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Topological modes in one-dimensional solids and photonic crystals
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It is shown theoretically that a one-dimensional crystal with time-reversal and particle-hole symmetries is
characterized by a topological invariant that predicts the existence or otherwise of edge states. This is confirmed
experimentally through the construction and simulation of a photonic crystal analog in the microwave regime. It
is shown that the edge mode couples to modes external to the photonic crystal via a Fano resonance.
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I. INTRODUCTION

Topological phases have been shown to arise in a number
of condensed matter systems: in the quantum Hall effect [1]
where electrons are confined to two dimensions and subject
to a perpendicular applied magnetic field, and in so-called
topological insulators [2,3] which are materials that possess
conducting metallic surfaces despite being insulators in the
bulk. Experimental studies of these states, in materials such
as graphene [4] and Bi2Se3, have recently been an area of
considerable focus both for fundamental reasons because the
topological states in these materials lead to exotic quasiparti-
cles, and also for applications such as quantum computing.

The states arise in these systems as follows: consider a
map from the Brillouin zone to a space of nondegenerate
Bloch Hamiltonians H (k). If |k〉 is an eigenstate of H (k),
then a vector potential A(k) = −i〈k|∂k|k〉 may be defined
following Berry [5]. The topological index of this map is Q =∫ ∇ × A(k) d2k. Thouless et al. discovered that nontrivial
topological invariants can arise in the Brillouin zone with
time-reversal symmetry broken by the application of a strong
magnetic field as in the quantum Hall effect [1]. More recently,
Balents and Moore [6] applied this paradigm to systems with
strong spin-orbit interaction but with time-reversal symmetry
intact and thereby clarified an earlier proposition by Kane
and Mele [7] that a Z2 invariant of the band structure divides
insulators into two classes: an even class corresponding to
conventional insulators and an odd topological insulating
phase that possesses conductive surface states.

In this paper, we apply this paradigm to a system with
different symmetry, a one-dimensional (1D) crystal with time-
reversal and charge-conjugation symmetries. In the language
of random matrix theory [8], our system corresponds to
class BDI in contrast to the unitary class A in the work of
Thouless et al. [1] and the symplectic class AII in Balents
and Moore [6]. By an analogous argument, it is shown that
such a structure may possess edge states characterized by a Z
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topological invariant. We also develop a coarser topological
classification based on a Z2 invariant. The system is then
realized experimentally through a photonic analog. Photonic
topological insulators in the same symmetry class have been
studied previously; for a review see [9]. We stress that while
edge states such as Tamm states are well known in 1D
crystals [10], it is the topologically protected nature of those
presented here that primarily concerns us.

II. MODEL

A. Topological argument

We begin with the topological argument. Consider a tight-
binding model on a one-dimensional lattice with nearest-
neighbor hopping and a constant onsite energy. Such a model
is described by the Schrödinger equation

−τnψn+1 − τn−1ψn−1 = Eψn, (1)

where the ψn represent the amplitude of the wave function
at the nth lattice site and τn is the real hopping coefficient
between the nth site to the (n + 1th)site. For arbitrary τn, the
model (1) possesses a time-reversal symmetry with associated
operator T ψn = ψ∗

n as well as a particle-hole symmetry C
represented by the antiunitary charge-conjugation operator
Cψn = (−1)nψ∗

n where C2 = 1, T 2 = 1. The particle-hole
symmetry restricts the Hamiltonian’s spectrum because if |ψ〉
is an eigenfunction of (1) with energy E, then C|ψ〉 is also an
eigenfunction with energy −E.

A bipartite lattice is now considered [Fig. 1(a)(i)] where
the bond strengths are alternately τ1 and τ2; this is known as
the Schrieffer-Su model [11,12]. The Schrödinger equation for
this situation has the form

−τ1φ
B
n − τ2φ

B
n−1 = EφA

n , − τ1φ
A
n − τ2φ

A
n+1 = EφB

n . (2)

This may be diagonalized by introducing the Bloch ansatz
φA

n = αeikn, φB
n = βeikn, yielding(

0 z∗(w)
z(w) 0

)(
α

β

)
= E

(
α

β

)
, (3)
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FIG. 1. (a) 1D lattice models considered in this paper: (i) an
infinite bipartite lattice corresponding to the Schrieffer-Su model,
a simple one-dimensional topological insulator; (ii) a semi-infinite
Schrieffer-Su model where a bound surface state forms due to the
nontrivial topology of the Brillouin zone; (iii) a simple model with
a Fano resonance. A continuum of states on the external lattice is
coupled to a bound state on a single site. (iv) In order to observe
the bound surface state, the semi-infinite topological insulator is
connected to an external lattice. The bound state then shows up as
a resonant jump in the reflection phase. (b) Maps from the Brillouin
zone to the space of 2 × 2 Hamiltonians (3) fall into two classes
depending on τ1 and τ2: case (i) encircles the origin and (ii) does
not. (c) Maps from the Brillouin zone to the space of C-symmetric
Hamiltonians are (i) trivial if both points map to the same side of the
origin a = 0 and (ii) nontrivial otherwise.

where the 2 × 2 matrix on the left of Eq. (3) is the Bloch
Hamiltonian, w = eik , and z(w) = −(τ1 + τ2w). Equation (3)
thus defines a map from the Brillouin zone −π � k < π to
the space of Bloch Hamiltonians. Equivalently, this may be
viewed as a map z(w) from a unit circle in the w plane (the
Brillouin zone) to the complex plane with the origin excluded.
The origin is excluded provided, as we assume, the bands
are nondegenerate. The π1 homotopy of the punctured plane
is well known to be nontrivial. The topological index Q in
this case corresponds to the number of times the loop z(eik)
winds about the origin. It is easy to see that for the case τ1 <

τ2, Q = 1 [Fig. 1(b)(i)]; for τ1 > τ2, Q = 0 [Fig. 1(b)(ii)].
This can also be determined more formally by constructing
the eigenspinors of the Bloch Hamiltonian, computing the
corresponding Berry connection, and evaluating the Wilson
loop

∫
dkA(k). Higher values of Q can be obtained if we

perturb the model by, e.g., incorporating longer-range hopping
that respects C and T symmetries.

