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Evidence suggests that several elements of the climate system could be tipped into a 9 

different state by global warming, causing irreversible economic damages. To address 10 

their policy implications, we incorporated five interacting climate tipping points into a 11 

stochastic-dynamic integrated assessment model, calibrating their likelihoods and 12 

interactions on results from an existing expert elicitation. Here we show that combining 13 

realistic assumptions about policymaker’s preferences under uncertainty, with the 14 

prospect of multiple future interacting climate tipping points, increases the present 15 

social cost of carbon (SCC) in the model nearly 8-fold from $15/tCO2 to $116/tCO2. 16 

Furthermore, passing some tipping points increases the likelihood of other tipping 17 

points occurring to such an extent that it abruptly increases the social cost of carbon. 18 

The corresponding optimal policy involves an immediate, massive effort to control CO2 19 

emissions, which are stopped by mid-century, leading to climate stabilization at <1.5 °C 20 

warming above pre-industrial levels.  21 
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The social cost of carbon (SCC) represents the cost of all future climate damages stemming 22 

from a marginal emission of CO2, discounted to the year of emission. The 2010 US Federal 23 

assessment
1
 used three simple integrated assessment models (IAMs) to arrive at a SCC of 24 

$21/tCO2 for a tonne emitted in 2010, which was subsequently revised upwards
2
 to $33/tCO2. 25 

Several other studies
3-6

 have argued for a higher SCC on various grounds. A key potential 26 

contributor to increasing the SCC is the possibility that ongoing climate change will cause 27 

elements of the climate system to pass ‘tipping points’ leading to irreversible damages
7,8

.  28 

Existing scientific studies suggest there are multiple climate tipping points that could be 29 

triggered this century or next if climate change continues unabated
7,8

, and there are causal 30 

interactions between tipping events such that tipping one element affects the likelihoods of 31 

tipping others
8
 (Fig. 1). The likelihood of specific tipping events varies, but is generally 32 

expected to increase with global temperature
7,8

. However, internal variability within the 33 

climate system, and relatively rapid anthropogenic forcing, mean that even if deterministic 34 

tipping points could be precisely identified, the actual systems could be tipped earlier or 35 

later
9
. Thus, any assessment of their policy implications needs to represent the stochastic 36 

uncertainty surrounding when tipping points could occur
10

. Furthermore, the impacts of 37 

passing different tipping points are expected to vary
7,11

, and to unfold at different rates 38 

depending on the internal timescale of the part of the climate system being tipped
7,11

.     39 

Relative to this scientific understanding, most cost-benefit analyses of climate change only 40 

allow for simple and scientifically unrealistic representations of climate tipping points
11

. 41 

Most previous IAM studies of climate catastrophes have treated them in a deterministic 42 

fashion, sometimes giving them a probability distribution
5,12-15

. Some recent IAM studies 43 

have considered one stochastic climate tipping point impacting economic output
10

, non-44 

market welfare
16

, climate sensitivity
17

, or carbon cycle feedbacks
17

. This can lead to up to 45 

200% increases in the SCC in extreme cases
10

, with the results clearly sensitive to the 46 
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timescale over which tipping point impacts unfold, as well as the final magnitude of those 47 

impacts
10

. However, there has been little consideration of multiple tipping points and 48 

interactions between them, or of how an appropriate representation of risk aversion affects 49 

the optimal response to the prospect of future tipping points.  50 

A recent IAM study
18

 has examined three loosely-defined tipping points that instantaneously 51 

alter climate sensitivity, carbon cycle feedbacks, or economic output, and interact via their 52 

effects on atmospheric CO2, global temperature, or economic output. Here we consider five 53 

carefully-defined tipping points
7,8

 and the direct causal interactions between them identified 54 

by scientific experts
8
 (Fig. 1). These interactions occur primarily via aspects of the climate 55 

system that are not resolved in simple IAMs. The impacts of our tipping points unfold at a 56 

rate appropriate for the system being tipped, in contrast with instantaneous changes
17,18

 in 57 

climate sensitivity and carbon cycle feedbacks which are scientifically questionable
10

. Our 58 

tipping points principally affect economic output, although we also consider their feedback 59 

effects on the carbon cycle. Instead of arbitrarily specifying the likelihood of the tipping 60 

points
18

 we calibrate their likelihoods (and the causal interactions between them) based on the 61 

results of an existing expert elicitation
8
. Furthermore, in contrast to recent work

18
, we alter 62 

the specification of the social planner’s preferences regarding risk aversion and 63 

intergenerational equity, in a manner appropriate for the stochastic uncertainty surrounding 64 

future tipping points.  65 

 66 

Modelling tipping points 67 

We use the dynamic stochastic integration of climate and economy (DSICE) framework
19

 to 68 

incorporate five stochastic tipping points and causal interactions between them into the 2013 69 

version of the well-known DICE model
20

 (see Methods, Supplementary Figs. 1,2). This 70 
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means solving a 16-dimensional stochastic model – the first time in the field of economics of 71 

climate change that an analysis on such a scale has been accomplished (our previous work
10

 72 

solved a 7-dimensional system, whereas other simplified stochastic versions
17

 of DICE only 73 

consider 4 dimensions). In our stochastic version of the DICE model, we use annual time 74 

steps, and calibrate parameters in the carbon cycle and temperature modules against the 75 

emulated median response of complex climate models for the four RCP (representative 76 

concentration pathway) scenarios
21

 (see Supplementary Methods). In a deterministic setting 77 

within our model (without considering climate tipping points) our calibration gives a social 78 

cost of carbon in 2010 of $15/tCO2 (all results are in 2010 US dollars). For reference, 79 

Nordhaus’ DICE-2013R model
20

 which uses five-year time steps and is calibrated against one 80 

RCP scenario also has a 2010 SCC of $15/tCO2.  81 

In IAMs such as DICE, greater emission control at present mitigates damages from climate 82 

change in the future but limits consumption and/or capital investment today. A ‘social 83 

planner’ is assumed to weigh these costs and benefits of emission control to maximize the 84 

expected present value of global social welfare. When faced with stochastic uncertainty about 85 

future tipping events, the social planner’s response will depend on their preferences regarding 86 

risk and smoothing consumption. DICE adopts a specification of risk aversion that is 87 

inversely tied to the decision maker’s preferences to smooth consumption over time (i.e. the 88 

inter-temporal elasticity of substitution). Thus, a high inter-temporal elasticity of substitution 89 

is taken to imply a low risk aversion. In the baseline DICE model, risk aversion RA=1.45, 90 

and inter-temporal elasticity of substitution IES=1/1.45. However, empirical economic data 91 

do not support this inverse proportionality (implying time separable utility) and suggest 92 

instead decoupling these preferences
22

. Hence we incorporated ‘Epstein-Zin’ (EZ) 93 

preferences
22

 using default parameter settings
23

 of RA=3.066 and IES=1.5, which are 94 

consistent with empirical findings
23

 (implying time non-separable utility). Estimates of IES>1 95 
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have been obtained from e.g. stockholder data
24

