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Abstract

Neglecting the convective terms in the Saint-Venant Equations (SVE) in flood hydrodynamic modelling can be done without a

loss in accuracy of the simulation results. In this case the Local Inertial Equations (LInE), are obtained. Herein we present two

analytical solutions for the Local Inertial Equations. The first is the classical instantaneous Dam-Break Problem and the second a

steady state solution over a bump. These solutions are compared with two numerical schemes, namely the first order Roe scheme

and the second order MacCormack scheme. Comparison between analytical and numerical results shows that the numerical schemes

and the analytical solution converge to a unique solution. Furthermore, by neglecting the convective terms the original numerical

schemes remain stable without the need for adding entropy correction, artificial viscosity or special initial conditions, as in the case

of the full SVE.
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1. Introduction

1.1. Governing Equations

One-dimensional models are applicable when there is a dom-

inant flow direction or when a more detailed solution is not nec-

essary [1]. The SVE equation, as presented by Barré de Saint

Venant [2], are a well-accepted mathematical description of the

physical phenomenon of a 1D free-surface flow [3] based upon

the following assumptions:

• The pressure distribution is hydrostatic (the streamlines

have a small curvature and vertical acceleration can be

neglected);

• The channel bottom slope is small (sin(θ) ≈ θ ∧ cos(θ) ≈

1);

• The flow is one dimensional, assuming uniform velocity

across the cross-section;

• Friction and turbulence are introduced by assuming laws

applicable to steady state flow;

• Water density is constant.

The equations form a system of coupled non-linear hyperbolic

partial differential equations that are described by two depen-

dent variables [3], commonly h (water depth) and v (velocity)

∗Corresponding author

Email addresses: Ricardo.Martins@dec.uc.pt (Ricardo Martins),

Jorge.Leandro@ruhr-uni-bochum.de (Jorge Leandro),

S.Djordjevic@exeter.ac.uk (Slobodan Djordjević)

but also A (cross section area) or z (water level) and q (unit-

discharge), related to two independent variables: x, t (longitudi-

nal direction and time). The system of equations can be further

simplified. Using the formulation as described by Vázquez-

Cendón [4], assuming a constant width of 1, derived from the

conservative form, the equations become:

∂

∂t
h +
∂

∂x
q = 0 (1)

∂

∂t
q +
∂

∂x

(

q2

h

)

+
g

2

∂

∂x
h2 = gh(S − J) (2)

h is the water depth, q the unit-discharge and g the gravitational

acceleration, S the bed slope and J the friction slope. Some

analytical solutions for simplified cases exist but for practical

application numerical methods are preferred [5].

In order to reduce the computational time or increase the

stability, the SVE are frequently simplified into other models

(e.g. Kinematic Wave Model (KWE), Diffusive wave model

and Local Inertial Model (LInE)). The LInE is a simplification

of the SVE which assumes that the convective terms are negli-

gible. These terms may cause numerical oscillations near dis-

continuities and wet-dry fronts [6, 7]. Equations (1) and (2)

become:
∂

∂t
h +
∂

∂x
q = 0 (3)

∂

∂t
q +

g

2

∂

∂x
h2 = gh(S − J) (4)

1.2. SVE Analytical Solutions

Analytical solutions are sought mainly for their ability to at-

test the convergence and correctness of numerical models when
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a full analytical solution for the problem does not exit. A brief

historical review of SVE Dam-Break characteristic based ana-

lytical solution is presented herein.

SVE Dam-Break analytical solutions are among the most

sought solutions. One of the first solutions was presented by

Barré de Saint Venant [2] and Ritter [8] for the Dam-Break

problem with a dry front. This solution is a parabola that de-

scribes the depth of water after the sudden complete breaking

of the dam and is based upon the assumption of a prismatic

channel with horizontal bed and infinite length and no bed fric-

tion. The initial conditions are of a predefined depth upstream

of the dam site and no water downstream. The breaking of the

dam is assumed to be total and instantaneous. This situation

leads to a horizontal asymptote making the propagation in the

tip very fast. Dressler [9], by transforming the equations into

diffusive wave equations, or, Whitham [10], by treating the tip

as a “boundary layer”, proposed that the tip of the front wave

had a different configuration other than the asymptote. Ritter

[8] solution was used and only the tip was changed. Stoker [11]

