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Forecasting critical transitions using data-driven nonstationary dynamical modeling
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An approach to predicting critical transitions from time series is introduced. A nonstationary low-order
stochastic dynamical model of appropriate complexity to capture the transition mechanism under consideration
is estimated from data. In the simplest case, the model is a one-dimensional effective Langevin equation,
but also higher-dimensional dynamical reconstructions based on time-delay embedding and local modeling are
considered. Integrations with the nonstationary models are performed beyond the learning data window to predict
the nature and timing of critical transitions. The technique is generic, not requiring detailed a priori knowledge
about the underlying dynamics of the system. The method is demonstrated to successfully predict a fold and a
Hopf bifurcation well beyond the learning data window.
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I. INTRODUCTION

Complex dynamical systems subject to slowly varying
external conditions may exhibit critical transitions or tipping
points, that is, a qualitative change in the observed macroscopic
behavior. An attractor or dynamical regime of the system
becomes unstable and an alternative one emerges. Real-world
examples of possibly huge socioeconomic importance are the
climate system [1], ecological systems [2], medical appli-
cations [3], and financial markets [4]. Critical transitions in
stochastic dynamical systems may be classified as bifurcation
induced, noise induced, or rate induced [5]. A combination
of several of these mechanisms in a particular system is
possible.

In recent years, there has been much research activity
focused on identifying early-warning signals of critical tran-
sitions in time series in order to detect, anticipate, or predict
impending tipping points [6]. Indicators proposed so far are
based on increasing autocorrelation (critical slowing-down)
[7–9], increasing variance [10,11], detrended fluctuation anal-
ysis [12], trends in skewness [13], quasistationary probability
densities and their modality [14–17], and bifurcation theory
[18–20]. The most widely used approaches are still increasing
autocorrelation and increasing variance. However, the issue of
robustness as well as the sensitivity versus the specificity of
such early-warning indicators are still under debate [21–23].

The present paper discusses a model-based approach to
the prediction of critical transitions. The transition mechanism
is explicitly modeled by deriving a nonstationary stochastic
dynamical model of appropriate complexity from data. In-
tegrations with this model beyond the learning data set are
then used to predict future critical transitions in simulations of
simple dynamical systems.

First, the methodology of nonstationary potential analysis
to study one-dimensional bifurcations is developed (Sec. II)
and exemplified in a Langevin equation with time-dependent
drift taking the system through a fold bifircation (Sec. III).
Second, an approach to higher-dimensional and nongradient,
nonstationary dynamical modeling is proposed (Sec. IV) and
demonstrated in a relaxation oscillator undergoing a Hopf
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bifurcation (Sec. V). The paper concludes with some general
discussion (Sec. VI).

II. ONE-DIMENSIONAL NONSTATIONARY
POTENTIAL ANALYSIS

We consider a potentially high-dimensional, complex sys-
tem which is subject to slow variations in its parameters or ex-
ternal conditions. A scalar variable x of the system is observed.
The simplest framework for studying critical transitions is a
nonstationary one-dimensional effective Langevin equation
describing noise-driven motion in a time-varying potential
landscape:

ẋ = −V ′(x; t) + ση. (1)

η is white Gaussian noise with zero mean and unit variance; σ

is the standard deviation of the driving noise. The potential
function is modeled by a polynomial with nonstationary
coefficients:

V (x; t) =
M∑
i=1

i−1ai(t)x
i. (2)

For a globally stable dynamics the degree M of the polynomial
needs to be even. The expansion coefficients are represented
in terms of prescribed time-dependent basis functions:

ai(t) =
Ji∑

j=0

αi,j fi,j (t). (3)

We always set fi,0(t) = 1 for the time-independent part
of the potential. Natural choices for the time-dependent
functions fi,j (t) for j > 0 are trends [polynomial, that is,
ai(t) = ∑Ji

j=0 αi,j t
j , or other], (quasi-)periodicities [24] [rep-

resented by a superposition of Fourier modes, that is, ai(t) =
αi,0 + ∑Ki

k=1 αi,2k−1 cos ωi,kt + αi,2k sin ωi,kt , with Ji = 2Ki],
or other external covariates, which are given either in func-
tional form or as a time series. We have

V ′(x; t) =
M∑
i=1

Ji∑
j=0

αi,j fi,j (t)xi−1. (4)

One-dimensional Langevin dynamics with multiplicative
noise have been used to model noisy on-off intermittency [25]
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and financial market fluctuations [26] but these approaches do
not incorporate the deterministic temporal variation of the drift
term which is introduced here.