Now, let us reformulate the argument with more generality.
We continue to assume that the crystal has a bipartite lattice and
that the Hamiltonian commutes with T and anticommutes with
C. C and T transform a plane wave of wave vector k into one
of wave vector −k. At the same time, the amplitudes (α,β) are

transformed to (α∗, − β∗) and (α∗,β∗), respectively. The two
symmetries relate the Bloch Hamiltonians at wave vectors k

and −k via H (−k) = T H (k)T = −CH (k)C. Together, these
relations and the requirement of Hermiticity constrain the 2 ×
2 Bloch Hamiltonian H (k) to be off diagonal. At the special
points k = 0 and π , which are invariant under k → −k, the
Bloch Hamiltonian is required to have the form

H =
(

0 a

a 0

)
. (4)

Here, a is real and a �= 0 since we are assuming that the bands
have no accidental degeneracies. Topologically, this space is
a punctured line. Rather than considering the mapping of the
entire Brillouin zone to the space of Bloch Hamiltonians as
before, we may instead consider the mapping from the two
special points k = 0 and π to the punctured line. Such maps
fall into two classes: a trivial one [Fig. 1(c)(i)] where the special
points are mapped to the same side of the origin a = 0, and
a nontrivial case [Fig. 1(c)(ii)] such that the special points are
mapped to opposite sides.1 The edge mode, as we shall show
in the following section, occurs in the nontrivial case.

Our argument mirrors that of Balents and Moore [6] who
considered maps from an effective Brillouin zone in two
dimensions which had the topology of a cylinder to the space of
Bloch Hamiltonians. The circular boundaries of the effective
Brillouin zone in their argument are analogous to our special
points k = 0 and π . Apart from the difference in dimension-
ality, another key difference between their work and ours is in
the symmetry. As noted above, they considered bands with odd
time-reversal symmetry (the symplectic class AII) whereas
we consider even time-reversal symmetry accompanied by
charge-conjugation symmetry (class BDI).

B. Topological edge state in the bipartite lattice

Having made the topological argument, we wish to verify
that a winding number of one (or more generally an odd
winding number) is associated with a zero-energy bound state.
First, let us return to the infinite system of Fig. 1(a)(i). The
model has two bands symmetric about zero energy with a band
gap of 2(τ2 − τ1). For later use, we describe the mid-gap states
that decay as n → ∞. For these states we adopt the ansatz

φA
n = α(−1)n exp(−κn) and φB

n = β(−1)n exp(−κn).
(5)

A simple calculation reveals that this solution must have the
amplitude ratio

β

α
= ± (τ2e

−κ − τ2)1/2

(τ2eκ − τ1)1/2
, (6)

and energy

E = ±(τ2e
−κ − τ2)1/2(τ2e

κ − τ1)1/2. (7)

1If we assume that for generic values of k the Bloch Hamiltonian
will not accidentally have the form Eq. (4), then the map from the
Brillouin zone to the complex plane can cross the x axis only at
k = 0 and π ; this is the reason that the winding number can only
equal 0 or 1.
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As Eqs. (6) and (7) imply, the positive energy solutions have a
positive amplitude ratio and the negative energy solutions have
a negative amplitude ratio. The decay constant κ must lie in the
range 0 � κ � κc where κc = ln(τ2/τ1). κ = 0 corresponds to
a solution that lies at the band edge; κ = κc to a mid-gap
solution of zero energy. Needless to say, the mid-gap states
are not permissible states for an infinite crystal since the wave
function diverges as n → −∞.

Now, consider the semi-infinite crystal briefly discussed in
the previous section and depicted in Fig. 1(a)(ii). Here, the
first bond is τ1 and the sites are numbered sequentially from
zero to infinity. The interior of the crystal is described by the
Schrödinger equation

EφA
n = −τ1φ

B
n − τ2φ

B
n−1 for n � 1,

EφB
n = −τ1φ

A
n − τ2φ

A
n+1 for n � 0 (8)

together with the boundary condition

EφA
0 = −τ1φ

B
0 . (9)

A simple calculation reveals that of all the mid-gap solutions
only the zero-energy solution also satisfies the boundary
condition (9). The zero-energy solution corresponds to κ = κc.
More explicitly, this solution has the form

φA
n = α(−1)n

(
τ1

τ2

)n

, φB
n = 0, (10)

with the normalization constant

α =
√

τ 2
2 − τ 2

1

τ2
. (11)

The solution (10) is finite as n → +∞ only if τ1 < τ2,
of the previous section, and hence is manifestly localized in
character. The effect of curtailing the lattice is therefore as
follows: while the infinite Schrieffer-Su crystal has a band gap,
the semi-infinite Schrieffer-Su model has a mid-gap bound
surface state at zero energy corresponding to the topological
argument of the previous section. In the following section,
we consider one means of observing the surface state: we
will show that if the topological surface state is coupled to an
external continuum of states, it dissolves into the continuum in
accordance with Fano’s general analysis [13] but leaves behind
a scattering resonance which manifests itself as a phase jump
of π in the reflection coefficient.

C. Fano resonance

1. Single-site model of Fano resonance

We model the external continuum as a semi-infinite lattice
along the negative x axis. The eigenstates of the continuum
satisfy the Schrödinger equation

Eψn = −τψn−1 + V ψn − τψn+1 for n � −2. (12)

As shown in Fig. 1(a)(iii), the sites of the lattice are numbered
consecutively from −∞ to −1 for the last site of the lattice.
Ultimately, we want to couple this continuum to the topological
bound state of the semi-infinite Schrieffer-Su model. As a
prelude, let us couple it to a bound state consisting of a
single site with a hopping element θ . Thus, Eq. (12) must

be supplemented by the boundary conditions

Eψ−1 = −τψ−2 + V ψ−1 − θφb,

Eφb = −θψ−1. (13)

In the limit θ = 0, the bound state is decoupled from the
continuum. In this limit, the bound state |b〉 is described by
the wave function φb = 1 and ψn = 0 for all n and it has zero
energy. The continuum states have wave functions

|k〉 → φb = 0 and ψn = 1√
π

sin kn for n � −1

(14)

and energy E = V − 2τ cos k. The wave vector k is restricted
to lie in the range 0 � k � π . A nonzero value of the hopping
element θ couples the bound state to the continuum and leads
to its dissolution. In fact, we can map this model exactly onto
Fano’s model and then apply his general analysis [13]. But,
it is more instructive to directly solve the model defined by
Eqs. (12) and (13). To this end, we make the ansatz that

ψn = eikn + re−ikn for n � −1. (15)

Here, r the reflection coefficient is expected to be a complex
number of magnitude one due to unitarity. We therefore write

r = − exp (−i2δ), (16)

which established our definition of the reflection phase shift
δ. Note that for the decoupled case θ → 0 the phase shift is
δ = 0. In general, a simple calculation substituting Eq. (16) in
Eqs. (12) and (13) reveals the exact result

tan δ = (θ2/τ ) sin k

E(1 − θ2/2τ 2) + V (θ2/2τ 2)
. (17)

The general expression is not particularly edifying. Recall
that the energy is related to k via E = V − 2τ cos k with k

constrained to lie in the interval 0 � k � π . Let E = 0 for
k = kc. Also, assume that the lattice is weakly coupled to the
bound state (θ 	 τ ). Near zero energy, the expression for the
phase shift simplifies to

tan δ = (θ2/τ ) sin kc

E + V (θ2/2τ 2)
. (18)

Equation (18) reveals that the resonance is slightly shifted
from zero energy to the energy −V (θ2/2τ ) and that the phase
jumps by π over an energy width of (θ2/τ ) sin kc.