presented the solution for the Dam-Break for a non-wet front

where a shock wave or bore travelled forward and a rarefaction

wave backwards with a constant depth connecting the shock

wave and the beginning of the shock wave. Stoker’s Solution

also incorporated Ritter [8]’s solution if the depth downstream

was assumed to be equal to 0. Hunt [12, 13, 14] proposed an ap-

proximate solution based on the kinematic wave for an infinite

wet prismatic channel with slope [12], for a sloped prismatic

channel with variable width [14] and for an infinite sloped pris-

matic channel by using the method of asymptotic expansions.

Hunt’s work mainly focused on the long waves and is only valid

after the wave travelled some distance downstream. More re-

cently Mangeney et al. [15] found a solution for the 1D sloped

Dam-Break with friction using the Method of characteristics

and applied it to avalanches. Ancey et al. [16] presented a solu-

tion for steep slopes.

The aim of this work is to: a) present two analytical solu-

tion, for the Dam-break problem based on LInE equations by

using the Method of characteristics and a steady state solution

b) compare the analytical solutions with two numerical solu-

tions of first and second order, with and without shock capturing

ability. In the Methodology, the formulae for the depth and ve-

locity will be derived and explained along with the wave propa-

gation characteristics for the Dam-Break. Well established nu-

merical schemes will be applied to the LInE, and compared to

the analytical solutions. In the last section conclusions will be

drawn about the propagation, analytical solutions and numeri-

cal schemes.

2. Methodology

2.1. Analytical Dam-Break Solution

The DamBreak problem can be seen as a Riemann prob-

lem which is a fundamental tool to find the characteristics of a

set of hyperbolic equations [17]. The initial conditions are con-

stant with a single jump discontinuity at some point [17] usually

x =0[m] and described by:

h(x, 0) =

{

hl i f x < 0

hr i f x > 0
(5)

The solution of the Dam-break for the hyperbolic non-linear

LInE Equations (Equations (3) and (4)) is obtained through the

Method of Characteristics (MOC) that is derived from the ge-

ometric theory of the quasi-linear differential equations. MOC

provides an insight into the physical behaviour and the con-

struction of an analytical solution [18]. In order to derive the

analytical solution of the Dam-Break for the LInE two major

steps are defined: (1) calculation of the characteristics and the

Riemann Invariants; (2) calculation of the depth and velocity

for entire domain.

2.1.1. Step 1 - LInE Characteristics and Riemann Invariants

The concept of Riemann invariants and characteristics is

of the utmost importance to understand the propagation of the

waves in a set of hyperbolic equation. Equations (6) and (7)

show the conservative form of the homogeneous LInE without

source terms and in an horizontal, rectangular constant breadth

unitary channel (i.e. by neglecting the bed friction and elevation

source terms).

∂

∂t
h +
∂

∂x
uh = 0 (6)

∂

∂t
uh +

g

2

∂

∂x
h2 = 0 (7)

To obtain the Riemann Invariants and the characteristics it

is first necessary to linearise the previous set of equations and

transform them into a celerity- velocity formulation [18]. From

equations (6) and (7) by applying the chain rule we obtain:

∂

∂t
h + h

∂

∂x
u + u

∂

∂x
h = 0 (8)

h
∂

∂t
u + u

∂

∂t
h + gh

∂

∂x
h = 0 (9)

With the celerity c =
√

gh, differentiating c in time and

space one obtains:

∂

∂t
c =
∂

∂t

√

gh =
g

2
√

gh

∂

∂t
h =

g

2c

∂

∂t
h =⇒

∂

∂t
h =

2c

g

∂

∂t
c

(10)

∂

∂x
c =

∂

∂x

√

gh =
g

2
√

gh

∂

∂x
h =

g

2c

∂

∂x
h =⇒

∂

∂x
h =

2c

g

∂

∂x
c

(11)

Multiplying (8) by cg and (9) by g and introducing (10) and

(11) into (8) and (9), adding and subtracting the equations one

obtains:

∂

∂t
(2c3 + 3uc2) + c

∂

∂x
(2c3 + 3uc2) = 0 (12)