Given an equally sampled learning data set, {x0,x1, . . . ,xN },
with xn = x(tn), the model parameters αi,j and σ are estimated
according to the maximum likelihood principle. The sampling
interval is δt = tn+1 − tn. The Langevin equation is discretized
according to the Euler-Maruyama scheme:

xn+1 = xn − δtV ′(xn; tn) +
√

δtσηn. (5)

The likelihood function of the data set is

L(x1, . . . ,xN |x0) =
N−1∏
n=0

1√
2π

√
δt σ

exp

(
−1

2

[xn+1 − xn + δtV ′(xn; tn)]2

δt σ 2

)
.

(6)

Maximization of the likelihood function leads to a least-
squares problem with a unique solution given by the linear
system of equations

M∑
k=1

Jk∑
l=0

Ai,j,k,lαk,l = bi,j , (7)

with

Ai,j,k,l = δt

N−1∑
n=0

fi,j,nfk,l,nx
i+k−2
n (8)

and

bi,j = −
N−1∑
n=0

fi,j,nx
i−1
n (xn+1 − xn). (9)

The notation fi,j,n = fi,j (tn) is used. The noise level is
estimated as

σ 2 = 1

Nδt

N−1∑
n=0

[xn+1 − xn + δtV ′(xn; tn)]2
. (10)

We have σ−2Ai,j,k,l = −∂2 log L/∂αi,j ∂αk,l ; hence the
observed Fisher information matrix of the estimation problem
with respect to the parameters αi,j is I = σ−2A and the error
covariance matrix of the parameter estimates is σ 2A−1. Here,
A is the square matrix formed from the elements Ai,j,k,l with
the two summative indices (i,j ) and (k,l). This allows us to
monitor a possible ill conditioning of the estimation problem
due to overparametrization or model misspecification.

The present method can immediately also be applied to
an unevenly sampled data set with sampling intervals δtn =
tn+1 − tn as it is, without any need for prior interpolation of
the data. In Eqs. (5) and (6), the constant time step δt just
needs to be replaced with the variable time step δtn, Eqs. (7)
and (9) remain unchanged, and Eqs. (8) and (10) need to be
replaced with

Ai,j,k,l =
N−1∑
n=0

δtnfi,j,nfk,l,nx
i+k−2
n (11)

and

σ 2 = 1

N

N−1∑
n=0

[xn+1 − xn + δtnV
′(xn; tn)]2

δtn
. (12)

As a by-product, the methodology contains a simple procedure
for estimating a stationary dynamical potential model in the
special case Ji = 0 for all i.

The described parameter estimation method is consistent
for δtn → 0. For finite sampling intervals δtn we expect
some bias in the estimates for αi,j and σ . Nevertheless, we
here prefer this method for its simplicity. Alternatively, a
method could be used which more accurately approximates
the continuous propagator of the Langevin equation, e.g., a
continuous Kalman filter [27,28]. The inconsistency could also
be removed by defining the dynamical model from the outset
as a discrete nonstationary stochastic polynomial map [xn+1 =∑M

i=0

∑Ji

j=0 αi,j fi,j (tn)xi
n + σηn, with M odd]. However, then

the illustrative association with a potential landscape would
be lost. Moreover, the discrete model is applicable only to
evenly sampled data. The discrete formulation is an option if
the sampling intervals are really too large for Eq. (5) to be any
reasonable approximation to Eq. (1).

