
VARIATION OF FUNDAMENTAL GROUPS OF

CURVES IN POSITIVE CHARACTERISTIC

MOHAMED SAÏDI and AKIO TAMAGAWA

Abstract. In this paper we prove that given a non-isotrivial family of hyperbolic

curves in positive characteristic, the isomorphism type of the geometric fundamental
group is not constant on the fibres of the family.
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§0. Introduction. Let k be an algebraically closed field and X a proper, smooth,
and connected algebraic curve over k of genus g ≥ 2. The structure of the étale fun-
damental group π1(X) of X is well understood, if char(k) = 0, thanks to Riemann’s
Existence Theorem. Namely, π1(X) is isomorphic to the profinite completion Γg
of the topological fundamental group of a compact orientable topological surface of
genus g. In particular, the isomorphism type of π1(X) is constant and depends only
on g in this case. In the case where char(k) = p > 0, the structure of the full π1(X)
is still mysterious and is far from being understood. One only knows the structure of
certain quotients of π1(X) in this case. More precisely, let π1(X)p (resp. π1(X)p

′
)

be the maximal pro-p (resp. maximal pro-prime-to-p) quotient of π1(X). Then it is
well-known that there exists a surjective continuous specialisation homomorphism

Sp : Γg � π1(X), which induces an isomorphism Sp′ : Γp
′

g
∼→ π1(X)

p′
between the

maximal pro-prime-to-p parts (cf. [SGA1]). Moreover, π1(X)p is a free pro-p group
on r-generators where r is the p-rank of (the Jacobian of) the curve X (cf. [Sh]).
The full structure of π1(X) is not known for a single example of a curve X of genus
g ≥ 2 in characteristic p > 0.

In order to understand the complexity of the geometric fundamental group π1 of
hyperbolic curves in positive characteristic, it is natural to investigate the variation
of the structure of π1 when curves vary in their moduli. Let Mg,Fp be the coarse
moduli space of proper, smooth, and connected curves of genus g in characteristic
p > 0. Given a point x ∈ Mg,Fp , choose a geometric point x̄ above x and let Cx̄
be a curve corresponding to the moduli point x̄ (well-defined up to isomorphism).
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Then the isomorphism type of the (geometric) étale fundamental group π1(Cx̄) is
independent of the choice of x̄ and Cx̄ (and the implicit base point on Cx̄ used to
define π1(Cx̄)). (See [S], §4 for more details). An important tool in studying funda-
mental groups in positive characteristic is the specialisation theory of Grothendieck
(cf. [SGA1]). Given points x, y ∈ Mg,Fp , such that x ∈ {y} holds, there exists a
continuous surjective specialisation homomorphism Spy,x : π1(Cȳ) → π1(Cx̄).
Concerning this specialisation homomorphism we have the following fundamental
specialisation theorem (cf. Theorem 2.1), which is proven in [T3].

Theorem A. Let x, y ∈Mg,Fp be distinct points ofMg,Fp such that x ∈ {y} holds.
Assume that x is a closed point of Mg,Fp . Then the specialisation homomorphism
Spy,x : π1(Cȳ)→ π1(Cx̄) is not an isomorphism.

It is quite plausible that Theorem A may hold in general without the extra
assumption that x is a closed point of Mg,Fp . It is also plausible that the isomor-
phism type of π1(Cx̄) tends to depend on the moduli point x ∈ Mg,Fp . In the
spirit of Grothendieck’s anabelian geometry this would suggest the possibility that
strong anabelian phenomena for curves over algebraically closed fields of positive
characteristic may occur, in contrast to the situation in characteristic 0 where the
geometric fundamental group carries only topological informations.

A slightly weaker approach to the above specialisation theorem is the following.

Let k be a field of characteristic p > 0 and setMg,k
def
= Mg,Fp×Fp k. Let S ⊂Mg,k

be a subvariety. We say that the (geometric) fundamental group π1 is constant

on S if, for any two points y and x of S, such that x ∈ {y} holds, the specialisation
homomorphism Spy,x : π1(Cȳ) → π1(Cx̄) is an isomorphism. We say that π1 is
not constant on S if the contrary holds (cf. Definition 3.1). In [S] was raised the
following question.

Question. Does Mg,k contain any subvariety of positive dimension on which π1

is constant?

When k is an algebraic closure of Fp, the answer to this question is negative by
Theorem A. For general k, the following result is proven in [S] (cf. [S], Theorem
4.4).

Theorem B. Let k be a field of characteristic p > 0 and S ⊂ Mg,k a complete
subvariety of Mg,k of positive dimension. Then the (geometric) fundamental group
π1 is not constant on S.

The aim of this paper is to remove the completeness assumption in Theorem B
and give a negative answer to the above question in general. The main result of
this paper is the following (cf. Theorem 3.6).

Theorem C. Let k be a field of characteristic p > 0 and S ⊂ Mg,k a (not nec-
essarily complete) subvariety of Mg,k of positive dimension. Then the (geometric)
fundamental group π1 is not constant on S.