, IES=1.5 is used in a long-run risk model
19,25

, 96 

and the upper bound is considered
23

 to be IES ~2. Using IES=1.5, equity returns data
23

 97 

suggest RA=3.066, which is in the range RA=3-4 from a separate study of equity premiums 98 

of rare disasters
26

, with the upper bound considered
25

 to be RA~10.  99 

The five interacting, stochastic, potential climate tipping points
7,8

 (Fig. 1, Table 1) represent 100 

reorganisation of the Atlantic Meridional Overturning Circulation (AMOC), disintegration of 101 

the Greenland Ice Sheet (GIS), collapse of the West Antarctic Ice Sheet (WAIS), dieback of 102 

the Amazon rainforest (AMAZ), and shift to a more persistent El-Niño regime (ENSO). We 103 

used published expert elicitation results
8
 to derive the likelihoods (see Methods) of each of 104 

the five tipping events (Table 1), and the causal interactions between them (Fig. 1, 105 

Supplementary Table 1). By causal interaction we mean that the hazard rate of each tipping 106 

point depends on the state of the others.  107 

For each tipping event we specified a transition timescale
10

 (Table 1, see Methods) – i.e. how 108 

long it would take for the full impacts to unfold, based on current scientific understanding of 109 

the timescales of the systems being tipped
7,11

 (e.g. ice sheets melt more slowly than the ocean 110 

circulation can reorganise). Recognising the scientific uncertainty surrounding transition 111 

times we explore a factor of 5 uncertainty range in either direction. We must also specify a 112 

final damage for each tipping event (Table 1, see Methods), taken to be an irreversible 113 

percentage reduction in world GDP. This is the most problematic and debatable part of the 114 

parameterisation, because of a gross shortage of scientific and economic estimates of tipping 115 

point damages
11

. We can make some scientific inferences about relative damages (e.g. based 116 

on the eventual contributions of different ice sheets to sea-level rise).  Past studies with DICE 117 

have loosely associated a 25-30% reduction in GDP comparable with the Great Depression 118 

with a collapse of the AMOC
27,28

, but when combined with other tipping points this could 119 

lead to excessively high overall damages.  Our assigned damages for individual tipping points 120 



 
 

6 
 

range from 5-15% reduction in GDP with a combined reduction in GDP if all five tipping 121 

events occur and complete their transitions of 38%. However, due to relatively low 122 

probabilities and long transition timescales, the expected tipping point damages in our default 123 

scenario only amount to 0.53% of GDP in 2100 and 1.89% of GDP in 2200. In our sensitivity 124 

analysis we consider a factor of 2-3 total uncertainty range in final damages for each tipping 125 

point. Finally, we include some conservative effects of tipping particular systems on the 126 

carbon cycle (Table 1, see Methods).  127 

 128 

Optimal policy 129 

The result of including multiple interacting tipping points under EZ preferences (Fig. 2) is a 130 

nearly 8-fold increase in the initial social cost of carbon from $15/tCO2 in the baseline model 131 

(grey line) to $116/tCO2 (black line). Across 10,000 sample paths of the model there are 132 

cases where one or more tipping points still occur, leading to uncertainty ranges for the key 133 

variables (grey shaded areas). The emissions control rate jumps from ~18% to ~56% in 2010 134 

and rises to 100% by 2050, effectively shutting down fossil fuel CO2 emissions – whereas in 135 

the baseline model emissions continue into the next the century. The average atmospheric 136 

carbon peaks in the 2030s at 415 ppm and then declines (due to ongoing ocean carbon 137 

uptake) – whereas in the baseline model atmospheric CO2 continues to rise to ~650 ppm by 138 

2100. Temperature rise slows down and is almost stable around 1.4 °C above pre-industrial 139 

by 2100 – whereas in the baseline model warming continues and approaches 3 °C by 2100. 140 

Following the expected path (black line) there is only an 11% probability of one or more 141 

tipping events by 2100, reduced from 46% in the baseline model, or 87% under a prescribed 142 

RCP8.5 emissions scenario (Table 2).  143 
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A factor of 2.4 increase from the baseline SCC to $36/tCO2 is just due to the change to EZ 144 

preferences (dashed black line, Fig. 2), with a further factor of 3.2 increase due to the 145 

potential for multiple tipping points. With just EZ preferences (and no stochastic tipping 146 

points) the initial emissions control rate increases from ~18% to ~29% with 100% emissions 147 

control in 2100. Atmospheric carbon peaks around 550 ppm, with surface temperature 148 

stabilising around 2.3 °C above pre-industrial.  149 

 150 

Tipping point interactions 151 

In the full model, there are both positive and negative causal interactions between tipping 152 

points (Fig. 1, Supplementary Table 1), which are conservatively calibrated (see Methods). 153 

Hence their inclusion has only a modest net effect on the expected SCC, increasing it from 154 

$109/tCO2 to $116/tCO2 (see also Supplementary Fig. 3). However, a specific sample path 155 

where multiple tipping events occur before 2200 (Fig. 3, solid line) reveals that some tipping 156 

point interactions can have a strong effect on the time evolution of the SCC. Considering a no 157 

interactions sample path (Fig. 3, dashed line) shows that in general, passing a tipping point 158 

reduces the incentive to mitigate and therefore lowers the SCC, because it can no longer be 159 

avoided. However, with interactions, tipping of the GIS significantly increases the likelihood 160 

of AMOC tipping (which is assumed to be the most damaging event) hence this causes a 161 

large increase in the SCC in order to try to avoid AMOC tipping. (This is consistent with 162 

previous suggestions
29,30

 that tipping points can create multiple optima – here for the SCC 163 

and corresponding emissions
30

.) Subsequent tipping of AMOC greatly reduces the SCC. 164 

Tipping of ENSO causes a small increase in the SCC because it increases the likelihood of 165 

tipping the Amazon. Subsequent tipping of the Amazon halves the SCC because there is now 166 

an unavoidable extra source of carbon to the atmosphere and only WAIS left to tip. There are 167 
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other sample paths where the first tipping event does not increase the likelihood of others so 168 

the SCC drops – e.g. when the Amazon rainforest tips first (Supplementary Fig. 4). 169 

The social cost of carbon therefore depends on whether tipping events occur and in which 170 

order. This can also be seen by looking at the sample paths for the earliest and sole tipping 171 

before 2100 of each element (Supplementary Fig. 5). If the GIS tips first this leads to the 172 

highest SCC path and the most stringent emission control, reaching 100% before 2040, 173 

because of the increased risk of AMOC collapse. If the AMOC tips first, this gives the lowest 174 

SCC path because it has the greatest damages, which can no longer be avoided – yet emission 175 

control remains above 60% and the SCC remains above $110/tCO2. If the Amazon tips first, 176 

this also lowers SCC and emission control, but it leads to the highest atmospheric carbon and 177 

temperature trajectory because of an accompanying carbon source. If ENSO tips first, this 178 

slightly increases emission control because the likelihood of the AMAZ tipping is increased. 179 

If the WAIS tips first, there is little effect on emission control because it only slightly 180 

increases the likelihood of tipping the AMOC and GIS. CO2 emissions trajectories 181 

(Supplementary Fig. 6) therefore depend on the contemporaneous state of tipping elements. 182 

 183 

Sensitivity analysis 184 

The high social cost of carbon is robust to sensitivity analyses (see Methods). Combined 185 

variations in assumed transition times and final damages of the tipping points give a full 186 

range in initial SCC of $50-166/tCO2 (Supplementary Table 2). With pessimistic settings for 187 

the expert assessment of interactions between tipping elements (Supplementary Table 3), the 188 

