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Abstract

A powerful and flexible method for fitting dynamic models to missing and cen-

sored data is to use the Bayesian paradigm via data-augmented Markov chain

Monte Carlo (DA-MCMC). This samples from the joint posterior for the pa-

rameters and missing data, but requires high memory overheads for large-scale

systems. In addition, designing efficient proposal distributions for the missing

data is typically challenging. Pseudo-marginal methods instead integrate across

the missing data using a Monte Carlo estimate for the likelihood, generated

from multiple independent simulations from the model. These techniques can

avoid the high memory requirements of DA-MCMC, and under certain condi-

tions produce the exact marginal posterior distribution for parameters. A novel

method is presented for implementing importance sampling for dynamic epi-

demic models, by conditioning the simulations on sets of validity criteria (based
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on the model structure) as well as the observed data. The flexibility of these

techniques is illustrated using both removal time and final size data from an

outbreak of smallpox. It is shown that these approaches can circumvent the

need for reversible-jump MCMC, and can allow inference in situations where

DA-MCMC is impossible due to computationally infeasible likelihoods.

Keywords: Bayesian inference, epidemic models, Markov chain Monte Carlo,

pseudo-marginal methods, smallpox

1. Introduction

Mathematical models of infectious disease dynamics are useful tools to help

explore the biological mechanisms of disease spread and to provide predictive in-

formation to guide the implementation of control policies and interventions (see

e.g. Bailey, 1975; Keeling and Rohani, 2008). A common way to model epidemic

systems is to consider that individuals progress through different epidemiologi-

cal states over time. A simple example for a single epidemic of a disease such as

influenza is an SIR model, in which individuals are classified as either suscep-

tible to infection (S), infected and infectious (I), or removed (R; corresponding

to recovered and immune, or dead). A functional form is then chosen to describe

the movements of individuals between states, governed by a set of epidemiolog-

ical parameters. Due to the inherently stochastic nature of infectious disease

outbreaks, we eschew deterministic approximations in favor of fully stochastic

models, in which state transitions are governed by sets of probability equa-

tions. Hence, multiple realizations of the system will result in a distribution

of outcomes, even for a fixed set of parameter values (i.e. with no parameter

uncertainty). Therefore the observed data are one realization of a stochastic

process, the dynamics of which we are attempting to explore using the chosen

model.

To ensure that the outputs from the model can be interpreted robustly, it

is vital to account for parameter uncertainty, as well as stochasticity arising

from the model dynamics. Various techniques exist in order to fit dynamic
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models to data (see e.g. Bailey, 1975; Weirman and Marchette, 2004; Ionides

et al., 2006; Cook et al., 2007; Höhle and Feldmann, 2007; Yang et al., 2007;

Keeling and Ross, 2008; Jewell et al., 2009; Chis Ster et al., 2009; Deardon et al.,

2010; Wong et al., 2013), many of which use a likelihood function to quantify

the propensity of a given model and set of parameters to explain the observed

data. However, the likelihood function can be difficult to calculate in practice,

particularly when data are missing or incomplete. Although techniques exist to

generate maximum likelihood estimates of dynamic temporal epidemic systems

when data are missing/censored (e.g. Ionides et al., 2006), since it is often

useful to supplement case time-series data with other forms of information—on

the incubation period, say—here we use the Bayesian paradigm.

Readers unfamiliar with the Bayesian framework are referred to many excel-

lent texts available, such as those by Gilks et al. (1996) and Gelman et al. (2004).

This framework treats all parameters and variables as random, and the aim is

to estimate the posterior distribution for the unknown parameters, θ, given the

observed data, D, written as f (θ|D) ∝ f (D|θ) f (θ), up to some normaliz-

ing constant, where f (θ) represents our prior knowledge about the parameters,

and f (D|θ) is the likelihood. The normalizing constant is often difficult to

evaluate, and so we resort to numerical estimation methods such as Markov

chain Monte Carlo (MCMC; e.g. Gilks et al., 1996) or Sequential Monte Carlo

(SMC; e.g. Doucet et al., 2001). The techniques discussed in this paper relate

directly to the former, and in particular are linked to the Metropolis-Hastings

algorithm (Metropolis et al., 1953; Hastings, 1970).

The Bayesian framework offers a natural environment to parameterize epi-

demic systems, since missing/censored data can simply be included as extra

parameters in the model. One implementation of this approach is through

data-augmented MCMC (DA-MCMC; Gibson and Renshaw, 1998; O’Neill and

Roberts, 1999), which, particularly when coupled with reversible-jump (RJ)

methodology (Green, 1995), is perhaps the most flexible computational tech-

nique currently available for fitting dynamic epidemic models to data. However,

implementation of DA-MCMC can be challenging, particularly in defining effi-
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cient proposal distributions for the missing data. For large amounts of missing

data, it may be necessary to update each missing value, or subsets of the missing

values, in turn. Furthermore, it may also be necessary to track the full history

of each augmented variable. This can lead to large memory requirements for

high-dimensional problems and highly autocorrelated chains. A recent paper

by Andrieu et al. (2010) uses SMC methods to build efficient high-dimensional

proposals for use in MCMC. Known as particle MCMC, this method has the

potential to be widely applicable for inference in many epidemiological prob-

lems. However, in this paper we focus on an alternative method, based on using

information from multiple repeated simulations instead of direct evaluation of

the likelihood function. This idea goes back at least to Diggle and Gratton

(1984), who approximate the log-likelihood through simulation, and use this to

develop a numerical approximation routine for performing maximum likelihood

calculations.

A general technique—based on these ideas—that is growing in popularity

in various scientific fields is Approximate Bayesian Computation (ABC). For a

given parameter value, multiple simulations from the model are produced and

the proportion that ‘match’ the observed data are used to provide an estimate of

the likelihood. This basic idea can be incorporated into rejection sampling (e.g.