Note that the validity of Theorem A in general, i.e., without the extra assumption
that x is a closed point, would immediately imply Theorem C. Our proof of Theorem
C is quite different from the proof of Theorem B in [S], and relies on Theorem A
and Raynaud’s theory of theta divisors. We also prove certain variants of Theorem
C for curves which are not necessarily proper (cf. Theorems 3.12 and 3.13).
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Next, we briefly review the contents of each section. In §1 we review basic
facts on the theta divisor of the sheaf of locally exact differentials on a curve in
characteristic p > 0. In §2 we review some key facts (proven in the course of proving
Theorem A in [T3]) which are used in this paper. In §3 we state the main theorems,
and in §4 we proceed to their proof.

§1. Review of the Sheaf of Locally Exact Differentials in Characteristic
p > 0 and its Theta Divisor. In this paper p denotes a (fixed) prime number.
In this section, we will review Raynaud’s theory of theta divisors in characteristic
p, initiated in [R].

Let S be an Fp-scheme. We denote by FS the absolute Frobenius endomorphism
S −→ S. For an S-scheme X, we define X1 to be the pull-back of X by FS . Thus,
we have a cartesian square

X1 −−−−→ Xy y
S

FS−−−−→ S
The absolute Frobenius endomorphism F : X → X induces in a natural way an S-
morphism FX/S : X → X1, the relative Frobenius morphism, which is an integral
radicial morphism. Next, assume that X is a proper and smooth (relative) S-
curve of genus g, i.e., the morphism X → S is proper and smooth and its fibres
are (geometrically connected) curves of (constant) genus g. Then X1 is also a
proper and smooth S-curve of genus g, and FX/S : X → X1 is finite locally free of
degree p. The canonical differential

(FX/S)∗d : (FX/S)∗OX → (FX/S)∗Ω
1
X/S

is a morphism of OX1-modules. Its image

BX
def
= Im((FX/S)∗d)

is the sheaf of locally exact differentials. We have a natural exact sequence

0→ OX1
→ (FX/S)∗OX → BX → 0,

and BX is a locally free OX1
-module of rank p− 1.

Let J (resp. J1) denote the relative Jacobian Pic0
X/S of X (resp. Pic0

X1/S of

X1) over S, which is an abelian scheme of relative dimension g over S (cf. [BLR],
9.4, Proposition 4). Then, étale-locally on S, there exists a universal degree 0 line
bundle L1 on X1 ×S J1. We define Θ = ΘX to be the closed subscheme of J1

defined by the 0-th Fitting ideal of R1(prJ1)∗(pr∗X1
(BX) ⊗ L1), where prX1

and
prJ1 denote the projections X1×S J1 → X1 and X1×S J1 → J1, respectively. Since
Θ is independent of the choice of L1 (cf. [T2], Proposition 2.2(i)), we can define
Θ not only étale-locally but also globally on S. By definition, the formation of Θ
commutes with any base change of S. The following result is essentially due to
Raynaud.

Theorem 1.1. Θ is a relative Cartier divisor on J1/S.

Proof. See [T3], Theorem (5.1). �

In this paper we will refer to the divisor Θ as the (relative) Raynaud theta
divisor.

From now on, we assume S = Spec(k), where k is an algebraically closed field of
characteristic p > 0.
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Definition 1.2. Let M be an abelian group and Mtor the subgroup of torsion
elements of M .

(i) For each element x ∈ Mtor we define the subset sat(x) (which we call the
saturation of x) of M to be the set of elements in the form i · x, where i is an
integer prime to the order Nx of x. (Thus, ](sat(x)) = ϕ(Nx).)

(ii) For each subset X of Mtor we define the subset sat(X) (which we call the
saturation of X) of M to be the union of sat(x) for all x ∈ X. (Note that
sat(X) ⊂Mtor.) Moreover, we say that X is saturated if sat(X) = X.

Recall that given a scheme S, a cyclic group G of order N which is invertible
on S, and an abelian S-scheme A endowed with a G-action, one defines naturally
the “new part” Anew of A with respect to this action (cf. [T3], §4 for more
details). The following result relates the geometry of the Raynaud theta divisor to
fundamental groups.

Proposition 1.3. Let N be a positive integer prime to p. Let x be a torsion
point of J1(k) of order N , and Y1 → X1 the µN -torsor associated to x. Then,
sat(x)∩Θ(k) = ∅ if and only if Y1 → X1 is new-ordinary in the sense that (JY1

)new

is an ordinary abelian variety.

Proof. See [T3], Proposition (5.2). �

2. The Specialisation Theorem for Fundamental Groups. In this section
k0 denotes an algebraic closure of the prime field Fp of characteristic p > 0. Let

S be an Fp-scheme, s and t points of S such that s ∈ {t} holds. We denote by s̄
and t̄ geometric points above s and t, respectively. Let X be a proper and smooth

S-curve of genus g. Write Xs̄
def
= X ×S s̄, Xt̄

def
= X ×S t̄ for the geometric fibres of

X above s and t, respectively. Then we have a specialisation homomorphism
(cf. [SGA1], Exposé IX, 4 and Exposé XIII, 2.10)

Sp : π1(Xt̄)→ π1(Xs̄),

which is surjective and induces an isomorphism π1(Xt̄)
(p′) ∼→ π1(Xs̄)

(p′) between
the maximal pro-prime-to-p quotients.