2. Fano resonance in Schrieffer-Su model

Finally, let us couple an external continuum to the semi-
infinite Schrieffer-Su model as shown in Fig. 1(a)(iv). Deep in
the interior, the Schrödinger equation has the form

EφA
n = −τ1φ

B
n − τ2φ

B
n−1 for n � 1,

EφB
n = −τ1φ

A
n − τ2φ

A
n+1 for n � 0, (19)

Eψn = −τψn−1 + V ψn − τψn+1 for n � −2.

This equation must be solved subject to the following matching
conditions at the interface of the external lattice and the
topological insulator:

EφA
0 = −τ1φ

B
0 − θψ−1,

(20)
Eψ−1 = −τψ−2 + V ψ−1 − θφA

0 .
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We are interested in solutions at mid-gap energies close to
zero energy. Since there are no propagating modes in the
topological insulator we expect incoming plane waves from
the external lattice to be perfectly reflected with the phase of
the reflection coefficient encoding important information about
the topological insulator as in the simple example above. We
introduce the scattering ansatz

ψn = eikn + re−ikn for n � −1,

φA
n = α(−1)ne−κn for n � 0, (21)

φB
n = β(−1)ne−κn for n � 0.

Here, κ and k are related to the energy by Eq. (7) and
by E = V − 2τ cos k, respectively. As before, we define the
scattering phase shift via r = − exp(−i2δ). By substituting
the ansatz (21) into Eq. (20), a short calculation yields the
exact result

tan δ = θ2

τ 2
sin k

/[
τ1e

κ

τ (τ2eκ − τ1)
E + θ2

τ 2
cos k

]
. (22)

Once again, the general expression is not particularly edifying
but close to zero energy the phase shift simplifies to

tan δ ≈ θ2

τ 2
sin kc

/[
τ1τ2

τ
(
τ 2

2 − τ 2
1

)E + θ2

τ 2
cos kc

]
. (23)

Here, kc is defined as the value of k that corresponds to
zero energy (V − 2τ cos kc = 0) and we have assumed that
the topological insulator is weakly coupled to the external
lattice (θ 	 τ ). The energy difference of the phase shift is now
explicit and from Eq. (23) we can see that the phase jumps by
π as the energy is swept through the resonance and we can read
off the energy of the resonance, which is again slightly shifted
from zero energy, as well as the energy width of the resonance.
We note that this π -phase shift is related to scattering matrix
expressions for topological invariants discussed in [14,15].
The phase shift provides one potential means of observing the
topological state; in the following section we shall demonstrate
another.

D. Observing the topological states

We now address the issue of how the edge state might be
observed in a finite system. The hopping model on a bipartite
lattice is actualized in a 1D solid where an electron is subject
to a periodic array of potential barriers of alternating height.
The reflection and transmission of incident free-particle wave
functions of wave vector p through such a structure is readily
determined by matching local solutions to the Schrödinger
equation at interfaces using matrix methods [16]. To do so,
define

T (θ ) =
(

eiχ cosh θ sinh θ

sinh θ e−iχ cosh θ

)
, U =

(
eipb 0

0 e−ipb

)
.

(24)

Here, T (θ ) is the transfer matrix for a single symmetric barrier
located at the origin and U a translation operator; θ is the
opacity of the barrier, b is the lattice spacing, and p is the square
root of the energy. In the limit of large barriers, χ = pa + ξ

where a is the barrier width and ξ is an overall phase shift.

The band structure of the bipartite lattice, with alternating
barriers of opacity θ1 and θ2, respectively, is determined by
finding the eigenvalues of the transfer matrix corresponding
to the unit cell, i.e., UT (θ1)UT (θ2). For θ2 �= θ1, the usual
band, i.e., values of k such that the eigenvalues are complex, is
found to split into two subbands symmetrically placed around
the point p0 = (π/2 − ξ )/(a + b) and with edges correspond-
ing to the roots of cos[2p(a + b) + 2ξ ] cosh θ1 cosh θ2 +
sinh θ1 sinh θ2 = ±1. Between these subbands, including the
point p0, the reflection coefficient |r|2 → 1; the phase shift δ

of a reflected wave, however, experiences a jump of π around
p0 if θ1 < θ2 and 0 otherwise. The jump leads to a Lorentzian
feature in the time delay ∂δ

∂p
of a reflected wave; the width was

determined by routine calculations to be

L = 2eθ2 cosh θ1
sinh(θ1 + θ2) − cosh θ1 cosh θ2

sinh2(θ2 − θ2)
. (25)

Hence, the topological mode may be observed experimentally
by a technique such as time delay reflection spectroscopy.
As will be seen shortly, for a finite structure evidence of the
topological mode is also available in some circumstances from
the reflection profile.

To verify the above arguments, we numerically evaluated
the reflection coefficient and time delay for a 3.5 period
structure from the transfer matrix as a function of p and
θ2 with fixed θ1 = 1, a = 0.1, b = 1. Results are plotted in
Fig. 2. When θ1 = θ2, the reflection spectrum [Fig. 2(a)]
consists of six minima, which correspond to a band in a
structure with an infinite number of unit cells. As θ2 is
increased, the central two minima move closer together and
merge around θ2 ≈ 1.3; as θ2 → ∞, this mid-band mode
vanishes in reflection, contributing only a phase shift to the
reflected light as discussed earlier. Conversely, if θ2 < θ1,
the central minima become separated and, as predicted by
the topological argument above, no mid-band mode exists.
Results for 6.5 units are shown in Figs. 2(c) and 2(d);
the additional layers generate corresponding modes, but the
topological mode remains for θ2 > θ1. If the number of periods
is increased further, more modes appear to eventually yield the
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FIG. 2. (a) Reflected intensity as a function of wave vector for
opacity parameters θ1 = 1 and varying θ2. (b) Time delay as a function
of wave vector and θ2; the Lorentzian feature indicative of the
topological mode for θ2 > θ1 is indicated with a *. Corresponding
plots are shown for 6.5 units in (c) and (d).
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two subbands of the infinite bipartite lattice and the mid-gap
mode persists, confirming its topological nature.

E. Topological states in other lattice types

1. Tripartite lattice

Having studied the bipartite Schrieffer-Su lattice, we now
consider other lattice types to establish whether the topological
modes observed occur in other systems with the same
symmetries. As a first step, we consider the tripartite ABC

lattice [Fig. 3(a)] for which the Schrödinger equation has the
form

− τ3φ
C
n−1 − τ1φ

B
n = EφA

n ,

−τ1φ
A
n − τ2φ

C
n = EφB

n , (26)

−τ2φ
B
n − τ3φ

A
n+1 = EφC

n .