∂

∂t
(2c3 − 3uc2) − c

∂

∂x
(2c3 − 3uc2) = 0 (13)
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These equations have the form:

∂

∂t
R +

dx

dt

∂

∂x
R = 0 (14)

With R = 2c3+3uc2 or R = 2c3−3uc2, since
∂

∂t
R = 0 along

the curves represented by the equation
dx

dt
= c or

dx

dt
= −c one

obtains:

∂

∂t
(2c3 + 3uc2) = 0 (15)

On the positive characteristic curves (C+) with equation:

dx

dt
= c (16)

And:

∂

∂t
(2c3 − 3uc2) = 0 (17)

On the negative characteristic curves (C−) with equation:

dx

dt
= −c (18)

On the curves C+ and C− the values 2c3+3uc2 and 2c3−3uc2

are the respective Riemann invariants.

2.1.2. Step 2 - Dam-break

In order to derive the analytical solution for the LInE Dam-

break - following Stoker [11] - one has to divide the structure

of the generic fully developed Dam-Break (t = t0) into 4 areas

(Figure 1).

• Area 0 is the downstream condition depth = h0 and velocity =

u0 = 0, limited upstream by the steep front wave, which

travels with a constant speed ξ.

• Area 1 is upstream condition and has the initial condi-

tions depth = h1 and velocity = u1 = 0. These areas are

also the initial condition to the Riemann Problem.

• Area 2 is a zone of constant state with velocity and depth

unknown that connects the steep front wave (P20) with

the rarefaction waves ( P13 to P32).

• Area 3 is where the rarefaction waves propagate connect-

ing the constant state 2 with 1.

Areas 1 and 0 are Initial conditions of the problem there-

fore they are provided, leaving parameters in Areas 2 and 3 to

be calculated:h2 ,u2 ,ξ h3 ,and u3 (c3 and c2 are dependent on

h3 and h2) along with the position of the transition points P13,

P32, P20. The points position are obtained in an analogy with

the SVE characteristic formulation. The first point is P13, de-

fined by the maximum backwards propagation allowed by the

upstream negative characteristic times the time elapsed, we ob-

tain therefore:

P13 = −c1t (19)

Figure 1: Dam-Break Structure

Since in Area 2 the depth is constant it can be assumed that

the last rarefaction wave propagating has the celerity of Area 2

we obtain therefore:

P32 = −c2t (20)

For the front steep wave, it has a specific velocity given by

ξ present in the relation:

P20 = ξt (21)

The calculation of depths (or celerities) and velocity will

be divided in two sections: (1) parameters in Area 2 and the

transition from Area 0 to Area 2; (2) the characterization in

Area 3.

The transition from Area 0 to Area 2 is obtained using the

two shock conditions for the LInE equations considering the

fluid incompressible:

h2(u2 − ξ) = h0(u0 − ξ) (22)

ξh0u0 − ξh2u2 =
1

2
gh2

0 −
1

2
gh2

2 (23)

Equation (22) is obtained from the conservation of mass (6)

using the relative velocity U. The relative velocity is the ve-

locity u reduced by the steep front wave propagating velocity

ξ (U = u − ξ). Equation (23) is obtained from (7) in the same

manner. Converting depths to celerities using h = c2/g and

realizing that u0 = 0 one obtains:

c2
2
u2

g
+ ξ

c2
0
− c2

2

g
= 0 (24)

ξ
c2

2
u2

g
−

c4
0
− c4

2

2g
= 0 (25)

The system of equations (24) and (25) does not suffice for

obtaining the 3 unknowns required: c2, u2 ,and ξ. To obtain

another equation one must assume that along the positive char-

acteristic curve (C+) the Riemann Invariant (I+) remains con-

stant in both Areas 2 and 1 and the velocity in Area 0 is u1 = 0,

therefore the following relation is defined:

3



I+2 = I+1 =⇒ 2c3
2+3u2c2

2 = 2c3
1+3u1c2

1 =⇒ 2c3
2+3u2c2

2 = 2c3
1

(26)

Solving for u2 one obtains:

u2 =
2

3





c3
1

c3
2

− c2



 (27)