Recall that a curve over a field containing k0 = Fp is constant, if it descends to
a curve over k0. The following result is fundamental.

Theorem 2.1. Assume g ≥ 2. Assume that Xs̄ is constant and that Xt̄ is not
constant. Then the specialisation homomorphism Sp : π1(Xt̄) → π1(Xs̄) is not an
isomorphism.

Proof. See [T3], Theorem (8.1). �

Theorem 2.1 follows easily from the following (cf. [T3], Theorem (6.1)).

Theorem 2.2. Let R be a complete discrete valuation ring isomorphic to k0[[t]],

and set S
def
= Spec(R) = {η, s}, where η (resp. s) stands for the generic (resp.

closed) point of S. Let X be a proper and smooth S-curve of genus g ≥ 2, and
assume that Xη̄ is not constant. Then the specialisation homomorphism Sp :
π1(Xη̄)→ π1(Xs̄) is not an isomorphism.

For an abelian variety A over an algebraically closed field k, we write A{p′} for
the union of A[N ](k) for all positive integers N prime to p, and for a subscheme Z

of A we write Z{p′} def
= Z(k) ∩A{p′}.
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Let X → S = Spec(R) = {η, s} be as in Theorem 2.2. (In the following discus-
sion including Lemma 2.3, R may be an arbitrary discrete valuation ring of equal
characteristic p > 0.) Let X1 be the Frobenius twist of X over S (cf. §1) and J1

the (relative) Jacobian of X1 over S. This is an abelian scheme over S and can be

identified with the Néron model of J1,η
def
= J1×S η. By the Néron property, we have

a natural specialisation isomorphism

J1,η̄{p′} → J1,s̄{p′},

where J1,η̄
def
= J1 ×S η̄ and J1,s̄

def
= J1 ×S s̄. Identifying these two abelian groups

with each other by this specialisation isomorphism, we will write

J1{p′}
def
= J1,η̄{p′} = J1,s̄{p′}.

(Thus, J1{p′} is a mere abelian group). Moreover, we have the Raynaud theta
divisor Θ in J1, and under the above identification we have

Θη̄{p′} ⊂ Θs̄{p′} (in J1{p′}).

The following is a crucial observation (cf. [T3], Lemma (6.2)).

Lemma 2.3. If Sp is an isomorphism, then sat(Θη̄{p′}) = sat(Θs̄{p′}) must hold
in J1{p′}.

In the course of proving Theorem 2.2, the following more precise statement is
proven (cf. [T3], §7).

Proposition 2.4. Under the assumptions of Theorem 2.2 (R ' k0[[t]]), there exists
a finite étale cover Y → X whose Galois closure is of degree prime to p, such that

sat(ΘY,η̄{p′}) ( sat(ΘY,s̄{p′})

holds in JY1
{p′}. Here, JY1

and ΘY ⊂ JY1
denote the (relative) Jacobian of Y1 over

S and the (relative) Raynaud theta divisor for Y → S, respectively.

Remark 2.5. In fact, the finite étale cover Y → X in Proposition 2.4 can be chosen
to factorise as Y = X3 → X2 → X1 → X0 = X, where Xi → Xi−1 is a µNi-torsor
for a suitable positive integer Ni prime to p, i ∈ {1, 2, 3}.

§3. Families of Curves with a Given Fundamental Group in Positive
Characteristic. In this section we state our main results. We will start with the
following elementary definition.

Definition 3.1. Let S be a set and assume that for each s ∈ S, a profinite group
Πs is given. We denote by Π the map from S to the set of isomorphism classes of
profinite groups that assigns to each s ∈ S the isomorphism class of Πs.

(i) We say that Π is constant on S if, for any s, t ∈ S, one has Πs ' Πt.
(ii) Assume moreover that S is the underlying (vertex) set of an oriented graph,

and that for each oriented edge t � s linking vertices t and s of the graph S,
a surjective (continuous) homomorphism Spt,s : Πt → Πs is given. Then we say
that Π is Sp-constant on S if for any oriented edge t � s of the graph S, the
homomorphism Spt,s : Πt → Πs is an isomorphism.
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Lemma 3.2. In the situation of Definition 3.1 (ii), consider the following condi-
tions: (i) Π is constant; and (ii) Π is Sp-constant. If S is connected (as a graph),
then one has (ii) =⇒ (i). If Πs is finitely generated (as a profinite group) for each
s ∈ S, then one has (i) =⇒ (ii).