As before, a plane-wave Bloch ansatz solution

φA
n = αeikn, φB

n = βeikn, φC
n = γ eikn (27)

is inserted into Eq. (26) to obtain a set of linear equations⎛
⎜⎝

0 −τ1 −τ3e
−ik

−τ1 0 −τ2

−τ3e
ik −τ2 0

⎞
⎟⎠

⎛
⎝α

β

γ

⎞
⎠ = E

⎛
⎝α

β

γ

⎞
⎠. (28)

D

A B1 2

n+1nn-1

C 3 A B1 2 C 3 A B1 2 C 3

A B1 2 C 3 4 DA B1 2 C 3 4 DA B1 2 C 3 4

n+1nn-1

(a)

(b)
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E

k

E

k

E E

k k
0 2π 2π 2π 2π
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A
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B

1 2 1 2 1
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FIG. 3. Further lattices considered in this section: (a) a tripartite
lattice, (b) a quadripartite lattice, and (c) a bipartite lattice with
nearest-neighbor hops. Band structure of the tripartite lattice (d)
with equal hopping strengths τ1 = τ2 = τ3 for which the Brillouin
zone is folded into three connected parts, and (e) with different
hopping coefficients for which the band splits into three subbands.
Nontopological edge modes may exist in these gaps, but can be
arbitrarily shifted into the continuum by appropriate choice of
coefficients. For the quadripartite lattice, the band structure for equal
hopping strengths (f) is folded into four components that become
distinct subbands (g) if the hopping strengths differ. Topological edge
states may exist at E = 0; nontopological edge states may be found
in the remaining band gaps.

Equation (28) defines a map from the first Brillouin zone
−π � k < π to the space of 3 × 3 Bloch Hamiltonians, just
as Eq. (3) defined a map from the Brillouin zone to the space
of 2 × 2 Bloch Hamiltonians. The topology of this map will be
established momentarily, but first let us examine the allowed
solutions.

It is straightforward to show that the tripartite ABC lattice
may possess edge states, although it will be shown later that
these are not topological in nature. To do so, the Schrödinger
equation in Eq. (26) may be reformulated as a transfer matrix
by routine manipulations(

φA
n+1

φC
n

)
=

⎛
⎝Eτ 2

1 +Eτ 2
2 −E3

τ1τ2τ3

τ 2
2 −E2

τ1τ2

E2−τ 2
1

τ1τ2

Eτ3
τ1τ2

⎞
⎠(

φA
n

φC
n−1

)
. (29)

For (1,0) to be an eigenvector of the transfer matrix, E = ±τ1

with associated eigenvalue ±τ2/τ3 corresponding to two states
of the form

φA
n =

(
τ2

τ3

)n

φA
0 , E = +τ1,

(30)

φA
n = (−1)n

(
τ2

τ3

)n

φA
0 , E = −τ1,

which are manifestly localized in character and finite as n →
+∞ only if |τ2| < |τ3|.

We now turn to the remaining states. Energy eigenvalues
of (28) are found by constructing the characteristic polynomial

E3 − E
(
τ 2

1 + τ 2
2 + τ 2

3

) + 2τ1τ2τ3 cos k = 0. (31)

For τ1 = τ2 = τ3 ≡ τ , we obtain the solution E =
−2τ cos (k/3). Distinct solutions span 0 � k < 6π , which
can be folded back into the first Brillouin zone 0 � k < 2π

yielding three connected components [Fig. 3(c)]

E1 = −2τ cos (k/3),

E2 = −2τ cos(k/3 + 2π/3), (32)

E3 = −2τ cos(k/3 + 4π/3).

Suppose the hopping strengths are now perturbed so that
τ1 = τ + δτ1, τ2 = τ + δτ2, and τ3 = τ + δτ3, subject to
δτ1 + δτ2 + δτ3 = 0. The single band now becomes three
distinct subbands as τ1 �= τ2 �= τ3 [Fig. 3(d)]. Perturbative
analysis of the characteristic polynomial (31) shows that gaps
appear at k = 0 and π :

E = τ ±
√

2

3

√
δτ 2

1 + δτ 2
2 + δτ 2

3 , k = 0
(33)

E = −τ ±
√

2

3

√
δτ 2

1 + δτ 2
2 + δτ 2

3 , k = π.

If, therefore, we set δτ1 = −δτ2 − δτ3 and require that
δτ2 < δτ3, bound states will exist at E = ±(τ − δτ2 − δτ3)
between the band gaps at E = τ ± 2√

3

√
δτ 2

2 + δτ 2
3 + δτ2δτ3

and E = −τ ± 2√
3

√
δτ 2

2 + δτ 2
3 + δτ2δτ3. As δτ2 → δτ3 ≡ δ,

however, the bound states have energy E = ±(τ − 2δ) while
the band edges are at E = τ ± 2δ and −τ ± 2δ. Hence, the
edge states can be merged smoothly into the continuum without
closing the gap as τ2 → τ3. In contrast, the edge state obtained
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in Sec. II B for the bipartite lattice exists if τ1 < τ2 in the center
of the gap for any finite gap size and cannot be merged into
the continuum by adjusting the hopping parameters. The ABC

lattice is therefore an interesting counterexample because it
may possess edge states, but these are not topological in nature.

We now demonstrate that the topology of the map (28) is
indeed trivial. Applying the particle-hole symmetry C to the
Bloch ansatz (27) yields

CφA
n = (−1)nα∗e−ikn,

CφB
n = −(−1)nβ∗e−ikn, (34)

CφC
n = (−1)nγ ∗e−ikn.

Hence, the action of C on a Bloch state (α,β,γ ) is C(α,β,γ ) →
(α∗, − β∗,γ ∗) and replaces the wave vector k → −π − k

modulo 2π . The Bloch Hamiltonian of Eq. (28) under C there-
fore possesses fixed points at k = ±π

2 . Writing an arbitrary
3 × 3 complex matrix H and requiring that CHC = −H , we
determine the most general form of the Bloch Hamiltonian at
these points:

H =
⎛
⎝ 0 a ib

a 0 c

−ib c 0

⎞
⎠, (35)

where a, b, and c are real parameters. The eigenvalues of
this matrix are E = 0 or E = ±√

a2 + b2 + c2 and so it is
degenerate if and only if (a,b,c) = 0. Topologically, this space
is R3 minus the origin: it is simply connected so possesses
trivial π0 homotopy in agreement with the analysis of the edge
states above.