Tavaré et al., 1997; Beaumont et al., 2002), MCMC (e.g. Marjoram et al., 2003;

Wilkinson, 2010) or SMC routines (e.g. Sisson et al., 2007; Toni et al., 2009;

Beaumont et al., 2009; Erhardt and Smith, 2012). In practice the requirement

to match the observed and simulated data exactly is relaxed, and instead some

metric, ρ(·), is defined that characterizes the distance between the observed and

simulated data sets. Simulations then ‘match’ if ρ(·) is less than some tolerance

ǫ. This introduces three areas of approximation: the choice of metric, toler-

ance and the number of simulations used to produce the approximate Monte

Carlo estimate. In McKinley et al. (2009), ABC techniques were employed to

produce approximate posterior estimates for the parameters of a temporal epi-

demic model, both with and without missing data. The authors showed that it

was possible to produce simple metrics that provided accurate estimates of the
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true posterior (relative to the gold-standard of DA-MCMC) in the case where

there is negligible missing data. However, they showed that the accuracy of

the approximation begins to break down when the amount of missing data in-

creases. Although these techniques are potentially useful to provide estimates

of parameter uncertainty in complex models for which it is difficult to calculate

a likelihood, it is not always clear how to define a metric sensibly, or decide on a

suitable value for the tolerance. Questions also remain as to the impact of these

choices on what the approximate posterior distribution actually represents (see

e.g. Wilkinson, 2010), although a recent paper by Fearnhead and Prangle (2012)

made some exciting developments in terms of re-casting ABC as an inferential

framework in its own right, as opposed to simply approximating the true poste-

rior. The reader is also encouraged to see Tanaka et al. (2006), Blum and Tran

(2010) and Neal (2010) for other applications of ABC in epidemic modeling.

Nonetheless, some of these complexities motivate the interest here to explore

alternative simulation methods.

Pseudo-marginal approaches (see e.g. O’Neill et al., 2000; Beaumont, 2003;

Andrieu and Roberts, 2009) are based on importance sampling. O’Neill et al.

(2000) employ a so-called Monte Carlo within Metropolis (MCWM) algorithm

to analyze epidemiological models based on household outbreak data. Beaumont

(2003) introduces a similar algorithm called grouped-independence Metropolis-

Hastings (GIMH) to analyze genealogical data. The convergence properties

of both MCWM and GIMH are explored more theoretically in Andrieu and

Roberts (2009), where the general moniker of ‘pseudo-marginal approaches’ is

applied to cover both cases. Although they are based on a similar central con-

cept, GIMH can be shown to produce an exact marginal posterior for the param-

eters, despite the use of a Monte Carlo (MC) estimate for the likelihood (Beau-

mont, 2003; Andrieu and Roberts, 2009). MCWM produces an approximation,

though we show in Section 4 that this approximation is good for the sorts of

applications discussed here. Similar techniques have been implemented with

some success particularly in the field of statistical genetics (see e.g. O’Ryan

et al., 1998; Berthier et al., 2002). A related method, using a slightly different

5



implementation of importance sampling in an SMC framework, was developed

by Cauchemez et al. (2008) for making inference for a dynamic epidemic model

based on a large-scale sentinel influenza data set. An alternative, more general,

importance sampling technique would be population Monte Carlo (e.g. Cappé

et al., 2004; Celeux et al., 2006), which employs adaptive importance sampling,

where the samples at each generation depend on those in previous generations.

However, the challenge of generating importance estimates for missing data in

dynamic models still remains.

We introduce the MCWM and GIMH algorithms in Section 2. In Section 3

we discuss the formulation of general stochastic epidemic models and how we

might implement these in pseudo-marginal routines. In Section 4 we introduce

a data set from an outbreak of smallpox in Abakaliki, Nigeria, in 1967, and

show that it is possible to generate simulation algorithms that match the data

exactly for a range of compartmental epidemic models, assumptions and forms

of the data (including when data are missing). We also show that in a range

of cases pseudo-marginal routines can provide efficient alternatives to DA-/RJ-

MCMC. We also show that in some scenarios simple changes to a simulation

algorithm can bypass the need to use RJ-MCMC to account for changes in

the dimensionality of the system, and that in other situations computationally

feasible importance ratios can be generated when computationally infeasible

likelihood functions cannot. We conclude with a discussion in Section 5.

2. Model fitting algorithms

For a large enough number of iterations, Niter, the Metropolis-Hastings (M-

H) algorithm generates a Markov chain that will converge to the correct poste-

rior distribution, f(θ|D), regardless (theoretically) of the starting point of the

chain. (Here θ represents a vector of parameters, and the notation θ(i) repre-

sents the values of the parameters at the ith iteration.) The algorithm begins

by proposing initial values for the chain, θ(0), and then proposing new values

at each iteration from some (multidimensional) proposal distribution qθ(·|θ
(i)).
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Algorithm 1: Monte Carlo within Metropolis algorithm (MCWM)

Require: Niter, Nsim, θ(0).
Set: i = 0
1: while i < Niter do

2: θ′ ∼ qθ

(

·|θ(i)
)

3: Generate f̂
(

D|θ(i)
)

and f̂
(

D|θ′
)

from equation (1)

4: u ∼ U(0, 1)

5: α = min

[

1,
f̂(D|θ′

)
f̂
(

D|θ(i)
) ×

π(θ
′

)
π
(

θ(i)
) ×

qθ

(

θ(i)
|θ′

)

qθ

(

θ′

|θ(i)
)

]

6: if u < α then

7: θ(i+1) = θ′

8: else

9: θ(i+1) = θ(i)

10: end if

11: i = i+ 1
12: end while

These candidate values are probabilistically accepted or rejected based on a ra-

tio of posterior and proposal distributions evaluated at the current and proposed

values (Metropolis et al., 1953; Hastings, 1970).

The form of qθ(·|θ
(i)) is arbitrary, but affects the convergence and mixing

properties of the chain, and an ideal sampler will have an independent proposal

density that is close to the true posterior. In practice this can be difficult

to achieve, and hence various adaptive proposal mechanisms exist that ‘learn’

how to sample more efficiently as the chain progresses (e.g. Haario et al., 2001;

Roberts and Rosenthal, 2009). Once convergence has been reached, the initial

draws (the burn-in) are discarded and the chain continues to be run until the

required number of samples have been generated. Each iteration of the chain

produces a random (but correlated) sample from the posterior.

In general, MCMC is good at dealing with high-dimensional problems—a

further reason why it is a particularly useful framework for dealing with missing

data problems. In DA-MCMC the parameter vector, θ, is augmented to include

the missing data, z, before using MCMC to explore the joint posterior distri-

bution of θ and z. The marginal posterior for θ, f (θ|D) =
∫

Z
f (θ, z|D) dz,
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Algorithm 2: Grouped independence Metropolis-Hastings algorithm (GIMH)

Require: Niter, Nsim, θ(0).

