stimulus conditions, and the y-axis gives the 

mean d' for the old/new recognition task of Experiment 1a. 
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Figure 3: The x-axis shows the four different stimulus conditions, and the y-axis shows the d' 

scores for the test phase of Experiment 1b. 
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Figure 4: The prototypes and some example exemplars for category A in Experiment 1a and for 

category A in Experiment 2.  
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Figure 5: The x-axis  gives  the  four  different  stimulus’  conditions,  and  the  y-axis shows the mean 

d-prime scores for the old/new recognition phase in Experiment 2. 
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Figure 6: Panel a) represents the results obtained in Experiment 3a. Panel b) represents the 
results obtained in Experiment 3b. Thus in both panels the x-axis gives the four different 
stimulus’  conditions,  and  the  y-axis shows the mean d-prime scores for the old/new recognition 
phase in the experiment. 

 

)LJXUH



 

Figure 7: The x-axis  gives  the  four  different  stimulus’  conditions,  and  the  y-axis shows the mean 

d-prime scores for the old/new recognition phase in Experiment 4. 
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Figure 8: Waveforms obtained at electrode PO7 and PO8 during the study phase of Experiment 

4. 
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