SCC increases from $116/tCO2 to $121/tCO2. Including an endogenous transition time for the 189 

GIS gives only a slight reduction in SCC to $114/tCO2 because its damages tend to be 190 
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discounted away anyway. Allowing all tipping elements to have an endogenous transition 191 

time reduces SCC to $94/tCO2. 192 

Retaining an intertemporal elasticity of substitution IES=1.5 but increasing risk aversion to 193 

RA=10 increases the SCC from $116/tCO2 to $146/tCO2. With the original RA=3.066 and an 194 

upper limit of IES=2 the SCC increases to $151/tCO2. Using the default DICE settings of 195 

IES=1/1.45 and RA=1.45 gives an SCC of $28/tCO2, a factor 1.9 increase from the default 196 

$15/tCO2 due to the five interacting tipping points. Thus, EZ preferences magnify the effect 197 

of including potential future tipping points, causing a factor 3.2 (rather than 1.9) increase in 198 

the SCC. To disentangle the effect of IES and RA, we also investigate a case with IES=1.5 199 

and RA=1/1.5, which gives an SCC of $104/tCO2. That is, when we incorporate the climate 200 

tipping risks, using time separable preferences as in DICE, an increase from IES=1/1.45 (and 201 

RA=1.45) to IES=1.5 (and RA=1/1.5) leads to a factor 3.7 increase in the SCC, and the 202 

additional change to our default time non-separable EZ preferences (IES=1.5, RA=3.066) 203 

leads to an extra SCC of $12/tCO2. 204 

 205 

Discussion and conclusion 206 

Putting our results in scientific context, there is already evidence that major ice sheets are 207 

losing mass at an accelerating rate
31,32

. GIS mass loss is estimated to be contributing ~0.7 208 

mm/yr to sea-level rise
33

, with a corresponding increase in freshwater flux to the North 209 

Atlantic
34

 since 1990 of ~0.01 Sv. Although modest at present, this and other contributors to 210 

increasing freshwater input to the North Atlantic
35

, are thought
8
 to increase the likelihood of 211 

AMOC tipping, and our results suggest this should be increasing the incentive to control CO2 212 

emissions. WAIS mass loss is contributing ~0.35 mm/yr to sea-level rise
32

, and there is 213 

evidence that parts of the West Antarctic ice sheet are already in irreversible retreat
36-38

. If the 214 
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WAIS has already passed a tipping point then mitigation cannot avoid it, but our results 215 

suggest this should not significantly reduce the incentive to mitigate to try to avoid other 216 

tipping events. 217 

Our results and policy recommendations differ considerably from another recent study 218 

considering multiple tipping points
18

, which recommends at most a doubling of the social 219 

cost of carbon (SCC) that allows CO2 emissions to continue to grow past mid-century, with 220 

temperature ultimately peaking at just under 3 °C. In contrast, our results recommend a 221 

nearly 8-fold increase in the SCC to drive a cessation of CO2 emissions by mid-century, 222 

which limits warming to <1.5 °C. This very different outcome is a result of our different 223 

specification of tipping points together with our change in decision maker preferences to 224 

something more appropriate for such stochastic climate risks. 225 

There are several caveats with the DICE modelling approach used here (and the simplified 226 

version of DICE used elsewhere
18

). In the climate component of the model, the ocean carbon 227 

sink is too strong
39

, causing it to overestimate the effect of emissions reductions on 228 

atmospheric CO2 and temperature, especially beyond 2100. We only consider one value for 229 

equilibrium climate sensitivity (2.9 °C following DICE-2013), whereas the IPCC likely 230 

range
40

 spans 1.5-4.5 °C. Nevertheless, the DICE prediction that a shut-down of CO2 231 

emissions by mid-century will lead to ~1.5 °C warming, is compatible with more detailed 232 

probabilistic projections
41,42

 varying climate sensitivity (noting that DICE shuts down 233 

emission faster but then does not allow for net carbon dioxide removal in the second half of 234 

this century
41,42

).  235 

The economic component of DICE allows for an unrealistic instantaneous adjustment of 236 

emissions (to e.g. a control rate >0.5), whereas in reality emissions control rates are low and 237 

there are lags in ramping them up, for example due to the lifetime of coal-fired power 238 
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stations. However, recent energy-economic model studies
41,42

 show that it is technologically 239 

feasible to increase the emissions control rate to 100%, and thus achieve net zero CO2 240 

emissions, by mid-century. The assumed costs of mitigation options in DICE are also 241 

relatively low
43

, whereas energy-economic models
41

 indicate that limiting warming to 1.5 °C 242 

would be considerably more expensive than limiting it to 2 °C, especially between now and 243 

2030. Despite these uncertainties, in a real options analysis framework
44

, paying up front now 244 

to minimise the future risk of climate tipping points can still be the logical and cost-effective 245 

option for societies. Furthermore, acknowledging that society also faces other potential 246 

tipping points (e.g. disease pandemics) should increase the willingness to pay to avert any 247 

one of them
45

, even though we should not necessarily avert all of them
45

. The decision to try 248 

to avert climate tipping points depends crucially on a relatively high risk aversion
45

, 249 

consistent with our findings.  250 

In summary, our results illustrate that the prospect of multiple interacting climate tipping 251 

points with irreversible economic damages ought to be provoking very strong mitigation 252 

action, on the part of ‘social planners’ – including governments signed up to the United 253 

Nations Framework Convention on Climate Change. Under realistic preferences under 254 

uncertainty, the optimal policy involves a shutdown of carbon emissions by mid-century.  255 

 256 
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Figure legends 383 

 384 

Figure 1. Map of the five climate tipping events considered here and the causal interactions 385 

between them previously identified in an expert elicitation
8
.  386 
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 387 

Figure 2. Results for: (a) the social cost of carbon, (b) emissions control policy, (c) 388 

atmospheric carbon (ppm), and (d) surface temperature change (above pre-industrial), in the 389 

baseline deterministic model (grey), the deterministic model with Epstein-Zin preferences 390 

(dashed black), and the expected path of stochastic model with multiple interacting tipping 391 

points (black). The grey-shaded area shows the range of sample paths from 10,000 392 

simulations of the stochastic model (see Supplementary Figure 3 for the analogous case 393 

without interaction). 394 



 
 

19 
 

 395 

Figure 3. Example sample paths of the social cost of carbon (SCC) in $/tCO2 with multiple 396 

tipping points interacting (solid line) and not interacting (dashed line) to highlight the effect 397 

of causal interactions between tipping events. 398 

  399 
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Tables 400 

 401 

Table 1. Hazard rate, transition time, final damages and carbon cycle effect for each tipping 402 

element, with uncertainty ranges (in parentheses) considered in the sensitivity analysis. 403 

Tipping 

element 

Hazard rate 

(%/yr/K) 

Transition time 

(years) 

Final damages 

(% GDP) 