2. Quadripartite lattice

The quadripartite lattice [Fig. 3(b)] is interesting because it
possesses bound states of both topological and nontopological
nature, and hence demonstrates that the topological modes
of the bipartite lattice are not an isolated special case. We
begin with the topological argument: As before, we construct
a plane-wave ansatz

φA
n = αeikn, φB

n = βeikn,
(36)

φC
n = γ eikn, φD

n = δeikn

and determine the action of the charge-conjugation operator
on a Bloch state

CφA
n = −α∗e−ikn, CφB

n = −β∗e−ikn,
(37)

CφC
n = −γ ∗e−ikn, CφD

n = −δ∗e−ikn.

Hence, C(α,β,γ,δ) → (α∗, − β∗,γ ∗, − δ∗) and replaces the
wave vector k → −k modulo 2π . As for the bipartite case, the
fixed points of the mapping are k = 0 and π . The time-reversal
operator T , conversely, acts on a Bloch state by conjugating
the coefficients T (α,β,γ,δ) → (α∗,β∗,γ ∗,δ∗) and reversing
the sign of the wave vector k → −k; hence, the fixed points of
C coincide with those of T . Writing an arbitrary 4 × 4 complex
matrix H and requiring that CHC = −H and T HT = H , the

most general form of the Bloch Hamiltonian at these points is

H =

⎛
⎜⎝

0 a 0 b

a 0 c 0
0 c 0 d

b 0 d 0

⎞
⎟⎠, (38)

where a, b, c, and d are real parameters. The characteristic
polynomial of this matrix is

λ4 − λ2P + Q2 = 0, (39)

where P = a2 + b2 + c2 + d2 and Q = (ad − bc) and hence
the eigenvalues are

E = ± 1√
2

√
P ±

√
P 2 − 4Q2. (40)

Degenerate pairs of eigenvalues occur under several circum-
stances: (i) If Q = 0, i.e., ad = bc, a degenerate pair exists
with E = 0; (ii) if P = 2Q, i.e., a = d and b = −c, and (iii) if
P = −2Q, i.e., if a = −d and b = c. Condition (i) divides the
space (a,b,c,d) into two disconnected regions ad > bc and
ad < bc. The remaining conditions define two-dimensional
(2D) slices through the space (a,b,c,d) and hence do not
disconnect the space any further. Topologically, the space of
C symmetric Bloch Hamiltonians contains two disconnected
pieces and the π0 homotopy is hence characterized by a Z2

invariant.
The Z2 invariant predicts the existence or otherwise of a

topological surface state as follows: The Schrödinger equation
in Bloch matrix form for arbitrary k is⎛

⎜⎝
0 −τ1 0 τ4e

−ik

−τ1 0 −τ2 0
0 −τ2 0 −τ3

−τ4e
ik 0 −τ3 0

⎞
⎟⎠

⎛
⎜⎝

α

β

γ

δ

⎞
⎟⎠ = E

⎛
⎜⎝

α

β

γ

δ

⎞
⎟⎠. (41)

Comparing Eq. (41) with (38), a = −τ1, b = −τ2, d = −τ3,
and c = +τ4 at k = 0 and c = −τ4 at k = π , respectively. If
τ1τ3 > τ2τ4, then ad > bc for both k = 0 and π and no surface
state exists. Conversely, if τ1τ3 < τ2τ4 then ad < bc for k = 0
and ad > bc for k = π , and a surface state will exist.

To confirm the existence of the state, we recast the
Schrödinger equation in transfer matrix form(

φA
n+1

φD
n

)
=

⎛
⎝E4−E2(τ 2

1 +τ 2
2 +τ 2

3 )+τ 2
1 τ 2

3
τ1τ2τ3τ4

E3−Eτ 2
2 −Eτ 2

3
τ1τ2τ3

Eτ 2
1 +Eτ 2

2 −E3

τ1τ2τ3

τ 2
2 τ4−E2τ4

τ1τ2τ3

⎞
⎠(

φA
n

φD
n−1

)
.

(42)

For (1,0) to be an eigenvector of the transfer matrix, the lower
left element must vanish, i.e., E(E2 − τ 2

2 − τ3) = 0. Hence,

bound states exist with E = 0 and ±
√

τ 2
1 + τ 2

2 . Inserting these
values back into the transfer matrix, the associated eigenvalue
for E = 0 is τ1τ3

τ2τ4
and, hence, the associated state is only finite

as n → ∞ if τ1τ3 < τ2τ4 in agreement with the topological
argument above. The eigenvalue for E = ±

√
τ 2

1 + τ 2
2 is − τ2τ3

τ1τ4
and, hence, these states exist if τ2τ3 < τ1τ4. Unlike the E = 0
state, the position of these states can be adjusted arbitrarily
with respect to the edge of the adjacent subbands through
appropriate choice of hopping parameters; thus, while these
states are edge localized, they are not topological in origin.
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3. Lattice of arbitrary periodicity

We now consider the existence of edge modes for a lattice
of arbitrary periodicity M . The argument follows closely
the approach developed in the above sections: For a given
periodicity, first identify the relevant points of the Brillouin
zone for which the Bloch Hamiltonian commutes with C
and T by considering the action of these operators on the
Bloch ansatz. Then, consider two distinct fixed points in
the Brillouin zone and construct the most general Bloch
Hamiltonian that possesses the relevant symmetries at these
points. By determining the connectivity of this space, we
establish the topology of the full map from the Brillouin zone
to the space of Bloch Hamiltonians.

The odd periodicity case is rapidly dismissed. As for the
tripartite lattice, the fixed points of C at k = ±π

2 and T at
k = 0,π do not coincide. Furthermore, at C invariant points
the eigenvalues of the Bloch matrix have to come in equal and
opposite pairs. For odd M , that means one of the eigenvalues
has to be zero implying that the positive and negative energy
bands are degenerate at these points in k space. Since there is
no band gap, there is obviously no question of having mid-gap
states, topological or otherwise.

