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Abstract

We introduce a novel Bayesian inexact point pattern matching model that assumes that

a linear transformation relates the two sets of points. The matching problem is inexact

due to the lack of one-to-one correspondence between the point sets and the presence

of noise. The algorithm is itself inexact; we use variational Bayesian approximation to

estimate the posterior distributions in the face of a problematic evidence term. The

method turns out to be similar in structure to the iterative closest point algorithm.
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iterative closest point algorithm, linear transformation

1. Introduction

Point pattern matching (also referred to as point set matching or point set registration)

is a common pattern recognition problem that arises in many different fields, but perhaps

particularly from the increasing use of automatic image processing techniques (e.g. [1, 2,

3, 4]). A set of feature points is extracted from each of two similar images (possibly two

frames of a video) and the aim is to determine correspondences between the two sets.
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Often it is assumed that the two sets are related through some linear transformation and

any deviations from that are regarded as noise.

We denote the two sets of points as Y = {yi} and X = {xj}, where each point is

represented by its location in D-dimensional Euclidean space. The points do not have

identities, or at least the identities are not known, and the sets of points are unordered,

that is yn does not necessarily correspond to xn for any n.

In the simplest, exact case, each point set contains the same number of points and there

is an exact one-to-one correspondence between them, with no noise. Thus we have the

case that Y = f(X), where the function f(·) permutes the points in X and linearly trans-

forms their coordinates so that they precisely coincide with the points in Y. However,

the nature of real problems and the automated processes by which features are often ex-

tracted, often result in the inexact case, where the point sets do not exactly correspond,

both because of noise and because each set contains points with no counterpart in the

other. In this case Y and X may contain different numbers of points and, with Ys as

a subset of the points in Y and Xs as a same-sized subset of the points in X, we have

Ys = f(Xs) + noise. We refer to the points in Ys and their counterparts in Xs as the

overlap between the two sets.

The inexact problem has been shown to be NP-complete [5], that is the computation

time required to find the global optimum increases exponentially with the number of

points. Many methods therefore (including the one described in this paper) aim to find

local optima in more acceptable time-frames.

Bottom-up approaches to this problem search directly for plausible point matches. In

tree search algorithms with backtracking, for example, a partial (initially empty) set of

mappings is progressively augmented with new mappings until a constraint is violated.

The algorithm then backtracks, i.e. removes mappings, until some alternative route is

available. Conte et al. [6] provide a useful overview of a number of important algorithms.

In contrast, the top-down approach aims to determine the geometric transformation

which relates the two point sets and uses that to find the point mappings. The iterative

closest point algorithm (ICP) [1, 7], for example, starts with an initial estimation of

the point mappings, from which it estimates the parameters of a rigid transformation
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(rotation and translation) using a least squares method. The set of point mappings is

recalculated based on this new estimate of the transformation. The process repeats the

transformation-estimation and point-mapping steps iteratively until convergence.

We introduce an approximate Bayesian model for inexact point pattern matching which,

due to the necessity of avoiding a problematic likelihood term, turns out to be similar

in structure to ICP. We assume that the two point sets are related by a linear transfor-

mation and explicitly model each of its parameters, and the noise, as random variables.

This allows us to incorporate prior knowledge about the transformation and provides

estimates of the confidence intervals in the posterior distributions for each variable. We

also end up with probabilities associated with every potential match; these provide a

principled method for determining both the point mappings and which points in each set

are unmatched. As with many Bayesian models, the integrals required for exact inference

are intractable and so we use a variational approximation method [8, 9, 10, 11]. This

method minimises the Kullback-Leibler divergence [12, 13] between the approximate and

actual posterior distributions to determine the optimal hyperparameter values for the

approximations. Interdependencies between the expressions for the posterior parameters

in the variational scheme lead to an iterative update procedure which naturally results

in an ICP-like update-remap process.

We start by examining different approaches to probabilistic modelling in inexact point

pattern matching and the more generalised problem of graph matching, and Bayesian

approximation. The new model is described in section 2 in terms of 3-dimensional point

sets, though it is easily extended to lower or higher dimensionalities. Section 3 describes

the results obtained from synthetic data and in section 4.2 the method is demonstrated

on a real problem of matching cartilage cells in image stacks captured before and after a

stretch is applied to the cartilage and the position and orientation of the sample in the

microscope’s viewing window is changed.

1.1. Probabilistic approaches in point set matching

Many inexact matching algorithms relax the tight constraints imposed on exact matching

by calculating a cost associated with that relaxation; the larger the deviation the higher
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the cost and hence the aim is to minimise the total cost. Cost calculations often explicitly

define different types of constraint violation and specify heuristically established costs

with each of them. The tree search Attributed Relational Graphs algorithm [14], for

example, bases the cost on graph edit operations of node and edge substitution.

An intuitive alternative to cost minimisation is probability maximisation. Continuous

optimisation approaches to point pattern matching start with an initial guess at the

mappings which is then refined over successive iterations. One such method is relaxation

labelling [15, 16], where each point in one set is assigned a vector containing the probabil-

ities that the point is mapped to each of the points in the other set. These probabilities

are initialised heuristically and then refined by taking into account the probabilities as-

sociated with adjacent points. At the end the maximum probability mapping is selected.