Carbon cycle effect 

AMOC 0.063 50 (10-250) 15 (10-20) No effect 

GIS 0.188 1500 (300-7500) 10 (5-15) 100 GtC over transition 

WAIS 0.104 500 (100-2500) 5 (2.5-7.5) 100 GtC over transition 

AMAZ 0.163 50 (10-250) 5 (2.5-7.5) 50 GtC over transition 

ENSO 0.053 50 (10-250) 10 (5-15) 0.2 GtC/yr permanent 

 404 

 405 

  406 
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Table 2. Expected tipping point probabilities (%) by years 2100 and 2200, based on 10,000 407 

model runs of the DSICE model
19

 with five stochastic tipping points, and those that would be 408 

obtained from the temperature paths in the deterministic baseline model without tipping 409 

points, or under prescribed RCP 8.5 emissions. 410 

*2.8 °C warming in 2100, 2.76 °C in 2200 411 

**4.7 °C warming in 2100, 7.5 °C in 2200 412 

 413 

  414 

Number of 

tipping 

events 

Stochastic  

tipping points 

(interacting) 

Stochastic  

tipping points 

(no interaction) 

Baseline model 

temperature 

path* 

RCP8.5 

temperature 

path** 

2100 2200 2100 2200 2100 2200 2100 2200 

1 10.8 24.38 12.04 26.88 34.28 23.03 29.69 0 

2 0.65 4.14 0.72 4.08 10.03 31.31 30.73 0 

3 0.04 0.42 0.05 0.41 1.81 24.7 19.08 0.33 

4 0 0.02 0 0.02 0.18 10.1 6.76 16.87 

5 0 0.01 0 0 0 2.29 0.85 82.80 

Cumulative 

probability 

11.49 28.97 12.81 31.39 46.30 91.43 87.11 100 



 
 

22 
 

Methods 415 

Summary 416 

We use the DSICE model
10,19 

 (Supplementary Fig. 1) to compute the socially optimal 417 

reduction of global greenhouse gas emissions under the possibility of five interacting climate 418 

tipping points. The baseline deterministic model without tipping points is based on the 2013 419 

version of DICE
20

, but uses parameters in the carbon cycle and temperature system calibrated 420 

against all four RCP scenarios (see Supplementary Methods), and solves on an annual time 421 

step. DICE comprises one state variable for the capital stock, representing the world 422 

economy, a three-box carbon cycle module, and a two-box climate. To this we add a 10-423 

dimensional system of interacting tipping elements.  424 

For each of five tipping elements we have a discrete binary state indicating whether its 425 

corresponding tipping process has been already triggered or not, and a continuous state 426 

variable indicating the contemporaneous length of the transition process. The occurrence of 427 

each climate tipping point is modeled by a Markov process and its timing is not known at the 428 

times of decisions. The endogenous hazard rate (/yr/K) for each tipping event is assumed zero 429 

up to 1 °C warming above pre-industrial levels (reached in about 2015 in the model) and 430 

increases linearly with global warming above 1 °C at a rate derived from published expert 431 

elicitation results
8
. The conditional probabilities representing changes to the other hazard 432 

rates should a particular system tip are conservatively specified given wide ranges in the 433 

expert assessment
8
. The transition timescale

10
 of each tipping element is based on current 434 

scientific understanding of the timescales at which specific climate subsystems can transition 435 

into an alternative state, with a factor of 5 uncertainty range in either direction considered in 436 

the sensitivity analysis. Tipping points are assumed to directly impact economic output and 437 

their relative final damages are based on scientific understanding. The absolute final damages 438 
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of individual tipping events are highly uncertain and are varied in the sensitivity analysis over 439 

a factor of 2-3 range, giving a range in total reduction in GDP if all five tipping events occur 440 

of 23%-50%. In addition to the impacts of tipping points on economic output we also include 441 

conservative effects of tipping particular systems on the carbon cycle, implemented as 442 

exogenous emissions to the atmosphere. The stochastic model is solved using a 443 

supercomputer
19,46

, to generate 10,000 stochastic sample paths, with the expected path 444 

calculated as the average of all paths.   445 

In the following, we detail the specific modifications to the DICE-2013R model and refer to 446 

Nordhaus
43

 for calibration and formulations of the remaining parts of the model.  447 

 448 

Calibration of tipping elements and interactions between them 449 

As in previous work
10

 we define three phases to the tipping process for each tipping element 450 

(Supplementary Fig. 2). In the first, pre-trigger phase, the additional damage from a tipping 451 

point is 0. In the second, transition phase, there is a positive, but not stationary additional 452 

damage level. In the third and final, post-tipping phase the tipping element is in a new, 453 

absorbing state, with a constant (irreversible) damage level. 454 

For each tipping element, 𝑖, after a tipping point is passed, a persistent climate impact state, 455 

the additional damage factor 𝐽𝑖,𝑡 will increase continuously from a minimal level (i.e., 𝐽𝑖,𝑡 =456 

0) to some maximum level (𝐽𝑖 > 0), implying that 𝐽𝑖,𝑡+1 = min {𝐽𝑖,𝑡 + Δ𝑖,𝑡 , 𝐽𝑖}𝐼𝑖,𝑡, where Δ𝑖,𝑡   is 457 

the incremental impact level from stage 𝑡 to 𝑡 + 1 of tipping element 𝑖 . In our default case, 458 

Δ𝑖,𝑡 denotes linear increments, but these increments become nonlinear in the sensitivity case 459 

with endogenous transition time. We use 𝐼𝑖,𝑡  as the indicator function to denote for each 460 

tipping element 𝑖 the pre-trigger state of the world as 𝐼𝑖,𝑡 = 0 and the post-trigger state of the 461 
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world as 𝐼𝑖,𝑡 = 1, where 𝐼𝑖,𝑡  is a jump process with a Markovian hazard rate. The latter is 462 

endogenous with respect to the contemporaneous level of global average atmospheric 463 

temperature, 𝑇𝑡
𝐴𝑇. Furthermore, to model causal relationships between the tipping elements 464 

the Markovian hazard rate for tipping element 𝑖 also depends on whether a tipping process of 465 

climate tipping element 𝑗 has been triggered. We do not explicitly consider other indicators 466 

for tipping, e.g., the gradient of temperature
47

. The transition function for 𝐼𝑖,𝑡  from stage 𝑡 to 467 

stage 𝑡 + 1 is 𝐼𝑖,𝑡+1 = 𝑔𝑖
𝐼(𝑰𝒕, 𝑇𝑡

𝐴𝑇 , 𝜔𝑖,𝑡
𝐼 ) , where 𝑰𝒕 is the vector of the indicator functions for 468 

the five climate tipping elements (𝐼1,𝑡, … , 𝐼5,𝑡)  and 𝜔𝑖,𝑡
𝐼  is a random process. With 𝐽𝑖,𝑡+1 =469 

min{ 𝐽𝑖,𝑡 +  Δ𝑖,𝑡, 𝐽𝑖}𝐼𝑖,𝑡 the impact factor on the economy becomes  470 

Ω𝑡(𝑇𝑡
𝐴𝑇 , 𝑱𝒕, 𝑰𝒕) =

∏ (1−𝐼𝑖,𝑡𝐽𝑖,𝑡𝑖 )

1+𝜋2(𝑇𝑡
𝐴𝑇)

2      (1) 471 

where 𝑇𝑡
𝐴𝑇  

is the average global atmospheric temperature and 𝜋2  is a coefficient in the 472 

damage function. (The impact of global warming on the economy is reflected by a convex 473 

damage function of atmospheric temperature, which is a standard feature of the DICE model 474 