For even periodicity 2n, the fixed points of C and T
coincide at k = 0,π as was shown above for the bipartite
and quadripartite lattices. At these fixed points, the Bloch
Hamiltonian matrix Hij must have the following structure:

Hij = 0, if (−1)i = (−1)j (43)

Hij = Hji, (44)

Hij ∈ R. (45)

Note that here we have in fact generalized the problem and
allowed hops over more than one lattice site. There are 2n2

nonzero elements and n2 independent elements due to the
symmetry. From these matrices, one can define two n × n

matrices

Lij = H2i−1,2j , (46)

Mij = H2i,2j−1, (47)

where clearly L = MT . For example, for the quadripartite
lattice Hamiltonian in Eq. (38) the associated matrices are

L =
(

a b

c d

)
, M =

(
a c

b d

)
. (48)

We now show that the determinant of the Bloch Hamiltonian
Hij at the fixed points can conveniently be written as a
perfect square. To do so, we use the Leibniz formula for the
determinant

det H =
∑
σ∈S2n

sgn(σ )M1,σ (1)M2,σ (2) . . . M2n,σ (2n), (49)

where the sum is taken over the permutation group S2n, i.e., all
possible permutations of the integers [1,2n]. We note that the
factors in each term can be rearranged into odd and even n:

det H =
∑
σ∈S2n

sgn(σ )M1,σ (1)M3,σ (3) . . . M2n−1,σ (2n−1)

×M2,σ (2)M4,σ (4) . . . M2n,σ (2n), (50)

and hence every nonzero term in det H can be written as a
product

(−1)n
n∏

i=1

H2i−1,2σ (i)H2σ ′(i)−1sgn(σ )sgn(σ ′), (51)

where here σ ∈ Sn. The determinant of H can therefore be
factorized:

det H = (−1)n
∑

σ,σ ′∈Sn

[
n∏

i=1

sgn(σ )H2i−1,2σ (i)

]

×
[

n∏
i=1

sgn(σ ′)H2i,2σ ′(i)−1

]

= (−1)n det L det M

= (−1)n(det L)2, (52)

which is a perfect square up to a factor of (−1)n. Recollect that
L is an arbitrary n × n real matrix. The space of H is therefore
divided into two disconnected pieces defined by det L > 0
and det L < 0; hence, the point homotopy of H π0(H ) = Z2

corresponding to the sign of det L. This result is valid for
arbitrary n and, hence, since the homotopy of H does not
depend on n, there exist either zero or one topological modes
per edge, regardless of the number of bands, in a 1D hopping
model with real coefficients and constant onsite potential. This
is another interesting difference between the present scenario
and the work of Thouless and of Balents and Moore, whose
system supported multiple topological modes.

The results above for the bipartite and quadripartite lattices
are now seen as special cases of this result. For the bipartite
lattice, the matrix L constructed from Eq. (4) is just the
1 × 1 matrix (a); for this case, the topological invariant is
sgn(a) as was argued above. For the quadripartite lattice, L

was displayed in Eq. (48) and has det L = ad − bc, precisely
corresponding to the quantity identified in the previous
subsection as the discriminant for the existence of topological
states.

It is worth noting that Kitaev in his seminal work on
topological edge modes [17] found that the determinant of
a class D matrix is also a perfect square of a quantity
called the Pfaffian; Kitaev used the sign of the Pfaffian as
a topological invariant as we do here. Class D matrices
have a charge-conjugation symmetry but broken time-reversal
symmetry. In a suitable basis such a matrix is antisymmetric
and Hermitian. The matrices we consider belong to class
BDI. They possess both time-reversal and charge-conjugation
symmetries and in a suitable basis have the checkerboard
structure we have identified. As a result, the determinant of
these matrices, following Kitaev’s analysis, is also a perfect
square.

Our Z2 topological index is related to the already known
Z topological classification for class BDI insulators [18] as
follows. In this work, we considered two invariants for class
BDI insulators: The first, introduced in Sec. II A, was the
winding number Q of the map from the Brillouin zone to the
space of Bloch Hamiltonians. This is a Z invariant. The second,
based on comparing the Hamiltonian at two symmetric points
in the Brillouin zone, is a Z2 invariant. It is, essentially, the
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winding number invariant modulo 2. The Z2 invariant therefore
provides a coarser classification of BDI insulators, but it is the
relevant classification if one is only interested in the existence
of mid-gap topological modes. The relevance of Z versus Z2

invariants for BDI insulators has been discussed before in the
literature in context of other physical quantities such as the
polarization [19,20].

4. Next-nearest-neighbor hopping

In order to elucidate the connection between the winding
number, the Z2 invariant, and the number of zero modes,
it is instructive to consider a simple generalization of the
model analyzed in Sec. II A, namely, a bipartite lattice
wherein hopping between next-nearest-neighbor sites of the
two sublattices is permissible [see Fig. 3(c)].

Winding number. For an infinite crystal the bands of this
model are determined by solving the Schrödinger equation

− τ1φ
B
n − τ2φ

B
n−1 − t1φ

B
n+1 − t2φ

B
n−2 = EφA

n ,
(53)

−τ1φ
A
n − τ2φ

A
n+1 − t2φ

A
n+2 − t1φ

A
n−1 = EφB

n .

Note that Eq. (53) respects both time-reversal and charge-
conjugation invariance and therefore this model belongs to
BDI, the symmetry class of interest. As in Sec. II A, we
introduce the Bloch ansatz φA

n = αeikn and φB
n = βeikn, and

obtain (
0 z∗(w)

z(w) 0

)(
α

β

)
= E

(
α

β

)
. (54)

The 2 × 2 matrix on the left is the Bloch Hamiltonian, w = eik ,
and z(w) = −(τ1 + τ2w + t2w

2 + t1w
−1). As in Sec. II A, we

view z(w) as a map from the unit circle in the w plane to the z

plane with the origin excluded. Formally, the number of times
the loop in the z plane winds about the origin is given by

Q = Im

(
1

2π

∫ 2π

0
dk

1

z

dz

dk

)

= Im

(
1

2π

∮
unit circle

dw
1

z

dz

dw

)
. (55)

Equation (55) can be justified by using the polar representation
z = ρeiθ and noting that

dθ

dk
= Im

(
1

z

dz

dk

)
. (56)

To facilitate explicit computation of Q it is helpful to verify
that

1

z

dz

dw
= − 1

w
+ 1

w − α
+ 1

w − β
+ 1

w − γ
. (57)

Here α, β, and γ are the roots of the polynomial

−wz(w) = t1 + τ1w + τ2w
2 + t2w

3. (58)

The winding number then simply counts the number of roots
of this polynomial that lie inside the unit circle. Explicitly,

Q = −1 + �(|α|) + �(|β|) + �(|γ |). (59)

Here, the complementary step function �(x) = 1 for |x| < 1
and �(x) = 0 for |x| > 1. Evidently for this model the winding
number can take four possible values Q = −1, 0, 1, and 2. We

will see in the following that the winding number equals the
difference between the numbers of zero modes that live on
the A and B sublattices. On the other hand, one can argue
that the Z2 invariant introduced in Sec. II A is simply Q (mod
2). Hence, if the Z2 invariant is odd, the existence of zero
modes is assured. However, an even value of the Z2 invariant
is consistent with either the absence of zero modes or of an
even difference in the numbers of zero modes on the two
sublattices.

Zero modes. In order to investigate the existence of zero
modes, we wish to solve Eq. (53) at zero energy, namely,

τ1φ
A
n + τ2φ

A
n+1 + t2φ

A
n+2 + t1φ

A
n−1 = 0, for n = 1,2,3, . . .

τ1φ
B
n + τ2φ

B
n−1 + t1φ

B
n+1 + t2φ

B
n−2 = 0, for n = 2,3,4 . . . .