Relaxation labelling only enforces one-to-one correspondence in one direction. Weighted

Graph Matching (e.g. [17, 18]) is a quadratic optimisation method that allows two-way

enforcement by way of a matching matrix of probabilities. The graduated assignment

graph matching algorithm [19] gradually increases the constraints on the matching matrix

to avoid poor local optima.

Although these models use probability measures, they might not be considered to be

probabilistic models. A number of different probabilistic modelling approaches have been

considered, using iterative expectation maximisation (EM) algorithms to find maximum

likelihood solutions. Luo and Hancock [20] consider one set of points to be latent variables

and the other to be observations, casting the problem as a Markov random field. Granger

and Pennec [21] define a probabilistic ICP model based on a rigid transformation and

a binary matching matrix, which is considered to be a latent variable. They use an

annealing scheme to improve the reliability with which the global optimum is found.

Jian and Vemuri [22, 23] and Myronenko and Song [24] represent the two sets of points

as Gaussian mixture models and maximise the likelihood of the point mappings. Xiao

et al. [25] use a hidden Markov model to model the distribution of points in each of the

sets and minimise the dissimilarity between the two models by minimising the Kullback-

Leibler divergence between them. Serradell et al. [4] use a tree search algorithm with

backtracking to learn an affine transformation that approximately aligns the two point
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sets as a starting point for modelling the localised perturbations as Gaussian Processes.

The update of the affine transformation estimate is performed using a process similar to

the Kalman filter.

A fully Bayesian technique avoids the pitfalls associated with the maximum likelihood

method: integrating (averaging) over all possible values of the parameter variables guards

against overfitting and posterior probability distributions (rather than point estimates)

are calculated for each of them, from which we obtain a measure of confidence in the

inference.

Zhu et al. [26] note that although ICP has been widely used for problems where the trans-

formation is rigid, it does not work well if the transformation is, for example, affine. Du

et al. [27] incorporate the affine transformation into ICP and use an iterative quadratic

programming method to converge on a local optimum. They decompose the transfor-

mation matrix into three using singular value decomposition and then constrain these

matrices to try and avoid the problem that the most likely transformation maps all of

the points in one set onto a very small subset (often a single point) of the other set. Zhu

et al. [26] avoid this problem by defining the mappings bidirectionally.

We represent each of the parameters of the linear transformation as separate random

variables and use prior probability distributions to constrain them, both so that we

may incorporate our prior knowledge about the likely transformation and to avoid the

degenerate case described above. Point mappings are derived from a matching matrix

containing probabilities for all possible mappings and from this we may also estimate

which points in each set are unmapped.

As is often the case, calculation of the evidence or marginal likelihood for our Bayesian

model is intractable, so we must resort to some approximation scheme. With a large

number of variables, numerical methods, such as quadrature [28], are not feasible and

sampling methods such as the Markov chain Monte Carlo algorithms of Metropolis-

Hastings [29, 30] and Gibbs sampling [31] (e.g., [2]) or particle filtering [32] (e.g., [3])

are too computationally expensive. Instead we estimate the posterior distributions using

variational Bayesian approximation, which we describe in section 2.2.
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2. The model

We describe the model here in terms of 3-dimensional space; it is easily extended to

spaces of lower or higher dimensionality.

Without loss of generality let Y be the smaller of the two sets and each set be indepen-

dently mean-centred such that

Ny∑
i=1

yi =

Nx∑
j=1

xj = 0 (1)

where Ny and Nx are the numbers of points in Y and X respectively. We denote a

match between point yi and point xj as yi ↔ xj . In our scheme we assume that every

point in Y is matched to a unique point in X and that the relationship between each

pair of matched points is that of a linear transformation plus noise, encapsulated in the

following expression:

yi = Wxj + t + εi,j (2)

The translation component of the linear transformation is modelled by t; other com-

ponents are captured in W. These are considered to be random variables that define

a global transformation which applies to all points in X; local deviations from this are

accounted for in the noise term, εi,j , which is assumed to be Gaussian distributed with

zero mean and precision λi,j . Thus we have a set of random variables, Ω = {W, t,λ},

for which, in this Bayesian model, we must estimate posterior probability distributions,

and two sets of observations, Y and X.

The combination of these posterior distributions and (2) allow us to calculate the prob-

abilities that a particular point in Y is matched to each of the points in X (and vice

versa), so although we assume that each point has a match, all of its match probabilities

might be very low, indicating that the truth is that the point has no true match.

Given a proposed set of matches, denoted by {yi ↔ xj}, we define independent match

likelihoods over that particular set, giving
∏
ij p(yi ↔ xj |Ω), where

∏
ij denotes the

product over the set. Using Bayes’ rule the joint posterior distribution of the variables
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Algorithm 1 Summary of the new ICP-like algorithm for point pattern matching.

make an initial guess at the point mappings

while not converged do

use the current set of point mappings to make a new, Bayesian estimate of the linear

transformation

calculate the matching matrix, M

select the best set of point mappings from M

end while

is given by

p(Ω | {yi ↔ xj}) ∝ p(Ω)
∏
ij

p(yi ↔ xj |Ω) (3)

The prior distributions for the model variables, p(Ω), represent any prior knowledge we

have about the likely values of these variables and the level of certainty we have in those

values. If no knowledge is available to inform these distributions then we might choose

flat, or uninformative, priors.