Set: i = 0 and generate f̂
(

D|θ(0)
)

from equation (1)

1: while i < Niter do

2: θ′ ∼ qθ

(

·|θ(i)
)

3: Generate f̂
(

D|θ′
)

from (1)
4: u ∼ U(0, 1)

5: α = min

[

1,
f̂(D|θ′

)
f̂
(

D|θ(i)
) ×

π(θ
′

)
π
(

θ(i)
) ×

qθ

(

θ(i)
|θ′

)

qθ

(

θ′

|θ(i)
)

]

6: if u < α then

7: θ(i+1) = θ′

8: f̂
(

D|θ(i+1)
)

= f̂
(

D|θ′
)

9: else

10: θ(i+1) = θ(i)

11: f̂
(

D|θ(i+1)
)

= f̂
(

D|θ(i)
)

12: end if

13: i = i+ 1
14: end while

can be obtained by integrating over the missing data, which is trivial to obtain

from an MCMC run.

Given data D and parameters θ, O’Neill et al. (2000) propose a method to

estimate the likelihood ratio in a M-H algorithm as f̂(D|θ′)/f̂
(

D|θ(i)
)

, where

f̂(D|θ) is an MC estimate of f(D|θ). Specifically this approximation is done

by using importance sampling, where

f̂(D|θ) =
1

Nsim

Nsim
∑

k=1

f
(

D, z(k)|θ
)

qD,Z

(

D, z(k)|θ
) , (1)

with Z a set of auxiliary random variables (in this case representing the un-

observed events and event times), qD,Z(·) an importance-sampling distribution

and z(k) the kth random sample from qD,Z(·). Whereas in DA-MCMC the aux-

iliary variables are integrated out of the joint posterior, in the pseudo-marginal

approaches they are integrated out in the likelihood. The MCWM algorithm

utilizing this estimate is shown in Algorithm 1.

In MCWM the MC estimates of the likelihood are re-simulated at each

iteration of the chain. This leads to a biased estimate of the marginal pos-
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terior f (θ|D)—though the bias should decrease as Nsim increases (Andrieu

and Roberts, 2009). For their specific model, O’Neill et al. (2000) suggest a

correction to help minimize this bias.

The GIMH algorithm, proposed by Beaumont (2003), is given in Algo-

rithm 2. Here the auxiliary variables Z are reused at each iteration of the

chain (rather than re-simulated). Beaumont (2003) provides an elegant proof

that Algorithm 2 will produce samples from the correct marginal f (θ|D) as

Niter → ∞, regardless of the value of Nsim; though he noticed that increasing

the number of simulations increases the acceptance rate of the chain. Qualita-

tively at least, a similar pattern was remarked upon in McKinley et al. (2009)

for a related Approximate Bayesian Computation method (ABC-MCMC) when

the simulations are reused.

3. General compartmental epidemic models

As previously discussed, epidemic systems can be characterized by allowing

individuals in the population to move between a series of discrete epidemiological

states, where transitions between states are governed by probability statements.

As an example consider the SIR model discussed earlier. Many variations of

this basic system exist, but here we assume that we have a closed population

of Npop > 1 individuals, that individuals who become infected move through

states S → I → R in that order. The transition probabilities in this case are:

P (SI) = βS(t)I(t)dt+ o(dt), and

P (IR) = γI(t)dt+ o(dt),
(2)

where the notation SI corresponds to the movement of a single individual from

state S to state I in the time period (t, t+dt)—where dt ≪ 1—and likewise for

IR. Here β is the transmission parameter, γ−1 is the mean infectious period

and the model results in exponentially-distributed inter-event times (see e.g.

Keeling and Ross, 2008). S(t) and I(t) represent the numbers of susceptibles and

infectives at time t. If an epidemic begins at time t(1), then at some subsequent

time point Tmax > t(1), NE events will have occurred, where NE = NSI +NIR
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is the sum of the number of SI and IR events in [t(1), Tmax). If the epidemic

dies out before Tmax, then the final epidemic size will be NF (where NSI =

NIR = NF and NE = 2NF ).

A key inference problem for these systems is that the epidemic process oper-

ates in continuous time but available data are almost always discrete—being

snapshots of the system—and hence are likely to form (partial) time-series

counts of individuals in some, but not necessarily all, of the epidemic states.

This makes evaluation of the likelihood difficult unless we introduce latent vari-

ables to account for the unobserved (continuous) events. It is possible in some

cases to approximate this process using a discrete-time model, but here we will

assume that we wish to fit a continuous-time model to discrete-sampled data.

In addition there are often missing data, such as missing counts at different

time points, or, often, we observe events of one type but not another (such as

removals but not infections). We will use the random variable X to denote the

type of event, such that

X =







0 if event is an SI event, and

1 if event is an IR event.
(3)

T denotes the corresponding continuous event times, and Y denotes discrete-

time observations. Let D =
{(

y(1), x
(1)
d

)

, . . . ,
(

y(NO), x
(NO)
d

)}

represent NO

observations, and z =
{(

t(1), x
(1)
z

)

, . . . ,
(

t(NE), x
(NE)
z

)}

correspond to NE un-

observed events, where NE ≥ NO. (Note that observations y and xd can be

obtained directly from time-series count data and visa-versa.) As noted in var-

ious studies (e.g. Gibson and Renshaw, 1998; O’Neill and Roberts, 1999; Ross

et al., 2006) the likelihood function based on the discrete-time events, f(D|β, γ),

is often infeasible to evaluate directly. However, f(z|β, γ) has a more efficient
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closed form, given as:

f(z | β, γ) = Npopf
(

t(1)
)







NE
∏

j=2

[

(

βS(j−1)I(j−1)
)1−x(j)

z
(

γI(j−1)
)x(j)

z

]

× exp
[

−
(

βS(j−1)I(j−1) + γI(j−1)
)(

t(j) − t(j−1)
)]

}

× exp
[

−
(

βS(NE)I(NE) + γI(NE)
)(

Tmax − t(NE)
)]

.(4)

(A more general form for non-exponential infectious period distributions is pro-

vided in Appendix A.) For a given vector z, the counts S(j) and I(j) can be

calculated as required. The marginal posterior of interest is then

f(β, γ|D) ∝

∫

Z

f(D|z, β, γ)f(z|β, γ)f(β, γ)dz, (5)

where Z is the multidimensional parameter space of all possible latent event

times and orderings, and f(D|z, β, γ) is the probability that we observe data

D given z, β and γ. Samples from this marginal posterior can be generated

using DA- and/or RJ-MCMC, in which candidate values for the missing data z

are proposed at each iteration of the MCMC chain, alongside candidate values

for the parameters. For a given set of NE ordered events, in order to produce

a non-zero value for f(z|β, γ), z must constitute a valid epidemic based on the

model (2). For this to be true, each event j must adhere to certain conditions

given the history of the events so far and the limiting states of the system. Let