III. EXAMPLE: FOLD BIFURCATION FROM
BISTABILITY TO MONOSTABILITY

We consider noise-driven motion in a nonstationary po-
tential landscape which exhibits a bifurcation. The governing
equation is

ẋ = −V ′(x; t) + ση. (13)

The potential is given by

V (x; t) = 1
4x4 − 1

2x2 − F (t)x, (14)

with F (t) = t
500F0 and F0 = 2

√
3/9. The noise level is σ =

0.9. The system is considered in the time interval [0,800].
The Langevin equation is integrated in time using the Euler-
Maruyama scheme with step size h = 10−4. Figure 1(a)
shows a sample trajectory of the system. At t = 0, there is
a symmetric two-well potential with local minima at x = −1
and x = 1 separated by a potential barrier, and the trajectory
flickers between the two metastable states. Then the ramped
forcing F (t) is applied to the symmetric potential system; one
well gradually shallows and the other deepens. The deeper well
becomes more and more preferred. At t = 500, a transition
from bistability to monostability occurs via a fold bifurcation.

The time interval [0,300] is used as the learning data
window. The sampling interval is δt = 0.025; the length of
the learning data set is N = 12 000. The potential function for
the analysis is chosen as

V (x; t) = (α1,0 + α1,1t
∗)x + 1

2α2,0x
2 + 1

3α3,0x
3 + 1

4α4,0x
4,

(15)

with rescaled time t∗ = t
500 ; the initial symmetry of the poten-

tial is not prescribed. The true parameter values are α1,0 = 0,
α1,1 = −F0 ≈ −0.38, α2,0 = −1, α3,0 = 0, and α4,0 = 1.

The estimated parameter values with standard errors are
α1,0 = 0.04 ± 0.12, α1,1 = −0.41 ± 0.30, α2,0 = −1.02 ±
0.13, α3,0 = −0.02 ± 0.07, and α4,0 = 0.97 ± 0.08. The noise
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FIG. 1. (Color online) Noise-driven motion in a potential landscape with fold bifurcation from bistability to monostability. (a) Time series of
the system. The short-dashed vertical line indicates the end of the learning data window, and the long-dashed vertical line shows the bifurcation
point. (b) True (thick lines) and reconstructed/predicted (thin lines) potential at t = 0 [solid (red) line], t = 300 [dotted (green) line], t = 500
[dashed (blue) line], and t = 800 [dot-dashed (purple) line]. (c) True (thick lines) and reconstructed/predicted (thin lines) quasistationary
probability density at t = 0 [solid (red) line], t = 300 [dotted (green) line], t = 500 [dashed (blue) line], and t = 800 [dot-dashed (purple) line]
. (d) Bifurcation diagram as a function of time of the true (thick) and reconstructed/predicted (thin) systems. Solid (green) lines indicate stable
states; dashed (red) lines, unstable states. The short-dashed vertical line indicates the end of the learning data window, and the long-dashed
vertical line shows the bifurcation point. (e) Time series of the data-based model. The short-dashed vertical line indicates the end of the learning
data window, and the long-dashed vertical line shows the bifurcation point.

level is estimated as σ = 0.89. Biases in the parameters
due to the finite sampling interval appear to be small,
although the sampling interval is not infinitesimal (δt =
0.025 � h = 0.0001). Figures 1(b) and 1(c) display the
potential and the quasistationary probability density {given

as p(x; t) ∼ exp[−2V (x; t)/σ 2]} of the true system and
as reconstructed/predicted by the data-based model at the
beginning and the end of the learning data window (t = 0 and
t = 300), at the bifurcation point (t = 500), and at some later
point (t = 800). The evolution of V (x; t) and p(x; t) over time
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is very accurately captured by the model. Figure 1(d) shows
the bifurcation diagram of the system as a function of time.
It is well reconstructed and predicted. The data-driven model
predicts the fold bifurcation for t = 527. Figure 1(e) displays
a sample trajectory of the estimated model. It is statistically
indistinguishable from the true system trajectory in Fig. 1(a).