Solving the system of Equations (24), (25) ,and (27) one

obtains the three variables needed to characterize Area 2 and

steep front wave propagation: c2, u2 and ξ . This system can

be solved using a non-linear iterative method or can be further

simplified and provide insight on the wave propagation if we

solve equations (24) and (25) for u2:

u2 = ξ − ξ
c2

0

c2
2

(28)

u2 =
c4

2
− c4

0

2ξc2
2

(29)

Equalling (28) and (29), solving for ξ and neglecting the

negative root one obtains:

ξ =

√

c2
0
− c2

2

2
(30)

This shows that the speed of the bore propagation is an av-

erage of the squared celerities near the discontinuity. Equa-

tion (30) also shows that in case of a wet dry front the steep

front wave propagation speed is a function only of the upstream

depth. In equation (28) introducing equations (27) that substi-

tutes u2 and equation (30) that substitutes ξ one gets, after some

manipulation:

c3
2 = c3

1 +
3

2
(c2

0 − c2
2)

√

c2
0
− c2

2

2
(31)

Solving Equation (31) by iterations and neglecting the ir-

rational roots one obtains c2 that can be substituted directly in

equation (30) and equation (27) to obtain a unique solution. The

next step is finding the solution for Area 3 variables. The char-

acteristics (16) and (18) are the solution for the ordinary differ-

ential equations (12) and (13) as long as relations (15) and (17)

are satisfied. In Area 3 along the negative characteristic (18) we

have:

c3 = −
x

t
(32)

Changing variable to h

h3 =
c2

3

g
=

x2

gt2
(33)

Assuming that the Riemann Invariant (I+) is kept constant

along the positive characteristic curve (C+) by solving (26) for

c3 and c1.

I+3 = I+1 =⇒ 2c3
3 + 3u3c2

3 = 2c3
1 =⇒

=⇒ u3 =
2(c3

1
− c3

3
)

3c3
2

=⇒ u3 =
2(c3

1
t3 + x3)

3x2t
(34)

With all the formulae needed to characterize the depth and

velocities for the Dam-break, the expressions are given in Ta-

bles 1 and 2.

Table 2: Discontinuity point locations in time

P13 P32 P32

P −c1t −c2t ξt

2.2. Numerical Schemes

For comparison with the Analytical solution two numerical

schemes applied to LInE Equations will be presented: (1) a first

order in space and time Roe Riemann solver and (2) a second

order in time and space McCormack two-step scheme.

Roe. Upwind schemes like the Roe scheme discretize the spa-

tial derivatives so that information is taken from the side it

comes rendering these techniques well adapted to advection

dominated problems [1]. The set of equations (6) and (6) can

be represented in conservative Matrix form as a system of con-

servation laws as:

∂

∂t
U +

∂

∂t
F(U, x) = 0 on Ω × [0, t] ∈ R × R+ (35)

WhereΩ is the space domain in R, [0, t] represents the time

interval of the solution, U are the primitives or conserved vari-

ables and F(U, x) the fluxes given in matrix form by:

U =

[

h

q

]

, F =





q
1

2
gh2




(36)

q = uh is the unit discharge in the x direction (u is the veloc-

ity in the x direction), h is the water depth and g is the gravita-

tional acceleration. Roes approximate solver replaces the non-

linear problem in equation (35) by the linearisation:

∂

∂t
U + A

∂

∂t
F(U, x) = 0, where A =

∂

∂U
F(U, x) (37)

This linearization assumes a constant Jacobian A calculated

using consistent and conservative conditions [19].

The discretization is generically represented in Figure 2.

Point P is the generic point inside the Domain, O is the point

previous to P and Q is the point after P. Discretizing using Roe

Scheme [20] and a first order Euler integration for the time one

obtains:

Ut+1
P = Ut

P −
∆t

∆x

[

ϕOP − ϕPQ

]

(38)
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Table 1: Formulae used for the Analytical solution of the LInE 1D Dam-break

Area h u c ξ

1 h1 0 c1 =
√

gh1 −

3 h3 =
x2

gt2
u3 =

2(c3
1
t3 + x3)