– a deterministic model specification would simply be to fix all 𝐼𝑖,𝑡 at 0.) We specify the 475 

probability transition matrix of the tipping process 𝑖 at time 𝑡 as 476 

[
1 − 𝑝𝑖,𝑡 𝑝𝑖,𝑡

0 1
]     (2) 477 

where its (𝑛, 𝑚) element is the transition probability from state 𝑛 to 𝑚 for 𝐼𝑖,𝑡, and 𝑝𝑖,𝑡 = 1 −478 

exp (−𝐵𝑖(𝑰) max{0, 𝑇𝑡
𝐴𝑇 − 1}), where 𝐵𝑖(𝑰) is the hazard rate function for tipping element 𝑖, 479 

depending on whether other tipping elements have tipped. A general formula for the hazard 480 

rate function is given by 481 

𝐵𝑖(𝑰) = 𝑏𝑖 ∙ (1 + ∑ (𝐼𝑗 ∙ 𝑓𝑖𝑗𝑗 )).     (3) 482 
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We calibrated the values for 𝑏𝑖 using the expert opinions reported in Kriegler et al.
8
 and our 483 

previously described methodology
10

. Specifically, we calibrated 𝑏𝑖  to match the average 484 

expert’s cumulative trigger probabilities for each tipping element by the year 2200 for the 485 

medium temperature corridor in Kriegler et al.
8
, which implies 2.5 °C warming in 2100 and 3 486 

°C warming in 2200. These probabilities are 22% for AMOC, 52% for GIS, 34% for WAIS, 487 

48% for AMAZ and 19% for ENSO. The corresponding values for 𝑏𝑖  are 𝑏𝐴𝑀𝑂𝐶  = 488 

0.00063064, 𝑏𝐺𝐼𝑆  = 0.00188445, 𝑏𝑊𝐴𝐼𝑆 = 0.00103854, 𝑏𝐴𝑀𝐴𝑍  = 0.00163443 and 𝑏𝐸𝑁𝑆𝑂  = 489 

0.000526678 (Table 1). 490 

To model the interaction component of tipping point likelihood, we introduce 𝑓𝑖𝑗  as an 491 

additional probability factor, which describes by how much the hazard factor for tipping 492 

element 𝑗 is affected if tipping element 𝑖 has tipped (when it is negative, it implies a decrease 493 

in probability). The parameter matrix 𝑓𝑖𝑗  is calibrated for 𝑖, 𝑗 ∈ { AMOC, GIS, WAIS, 494 

AMAZ, ENSO}. Again we use the results in Kriegler et al.
8
 as the source for our calibration 495 

of the interaction effects between tipping elements. In particular, we consider the core 496 

experts’ assessment of the interaction effects for the “medium” temperature corridor. Our aim 497 

is to implement the interactions as direct, conditional alterations to the hazard rate of 498 

individual tipping events. Supplementary Table 1 summarizes our calibrated factors, 𝑓𝑖𝑗 . For 499 

some of the interaction effects, experts assessed ambiguous effects. For example, in the case 500 

of WAIS affecting AMOC the interaction factor ranges between <0 and >0 among the 501 

experts and among the average optimistic and pessimistic opinions of the core experts. In 502 

such an ambiguous case, while it might be worthwhile incorporating this uncertainty in the 503 

direction of interaction, we leave that as a possible avenue for further research and focus 504 

here, as in the non-ambiguous cases, solely on the average core experts’ assessment. 505 
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The order of the tipping sequence is important for the overall impact of any individual tipping 506 

element, due to asymmetric causal relationships between some of the tipping events (Fig. 1, 507 

Supplementary Table 1). For example, when GIS tipping is triggered first, the likelihood of 508 

AMOC is increased, but if instead a tipping point in the AMOC is triggered first, the 509 

likelihood of GIS tipping is reduced. 510 

 511 

Specification of transition times, final damages, and carbon cycle effects 512 

In addition to calibrating the hazard rate (described above), we have to specify the transition 513 

time, final damage levels and the effect on the carbon cycle for each tipping element (Table 514 

1). We base this on reviews of the literature, updated from previous work
7,11

. Recognising the 515 

scientific and economic uncertainties in these choices, the transition times are given a 516 

common factor of 5 range of uncertainty in either direction from default values, and the final 517 

damages are given a factor of 2-3 total uncertainty range. The values chosen are briefly 518 

justified as follows: 519 

AMOC: Past abrupt climate changes linked to reorganisations of the AMOC have occurred in 520 

a decade or less, but future AMOC collapse in model simulations can take a couple of 521 

centuries. Hence we opt for a 50-year default transition time and 10-250 year range. The 522 

AMOC collapse is often viewed as the archetype of a climate catastrophe; hence we assign it 523 

the highest final damage (accepting that others will question this). Past studies with DICE 524 

have suggested a collapse of the AMOC might result in a 25-30% reduction in GDP 525 

comparable with the Great Depression
27,28

. However, when combined with other tipping 526 

events this could lead to excessively high damages, so we opt for a 15% GDP reduction with a 527 

range of 10-20%. We considered the potential for the AMOC collapse to reduce both ocean 528 
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heat
48

 and carbon
49,50

 uptake. However quantitative estimates of these effects based on 529 

existing studies
48-50

 suggest they are small, hence they are ignored here. 530 

GIS: Irreversible meltdown of the Greenland ice sheet typically takes millennia in model 531 

simulations
51,52

, but models are unable to explain the speed of recent ice loss
7
. To cover the 532 

uncertainty we opt for a default timescale of 1500 years, with a minimum timescale
7
 of 300 533 

years and an upper limit of 7500 years. The final damages from the GIS melt will largely be 534 

due to sea-level rise
7
 of around 7 metres, which is roughly twice what can come from WAIS 535 

disintegration
53

. Hence we give the GIS twice the default final damages of the WAIS, noting 536 

that the spatial pattern of sea level rise will be greatest furthest away from each ice sheet (due 537 

to gravitational effects). As well as flooding low-lying cities and agricultural land, flooding of 538 

large areas of low-lying permafrost (especially in Siberia) could ultimately release large 539 

amounts of carbon
11

. We conservatively assume an exogenous emission of 100 GtC over the 540 

duration of the transition, which is only ~6% of the total permafrost carbon reservoir
54

.  541 

WAIS: The West Antarctic ice sheet is grounded largely below sea level and has the potential 542 

for more rapid disintegration than the Greenland ice sheet
7
, ultimately leading to up to 3.3 543 

metres sea-level rise
53

. Past sea-level rise in the penultimate Eemian inter-glacial period is 544 

estimated to have occurred
55

 at rates >1 m/century and must have come from Antarctica 545 

and/or Greenland. We assign a minimum timescale of 100 years for WAIS disintegration, 546 

with a default setting of 500 years, and an upper limit of 2500 years. Noting that the effect of 547 

GIS meltdown on Arctic sea level is greatly suppressed by gravitational adjustment
56