C
(j)
I and C

(j)
R represent the cumulative number of SI and IR events, and S(j)

and I(j) the numbers of susceptible and infective individuals just after the jth

event (occurring at time t(j)). If the first event is an infection event at time t(1),

then for j > 1,

S(j−1) > 0, I(j−1) > 0 if event j is an SI event (x
(j)
z = 0), (6)

I(j−1) > 0 if event j is an IR event (x
(j)
z = 1), (7)

C
(j)
R < C

(j)
I ≤ Npop for all j < NE , and (8)

C
(j)
R ≤ C

(j)
I ≤ Npop for j = NE . (9)

These follow directly from the model specification (2) and hold true for any

11



fitting mechanism that requires events to be proposed in some way. Note that

these conditions can be modified to deal with different models, for example the

introduction of a latent (i.e. infected but not infectious) class E—a so-called

SEIR model (see section 4.1.3).

One way that MCWM or GIMH could be implemented for these systems

would be to generate Nsim realizations of an epidemic, {z(1), . . . , z(Nsim)}, by

first simulating a time of initial infection from some prior distribution, and then

applying Gillespie’s algorithm (Gillespie, 1977). In this case f
(

D, z(k)|θ
)

=

f
(

D|z(k),θ
)

f(z(k)|θ), and the importance estimate (1) reduces to

f̂(D|θ) =
1

Nsim

Nsim
∑

k=1

f
(

D|z(k),θ
)

, (10)

since f(z(k)|θ) = qZ
(

z(k)|θ
)

. Here f
(

D|z(k),θ
)

= 1 if z(k) is consistent with

D, and 0 otherwise. This approach is equivalent to the ABC-MCMC routine

implemented by McKinley et al. (2009) in the case where the simulations match

the data exactly. Simulating in this way ensures that for any realization of the

model, z(k), the ordering conditions are automatically adhered to. The main

challenge is that in highly stochastic and/or high dimensional systems the prob-

ability of matching the simulations to the data is very low. In the subsequent

sections we show how alternative simulation mechanisms can be developed for

different epidemic models, in which the model structure, the observed data and

the ordering criteria are exploited to ensure (at least for the models presented

here) that f (D|z,θ) = 1. (Of course if the observation process is not deter-

ministic, then this requirement can be relaxed—see discussion in Section 5.)

4. Applications

All routines were run on a Dell XPS 15Z laptop with an Intel(R) Core(TM)

i7-2640M CPU@ 2.80Ghz× 4 processors running Ubuntu 12.04. The algorithms

were coded in C using the GNU Scientific Library. To protect against precision

issues when calculating anti-logs, we used multiple precision arithmetic provided

by the GNU Multiple Precision Arithmetic Library (http://gmplib.org/) and
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the GNU MPFR library (http://www.mpfr.org/). All plots and results were

generated using the R statistical language (R Development Core Team, 2011)

with the coda (Plummer et al., 2010) package. All software and packages used

are open-source and free to download.

4.1. Outbreak of smallpox in Abakaliki, Nigeria in 1967

These data consist of a set of 29 inter-removal times from an epidemic of

smallpox in a closed population of Npop = 120 individuals, and have been stud-

ied by various authors, for example Bailey (1975); Becker (1983); O’Neill and

Roberts (1999); Gibson and Renshaw (2001); O’Neill and Becker (2001); Fearn-

head and Meligkotsidou (2004) and Boys and Giles (2007). O’Neill and Roberts

(1999) assume that the model follows a density-dependent SIR structure; in re-

ality there is an appreciable latent period (as fitted in Becker, 1983, Gibson and

Renshaw, 2001 and O’Neill and Becker, 2001). For comparison we use the SIR

here, fitting to both removal time as well as final size data only (see e.g. Ball,

1986; Becker, 1989; Rida, 1991 and Demiris and O’Neill, 2005a,b, 2006). An

alternative, more detailed, version of this data set is available that allows more

complex, and arguably more epidemiologically correct models to be fitted (see

Eichner and Dietz, 2003). Here we use the simpler form in order to allow di-

rect comparison of the parameter estimates to those obtained from previous

Bayesian fitting methods.

4.1.1. SIR model for removal data

Consider that the observed data consist of a set of NIR discrete removal

times, and denote these asDR = {(y
(r)
R , 1); r = 1, . . . , NIR}, where without loss-

of-generality y
(1)
R = 0. We consider two scenarios: the first when the epidemic is

known to end on the N th
IR removal, and the second when there is the possibility

that the epidemic is still ongoing at some time point Tmax > y
(NIR)
R . We

assume that the data are observed at daily time intervals, such that a removal

observed at time y
(r)
R will have occurred in the period

(

y
(r)
R − 1, y

(r)
R

]

. We also

follow O’Neill and Roberts (1999) and place an exponential prior on the time

between the first (unobserved) infection and the first observed removal, such
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that y
(1)
R − t(1) ∼ Exp(θ).

Final size known

Here NF = NIR. In this case the ordering criteria (6)–(9) can be simplified to:

C
(j)
I ≤ NF for all j, (11)

C
(j)
I > C

(j)
R if C

(j)
R < NF , and (12)

C
(j)
I = C

(j)
R if C

(j)
R = NF . (13)

The first criterion is obvious, since we know that the final epidemic size is NF ,

and if NF ≤ Npop in a closed population then S(j−1) ≥ 0 for all j. The second

and third criteria follow from the fact that if C
(j)
I = C

(j)
R then I(j) = 0, and

therefore the epidemic is over. Hence C
(j)
I = C

(j)
R if and only if C

(j)
I = NF , oth-

erwise C
(j)
I > C

(j)
R . These criteria make it possible to generate stochastic simu-

lations of the missing events and event times, z, such that f (DR|z, β, γ, θ) = 1.

Let tR be a vector of length NF recording the subset of t corresponding

to the removal times. The algorithm is initialized as follows: firstly, generate

a set of continuous removal times using uniform order statistics based on the

observed data: i.e. if there are N
(0)
R removals in the time period (−1, 0), then

simulate N
(0)
R events from a U(−1, 0) distribution and sort into ascending order.