Proof. The first assertion is clear. The second assertion follows from the fact that
a finitely generated profinite group is Hopfian (cf. [FJ], Proposition 15.3). �

In the rest of this section, let p be a prime number and g an integer ≥ 2 (unless

otherwise stated), and set Mg
def
= Mg,Fp , the coarse moduli space of proper,

smooth and geometrically connected curves of genus g in characteristic p. Let k

be a field of characteristic p, and Mg,k
def
= Mg ×Fp k, which turns out to be the

coarse moduli space of proper, smooth and geometrically connected curves of genus
g over k-schemes. Given a point x ∈ Mg,k, choose a geometric point x̄ above x
and let Cx̄ be a curve corresponding to the moduli point x̄ (well-defined up to
isomorphism). Then the isomorphism type of the (geometric) étale fundamental

group (π1)x
def
= π1(Cx̄), which is a finitely generated profinite group (cf. [SGA1],

Exposé X, Théorème 2.6), is independent of the choice of x̄ and Cx̄ (and the im-
plicit base point on Cx̄ used to define π1(Cx̄)). If x and y are points in Mg,k

such that x ∈ {y} holds, then Grothendieck’s specialisation theory for fundamental
groups implies the existence of a (continuous) surjective specialisation homomor-
phism Spy,x : π1(Cȳ) � π1(Cx̄). (See [S], §4 for more details.)

Similarly, let S be a scheme of characteristic p and f : X → S a proper and
smooth S-curve of genus g. Given a point s ∈ S, choose a geometric point s̄ above
s and let Xs̄ be the geometric fibre of f at s̄. Then the isomorphism type of the

(geometric) étale fundamental group (π1)s
def
= π1(Xs̄), which is a finitely generated

profinite group, is independent of the choice of s̄ (and the implicit base point on

Xs̄ used to define π1(Xs̄)). If s and t are points in S such that s ∈ {t} holds, then
Grothendieck’s specialisation theory for fundamental groups implies the existence
of a (continuous) surjective specialisation homomorphism Spt,s : π1(Xt̄) � π1(Xs̄).

Note that any topological space T (e.g., any subset of a scheme) can be regarded
as an oriented graph by assigning a vertex to each point of T and an oriented edge
t� s to each pair (s, t) of distinct points of T such that s ∈ {t} holds.

Lemma 3.3. (i) Let S be a connected subscheme of Mg,k. Then π1 is constant
on S if and only if π1 is Sp-constant on S (cf. Definition 3.1).

(ii) Let k be a field of characteristic p, S a connected k-scheme of finite type,
f : X → S a proper and smooth S-curve of genus g and h : S →Mg,k the (coarse)
classifying morphism for f . Then the following are all equivalent:

(a) π1 is constant on S;
(b) π1 is Sp-constant on S;
(c) π1 is constant on h(S).

Proof. This follows from Lemma 3.2, together with the (easily verified) fact that
a noetherian scheme is connected as a scheme (or, equivalently, as a topological
space) if and only if the associated graph is connected. �

In [S] was raised the following question.

Question 3.4. Let k be a field of characteristic p. Does Mg,k contain any subva-
riety of positive dimension on which π1 is constant?
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The following result is proven in [S] (cf. [S], Theorem 4.4.).

Theorem 3.5. Let k be a field of characteristic p and S ⊂ Mg,k a complete
subvariety of Mg,k of positive dimension. Then π1 is not constant on S.

The main result of this paper is the following theorem, where we remove the
assumption in Theorem 3.5 that the subvariety S is complete.

Theorem 3.6. Let k be a field of characteristic p, and S ⊂Mg,k a (not necessarily
complete and even not necessarily closed) subvariety ofMg,k of positive dimension.
Then π1 is not constant on S.

Theorem 3.6 follows from Theorem 3.9 below.
In the rest of this section, let k be a field of characteristic p, S a connected and

reduced k-scheme of finite type, and f : X → S a proper and smooth S-curve of
(constant) genus g.

Definition 3.7. We say that f is isotrivial, if there exist a finite extension k′/k,
a connected k′-scheme S′, a finite étale k′-morphism S′ → S ×k k′, and a proper
and smooth k′-curve X ′0, such that X ×S S′ is isomorphic to X ′0 ×k′ S′ over S′.

Lemma 3.8. Write h : S → Mg,k for the (coarse) classifying morphism for f .
Then the following conditions are all equivalent.

(i) f is isotrivial.
(ii) The image of h consists of a single closed point of Mg,k.
(ii′) The image of h consists of a single point of Mg,k (i.e., h : S → Mg,k is

set-theoretically constant).
(iii) For each generic point η of S, h(η) is a closed point.
(iv) For each 1-dimensional irreducible, reduced, closed subscheme C of S, the

C-curve fC : X ×S C → C is isotrivial.
(iv′) For each irreducible component W of S (regarded as a reduced closed sub-

scheme of S), there exists a closed point s of W , such that, for each 1-dimensional
irreducible, reduced, closed subscheme C of W passing through s, the C-curve
fC : X ×S C → C is isotrivial.

Proof. Standard. �

Theorem 3.9. Assume that f : X → S is non-isotrivial. Then π1 is not constant
on S.

In the process of proving Theorem 3.9 we prove the following more precise result.