, 548 

whereas that of WAIS disintegration is not
53

, we assign WAIS the same potential to release 549 

100 GtC from low-lying permafrost over the duration of the transition.  550 

AMAZ: Dieback of the Amazon rainforest in future model simulations
57

 takes around 50 551 

years, which we use as our default. However, if drought and corresponding fires respond very 552 
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non-linearly to climate change
58

 dieback could conceivably occur on a minimum timescale of 553 

10 years, whereas if the forest is more resilient it could take centuries, consistent with a 554 

maximum timescale of 250 years. The Amazon rainforest is estimated to store 150-200 GtC 555 

in living biomass and soils
59

 and we conservatively assume that dieback will release 50 GtC 556 

over the duration of the transition.   557 

ENSO: In the past the frequency and amplitude of ENSO variability has changed on decadal 558 

to centennial timescales
7
, and in the future the amplitude of ENSO variability is expected to 559 

increase with more frequent extreme El Niño and extreme La Niña events
60

. Past El Niño and 560 

La Niña events have had large impacts, especially on the agricultural sector, and their more 561 

global footprint than Amazon dieback leads us to assign higher damages to ENSO. The 562 

observational record shows that individual strong El Niño events can cause anomalous 563 

emissions of carbon by fire
61

 of ~2 GtC. Hence we assume that an increase in El Niño 564 

amplitude could readily cause an average increase in land carbon emissions (exogenous) by 565 

0.2 GtC/yr that is essentially permanent on the timescale of our integrations.  566 

The combined effect on final damages if all tipping points occur is 38%, with a 23%-50% 567 

range in our sensitivity analysis. However, the timescale for all damages to be felt in our 568 

default case is over 1000 years, and our tipping probabilities are relatively low. Only two 569 

tipping elements (GIS, AMAZ) have an expected tipping time around 2200 (when it is as 570 

likely as not that their tipping process will be triggered), with the remaining three elements 571 

being less likely to tip. Furthermore, slow transition times mean that damages tend to be 572 

discounted away. As we have shown previously
10

, a tipping point with 2.5% damage to GDP 573 

and a 5 year transition time will have much larger impact on the SCC today than a tipping 574 

point with 25% damage to GDP and a 500 year transition time. Other integrated assessment 575 

model studies that treat tipping points have tended to assume instantaneous transitions and 576 

double-digit percentage damages. Thus, we argue that overall our model is conservatively 577 
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calibrated with relatively low expected damages, which amount to 0.53% of GDP in 2100 578 

and 1.89% of GDP in 2200 in our default model parameterization. 579 

The couplings to the carbon cycle lead to the following new specification of the exogenous 580 

land carbon source (in GtC) in DSICE:  581 

                                                 𝐸𝐿𝑎𝑛𝑑,𝑡 = 0.9𝑒−0.04𝑡  +𝐼𝐺𝐼𝑆 ⋅ 𝐼_{𝐽𝐺𝐼𝑆 < 𝐽𝐺𝐼𝑆} ⋅
100

1500
   582 

                                                                              +𝐼𝑊𝐴𝐼𝑆 ⋅ 𝐼_{𝐽𝑊𝐴𝐼𝑆 < 𝐽𝑊𝐴𝐼𝑆} ⋅
100

500
   583 

                 +𝐼𝐴𝑀𝐴𝑍 ⋅ 𝐼_{𝐽𝐴𝑀𝐴𝑍 < 𝐽𝐴𝑀𝐴𝑍}  ⋅
50

50
    584 

                                                                                   +0.2 ( 𝐽𝐸𝑁𝑆𝑂 𝐽𝐸𝑁𝑆𝑂⁄ ) ,   (4) 585 

where the first term on the right hand side is from the DICE model and all remaining terms 586 

are our modifications. Here, 𝐼_{} serves as an indicator function. 587 

 588 

The Dynamic Programming Problem 589 

In the following we present the dynamic programming problem of the social planner: 590 

𝑉𝑡(𝓢)  =    max
𝐶𝑡,𝜇𝑡

 𝑢(𝐶𝑡, 𝐿𝑡) +𝛽 [𝔼 {(𝑉𝑡+1(𝓢+))
1−𝛾

1−1 𝜓⁄ }]

1−1 𝜓⁄

1−𝛾

   (5) 591 

𝑠. 𝑡    𝐾+ = ( 1 − 𝛿)𝐾 + 𝑌𝑡( 𝐾, 𝑇𝐴𝑇 , 𝑰, 𝑱 ) − 𝐶𝑡 − 𝛹𝑡   (6) 592 

𝑴+ =  𝚽𝑀𝑴 + ( ℇ𝑡( 𝐾, 𝜇), 0, 0)⊤    (7) 593 

 𝑻+ =  𝚽𝑇𝑻 + (𝜉1ℱ𝑡 (𝑀𝐴𝑇), 0)⊤    (8) 594 

𝐼𝑖
+ = 𝑔𝑖(𝑰, 𝑇𝐴𝑇 , 𝜔𝑖)      (9) 595 
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    𝐽𝑖
+ = min{ 𝐽𝑖 + Δ𝑖, 𝐽𝑖}𝐼𝑖     (10) 596 

where 𝑉𝑡(𝓢) denotes the time 𝑡 value function which is endogenous in the 16-dimensional 597 

state vector denoted by 𝓢. Furthermore, 𝐶𝑡, 𝜇𝑡 are the control variables for consumption and 598 

mitigation. Each period’s utility 𝑢 depends on consumption and exogenous labour supply 𝐿𝑡. 599 

With 𝛽 we denote the utility discount rate. The expectation operator is over the next-period’s 600 

value function with 𝛾 and 𝜓 denoting the risk aversion parameter and the elasticity of inter-601 

temporal substitution, respectively. In our default parameter case, we follow the calibration 602 

by Pindyck & Wang
23

 and specify: 𝛾 = 3.066 and 𝜓 = 1.5. Furthermore, 𝐾, 𝑴 and 𝑻 denote 603 

the capital stock, the three carbon stocks and the two temperatures (𝑀𝐴𝑇 and 𝑇𝐴𝑇 represent 604 

carbon concentration and temperature in the atmosphere), respectively and a “+” superscript 605 

denotes a variable’s next period value. 𝑌𝑡 denotes world gross product net of damages and ℇ𝑡 606 

denotes non-mitigated emissions into the atmosphere. Finally Ψ𝑡  is the expenditure on 607 

mitigation, and ℱ𝑡 is a term related to radiative forcing.  The model is solved for the next 300 608 

years with a terminal value function approximating the welfare of future years from 301 to 609 

infinite horizon (see Supplementary Methods). Our SCC is computed via  610 

𝑆𝐶𝐶𝑡 = −1000(
𝜕𝑉𝑡

𝜕𝑀𝑡
𝐴𝑇)/(

𝜕𝑉𝑡

𝜕𝐾𝑡
) , 611 

as in DSICE
19

, denoting the marginal rate of substitution between atmospheric carbon 612 

concentration and capital.  613 

After solving the dynamic programming problem using parallel backward value function 614 

iteration
46

 (see Supplementary Methods), we use these approximated value functions 𝑉𝑡  to 615 

simulate 10,000 paths in the following way: at the initial time, its state vector 𝓢𝟎 is known as 616 

the observed market values, then we can get the optimal consumption and emission control 617 

rate at time 0 by solving the dynamic programming problem with the previously computed 618 



 
 