The length of the learning data set is quite large here
and there is still considerable variability in the parameter
estimates between samples (not shown). The results presented
correspond to a typical case, close to a mean over many
samples. Although the system is only one-dimensional, it is
actually challenging to estimate the shape of the potential and,
even more so, trends in it due to the high noise level. This is
also evidenced by the relatively large uncertainty in the trend
parameter α1,1, despite its being the only parameter describing
the nonstationarity of the potential. An additional problem
is the metastability of the system, which, even for large N ,
creates a substantial probability of observing an untypical
sample trajectory, spending a disproportionate amount of
time (relative to the quasistationary probability density) in
the vicinity of one of the stable states, thus causing biases
in the parameter estimates. The exact predicted timing of
the bifurcation depends sensitively on the detailed parameter
estimates. However, the qualitative feature of a fold bifurcation
from bistability to monostability beyond the learning data
window somewhere around t = 500 is very robustly predicted,
also already with a shorter learning data set.

IV. HIGHER-DIMENSIONAL NONSTATIONARY
MODELING

The framework of an effective one-dimensional Langevin
equation is appealing for its simplicity and the immediate
interpretability of the potential landscape. However, the
dynamics in a complex system may be high-dimensional and
nongradient. It is not at all clear if they can be reduced to
one dimension and this certainly depends on the choice of
the variable x. For example, an oscillatory system crucially
involves circulatory probability currents and cannot be reduced
to a one-dimensional Langevin equation. We therefore make
an attempt at higher-dimensional modeling.

Given only a time series of a scalar observable x of a
higher-dimensional system the dynamics can be reconstructed
using the technique of time-delay embedding [29–31] based
on Takens’s theorem. The method is rigorous for deterministic
systems given the embedding dimension is chosen large
enough; it can be adopted and still expected to be beneficial for
stochastic systems. Here, a discrete nonstationary stochastic
dynamical system is derived based on time-delay embed-
ding and local polynomial modeling with time-dependent
coefficients. Given an evenly sampled scalar time series of
the system, {xn}, with sampling interval δt , we form m-
dimensional embedding vectors yn = (xn−(m−1)K, . . . ,xn); the
time delay is τ = Kδt . The (local) model for predicting the
next data point is given as

xn+1 = a(tn) +
m−1∑
i=0

bi(tn)xn−iK + ρnηn. (16)

As before, the state and time dependences are separated. We
here restrict ourselves to constant and linear terms in the

state variable x; an extension to higher-order polynomials is
straightforward. The model coefficients are modulated in terms
of time-dependent basis functions:

a(t) =
J∑

j=0

αjfj (t), (17)

bi(t) =
Ji∑

j=0

βi,j gi,j (t). (18)

We set f0(t) = 1 and gi,0(t) = 1 for the time-independent
part of the model. Choices for the basis functions fj (t) and
gi,j (t) for j > 0 are again trends, cycles, or prescribed external
covariates. η is a stochastic process with zero mean and
unit variance; a canonical choice is Gaussian and white. The
state-dependent noise amplitude is ρn. The model can also be
used in a deterministic mode by dropping the stochastic term,
that is, replacing it with its mean 0 rather than sampling from
its distribution. This is appropriate if the underlying system
under consideration is known to be deterministic.

The model is applied locally in embedding space. For an
embedding vector yn a neighborhood Un = {yν} is formed as
the set of the R nearest neighbors in some chosen norm from a
given learning data set of size N . The index ν denotes the time
index of the R nearest neighbors. The parameters αj and βi,j

are determined by least-squares regression on the embedding
vectors yν in the neighborhood with their next data points xν+1.
They are found from the linear system of equations

J∑
k=0

Aj,kαk +
m−1∑
i=0

Ji∑
k=0

Bj,i,kβi,k = cj , (19)

J∑
k=0

Ci,j,kαk +
m−1∑
k=0

Jk∑
l=0

Di,j,k,lβk,l = di,j , (20)

with

Aj,k =
∑
Un

fj,νfk,ν, (21)

Bj,i,k = Ci,k,j =
∑
Un

fj,νgi,k,νxν−iK , (22)

Di,j,k,l =
∑
Un

gi,j,νgk,l,νxν−iKxν−kK, (23)

cj =
∑
Un

fj,νxν+1, (24)

di,j =
∑
Un

gi,j,νxν−iKxν+1. (25)

The notation fj,ν = fj (tν) and gi,j,ν = gi,j (tν) is used. The
state-dependent noise level is estimated from the residuals as

ρ2
n = 1

R

∑
Un

⎛
⎝xν+1 −

J∑
j=0

αjfj,ν −
m−1∑
i=0

Ji∑
j=0

βi,j gi,j,νxν−iK

⎞
⎠

2

.