Assign t
(j)
R to these values for j = 1, . . . , N

(0)
R . Repeat these steps for j =

N
(0)
R + 1, . . . , N

(0)
R +N

(1)
R and so on to end up with an ordered set of simulated

removal times.

Then, conditional on t
(1)
R , the initial infection time, t(1), is sampled such that

t(1) < t
(1)
R and t

(1)
R − t(1) ∼ Exp(θ) (see Figure 1: Step 1). Letting j denote the

current event, and r the next removal event, set j = 1, r = 1 and z(1) =
(

t(1), 0
)

.

If t(j) is the current event time, and t
(r)
R is the next removal time, we generate

a probability that an infection event occurs in the interval
(

t(j), t
(r)
R

)

, subject

to a series of constraints to ensure that the simulations are valid and that the

corresponding time-series counts match the observed data. If we have already

had NF infection events, then there is a zero probability of having any more

from criterion (11). Otherwise, if C
(j)
I = r and r < NF , then we must have at
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least one infection event in the interval due to criterion (12). These conditions

ensure that criterion (13) is also matched. Otherwise we generate a non-zero

probability based on the model structure and the current infection rate. Hence

p(j) =



















0 if C
(j)
I = NF ,

1− exp
[

−λ
(j)
SI

(

t
(r)
R − t(j)

)]

if
(

C
(j)
I < NF

)

∩
(

C
(j)
I > r

)

,

1 otherwise,

(14)

where λ
(j)
SI = βS(j)I(j) is the rate of infection events directly after the jth event.

Based on p(j), we then randomly sample whether an infection event occurs. If

not, then we set t(j+1) = t
(r)
R and z(j+1) =

(

t(j+1), 1
)

and increment r by one

before continuing. If an infection event does occur, then we sample the event

time, t(j+1), from a truncated distribution constrained in the interval
(

t(j), t
(r)
R

)

.

Here we choose a truncated exponential distribution with probability density

function

q
t
(r)
R

−t(j)

(

t;λ
(j)
SI

)

=
λ
(j)
SI e

−λ
(j)
SI

t

1− e
−λ

(j)
SI

(

t
(r)
R

−t(j)
) 0 < t < t

(r)
R − t(j), λ

(j)
SI > 0, (15)

and set z(j+1) =
(

t(j+1), 0
)

. Finally we increment j by one and continue until

the final removal (Figure 1: Steps 2 and 3).

In practice, it is not necessary to simulate all removal times in advance, as

it would be feasible to generate only the N
(y)
R times required in each discrete

period (y − 1, y) in turn. It is also not necessary to record the entire history

of the epidemic in order to calculate the importance estimate, and so to im-

prove computational efficiency the log-importance contribution can be updated

recursively as the simulation progresses. Algorithm C.1 (Supp. Mat.) pro-

vides pseudo-code for an efficient implementation of this routine, and discussion

regarding the importance contributions from each simulated event is given in

Appendix C.1.

Final size unknown

In the situation in which the epidemic is still ongoing at time Tmax, the number

of infection events is known only to be greater or equal to the observed number
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of removals at Tmax (i.e. NSI ≥ NIR). Gibson and Renshaw (1998) and O’Neill

and Roberts (1999) deal with this by introducing reversible-jump steps to allow

the number of unobserved infections to vary. In our approach we simply modify

our ordering criteria as follows:

C
(j)
I ≤ Npop for all j, (16)

C
(j)
I > C

(j)
R if C

(j)
R < NIR, and (17)

C
(j)
I ≥ C

(j)
R if C

(j)
R = NIR. (18)

The first condition follows from the fact that the maximum number of possible

infections in a closed community of a fixed size Npop is Npop. The second and

third are a direct result of the model specification as before, allowing for the

fact that the epidemic could still be ongoing when C
(j)
I = NIR. Therefore there

are two ways that the simulation can end: firstly, if C
(j)
I = NIR at the time of

the N th
IR removal (in which case λ

(j)
SI = λ

(j)
IR = 0), and secondly if the epidemic

is still going at time Tmax. In the latter case, at the time of the N th
IR removal

(

i.e. when t(j) = t
(NIR)
R

)

, C
(j)
I > NIR, and so we must continue to simulate

potential infection events in
(

t(j), Tmax
)

until no more occur (Algorithm C.2,

Supp. Mat.).

4.1.2. SIR model results for removal data

In slight contrast to our approach, O’Neill and Roberts (1999) assume that

yR constitute the exact removal times and implement an MCMC algorithm in

which the parameters t(1), β and γ are updated using Gibbs sampling steps, and

then the unobserved infection times are updated using a Metropolis-Hastings

step in which an event is either moved, added or removed. In the first instance

we focus on the case where the epidemic is known to have finished at the final

removal time (Algorithm C.1). In the algorithm of O’Neill and Roberts (1999),

the probability of adding or removing an infection time is therefore zero, so the

only valid proposal for the M-H step is to move an existing infection time. An

alternative Bayesian approach was proposed by Fearnhead and Meligkotsidou

(2004), who develop an exact filtering algorithm to fit the same model.
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Let G(ρ, τ) represent a gamma distribution with shape parameter ρ and

scale parameter τ . Following O’Neill and Roberts (1999), we set the prior for

the time between initial infection and first removal, θ, to 0.1, and use inde-

pendent priors for β and γ of G(10, 10−4) and G(10, 10−2) (with prior means

of 0.001 and 0.1) respectively. We use Nsim = 512 repeated simulations and

run the algorithms for 10,000 iterations burn-in plus a further 90,000 updates.

We use an adaptive proposal scheme on the log-scale for the parameters (see

Roberts and Rosenthal, 2009). Table 1 compares the mean and posterior vari-

ance of β and γ obtained from both pseudo-marginal approaches against the

maximum likelihood estimates obtained by Frank Ball (as reported in O’Neill

and Roberts, 1999), the MCMC algorithm of O’Neill and Roberts (1999) and

the exact filtering algorithm of Fearnhead and Meligkotsidou (2004). The means

in all cases are fairly similar (though the Bayesian estimates are on the whole

slightly higher than the ML estimates; except in the case of MCWM, which

are very similar). The posterior variances obtained from the GIMH and ex-

act filtering algorithms are approximately four times larger than those obtained

from the DA-MCMC approach. Fearnhead and Meligkotsidou (2004) suggest

that with respect to their method this difference may be due to the fact that

MCMC algorithms are known to struggle with exploring heavy-tailed posteri-

ors. This explanation is also feasible for the pseudo-marginal approaches, since

the independent simulations used to produce the MC estimate of the likelihood

removes some of the correlation structure that is inherent in the proposal mech-

anisms used in the MCMC algorithm, which might prevent it from efficiently

exploring the tails of the posterior distributions. As expected, since MCWM is

an approximate method, the posterior variances are higher than the other ap-

proaches. The GIMH algorithm using the informative prior took ≈ 26 minutes

to run 100,000 iterations.