31 
 

𝑉1. Using sample realization of shocks, we can obtain the next state vector 𝓢𝟏; using the same 619 

method to iterate forward, we get one simulated path of states and optimal policies that 620 

depend on realization of shocks. Repeating this process, we get 10,000 sample paths for our 621 

analysis.  622 

 623 

Numerical Implementation of the Model 624 

We have found that for the relatively short time horizon, when recalibrating the carbon cycle 625 

and temperature modules to match all four RCP scenarios closely we can omit the deep ocean 626 

stock of carbon without any loss of accuracy in the carbon-to-temperature relationship. Thus, 627 

the numerical implementation of the model is fifteen-dimensional. The computational task 628 

required to solve this fifteen-dimensional problem goes far beyond what has previously been 629 

achieved in truly stochastic climate-economy models, where 3-4 dimensional problems are 630 

considered the current frontier. We solve the model with parallel dynamic programming 631 

methods
46

 on 312,500,000 approximation nodes for the 10-dimensional continuous state 632 

space and degree-4 complete Chebyshev polynomials for each of the 5 discrete state vectors. 633 

It takes about 3 hours to solve the model for a single set of parameter values on 10,560 cores 634 

at the Blue Waters supercomputer. The estimated error bound of the optimal solution is 0.1%-635 

1% for policy functions and 0.01%-0.1% for the value functions.  636 

 637 

Sensitivity analyses 638 

We conducted several sensitivity analyses. Firstly we varied the transition times and/or 639 

damages of all five tipping elements across their assigned uncertainty ranges. Secondly we 640 



 
 

32 
 

took a more pessimistic assessment of the interaction between the tipping elements 641 

(Supplementary Table 3), which uses the upper bounds of the core experts’ assessment.  642 

Thirdly, some more complex sensitivity studies were also conducted exploring the effect of 643 

endogenous transition times for tipping elements. In our model the transition time for tipping 644 

element 𝑖 is inversely tied to Δ𝑖,𝑡 , the annual damage increase during the transition phase. 645 

Thus, the transition time for element 𝑖 is proportional to 
1

Δ𝑖,𝑡
 and also its final damage level 𝐽𝑖. 646 

In the case of an endogenous transition time, we let the annual damage increase be Δ𝑖,𝑡 =647 

𝐽𝑖exp (𝑎𝑖𝑇𝑡
𝐴𝑇 − 𝑏𝑖), where 𝑎𝑖  and 𝑏𝑖  are parameters calibrated to result in 𝐽𝑖/Δ𝑖,𝑡  to be the 648 

long transition time for 𝑇𝑡
𝐴𝑇 = 0 and short transition time for 𝑇𝑡

𝐴𝑇 = 6. Thus, the endogenous 649 

transition time is equal to ∫ exp (𝑎𝑖𝑇𝑡
𝐴𝑇 − 𝑏𝑖)𝐼𝑖,𝑡𝐼_(𝐽𝑖,𝑡 < 𝐽�̅�)𝑑𝑡

∞

0
.  650 

As a general rule, transition timescales should be governed by the internal dynamical 651 

timescale(s) of the system in question, so it may not be appropriate to include a temperature 652 

dependence of the transition timescale for all tipping elements. However, endogenous 653 

transition times have some backing for the major ice sheets, where models
51,52

, show that the 654 

rate of ice sheet meltdown depends on the amount by which a temperature threshold is 655 

exceeded. 656 
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Supplementary Information:  701 

 702 

Supplementary Methods: Calibration for the Climate System 703 

The DSICE model used in this study is based on the DICE-2013R model where the carbon 704 

cycle and temperature modules are represented by a three-box and a two-box model 705 

respectively. DICE-2013R uses five-year time steps and its carbon cycle and temperature 706 

modules are calibrated with one RCP scenario. Our DSICE model instead uses annual time 707 

steps and four RCP scenarios (RCP2.6, RCP4.5, RCP6, RCP8.5) to calibrate the parameters 708 

in the carbon cycle and temperature modules. For each RCP emission scenario, MAGICC 709 

provides their corresponding scenarios of carbon concentration and temperature in the 710 

atmosphere. We use this information to calibrate the parameters in our carbon cycle and 711 

temperature modules.  712 

For each RCP emission scenario, we first use it as the input 𝐸𝑡 to the carbon cycle, and then it 713 

outputs a path of carbon concentration in the atmosphere via  714 

𝑴𝑡+1 =  Φ𝑀𝑀𝑡 + (𝐸𝑡, 0, 0 )⊤ 

with the carbon cycle transition matrix  715 

𝚽𝑀 =  [

1 − 𝜙12 𝜙12 0
𝜙12  1 − 𝜙21 − 𝜙23 𝜙32

 0  𝜙23  1 − 𝜙32 
] 

We calibrate the parameters in 𝚽𝑀 so that our generated paths of carbon concentration in the 716 

atmosphere match their corresponding RCP scenarios of carbon concentration in the 717 

atmosphere for all four RCP scenarios. Our numerical calibration shows that 𝜙23 and 𝜙32 are 718 
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nearly zero, so we drop the carbon concentration in the deep ocean in our numerical 719 

implementation, and find that it has almost no impact on the solutions. 720 

The carbon concentrations in the atmosphere generate radiative forcing: 721 

𝐹𝑡 = 𝜂 log2(𝑀𝐴𝑇 𝑀∗
𝐴𝑇⁄ ) + 𝐹𝑡

𝐸𝑋, 722 

where 𝑀∗
𝐴𝑇 is the preindustrial carbon concentration in the atmosphere, and 𝐹𝑡

𝐸𝑋  
is exogenous 723 

radiative forcing. The radiative forcing impacts the surface temperature. With our carbon 724 

concentration paths, we have their corresponding radiative forcing scenarios. Using each of 725 

them as the input to the temperature system  726 

𝐓𝑡+1 =  𝚽⊤𝐓𝑡 + (ξ1𝐹𝑡 , 0)⊤, 727 

with 728 

                                                   Φ𝑇 =  [
1 − 𝜑21 − 𝜉2 𝜑21

𝜑12 1 − 𝜑12
], 729 

we can generate one path of surface temperature. We calibrate the parameters ξ1, 𝜉2, 𝜑21, 𝜑12 730 

so that our generated paths of surface temperature match the corresponding RCP scenarios of 731 

surface temperature for all four RCP scenarios. 732 

  733 

Supplementary Methods: Economic System 734 

In the economic system of DSICE, our utility at period t is 735 

𝑢(𝐶𝑡, 𝐿𝑡) =  
(𝐶𝑡/𝐿𝑡)1−1/𝜓

1−1/𝜓
 𝐿𝑡 , 736 

where 𝐶𝑡 is consumption, 𝜓 is IES (inter-temporal elasticity of substitution), and 𝐿𝑡 is 737 

population (in billions) given as  738 
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𝐿𝑡 = 6.838𝑒−0.0254𝑡 + 10.5(1 − 𝑒−0.0254𝑡) 

The gross world output at year t is 739 

𝑌𝑡(𝐾𝑡, 𝑇𝑡
𝐴𝑇 , 𝑰𝑡, 𝑱𝑡) = 𝐴𝑡𝐾𝑡

𝛼𝐿𝑡
1−𝛼Ω𝑡(𝑇𝑡

𝐴𝑇 , 𝑱𝒕, 𝑰𝒕) 

with 740 

Ω𝑡(𝑇𝑡
𝐴𝑇 , 𝑱𝒕, 𝑰𝒕) =

∏ (1 − 𝐼𝑖,𝑡𝐽𝑖,𝑡𝑖 )