3x2t
c3 = −

x

t
−

2 h2 =
c2

2

g
u2 =

2

3





c3
1

c3
2

− c2



 c3
2
= c3

1
+

3

2
(c2

0
− c2

2
)

√

c2
0
− c2

2

2
ξ =

√

c2
0
− c2

2

2

0 h0 0 c0 =
√

gh0 −

Figure 2: Generic representation of the discretization

With

ϕOP =

(

FO + FP

2
−

(

1

2
R|Λ|R−1

)

OP

(UP − UO)

)

,

ϕPQ =





FP + FQ

2
−

(

1

2
R|Λ|R−1

)

PQ

(

UQ − UP

)



 (39)

With U and F obtained for each generic point from equation

(36), R the eigenvectors of A = ∂F(U, x)/∂U, the Jacobian Ma-

trix of F and Λ the diagonalized matrix of the right eigenvalues

of A. They are therefore for LInE:

A =

[

0 1

c̃2 0

]

, R =

[

1 1

c̃ −c̃

]

,

R−1 =
1

2c̃

[

c̃ 1

c̃ −1

]

, Λ =

[

c̃ 0

0 −c̃

]

(40)

c̃ is the Averaged value of the celerity measured at the inter-

face between two points, that since equal spacing is considered

here is assumed as:

c̃ =

√

g

2
(hP1
+ hP2

) (41)

Where P1 and P2 are generic Points. Since c̃ is always equal

or greater than 0,Λ can be explicitly split into two matrices used

in equation (38) and equation(39) that consider the incoming

and on-going wave strengths and is expressed as:

Λ
+ =

[

c̃ 0

0 0

]

, Λ
− =

[

0 0

0 −c̃

]

(42)

After some manipulation, by introducing the values between

points (using (41) with P1 and P2 as O,P,Q) and introducing the

Matrices (40) and (42), Equation (38) and (39), by equalling the

source terms to the fluxes in hydrostatics conditions (the well

balancing C-property (Conservation Property)) the updated depth

and discharge finally becomes:

ht+1
P = ht

P +
∆t

2∆x
(

δqOP + δh
t
OPc̃OP + δh

t
QPc̃PQ − δzPQc̃PQ + δzOPc̃OP

)

(43)

and

qt+1
P = qt

P +
∆t

2∆x
(
g

2
δht

O2P2 + δq
t
OPc̃OP + δq

t
QPc̃PQ − δzPQc̃2

PQ + δzOPc̃2
OP

)

(44)

with

δqt
OP = qt

O − qt
P, δh

t
OP = ht

O − ht
P, δh

t
QP = ht

Q − ht
P,

δzPQ = zP − zQ, δzOP = zO − zP, δh
t
O2P2 = ht

O

2
− ht

P

2
,

δqt
QP = qt

Q − qt
P

(45)

Roe scheme, for the SVE, may allow non-physical numer-

ical solutions [17]. This is due to an entropy violation where

shock waves are created where rarefaction waves should ex-

ist. The entropy violation is attributed to the fact that a lin-

earised Riemann solver (like Roe approximate Riemann solver)

solution does not consist of continuous rarefaction waves but

discontinuities [17]. These discontinuities causes instabilities

when the rarefaction eigenvalue is close to zero (u− c for a pos-

itive velocity and u + c for a negative velocity), namely when

the velocity is close to the celerity and the negative eigenvalue

of the SVE becomes close to zero (e.g. stationary hydraulic

jump). The SVE eigenvalues or wave speeds (u + c and u − c)

5



accept three possible states of flow: Supercritical, Subcritical

and Critical (See 3 (SVE)) that depend on the velocity u, the

direction of flow and the celerity c =
√

gh being h the depth.

LInE only accepts one state as seen in Figure 3 (LInE) depen-

dent upon c =
√

gh. Since the wave speeds for LInE are always

far from zero, the rarefaction wave is well pronounced and has

no entropy violation.