(60)

These equations must be supplemented by the boundary
conditions

τ1φ
A
0 + τ2φ

A
1 + t2φ

A
2 = 0,

τ1φ
B
0 + t1φ

B
1 = 0, (61)

τ1φ
B
1 + τ2φ

B
0 + t1φ

B
2 = 0.

In principle, Eqs. (60) and (61) may be used to determine φA
n

and φB
n for all n in terms of the three independent components

φA
0 , φA

1 , and φB
0 .

In practice, it is most convenient to solve Eqs. (60) and (61)
using the method of generating functions (the discrete Laplace
transform). We define

fA(w) =
∞∑
0

φA
n wn and fB(w) =

∞∑
0

φB
n wn. (62)

A short calculation then reveals

fA(w) = φA
0 t2

(t2 + τ2w + τ1w2 + t1w3)

[
1 +

(
τ2

t2
+ φA

1

φA
0

)
w

]
,

fB(w) = φB
0 t1

(t1 + τ1w + τ2w2 + t2w3)
. (63)

Equation (63) is obtained by multiplying the first line of
Eq. (60) by wn+2, the second line by wn+1, then summing
over n over the ranges indicated in Eq. (60) and making use
of Eq. (61) to eliminate φA

2 , φB
2 , and φB

1 . The denominator of
the expression for fB coincides with the polynomial (58), pre-
viously denoted −wz(w), and analyzed above in connection
with the winding number. Hence, its roots are α, β, and γ .
On the other hand, one can show that the polynomial in the
denominator of fA is the dual of the denominator of fB in the
sense that its roots are 1/α, 1/β, and 1/γ . Making use of this
information allows us to rewrite the generating functions in a
more transparent form

fA(w) = φA
0

(1 − αw)(1 − βw)(1 − γw)

[
1 +

(
τ2

t2
+ φA

1

φA
0

)
w

]
,

fB(w) = φB
0

(1 − α−1w)(1 − β−1w)(1 − γ −1w)
. (64)

In order to reconstruct the solutions, it is helpful to separate
the generating functions fA and fB into partial fractions. For
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example,

fB(w) = φB
0

[
A

1 − α−1w
+ B

1 − β−1w
+ C

1 − γ −1w

]
, (65)

where the coefficients A, B, and C are given by

A = βγ

(α − β)(α − γ )
,

B = γα

(β − γ )(β − α)
, (66)

C = αβ

(γ − α)(γ − β)
.

It follows from Eqs. (62) and (65) that

φB
n = φB

0

[
A

αn
+ B

βn
+ C

γ n

]
. (67)

Evidently, the solution (67) is a viable (normalizable) eigen-
function only if |α| > 1, |β| > 1, and |γ | > 1. Under these
conditions, the winding number Q = −1. Thus, we see that
Q = −1 implies the existence of a zero mode that lives entirely
on the B sublattice. Conversely, we see that if the winding
number Q �= 1, then at least one of the roots α, β, or γ lies
within the unit circle and hence the solution (67) diverges as
n → ∞.

Similarly, fA has a partial fraction decomposition

fA(w) = φA
0

[
a

1 − αw
+ b

1 − βw
+ c

1 − γw

]
, (68)

which corresponds to the wave function

φA
n = φA

0 [aαn + bβn + cγ n]. (69)

Here, the coefficients a, b, and c depend on the ratio φA
1 /φA

0 .
For example, by choosing

τ2

t2
+ φA

1

φA
0

= α, (70)

we can choose the numerator in fA to cancel the pole at w = α

and hence arrange for a to vanish. In this circumstance,

b = β

β − γ
, c = γ

γ − β
. (71)

Now, let us consider the viability of the solution (69) for
different values of the winding number Q.

For Q = 2, we have |α| < 1, |β| < 1, and |γ | < 1. Thus,
the solution (69) is normalizable regardless of the value of
the ratio φA

1 /φA
0 and hence there are two independent zero

modes on the A sublattice for Q = 2. For Q = 1, one of the
three roots α, β, or γ must lie outside the unit circle. To be
definite, let us assume that |α| > 1 while |β| < 1 and |γ | < 1.
In that case, by choosing the ratio φA

1 /φA
0 as in Eq. (70) we can

arrange for a to vanish and for Eq. (69) to still be normalizable.
Thus, for winding number Q = 1 there is only one zero mode
on the A sublattice. For Q = 0 and −1, there are no zero
modes on the A sublattice because two or three terms in the
wave function (69) diverge as n → ∞, and by tuning the ratio
φA

1 /φA
0 we can only cancel one of the divergent terms.

In summary, we have shown that for Q = 2 there are two
zero modes, both on the A sublattice; for Q = 1, one zero

mode on the A sublattice; for Q = 0 there are no zero modes
on either sublattice; and for Q = −1 there is one zero mode
on the B sublattice.

III. PHOTONIC ANALOG

In order to conveniently verify the veracity of the topo-
logical index as a predictor of edge states, we exploit the
known isomorphism between the Schrödinger equation and
Maxwell’s equations in one dimension [21] to construct a
photonic analog of the bipartite structure in the microwave
regime using metamaterials.

The electromagnetic wave equation takes the form

∇2φ − ε

c2

∂2φ

∂t2
= 0, (72)

where φ is the electric field, c is the speed of light, and ε is
the dielectric permittivity of the medium in which the wave is
propagating. The plane-wave solution to this is

φ = φ0e
i(k·r−ωt) (73)

allowing us to rewrite the wave equation as[
− ∂2

∂x2
− k2

0ε

]
φ = −k2

‖φ, (74)

where k0 = ω/c is the wave vector in free space and k‖ =√
k2
x + k2

y is the in-plane wave vector.
We can directly compare this wave equation with

Schrödinger’s equation[
− �

2m

∂2

∂x2
+ V

]
ψ = Eψ (75)

allowing us to identify −k2
0ε as the photonic analog of the

potential and −k2
‖ as the analog of the total energy. Thus, a

medium with a negative value of the dielectric permittivity (a
metal) will constitute a potential barrier, and we can form a
bipartite stack through the appropriate layering of metallic and
dielectric media.