1 + 𝜋2(𝑇𝑡
𝐴𝑇)

2 

defined in the main text. The mitigation expenditure is  741 

Ψ𝑡 = 𝜃1,𝑡𝜇𝑡
𝜃2𝑌𝑡(𝐾𝑡, 𝑇𝑡

𝐴𝑇 , 𝑰𝑡, 𝑱𝑡) 

Thus, the law of transition for capital 𝐾𝑡 is 742 

𝐾𝑡+1 = (1 − 𝛿)𝐾𝑡 + 𝑌𝑡(𝐾𝑡, 𝑇𝑡
𝐴𝑇 , 𝑰𝑡, 𝑱𝑡) − 𝐶𝑡 − 𝛹𝑡 

The carbon emission from economic activity and land is  743 

ℇ𝑡(𝐾𝑡, 𝜇𝑡) =  𝜎𝑡( 1 − 𝜇𝑡)𝐴𝑡𝐾𝑡
𝛼𝐿𝑡

1−𝛼 + 𝐸𝑡
𝐿𝑎𝑛𝑑 

where 𝐸𝑡
𝐿𝑎𝑛𝑑 is defined in the main text. The exogenous paths 𝐴𝑡, 𝜃1,𝑡, 𝜎𝑡, and the parameter 744 

values for 𝛼, 𝜋2, 𝜃2, 𝛿 follow DICE-2013R. 745 

 746 

Supplementary Methods: Terminal Value Function 747 

Welfare is usually defined over an infinite horizon, while DICE-2013R approximates it with 748 

a 300 years horizon for numerical implementation, as values after 300 years are discounted to 749 

be small. In the DSICE model, we use a terminal value function at the “terminal” time t=301 750 

to approximate the welfare after 300 years, for a more precise numerical implementation and 751 
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also a more stable value function iteration for solving the dynamic programming problem 752 

defined in the main text.  753 

To compute the terminal value function, we assume that the emission control rate will always 754 

be one after 300 years, and consumption will always be 0.74 share of gross world production. 755 

If one tipping element has been tipped before the terminal time, then its damage will keep 756 

unfolding, otherwise we assume it will never be tipped after the terminal time. We assume 757 

that all exogenous paths will stop changing after the terminal time. Under these assumptions, 758 

for any terminal state 𝓢, we can generate a flow of consumption after the terminal time, and 759 

then we estimate the value of the terminal value function at that state to be  760 

𝑉301(𝓢) = ∑ 𝑒−𝜌(𝑡−301)𝑢(𝐶𝑡, 𝐿𝑡)

∞

𝑡=301

 

For the numerical implementation, we compute the above summation over 400 years (i.e., 761 

from year 301 to 700) as an approximation. Our numerical examples show that solutions for 762 

the first 200 years are insensitive to the choice of the terminal value function, due to the 763 

discounted effect inherent in the DICE-2013R model, but the terminal value function 764 

specified above is still essential because it enables us to have stable value function iteration. 765 

  766 

Supplementary Methods: The Numerical Algorithm 767 

We use parallel backward value function iteration
46

 to solve the dynamic programming 768 

problem (5)-(10). With the above defined terminal value function 𝑉301, for a state 𝓢 at time 769 

t=300, we use an optimization solver to solve the dynamic programming problem and then 770 

get 𝑉300(𝓢). Since this is a problem with both continuous and discrete state variables, we 771 

cannot compute 𝑉300(𝓢) for all possible states 𝓢. Instead we choose a set of approximation 772 
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state nodes 𝓢𝒊 and compute 𝑣𝑖 = 𝑉300(𝓢𝒊), and then use a complete Chebyshev polynomial to 773 

approximate the value function 𝑉300  at continuous state variables for each discrete state 774 

vector, so that 𝑣𝑖 ≈ 𝑉300(𝓢𝒊), but now we have a value of 𝑉300 at any state 𝓢. Note that these 775 

optimization problems are naturally parallelizable. Iterating backwards from t=300 to t=0, we 776 

get all value functions 𝑉𝑡 and also their corresponding policy functions. Using these value 777 

functions, we can then iterate forward to get one simulated path of optimal policies which 778 

depend on realization of the shocks, and repeat it to obtain 10,000 simulation paths, as 779 

described in the main text. See refs. 
19,46

 for more detailed discussion. 780 

 781 

 782 
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 784 
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 788 
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 790 
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 792 
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Supplementary Tables 794 

 795 

Supplementary Table 1. Interaction terms between tipping events (𝑓𝑖𝑗), which describe by 796 

how much the hazard factor for tipping element 𝑗 is affected if tipping element 𝑖 has tipped.  797 

Tipping 

element i 

Tipping element j 

AMOC GIS WAIS AMAZ ENSO 

AMOC     -0.235 0.125 0.55 0.121 

GIS 1.62     0.378 0.108 0 

WAIS 0.107 0.246  0 0 

AMAZ 0 0 0  0 

ENSO -0.083 0 0.5 2.059  

 798 

 799 

Supplementary Table 2. Sensitivity analysis for simultaneously varying the transition times 800 

and damages of all five tipping elements. 801 

Social cost of carbon in 

2010 ($/tCO2) 

High damage Default damage Low damage 

Short transition time 166 145 94 

Default transition time 145 116 77 

Long transition time 75 62 50 

 802 

 803 
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Supplementary Table 3. Pessimistic assessment of the interaction terms between tipping 804 

events (𝑓𝑖𝑗) using the upper bounds of the core experts’ assessment. 805 

Tipping 

element i 

Tipping element j 

AMOC GIS WAIS AMAZ ENSO 

AMOC     -0.056 0.25 1 0.25 

GIS 3.04     0.68 0.2 0 

WAIS 0.44 0.483  0 0 

AMAZ 0 0 0  0 

ENSO 0.16 0 1 3.83  

 806 

 807 

  808 
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Supplementary Figures 809 

 810 

Supplementary Figure 1. Schematic of the DSICE model used in this study. The “deep 811 

ocean carbon” box is shaded as it can be omitted in the numerical analysis (see “Numerical 812 

Implementation of the Model” in the Methods section). 813 

 814 

 815 

Supplementary Figure 2. Schematic of the tipping process in the DSICE model. 816 
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 817 

Supplementary Figure 3. Results for: (a) the social cost of carbon, (b) emissions control 818 

policy, (c) atmospheric carbon (ppm), and (d) surface temperature change (above pre-819 

industrial), in the baseline deterministic model (green), the deterministic model with Epstein-820 

Zin preferences (blue), and the expected path of stochastic model with multiple tipping points 821 

(black) in case without interaction. The grey-shaded area shows the range of sample paths 822 

from 10,000 simulations of the stochastic model (see Figure 2 for the analogous case with 823 

interaction). 824 

 825 

Supplementary Figure 4. Example sample paths with two tipping events this century. 826 
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 827 

Supplementary Figure 5. Sample paths of the earliest (and sole) tipping of each element. 828 

 829 

 830 

Supplementary Figure 6. Sample emission paths of the earliest (and sole) tipping of each 831 

element. 832 

 833 

 834 