Theorem 3.10. Assume that f : X → S is non-isotrivial. Then there exist a

connected finite étale cover S′ → S, a connected finite étale cover Y ′ → X ′
def
=

X ×S S′ whose Galois closure is geometrically connected over S′ and of degree
prime to p over X ×S S′, a generic point η′ ∈ S′ and a point v′ ∈ {η′} ⊂ S′, such
that the p-rank of the geometric fibre Y ′v̄′ of Y ′ above v′ is smaller than the p-rank
of the geometric fibre Y ′η̄′ of Y ′ above η′ (thus, v′ 6= η′ necessarily).

Theorem 3.9 admits certain variants (Theorems 3.12 and 3.13) for curves which
are not necessarily proper. To state them, let X be a proper and smooth S-curve
of (constant) genus g ≥ 0 and D ⊂ X a relatively étale divisor of (constant) degree
n ≥ 0. Given a point s ∈ S, choose a geometric point s̄ above s and let (Xs̄, Ds̄) be
the geometric fibre of (X,D)/S at s̄. Then the isomorphism type of the (geometric)
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tame fundamental group (πt1)s
def
= πt1(Xs̄−Ds̄) (resp. the (geometric) fundamental

group (π1)s
def
= π1(Xs̄ −Ds̄)) is independent of (resp. (if n > 0) dependent on) the

choice of s̄.

We say that (X,D)/S is isotrivial, if there exist a finite extension k′/k, a
connected k′-scheme S′, a finite étale k′-morphism S′ → S ×k k′, a proper and
smooth k′-curve X ′0 and a relatively étale divisor D′0 of X ′0, such that (X,D)×S S′
is isomorphic to (X ′0, D

′
0)×k′ S′ over S′.

Remark 3.11. (i) As in the proper case, if s and t are points in S such that

s ∈ {t} holds, then Grothendieck’s specialisation theory for tame fundamental
groups implies the existence of a (continuous) surjective specialisation homomor-
phism Sptt,s : πt1(Xt̄ − Dt̄) � πt1(Xs̄ − Ds̄). Thus, by Definition 3.1, we have the

notion of Spt-constancy of (X,D)/S as well, which is equivalent to the notion of
constancy of (X,D)/S by Lemma 3.2. (Note that the tame fundamental group of
affine curves is finitely generated (cf. [SGA1], Exposé XIII, Corollaire 2.12).) Note
that no such specialisation homomorphisms are available for (full) fundamental
groups, if n > 0.

(ii) Assume that 2 − 2g − n < 0. Then, as in the proper case (cf. Lemma
3.8), (X,D)/S is isotrivial if and only if the (coarse) classifying morphism h : S →
Mg,[n],k for (X,D)/S is set-theoretically constant. Here,Mg,[n],k (=Mg,[n],Fp ×Fp
k) is the coarse moduli space of proper, smooth and geometrically connected curves
of genus g equipped with a relatively étale divisor of degree n over k-schemes.

Theorem 3.12. Assume that 2− 2g − n < 0 and that (X,D)/S is non-isotrivial.
Then πt1 is not constant on S.

Theorem 3.13. Assume that 2− 2g − n < 0 and that (X,D)/S is non-isotrivial.
Then π1 is not constant on S.

§4. Proof of the Main Theorems. In this section we prove the main results:
Theorems 3.6, 3.9, 3.10, 3.12 and 3.13. First, we work with the assumptions in
Theorems 3.9 and 3.10. In particular, k is a field of characteristic p > 0, S is a
connected and reduced k-scheme of finite type, and f : X → S is a non-isotrivial
proper and smooth S-curve of genus g ≥ 2.

Proof of Theorem 3.10.

Lemma 4.1. Let s be a point of S and Xs̄ the geometric fibre of f : X → S at
a geometric point s̄ above s. Let Ys̄ → Xs̄ be a finite étale cover whose Galois
closure is of degree prime to p over Xs̄. Then there exist a connected finite étale

cover S′ → S and a connected finite étale cover Y ′ → X ′
def
= X ×S S′ whose Galois

closure is geometrically connected over S′ and of degree prime to p over X ×S S′,
a point s′ ∈ S′ above s ∈ S and a geometric point s̄′ above s′ which dominates s̄,
such that the cover (Y ′)s̄′ → (X ′)s̄′ is isomorphic to the pull-back of Ys̄ → Xs̄ to
s̄′.

Proof. This follows from the fact (cf. [St], Proposition 2.3) that the natural se-
quence of profinite groups

1→ π1(Xs̄)
p′ → π1(X)(p′) → π1(S)→ 1
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is exact, where π1(Xs̄)
p′ stands for the maximal pro-prime-to-p quotient of π1(Xs̄)

and π1(X)(p′) stands for the maximal quotient of π1(X) in which the image of
Ker(π1(X)→ π1(S)) is pro-prime-to-p. �

We may reduce the problem to the case where S is geometrically connected and
geometrically reduced over k. Indeed, first, take a connected component of S×kksep

(regarded as a scheme over ksep), which descends to a scheme S1 over a finite
separable extension k1 of k. Next, consider the reduced closed subscheme (S1 ×k1
kperf

1 )red of S1×k1k
perf
1 (regarded as a scheme over kperf

1 ), which descends to a scheme
S2 over a finite purely inseparable extension k2 of k1. Then S1 is geometrically
connected over k1, and S2 is geometrically connected and geometrically reduced over
k2. As S1 is a connected finite étale cover of S, we may replaceX → S → Spec(k) by
X ×S S1 → S1 → Spec(k1). As the morphisms S2 → S1 and X ×S S2 → X ×S S1

preserve the categories of finite étale covers, we may replace X ×S S1 → S1 →
Spec(k1) by X ×S S2 → S2 → Spec(k2).