MacCormack. McCormack Scheme is a well-established sec-

ond order in time and space two-steps Numerical Scheme. The

form used in this paper is the one presented by MacCormack

[21] adapted to LInE and has as a predictor step:

[

h
t+1/2

P

q
t+1/2

P

]

=





ht
P
−
∆t

∆x
δqt

QP

qt
P
−
∆t

∆x

g

2
δht

Q2P2 −
∆t

∆x
ght

P
δzQP





(46)

Followed by a corrector step:

[

ht+1
P

qt+1
P

]

=





1

2

(

ht
P
+ h

t+1/2

P
−
∆t

∆x
δq

t+1/2

PO

)

1

2

(

qt
P
+ q

t+1/2

P
−
∆t

∆x

(
g

2
δh

t+1/2

P2O2 + gh
t+1/2

P
δzPO

))





(47)

with

δzQP = zQ − zP, δh
t
Q2P2 = ht

Q

2
− ht

P

2
, δqt

QP = qt
Q − qt

P,

δq
t+1/2

PO
= q

t+1/2

P
− q

t+1/2

O
, δh

t+1/2

P2O2 = h
t+1/2

P

2
− h

t+1/2

O

2
,

δzPO = zP − zO

(48)

MacCormack scheme, for the SVE, usually requires the use

of artificial viscosity, limiters, or a smoothing of the initial con-

ditions to converge to the correct solution [22]. The LInE, on

the contrary, requires no additional change or corrections.

2.3. Evaluation

In order to numerically evaluate the results L2-norm (Equa-

tion (49)) [23] and Pearson product-moment correlation coeffi-

cient (Equation (50)) [24] were used.

L2 =

√√√√√√√√√√

n∑

i=1

(

xNum
i
− xAna

i

)2

n∑

i=1

xAna
i

2
(49)

R =

n∑

i=1

(

xAna
i
− xAna

i

) (

xNum
i
− xNum

i

)

√

n∑

i=1

(

xAna
i
− xAna

i

)2 (

xNum
i
− xNum

i

)2

(50)

Where n is the total size of the sample, i a random point

of the sample, xNum
i

and xAna
i

a numerical or analytical value

respectively for point i and xNum
i

and xAna
i

are the averages re-

spectively of the numerical and analytical values.

3. Results and Discussion

3.1. Steady State Verification

Another analytical solution is obtained through the conser-

vation of energy throughout the domain. The test comprises

a domain with 25 metres, with a relatively small bump near

the middle where a steady state is established. The flow, has a

Froude number smaller than 1 and is therefore a test in subcriti-

cal regime. The boundaries in the test have critical importance.

A flow of q = 4.42[m3/s] is defined at the upstream boundary

whilst the depth of hD = 1.58514[m] is given at the downstream

end. The time step is related to the CFL condition and the dis-

tance step is 0.1[m]. The bed elevation is defined by:

ζ(x) =






0 i f x ≤ 8[m]

0.2 − 0.05(x − 10)2 i f 8 < x < 12[m]

0 i f x ≥ 12[m]

(51)

Bottom friction is considered null. Since the test is per-

formed until steady state flow, the Bernoulli equation applied to

the LInE (the convective terms neglected) is applicable as:

∂

∂x
H = 0 =⇒

︸︷︷︸

SVE

∂

∂x

(

z + h +
u2

2g

)

= 0 =⇒
︸︷︷︸

LInE

∂

∂x
(z + h) = 0

(52)

LInE Energy, is known for the downstream boundary con-

dition, therefore, since the bed elevation z in the right boundary

is 0, H = hD. Using (52) one obtains the depth for all points and

using continuity q = uh we can obtain the velocity. The com-

parison of the results for the head and velocity are presented in

Figure 4.

A dry bed is used as the initial condition. Roe scheme

achieved steady state convergence for a difference in domain

volume of 10−10[m3] whilst MacCormack never achieved the

convergence. This situation is due to the explicit source term

treatment and second order nature that induces numerical spu-

rious oscillations. The errors are negligible as seen in Table 3

L2-norm coefficient where for the Roe scheme the error is close

to the machine precision whilst for MacCormack the values are

close to 10−3.

Table 3: L2-norm for Roe and MacCormack Schemes compared to the Steady

state analytical solution

L2Roe L2Mac

Hydraulic Head 1.353 × 10−09 1.061 × 10−04

Velocity 9.231 × 10−10 2.893 × 10−03

3.2. Application to the Dam-break problem

In order to verify the analytical solution a Dam-Break test

was performed with different initial conditions. The test is com-

posed of a 2000 meters long channel divided in half by a gate at

x=0 [m]. Bed elevation is 0 [m] and the friction was neglected.
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Figure 3: Eigenvalues for SVE and LInE
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Figure 4: Depth and velocities for the steady state test

The initial velocity is 0 [m/s] on both sides of the gate. The test

is conducted by opening the Gate at x =0 [m] (Figure 5).