We also fit this model using uninformative priors for β, γ and t(1) [uniform on

(0,∞) for the two former variables and on (−∞, 0) for the latter]. In this case it

is no longer sensible to draw initial infection times during the simulations from

the prior. Instead we simulate the initial infection time such that t
(1)
R − t(1) ∼
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Table 1: Posterior means and variances for β and γ for an SIR model fitted to the Abakaliki
smallpox data set obtained using GIMH and MCWM, compared to estimates obtained from
other methods.

Final size Priors Method β γ

Known

Informative

GIMH 9.4× 10−4 (3.9× 10−8) 0.098 (4.0× 10−4)
MCWM 8.5× 10−4 (4.5× 10−8) 0.089 (6.4× 10−4)
O’Neill and Roberts (1999) 1.1× 10−3 (1.0× 10−8) 0.11 (9.0× 10−5)
Fearnhead and Meligkotsidou (2004) 9.4× 10−4 (3.6× 10−8) 0.098 (4.0× 10−4)
Ball 8.3× 10−4 0.088

Uninformative
GIMH 9.5× 10−4 (6.6× 10−8) 0.10 (8.3× 10−4)
MCWM 8.0× 10−4 (6.6× 10−8) 0.087 (1.2× 10−3)
O’Neill and Roberts (1999) 9.0× 10−4 (3.8× 10−8) 0.098 (4.3× 10−4)

Unknown Informative
GIMH 9.1× 10−4 (3.6× 10−8) 0.083 (4.6× 10−4)
MCWM 8.3× 10−4 (3.7× 10−8) 0.073 (6.1× 10−4)

Exp(γ), and change the log-importance contribution accordingly. The results

from this model are also shown in Table 1, and we can see that our estimates

of the posterior variances are approximately 1.5–1.7 times larger than those

for the informative prior. As an exercise, we also fit a model assuming NF is

unknown (Algorithm C.2, Supp. Mat.), with results similar to the case where

NF = 30 (although the posterior means are slightly lower). Note that posterior

propriety is not trivial to establish for these priors, although impropriety would

usually manifest in poor samples from the posterior, which is not the case here.

An alternative would simply be to choose a proper prior distribution with very

large variance (e.g. uniform on a large but finite support).

4.1.3. SEIR model for removal time data when final epidemic size is known

Full details of the model specification, likelihood and ordering criteria are

given in Appendix C.2. When the final epidemic size is known, the ordering

18



criteria are:

S(j−1) > 0, I(j−1) > 0 if event j is an SE event, (19)

E(j−1) > 0 if event j is an EI event, (20)

I(j−1) > 0 if event j is an IR event, (21)

C
(j)
R ≤ C

(j)
I ≤ NF for all j < NE , (22)

C
(j)
I ≤ C

(j)
E ≤ NF for all j < NE , (23)

C
(j)
R < C

(j)
E ≤ NF for all j < NE , and (24)

C
(j)
R = C

(j)
I = C

(j)
E = NF for j = NE . (25)

To simulate from this model, we first generate the continuous removal times

and the initial infection time in the same manner as for the SIR model. We

then set event indicator j = 1 and the indicator for the next removal r = 1, and

generate a probability of a non-removal event occurring in
(

t(j), t
(r)
R

)

as

p(j) =































1− exp
[

−λ
(j)
EI

(

t
(r)
R − t(j)

)]

if
(

C
(j)
E = NF

)

∩
(

C
(j)
I > r − 1

)

,

1− exp
[

−
(

λ
(j)
SE + λ

(j)
EI

)(

t
(r)
R − t(j)

)]

if
(

C
(j)
E < NF

)

∩
(

C
(j)
I > r − 1

)

∩
[(

C
(j)
E > r

)

∪ (r = NF )
]

, and

1 otherwise.

(26)

We also generate a conditional probability that a simulated non-removal event

is an SE event as

p
(j)
SE =







0 if
(

C
(j)
E = NF

)

, and

λ
(j)
SE

λ
(j)
SE

+λ
(j)
EI

otherwise.
(27)

Correspondingly, the conditional probability that a non-removal event is an EI

event is given by p
(j)
EI = 1 − p

(j)
SE . These follow from conditions (19)–(25): if

C
(j)
E = NF , then there can be no further SE events [condition (25)]; however,

there could be an EI event. Here this will occur with probability 1 if C
(j)
I = r−1

[condition (22)], or probability 1−exp
[

−λ
(j)
EI

(

t
(r)
R − t(j)

)]

otherwise (note that

if C
(j)
I = NF , then λ

(j)
EI = 0 and so no further EI events can occur [condition

(25)]).
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If C
(j)
E < NF , then we could have SE or EI events occurring. If, in ad-

dition to C
(j)
E < NF , we have that C

(j)
E = r and r < NF , then an SE event

must occur before the next removal [condition (24)]. As before, if C
(j)
I = r− 1,

then an EI event must also occur [condition (22)]. If neither of these lat-

ter conditions are violated, then a non-removal event occurs with probabil-

ity 1− exp
[

−
(

λ
(j)
SE + λ

(j)
EI

)(

t
(r)
R − t(j)

)]

. Conditional on a non-removal event

occurring, the type of event is chosen by the conditional probability p
(j)
SE =

λ
(j)
SE/

(

λ
(j)
SE + λ

(j)
EI

)

and the event time is sampled from a truncated distribution

in a similar manner to before. Appendix C.2 gives more details of the impor-

tance ratio calculations and pseudo-code is provided in Algorithm C.3 (Supp.

Mat.).