So, from now on, we will assume that S is geometrically connected and geomet-
rically reduced over k.

Lemma 4.2. There exist a finitely generated Fp-subalgebra R of k, a connected
scheme S flat, of finite type over R with geometrically connected and geometrically
reduced fibres, and a proper and smooth S-curve f̃ : X → S of (constant) genus g,
such that we have a commutative diagram with cartesian squares

(∗)

X f̃−−−−→ S −−−−→ Spec(R)x x x
X

f−−−−→ S −−−−→ Spec(k)

where the right vertical map is the natural morphism induced by the inclusion R ⊂ k.

Proof. As k is the direct limit of finitely generated Fp-subalgebras, it follows from
[EGA IV], Théorème (8.8.2) that there exists a finitely generated Fp-subalgebra

R of k, schemes S and X of finite type over R, and an R-morphism f̃ : X → S,
such that we have a commutative diagram (∗) with cartesian squares. Replacing

R by a finitely generated Fp-subalgebra R′ of k containing R and f̃ : X → S by

f̃R′ = f̃×RR′ : X×RR′ → S×RR′, we may assume that S is flat over R ([EGA IV],
Théorème (11.2.6)) with geometrically connected and geometrically reduced fibres
([EGA IV], Théorème (9.7.7)) and that X is proper and smooth over S ([EGA IV],
Théorème (8.10.5) and Proposition (17.7.8)). As S → Spec(R) is flat of finite type,
it is (universally) open ([EGA IV], Théorème (2.4.6)), hence its generic fiber, which
is (geometrically) connected, is dense. This implies that S is connected. As X → S
is proper and smooth and has geometrically connected fibres on the image of S
in S, we conclude (by observing the Stein factorisation) that X → S must have
geometrically connected fibres everywhere (cf. [EGA III], Remarque (7.8.10) and
[SGA1], Exposé X, Proposition 1.2). Finally, as X → S is proper and flat and S
is connected, the dimension and the (arithmetic) genus of the fibres are constant.
Thus, X → S is a proper and smooth S-curve of constant genus g, as desired. �

Next, set T
def
= Spec(R) and let ξ be the generic point of T . For each t ∈ T , set

St
def
= S ×T t and Xt

def
= X ×T t. We have a commutative diagram with cartesian

squares
9



X f̃−−−−→ S −−−−→ T = Spec(R)x x x
Xt

f̃t−−−−→ St −−−−→ t = Spec(κ(t))

where St → Spec(κ(t)) is of finite type, geometrically connected and geometrically

reduced, and f̃t : Xt → St is a proper and smooth St-curve of (constant) genus g.

Lemma 4.3. There exists a closed point t ∈ T such that the St-curve f̃t : Xt → St
is non-isotrivial.

Proof. Let h : S →Mg,k and h̃ : S →Mg,Fp be the (coarse) classifying morphisms

for f : X → S (→ Spec(k)) and f̃ : X → S (→ Spec(Fp)). Let β̃ : S → T be the

structure morphism and set h̃T
def
= (h̃, β̃) : S →Mg,Fp×FpT . For each t ∈ T , let h̃t :

St →Mg,κ(t) be the (coarse) classifying morphism for f̃t : Xt → St (→ Spec(κ(t))).

Then we have h̃t = h̃T ×T t. Further, we have h̃T ×T k = (h̃ξ)×κ(ξ) k = h.
By Lemma 3.8, there exists a generic point η of S such that h(η) is not a closed

point of Mg,k. Let η̃ be the image of η in S, which is a generic point of S. Then

β̃(η̃) = ξ, and h̃ξ(η̃) is not a closed point of Mg,κ(ξ). Note that there exists an
open neighbourhood W of η̃ which is irreducible. (For example, remove all the

irreducible components of S but {η̃}.) Set α
def
= h̃T |W and β

def
= β̃|W . By [EGA

IV], Corollaire (9.2.6.2), there exists a non-empty open subset U of W such that
dim(α−1(α(s))) and dim(β−1(β(s))) are constant for s ∈ U . Finally, for each t ∈ T ,

set Wt
def
= W ×T t.

Now, take any closed point s of U and set t
def
= β(s), which is a closed point of T .