The expected behaviour is a steep front wave travelling down-

stream whereas a fan of rarefaction waves should propagate up-

stream. The test was performed with 10 [m] depth as the up-

stream initial condition and downstream initial condition vary-

ing each metre from 0 to 9 [m] and for t =50[s]. Figure 5 shows

the Depth and Velocities for the changing downstream initial

depth.

Figure 5: Dam-Break configuration Initial condition: dark grey

In Figure 6 it should be noticed that although the velocity

is greater for the lower depth in the downstream condition, the

steep front wave propagation is slower, this is because the front

wave propagation is not a function of the velocity but a function

of the depth upstream and downstream of the Shock Wave (see

Equation (30)).

Two downstream conditions were studied in more detail for

comparison with numerical schemes: (1) a wet downstream

(WD) condition and (2) a dry downstream (DD) condition. Up-
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Figure 6: Depth and velocities for a varying downstream condition: h from 0 to

9 [m]. t =50 [s]

stream the depth is 10 metres and downstream it is 5 [m] in the

WD test and 0 metres in the DD test. The tests were conducted

for Roe and MacCormack schemes. Depths and velocities for

DD are presented in Figure 7, and for WD in Figure 8.

In Figure 7 one can see the depth (left) and velocity (right)

for the two numerical schemes used and the analytical solution.
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Figure 7: Depth and velocities profiles for t=50[s] with hd=0[m]

The Figures also present details on the Rarefaction waves lo-

cation and the Shock wave for the depth (Shock Lower left

corner, Rarefaction Upper right corner) and velocity (Shock

Upper right corner, Rarefaction Upper left corner). Results are

similar between the numerical and the analytical solution and

the location of the steep front wave and the rarefaction is ap-

proximate. The reason being the relatively coarse mesh used of

5 [m].

Figure 8 shows the depth and velocity for the WD condi-

tion. The disposition in Figure 8 is the same as in Figure 7. The

comparison clearly demonstrates the similarity between the an-

alytical and the numerical results. In the first order Roe scheme

some damping is observed whereas in MacCormack there are

some oscillations near discontinuities. Except for the spurious

oscillations, MacCormack scheme is closer to the analytical so-

lution than the Roe scheme as expected since the former is a

second order scheme. It should also be noticed that when com-

paring the steep front wave with the MacCormack scheme the

results in Figure 7 show more oscillations than the ones in Fig-

ure 8 showing that the steeper the wave front (higher gradient)

the higher are the spurious oscillations in the 2nd order scheme.

The results for L2-norm and Pearson coefficient are presented

in Table 4.

Table 4: L2-norm and Pearson Correlation

hdownstream RRoe RMac L2Roe L2Mac

5 0.9966 0.9978 0.0203 0.0163

0 0.9977 0.9971 0.0427 0.0483

The results show a very good agreement between the values

obtained by the numerical and the analytical model. The lower

correlation value obtained in the Pearson product-moment cor-

relation coefficient is 0.9904. The higher value is 0.9978. The

L2-norm errors results are similar to the correlation coefficient

in terms of convergence. The higher value is 0.072 whereas the

lower value is approximately 0.016.

4. Concluding Remarks

In this paper an analytical solution based on the method of

characteristics and a steady state analytical solution were pre-

sented for the Local Inertial Model (LInE) set of equations,

along with a first order in space and time Roe Scheme derived

for the LInE and MacCormack scheme applied to the LInE. Un-

like with SVE the MacCormack and Roe schemes applied to

the LInE did not need the commonly applied entropy correc-

tion, artificial viscosity or special initial conditions to remain

stable. However, MacCormack scheme showed some oscilla-

tions in steady state with source terms. The results showed a

very good agreement between the analytical and the numerical

solutions. The analytical solutions can thus be used to validate

numerical models based on the LInE.
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