4.1.4. SEIR model results for removal data

Table 2 provides results from an SEIR model fitted using GIMH, MCWM

and DA-MCMC. To illustrate the sampling properties, the trace plots for these

models are shown in Figure S1. The MCWM algorithm has better mixing prop-

erties than either the GIMH or DA-MCMC for this example, though we must

state that the DA-MCMC algorithm used does not employ more sophisticated

methods that improve mixing, such as partial non-centering (Papaspiliopoulos

et al., 2003; Kypraios, 2007; Jewell et al., 2009). Nevertheless, both pseudo-

marginal methods perform well, albeit at the cost of more uncertainty in the

approximate posteriors for the MCWM routine (characterised by the variability

in the values of the importance estimates accepted—see Figure S1).

Table 2: Posterior means and variances for β, δ and γ for an SEIR model fitted to the
Abakaliki smallpox data set obtained using GIMH, MCWM and DA-MCMC.

Final size Priors Method β δ γ

Known Informative
GIMH 1.1× 10−3 (6.0× 10−8) 0.14 (9.1× 10−4) 0.12 (6.2× 10−4)
MCWM 1.1× 10−3 (1.0× 10−7) 0.15 (2.1× 10−3) 0.11 (1.2× 10−3)
DA-MCMC 1.1× 10−3 (5.1× 10−8) 0.13 (9.1× 10−4) 0.11 (5.6× 10−4)
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4.1.5. SIR model for final size data

This simulation approach can also be applied for inference when only the final

epidemic size is known (see e.g. Ball, 1986; Becker, 1989; Rida, 1991 and Demiris

and O’Neill, 2005a,b, 2006). As a simple example consider the Abakaliki data

with all of the temporal information removed, leaving the size of the initial

susceptible population (Npop = 120) and the final epidemic size (NF = 30).

For consistency with Demiris and O’Neill (2006), we use an SIR model with

frequency-dependent transmission [i.e. P (S → I) = βS(t)I(t)N−1
popdt + o(dt)].

Since the population is closed (i.e. no births, deaths or migrations occur), Npop

is constant, and so this is the same model as before only with β re-scaled by

a factor of 1/Npop. We are interested in producing a posterior for the basic

reproduction number R0 (defined as the average number of secondary infections

produced from a single primary infection introduced into a fully susceptible

population). However, since there is no temporal information in the data, it

is not possible to estimate the length of the infectious period; nonetheless it is

possible to make inference about R0 under different choices for the infectious

period distribution. To mirror Demiris and O’Neill (2006) we choose three

options, such that in each case the mean length is 4.1. These are: i) constant,

ii) a gamma distribution with variance 8.405, and iii) an exponential distribution

with variance 4.12.

Demiris and O’Neill (2006) use a set of triangular equations for the final

size probabilities, derived by Ball (1986), that can be calculated recursively.

They use multiple precision arithmetic to enable accurate calculation of Ball’s

result, and implement this within a Bayesian MCMC algorithm to estimate the

posterior distributions for R0 = 4.1β given each infectious period distribution.

To do this in a pseudo-marginal framework, we generate an importance sample

estimate of the final size likelihood by repeatedly simulating a set of continuous-

time epidemics, each constrained to have a final size of NF , in a similar manner
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to before, hence

f̂(NF |β) =
1

Nsim

Nsim
∑

k=1

f
(

NF |z
(k), β

)

f
(

z(k)|β
)

qZ
(

z(k)|β
) , (28)

where f
(

NF |z
(k), β

)

= 1 if z(k) are consistent with NF and 0 otherwise. Each

simulation is initialized with an index infection event at time t1 = 0.

4.1.6. Fixed infectious period of length TI

For a given value of β and TI , set j = 1, r = 1, C
(j)
I = 1, t

(1)
I = 0 and

t
(1)
R = TI . The probability an SI event occurs in

[

t
(j)
I , t

(r)
R

)

is given by:

p(j) =



















0 if C
(j)
I = NF ,

1− exp
[

−λ
(j)
SI

(

t
(r)
R − t

(j)
I

)]

if
(

C
(j)
I > r

)

∩
(

C
(j)
I < NF

)

, and

1 otherwise,

(29)

where λ
(j)
SI = βS(j)I(j)/Npop. If an infection event occurs then sample the next

infection time, t
(j+1)
I , from a truncated distribution in the period

[

t
(j)
I , t

(r)
R

)

,

and set a new removal time t
(C

(j)
I

+1)

R = t
(j+1)
I +TI , before updating the states of

the system. If a removal event occurs then increment r by one and update the

states. Finally increment j by one and continue until r = NF +1. Pseudo-code

and importance contributions are given in Algorithm C.6 and Appendix C.3.3.

4.1.7. Gamma infectious period, with shape ρ and scale τ

In this case we set j = 1, r = 1, C
(j)
I = 1 and t

(1)
I = 0, and sample the first

removal time t
(r)
R ∼ G(ρ, τ). If an infection event occurs [with probability p(j),

given by (29)], then sample the next infection time, t
(j+1)
I , from a truncated

distribution in the period
[

t
(j)
I , t

(r)
R

)

, before simulating a new removal time

t∗ = t
(j+1)
I + t′ where t′ ∼ G(ρ, τ). An added complexity is that t∗ needs to be

added to the vector tR, and this vector sorted into ascending order (resetting

t
(r)
R if necessary), before updating the states. If a removal event occurs then

increment r by one and update the states. Finally, increment j by one and

continue until r = NF +1. Pseudo-code and importance contributions are given

in Algorithm C.5 and Appendix C.3.2.
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4.1.8. Exponential infectious period

This can be done in exactly the same manner as in Section 4.1.7 by setting

the shape parameter ρ = 1. However, it is also possible to avoid having to

simulate event times at all. In this case set j = 1, C
(j)
I = 1 and C

(j)
R = 0,

and sample whether an infection event occurs before the next removal with

probability

p(j) =



















0 if C
(j)
I = NF ,

λ
(j)
SI

λ
(j)
SI

+λ
(j)
IR

if
(

C
(j)
I > C

(j)
R + 1

)

∩
(

C
(j)
I < NF

)

, and

1 otherwise,

(30)

where λ
(j)
SI = βS(j)I(j)/Npop and λ

(j)
IR = γI(j). States are updated as before

and the algorithm continued until C
(j)
I = NF . Pseudo-code and importance

contributions are given in Algorithm C.4 and Appendix C.3.1.