While it would be a relatively simple matter to create such
a stack at optical frequencies, where the barriers would have
thicknesses of the order of the skin depth (<50 nm), metals
at these frequencies are inherently lossy (the permittivity is
complex), corresponding to a tunnel barrier with a complex
potential. If we wish to make a direct comparison to the
previous arguments, this is less than ideal. At lower frequencies
(microwaves), the situation is even worse. The conductivity
of metals at microwave frequencies is exceptionally high,
corresponding to extremely high tunnel barriers. Indeed, in
order to create a barrier that reflects only 50% of incoming
radiation, one requires a barrier thickness of the order of 2 nm,
even though the wavelengths are of the order of centimeters.
These ultrathin layers are very lossy and exceptionally difficult
to fabricate. By using microwave metamaterials, artificial
materials formed from subwavelength elements whose prop-
erties are determined not solely by the constituent materials
but also their structuring [22], one can tailor the height of
the tunnel barrier while maintaining an almost purely real
potential.
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The metamaterials used consist of aluminium sheets with
thicknesses of the order of a few millimetres perforated with
arrays of subwavelength square holes. The square holes exhibit
a cutoff frequency that depends upon the size of the holes and
below which only evanescently decaying fields are supported.
Throughout the frequency range investigated here, we are
always within this regime. The transmission through the meta-
material is dominated by the fields decaying through the holes,
mimicking the skin depth in real metals and effectively acting
as an artificial metal with a much lower conductivity than
the constituent aluminium, but with close to zero absorptive
losses since almost all of the fields are confined within the per-
forations [23]. We note, however, that, while we can consider
such a metamaterial to act as an artificial metal in this specific
instance of wave propagation in the direction normal to the
interface, this is not in general the case [24]. In order to control
the reflectivity of this artificial metal, equivalent to changing
the opacity θ in the discussion above, one can alter the size of
the holes, in essence changing the effective conductivity of the
medium, or alternatively change the thickness. Here, we keep
the structure the same and alter the thickness.

The experimental setup is illustrated in Fig. 4 and details
of the data collection described more fully in [25]. The
experimental structure itself consists of alternating layers of
dielectric (air) and metamaterials. The metamaterial layers
are separated by metallic spacers around the edge of the
sample yielding a nominal spacing of tair = 7.60 ± 0.01 mm.
The metamaterial layers are made from a solid aluminium
sheet perforated with a periodic square array of holes of pitch
d = 7.68 ± 0.01 mm and hole size of l = 6.15 ± 0.01 mm; the
thickness of the metamaterial in successive layers is alternated,
and denoted tA and tB , respectively, to form the required
ABAB bipartite stack with 3.5 unit cells as modeled earlier.

In the experiment, the sample is illuminated by a collimated
s-polarized (transverse electric) microwave beam, produced
by a microwave horn placed at the focus of a spherical mirror,
incident on the sample at 10◦. Reflected intensity is measured
as a function of frequency using a detector horn and secondary
mirror connected to a scalar network analyzer from which the
reflected intensity was determined. The sample studied had
tA < tB , specifically tA = 0.66 ± 0.01 mm and tB = 2.33 ±
0.01 mm, as measured from the constructed sample. Since the
opacity parameters θ of Eq. (24) monotonically increase with

FIG. 4. Experimental setup to measure reflected intensity of
microwave radiation. The structure consists of metamaterial layers
(aluminium plates stamped with a square array of pitch d = 7.68 mm
and hole size l = 6.15 mm) of alternating thicknesses tA = 0.66 mm
and tB = 2.33 mm and spaced by air tair = 7.6 mm.

(a) (b)

(c)

FIG. 5. (a) Measured (disks) and modeled (black line) reflection
profile for a 3.5 period AB bipartite stack with tA < tB ; minima
are labeled (A–E). The gray dashed line is the reflection profile
for a structure with tA > tB with minima labeled (i–vi). Incident
radiation is from the left. (b) Modeled normalized electric field
intensity profile for each observed mode A–E; metamaterial layers are
indicated by gray shading. The topological mode is highlighted in red.
(c) Corresponding field plots for the reversed structure i–vi.

the thicknesses t , the topological argument above predicts that
the edge states should be observed in this case. The reflected
intensity is plotted as a function of frequency in Fig. 5(a),
confirming the presence of the mid-gap topological mode.
Due to the finite number of periods in the structure, the band
is manifested as a series of reflection minima corresponding to
resonant modes in the structure; if the number of unit cells were
increased, the continuous subbands would be recovered [26].
One can make a direct qualitative comparison between the data
in Figs. 5(a) and 2(a) for values of θ2 > 1.5.

We also simulated the response of the structure using
commercial finite-element software (COMSOL MULTIPHYSICS).
We emphasize that no fitting was performed and the agreement
between model and data displayed in Fig. 5(a) is typical for
such studies, accurately locating the position of the minima
while incorrectly estimating their depth. This discrepancy
is due to a number of physical effects including finite area
of the sample in the experiment; spherical aberration of
the microwave source and detector; imperfections in the
experimental sample such as bowing of the metamaterial layers
which changes the dielectric spacing; and a radius of curvature
associated with the hole edges that reduces the effective skin
depth. As well as modeling the system with tA < tB , we also
simulated the reversed structure, i.e., where tA = 2.33 mm and
tB = 0.66 mm; the reflection profile of the reversed structure
is plotted as a gray dashed line in Fig. 5(a). No mid-gap
topological mode is observed in this case, in agreement with
the prediction of the previous sections.

As with other experiments [27,28], modeling can also be
used to visualize the electric field distribution in each mode.
Plots of the norm of the electric field as a function of the
distance through the sample are displayed in Fig. 5(b) for each
reflection minimum in the fitted profile Fig. 5(a). Modes A, B,
D, and E are clearly distinct in character from mode C. Mode
C has the predicted properties of the topological edge state: it
is confined to the edge of the sample and also occurs in the
middle of the band. Plots of the average electric field are also
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shown in Fig. 5(c) for the six minima in the reversed structure.
Unlike the previous case, none of the modes i–vi are localized
to the edges, in agreement with the prediction of the above
topological argument.

IV. CONCLUSION

A topologically protected edge state has been experimen-
tally observed in a 1D photonic crystal with time-reversal
symmetry. The mid-gap edge state might potentially be useful
for the creation of a notch filter, but is of fundamental interest
due to its topological origin. The existence or otherwise of the
state as a function of the design parameters of the crystal is
predicted by aZ2 topological invariant that classifies mappings
from the band structure to the space of Bloch Hamiltonians;
the classification was constructed using methods previously
applied to two- and three-dimensional topological insulators.
However, the crystals we consider are of a different class
from conventional topological insulators in terms of their
symmetries. The latter must have time-reversal symmetry and
strong spin-orbit interaction; in our work we use an antiunitary
charge-conjugation symmetry C as well as the time-reversal
operator T to develop the classification.

Our work also clarifies the distinction between topological
and nontopological edge states. By analyzing a tripartite and
quadripartite lattice, we found edge states that can be dissolved
into the adjacent band by a continuous change of parameters;
these are nontopological in origin. The tripartite lattice pos-
sesses no topological edge states, while the quadripartite lattice
possesses both topological and nontopological modes. By
generalizing our results to arbitrary periodicities and hopping
distances, we find that our Z2 invariant determines whether
the number of topological modes is even or odd.
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