(26)

Nonstationary local constant (or analog) modeling is
obtained as a special case of the method when dropping the
linear terms (βi,j = 0). The parameters αj are then obtained
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from the linear system of equations

J∑
k=0

Aj,kαk = cj , (27)

with Aj,k and cj given by Eqs. (21) and (24).
If η is assumed to be white and Gaussian, least-squares

regression is equivalent to maximum likelihood estimation
locally in the neighborhood. Otherwise, or if the model is
applied in the deterministic mode, least-squares estimation is
a canonical procedure as a generic optimization principle.

The present approach is a natural extension of standard,
that is, stationary, local polynomial modeling [32–34]. In the
time-independent case (J = 0 and Ji = 0 for all i) standard
local linear modeling is recovered; when additionally dropping
the linear terms (βi,0 = 0) standard local constant (or analog)
modeling [35] is recovered. Traditionally, these models are
used only in the deterministic mode, in keeping with the
assumption of a deterministic underlying dynamical system
having generated the data.

V. EXAMPLE: A RELAXATION OSCILLATOR
UNDERGOING A HOPF BIFURCATION

The FitzHugh-Nagumo model augmented with stochastic
noise is chosen as the test case. The equations of motion are

εż = z − z3

3
− w, (28)

ẇ = z + c(t) + ση. (29)

η is a white Gaussian noise with zero mean and unit variance;
σ is the noise level. The time-scale separation parameter is
fixed as ε = 0.05; the parameter c is ramped according to
c(t) = 0.9 + t/1500. For |c| < 1 the deterministic system has
a stable limit cycle; for |c| > 1 there is a stable fixed point.
At c = 1 (t = 150) the system undergoes a Hopf bifurcation.
The model is integrated in time numerically using the Euler-
Maruyama scheme with step size h = 10−4.

The variable w is used as the scalar time series of the
system, sampled at the time interval δt = 0.05. Embedding
vectors of dimension m = 2 are formed with time delay τ =
0.5, corresponding to K = 10. We use a local linear model
with a linear trend in time only in the constant term:

wn+1 = α0 + α1t
∗ + β0,0wn + β1,0wn−K + ρnηn. (30)

The rescaled time is t∗ = t/150. Neighborhoods consist of
R = 50 nearest neighbors in the Euclidian norm in embedding
space. The results are fairly robust in the range from R = 30
to R = 60. As a regularization of occasional ill-conditioned
fits the regression equations are solved using the spectral
decomposition of the system matrix and dropping eigenvalues
and corresponding eigenvectors smaller than 10−4 times the
largest eigenvalue. The time interval [0,100] is used as the
learning data window. The learning data set has size N =
2000, covering the embedding vectors from y0 = (w−K,w0) to
yN−1 = (wN−1−K,wN−1), with corresponding next data points
w1 to wN .

We first consider the deterministic case (σ = 0).
Figures 2(a) and 2(b) show the learning data set and its
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FIG. 2. (Color online) Relaxation oscillator without noise (σ =
0) undergoing a Hopf bifurcation. (a) Learning data set of the
true system [solid (red) line] and learning data set predicted by
the data-based model [dashed (blue) line]. (b) Continuation of the
learning data set from the true system [solid (red) line] and from
the data-based model [dashed (blue) line]. (c) Nonstationary limit
cycle in embedding space: trajectory of the learning data set from the
true system [solid (red) line] and continuations from the true system
[dotted (green) line] and the data-based model [dashed (blue) line].