4.1.9. Results for final size data

We used 10,000 iterations burn-in with a further 90,000 updates. AG(0.0001, 1002)

prior distribution was used for β (i.e. mean=1 and variance=1002). The GIMH

model with the exponential infectious period took ≈ 13 minutes to run 120,000

iterations, compared to ≈ 12 minutes for the fixed and ≈ 13 minutes for the

gamma infectious periods. It can be seen from Table 3 that our estimates are

consistent with those of Demiris and O’Neill (2006), though our posterior means

are slightly lower. A nice property of the simulation algorithm employed here is

that the complicated removal process cancels out in the importance ratio (see

Appendix A).

5. Discussion

A significant challenge for inference in epidemic systems is dealing with miss-

ing and censored data. In order to generate a likelihood it is typically necessary

to infer the missing information as part of the fitting process. This problem

becomes more challenging as the size and complexity of the system increase.

The Bayesian framework offers a natural environment in which to attempt to
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Table 3: Posterior means and standard deviations for R0 for an SIR model fitted to the
Abakaliki smallpox final size data obtained using GIMH and MCWM, compared to estimates
obtained from other methods.

Method Infectious period R0

GIMH
Fixed 1.14 (0.21)
Gamma 1.15 (0.26)
Exponential 1.17 (0.31)

MCWM
Fixed 1.14 (0.21)
Gamma 1.16 (0.27)
Exponential 1.18 (0.32)

Demiris and O’Neill (2006)
Fixed 1.18 (0.21)
Gamma 1.22 (0.27)
Exponential 1.26 (0.34)

Becker (1989) 1.10
Rida (1991) 1.11

tackle these issues, since missing data can simply be included as extra parame-

ters in the model. As such, the method of DA-/RJ-MCMC provides the current

gold-standard fitting mechanism for epidemic systems, allowing the additional

uncertainty due to the missing data to be implicitly captured in the marginal

posteriors for the parameters. It can also be used to facilitate the evaluation of

infeasible likelihood functions via the introduction of latent variables.

Nonetheless, for complex systems with large amounts of missing data, the

complexity and computational overheads of DA-MCMC algorithms can be pro-

hibitive. A major challenge is designing efficient proposal distributions for the

missing data and parameters, such that the acceptance rate of the chain is rea-

sonable whilst allowing good mixing of the chain and controlling for excessive

autocorrelation. Here we employ pseudo-marginal methodology, using impor-

tance sampling to generate an MC estimate of the likelihood that can be used in

place of the true value in MCMC routines. These methods have various useful

properties: firstly, they update the parameters and all of the missing data at the

same time. If implemented successfully this allows the chain to move efficiently

around the parameter space. Of course there are various parallels between

GIMH and DA-MCMC, since the latter using independence sampling is equiv-

alent to GIMH using a single simulation to generate the importance estimate
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(since the augmented data need not be stored—see Beaumont, 2003). However,

this would typically lead to low acceptance rates, and hence in DA-MCMC some

form of conditional update scheme is usually used instead. Pseudo-marginal

algorithms alleviate this problem by using multiple repeated simulations to pro-

duce the importance estimate of the likelihood—essentially reducing the MC

error and potentially improving the efficiency of the chain. In addition, GIMH

will produce the exact posterior for the parameters in probability, despite an

approximation to the likelihood being used.

Developing simulation algorithms that have a high probability of matching

the observed data is key if pseudo-marginal routines are to be implemented suc-

cessfully for epidemic systems. We provide various examples of how this can be

done for a range of model structures and data types. By constraining the simu-

lations based on the observed data we use the model to define efficient proposal

distributions for the unobserved events, improving both the acceptance rate and

mixing of the chain. The algorithms we propose here match the simulations to

the data exactly. One useful extension, not discussed thus far, is that in many

cases there may also be a stochastic observation process above the epidemic

process. We anticipate that this could be included simply by requiring that

the simulated time-series counts are equal to or greater than the observed data,

before adjusting the likelihood calculation based on the probability distribution

for the observation process (e.g. binomial).

By producing independent simulations of the unobserved data, some of the

autocorrelation and memory overheads—due to storing and simulating condi-

tional on previous values of the augmented data—can be reduced. One defi-

ciency of the GIMH method is that since the MC estimates are re-used at each

iteration of the chain, if an uncharacteristically large estimate is produced at

one iteration (i.e. from the upper tail of the sampling distribution of the im-

portance estimate), then sometimes the chain can become stuck. A simulation

study (results not shown) suggests that this may preclude the use of GIMH for

systems where the variance of the importance sampling distributions for dif-

ferent parameters are large, unless a large enough number of repeats can be
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generated. Of key importance here is to generate simulations from a model that

match as closely as possible to the real model, so that elements of the likeli-

hood/importance estimate ratio cancel. Nonetheless, it is worth noting that the

MCWM algorithm overcomes these problems through re-sampling at each step,

albeit at the cost of increased simulations and some potential bias in the pos-

terior, although these routines are natural candidates for parallelization, which

may go some way towards alleviating the requirement for more simulations. We

have illustrated the efficacy of these methods on a well-studied data set from an

outbreak of smallpox. These routines are very flexible, and we have shown how

simple adaptations to the simulation algorithm for fitting to removal data can

allow the dimensionality of the system to be changed, and as such the pseudo-

marginal routines can be used without requiring reversible-jump methodology.

Also, further small changes in the simulation algorithm allows the model to be

fitted to final size data.

To conclude, pseudo-marginal methods provide an exciting variation on tra-

ditional DA approaches to inference. Whilst the choice of method will vary

according to the specific application, it is clear that the methods are very flex-

ible, and show some advantages over traditional DA-/RJ-MCMC in terms of

exploring the parameter space for the sorts of systems described here, albeit po-

tentially at the cost of the outcome being approximate in the case of MCWM.

Future work will focus on extending these approaches to more complex systems.
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Figure 1: Schematic of constrained simulation algorithm for discrete removal time data. The
yR values are the observed discrete removal times, and the tR values the simulated continuous
removal times. The t values in this case correspond to the simulated infection times. In the

initialisation step all removal times, t
(j)
R

, j = 1, . . . , NF , are simulated from sets of uniform
order statistics conditional on the observed removal counts NR. Then an initial infection time

is simulated conditional t
(1)
R

. In Step 1 we force an infection event to occur in
(

t(1), t
(1)
R

)

with

probability 1, in order to ensure the epidemic does not die out. This time of this event, t(2), is
simulated from a truncated exponential distribution. In Step 2 we simulate whether a further

infection event occurs in
(

t(2), t
(1)
R

)

, which then determines how the simulation progresses at

further stages.
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