As h̃ξ|Wξ
(or, equivalently, h̃|Wξ

) is non-constant and Wξ is irreducible, we have

dim(α−1(α(η̃))) < dim(β−1(β(η̃))) = dim(Wξ),

hence
dim(α−1(α(s)) < dim(β−1(β(s))) = dim(Wt),

which implies that h̃ (or, equivalently, h̃t) is non-constant on each irreducible com-
ponent of Wt of maximal dimension (= dim(Wt)). As Mg,κ(t) → Mg,Fp is finite,

this implies that h̃t|St is non-constant, as desired. �

Next, consider the (relative) curve X1 → S where X1 is the Frobenius twist of

X (cf. §1), J1
def
= Pic0(X1/S) the (relative) Jacobian of X1 over S which is an

S-abelian scheme, and Θ ↪→ J1 the (relative) Raynaud theta divisor for X → S
(cf. §1). Let t be a closed point of T such that the relative curve Xt → St is

non-isotrivial (cf. Lemma 4.3). Set J1,t
def
= J1 ×T t and Θt

def
= Θ ×T t, which are

the (relative) Jacobian of X1,t
def
= X1×T t over St and the (relative) Raynaud theta

divisor for Xt → St, respectively.
Let Ssm ⊂ S and Ssm

t ⊂ St be the smooth loci for S → T and St → t, respec-
tively. As S → T is of finite type, Ssm ⊂ S and Ssm

t ⊂ St are open. As S → T is
flat, we have (Ssm)t = Ssm

t . As S → T has geometrically reduced fibres, Ssm ⊂ S is
dense in each fibre, and, in particular, Ssm

t is dense in St. Let S0
t be the (disjoint)

10



union of connected (or, equivalently, irreducible) components V of Ssm
t ⊂ St for

which the V -curve f̃V = (f̃t)V : X ×T V = Xt ×t V → V is non-isotrivial. By
Lemma 4.3, S0

t is non-empty.
Take any component V of S0

t and any closed point s of V . Then, by Lemma 3.8,
there exists a 1-dimensional, irreducible, closed subscheme C of V passing through
s such that the C-curve f̃C = (f̃V )C : X ×T C → C is non-isotrivial. Let γ and u be
the generic points of C and V , respectively. Then it follows from Theorem 2.1 that
the specialisation homomorphism Sp : π1(Xt,γ̄) → π1(Xt,s̄) is not an isomorphism.

Here, γ̄ (resp. s̄) is a geometric point above γ (resp. s), and Xt,γ̄
def
= Xt ×t γ̄ (resp.

Xt,s̄
def
= Xt ×s s̄).

Now, it follows from Proposition 2.4 and Lemma 4.1 that the following hold.

There exist a finite étale cover S ′ → S, a finite étale cover Y ′ → X ′ def
= X×SS ′ whose

Galois closure is of degree prime to p, a (generic) point u′ ∈ S ′t
def
= S ′ ×T t above u,

a point γ′ ∈ {u′} ⊂ S ′t above γ and a (closed) point s′ ∈ {γ′} ⊂ S ′t above s, such

that sat(Θ′ū′{p′}) ⊂ sat(Θ′γ̄′{p′}) ( sat(Θ′s̄′{p′}) holds in J ′1{p′}
def
= J ′1,ū′{p′} =

J ′1,γ̄′{p′} = J ′1,s̄′{p′}, where J ′1
def
= Pic0(Y ′1/S ′) is the (relative) Jacobian of Y ′1

over S ′, Θ′ ↪→ J ′1 is the (relative) Raynaud theta divisor for Y ′ → S ′, and ū′

(resp. γ̄′, resp. s̄′) is a geometric point above u′ (resp. γ′, resp. s′). In particular,
there exists x ∈ J ′1{p′} such that sat(x) ∩Θ′ū′{p′} = ∅ and sat(x) ∩Θ′s̄′{p′} 6= ∅.

Let z ∈ sat(x) ∩ Θ′s̄′{p′}, and N
def
= ord(z). Let J ′1[N ]

def
= Ker(J ′1

[N ]−−→ J ′1) be the
kernel of multiplication by N on the abelian scheme J ′1. Thus, J ′1[N ] is a finite étale
commutative S ′-group scheme which is étale-locally isomorphic to (Z/NZ)2g. After
possibly passing to a finite étale cover of S ′ which “trivialises” J ′1[N ], we can assume
(without loss of generality) that there exists a section σ : S ′ → J ′1[N ] of the natural

projection J ′1[N ] � S ′, with image Z def
= Im(σ), such that Zs̄′

def
= Z ×S′ s̄′ = z

holds. Write Z.Θ′ for the scheme-theoretic intersection of Z and Θ′ inside J ′1. By
definition, we have σ(s′) ∈ Z.Θ′ 6= ∅. (By a slight abuse of notation, we write
z = σ(s′).) We have natural morphisms Z.Θ′ → S ′ → S → T . The following is the
main technical ingredient of our proof.

Proposition 4.4. The morphism Z.Θ′ → T is flat at z ∈ Z.Θ′.

Proof. We have natural morphisms OT,t → OS,s → OS′,s′ = OZ,z. Note that
OS′,s′ is OT,t-flat, since S ′ is étale over S and S is flat over T . Moreover, there
exists a natural surjective homomorphism OJ ′

1,z
� OZ,z. Let IΘ′,z = (f) ⊂ OJ ′

1,z

be the ideal defining the theta divisor Θ′ (cf. Theorem 1.1). We will show that
OZ.Θ′,z = OZ,z/(f) is flat over OT,t.