continuation. The system performs self-sustained oscillations
in a limit cycle. The amplitude of the limit cycle starts to
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FIG. 3. (Color online) Relaxation oscillator with noise (σ = 0.035) undergoing a Hopf bifurcation. (a) Learning data set from the true
system. (b) Continuation of the learning data set. The dashed vertical line indicates the bifurcation point. (c) Further continuation of the time
series from the true system. (d) Sample trajectory of the data-based model over the period of the learning data set. (e) Continuation of the
sample trajectory. The dashed vertical line indicates the bifurcation point. (f) Further continuation of the sample trajectory.

shrink rapidly at about c = 0.994. Some transient behavior is
visible shortly after the bifurcation point, as there the decay
time scale of the fixed point is not small compared to the
time scale of the ramping of the parameter c. The quality of
the data-based model is assessed in-sample by predicting the
learning data set. Here, the model is run in the deterministic
mode, dropping the stochastic term. The one-step predictor
is iterated starting with predicting w1 from the embedding
vector y0 = (w−K,w0). The current embedding vector to be
predicted is excluded from forming the neighborhood. We
are mainly interested in the overall statistical properties of
the trajectory, but given the deterministic nature of the system

there is some interest in how well the trajectory of the true
system can actually be predicted point by point. Therefore the
trajectory of the data-based model is overlaid on the learning
trajectory in Fig. 2(a). The reproduction is almost perfect;
there is just a tiny phase shift at t = 100. Now the learning
data set is continued into the future with the data-based model
[Fig. 2(b)]. The trajectory is reinitialized at the end of the learn-
ing data window; that is, we start by predicting wN+1 from the
embedding vector yN = (wN−K,wN ) as given in the learning
data set from the true system. The data-driven model accurately
captures the timing of the transition well beyond the end of the
learning data window and the subsequent quiescent phase of
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the system. The model can also predict the system trajectory
beyond the learning data window except for a small error in
the period of the oscillations close to the bifurcation point.
Figure 2(c) displays the time evolution of the limit cycle in
embedding space. This sheds some light on how the method
is working. The slight nonstationarity of the limit cycle,
not visible by eye in the time series in Fig. 2(a), is picked
up by the data-based model locally in embedding space
and extrapolated into the future, eventually leading to the
vanishing of the limit cycle. The difference between the true
system and the data-based model is small, mainly visible in
the last two spikes of the true system.

Now the system is studied at noise level σ = 0.035.
Figures 3(a)–3(c) show a time series of the system. Under
noise forcing the relaxation oscillator is still excitable for some
time after the bifurcation point before entering the quiescent
state. The data-based model is used in the stochastic mode,
adding a random draw from a Gaussian with zero mean and
variance ρ2

n at each iteration step. A realization of the derived
model starting at the beginning of the learning data window is
displayed in Figs. 3(d)–3(f). The model correctly predicts the
initial excitability of the system beyond the Hopf bifurcation
point and the subsequent stabilization of the fixed point. Multi-
ple realizations of the model (not shown) confirm this picture.

VI. DISCUSSION

A method for predicting critical transitions from data based
on nonstationary reconstruction of the underlying flow field

has been introduced and exemplified in simple systems. The
technique is able to successfully predict a fold and a Hopf
bifurcation well beyond the learning data window. Relax-
ation oscillators with time-varying stability and excitability
properties appear to play a role in paleoclimatic transitions
[36,37].

Unlike more traditional early-warning indicators such as
increasing autocorrelation [8,9] and/or variance [10], the
present method allows for genuine prediction, rather than just
detection or anticipation, of the nature and the timing of an
incipient transition. The present approach is more general
and powerful than nonstationary probability density modeling
[16,17]. It makes more efficient use of the data by exploiting
information about the time evolution of system states rather
than just the probability density. It is worth noting that the
transition in the relaxation oscillator is not preceded by critical
slowing-down or increasing variance, nor does it have a
precursory signal in the probability density.

An interesting extension of the present work is critical
transition modeling based on spatially extended data [38].
Some dimension reduction will then necessarily be involved
in the analysis. A natural candidate for the essential modes
of the system is principal components [39]. If the critical
transition mechanism is rather low-dimensional, principal
interaction patterns [40,41] may be an attractive choice, as
they allow for simultaneous identification of the principal
modes of the system and dynamical modeling of their time
evolution.
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