Let κ(t) be the residue field of T at t, and g the image of f in M
def
= OZ,z ⊗OT,t

κ(t). By [EGA IV], Chapitre 0, Proposition (15.1.16), c) =⇒ a), it suffices to
show that g is M -regular. Furthermore, by [EGA IV], Chapitre 0, Proposition
(16.3.6) and (Proposition) 16.5.5, b) =⇒ a), to show the latter it suffices to show
that dim(M/gM) < dimM . Observe that M = OZ,z ⊗OT,t κ(t) = OZt,z and that

M/gM = O(Z.Θ)t,z, where Zt
def
= Z ×T t. Now, since (Z.Θ)t,ū′ = ∅ (cf. discussion

before Proposition 4.4), we have dim(M/gM) < dimM , as desired. �

Set S0
def
= S ×T ξ, S′0

def
= S ′ ×T ξ, X0

def
= X ×T ξ, and X ′0

def
= X0 ×S0 S

′
0 =

(X ×S S ′) ×T ξ. Let η′ be the generic point of S′0. Then sat(z) ∩ Θ′η̄′ = ∅ since
11



sat(z) ∩ Θ′ū′ = ∅ and η′ specialises into u′. Next, we claim that there exists a
point v′ ∈ S′0 such that sat(z) ∩ Θ′v̄′ 6= ∅, which would imply the assertion of
Theorem 3.10 (cf. Proposition 1.3). As the morphism Z.Θ′ → T is flat at z ∈ Z.Θ′
(which is above t ∈ T ), its image contains the image of the natural morphism
Spec(OT,t) → T , hence, in particular, contains the generic point ξ ∈ T . So, let
y ∈ Z.Θ′ be any point above ξ ∈ T , and v′ ∈ S ′ the image of y in S ′. Then by
assumption it holds that z ∈ sat(z) ∩Θ′v̄′ 6= ∅ as claimed.

This finishes the proof of Theorem 3.10. �

Proof of Theorem 3.9. Theorem 3.9 follows easily from Theorem 3.10. Indeed,
notations as in Theorem 3.10, write η and v for the images of η′ and v′ in S,
respectively. Then we have the following commutative diagram

π1(Y ′η̄′) � π1(Y ′v̄′)

∩ ∩

π1(X ′η̄′) � π1(X ′v̄′)

‖ ‖

π1(Xη̄) � π1(Xv̄),

where the horizontal arrows are specialisation homomorphisms. The assertion of
Theorem 3.10 implies that Sp : π1(Y ′η̄′) � π1(Y ′v̄′) is not injective, which implies

that Sp : π1(Xη̄) � π1(Xv̄) is not injective, as desired. �

Proof of Theorem 3.6. (cf. [S], Theorem 4.4.) Theorem 3.6 follows easily from
Theorem 3.9. Indeed, there exist a connected and reduced k-scheme S ′ of finite
type, a finite surjective k-morphism S ′ → S and a proper and smooth S ′-curve
f : X ′ → S ′ of (constant) genus g, such that the (coarse) classifying morphism
S ′ →Mg,k for f coincides with the composite of S ′ → S ⊂Mg,k (cf. [S], Proof of
Proposition B.1). Suppose that π1 is constant on S ⊂ Mg,k. Then π1 is constant
on S ′ for X ′ → S ′. Now, by Theorem 3.9, X ′ → S ′ is isotrivial, which implies that
S ⊂Mg,k consists of a single point. This is absurd, as dim(S) > 0. �

Next, we work with the assumptions in Theorems 3.12 and 3.13. In particular,
k is a field of characteristic p > 0, S is a connected and reduced k-scheme of finite
type, f : X → S is a non-isotrivial proper and smooth S-curve of genus g, and
D ⊂ X is a relatively étale divisor of degree n, such that 2− 2g − n < 0.

Proof of Theorem 3.12. (cf. [S], Theorem 4.8.) Theorem 3.12 follows easily from
Theorem 3.9. Indeed, suppose that πt1 is constant on S for (X,D)/S. By using the
tame version of Lemma 4.1 (cf. [St], Proposition 2.3), we may construct a tame
Galois cover (X ′, D′)/S′ of (X,D)/S which is geometrically of degree prime to p
and ramified at every point of D, such that the genus of (the fibres of) X ′ is ≥ 2
(cf. [T3], Theorem (8.1)). By construction, πt1 is constant on S′ for (X ′, D′)/S′,
which implies that π1 is constant on S′ for X ′ → S′. (This can be proved by either
considering the tame version of the specialization homomorphism (cf. Remark
3.11(i)) or resorting to [T2], Theorem (5.2).) Now, by Theorem 3.9, X ′ → S′ is
isotrivial, which implies that (X,D)/S is isotrivial, as in [T3], Proof of Theorem
(8.1). This completes the proof. �
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Proof of Theorem 3.13. Theorem 3.13 follows from Theorem 3.12, together with
[T1], Corollary 1.5. �
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[EGA III] Grothendieck, A., Élements de géométrie algébrique, Étude cohomologique
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