In an exact Bayesian model, calculating the posteriors requires us to integrate the right-

hand side of (3) over all possible values of the variables. In this model, as in many

others, this integral is intractable, so we use a variational scheme (described in 2.2) to

approximate the posteriors.

Having estimated the posteriors we use the posterior expectations of the variables to

calculate, for every possible pair of points, the probability that the pair is a match. We

construct a Ny ×Nx matching matrix, M, of these probabilities from which we extract

the most likely set of matches. Initially this new set of matches is likely to be slightly

different from the set used to estimate the posterior distributions. This new proposed set

is used as the basis for another round of posterior estimation, which produces another

slightly different set of matches, and so on until convergence, resulting in the ICP-like

algorithm shown in algorithm 1.

While any W represents a linear transformation, we wish to control individual elements of

it. We achieve this by decomposing W into a number of separate components, which are

treated as independent random variables, and limit the constituent values by defining
7



(possibly problem-dependent) prior distributions over them. For example, in the real

example described in section 4.2 we choose to limit the rotation to be very close to zero.

For clarity and because the estimation of the rotation and shear parameters are very

similar, we will describe the transformation matrix, W, only in terms of a rotation, R,

and a scaling, D:

W = RD (4)

The scaling matrix, D, is defined as the diagonal matrix

D = diag(d) (5)

There are a number of different ways to parameterise rotation matrices (e.g. [33]). For

mathematical convenience in the Bayesian approximation scheme described in section 2.2

we choose to use the exponential map method; we construct R from a skew-symmetric

matrix, S, as follows:

S =


0 s1 s2

−s1 0 s3

−s2 −s3 0

 (6)

R = expm(S) (7)

The matrix exponential function, expm(·), may be expressed as an infinite series, which

we approximate using just the first three terms:

expm(S) = I + S +
S2

2!
+ · · ·+ Sn

n!
+ . . .

≈ I + S +
1

2
S2 (8)

Using this exponential map method the rotation matrix R represents a rotation through

angle ||s|| about the vector s [34, section 13.2.1].

The full set of variables for this model is therefore: s = (s1, s2, s3)T (rotation), d (scaling),

t (translation) and the λi,j (match noise precisions). We now define the prior probability

distributions for each of them.
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2.1. Priors

As previously described, we assign zero-mean Gaussian priors to each of the noise vari-

ables, εi,j , with independent precisions, λi,j . With (2) this gives rise to the Gaussian

match likelihood

p(yi ↔ xj |W, t, λi,j) = N (yi |Wxj + t, λ−1
i,j I) (9)

where N (·) denotes a Gaussian distribution and I the identity matrix. Each noise preci-

sion, λi,j , is itself a variable to be estimated and is assigned a conjugate Gamma prior:

p(λi,j) = G(λi,j | aλ, bλ) (10)

Integrating out the λi,j from the match likelihood results in a Student-t distribution with

degrees of freedom ν = 2aλ and precision aλ/bλ. As ν tends to infinity the distribution

tends to a Gaussian; as it becomes smaller the distribution becomes heavier tailed until,

at 2, the variance becomes infinite.

The translation vector, t, is assigned a Gaussian prior:

p(t) = N (t |mt,Vt) (11)

and independent Gaussian priors are assigned to the rotation and scaling variables, s

and d:

p(s) = N (s |ms,diag(vs)) (12)

p(d) = N (d |md,diag(vd)) (13)

Prior mean values of ms = 0 and md = 1 denote no rotation and no scaling respectively.

The overall prior is factorised as follows:

p(Ω) = p(s) p(d) p(t)
∏
i

∏
j

p(λi,j) (14)

Figure 1 shows a graphical representation of the variables and statistical dependencies of

this model. With these priors we now estimate the approximate posterior distributions

using the variational Bayesian method.
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yixj εi,j

ds t λi,j
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W

Figure 1 A graphical representation of the model priors. Nodes shaded in grey denote observa-

tions; those not shaded denote variables whose posterior distributions must be learned. Small

grey points represent parameters of the prior distributions.

2.2. Posteriors

Assume for now that we have a (hypothesised) complete set of matches, i.e. for every yi ∈

Y there is defined a single match yi ↔ xj , where xj ∈ X. Based only on these matches

and not on the exhaustive set of possible matches, we use the variational Bayesian method

to estimate posterior distributions for each of the variables.

Very briefly, variational Bayes (for tutorials see [10, 35] and [36, chapter 10]) seeks ap-

proximate posterior distributions q(Ωi) ≈ p(Ωi | D) (where Ωi ∈ Ω represents one, or one

group, of the model’s variables and D the data) that minimise the Kullback-Leibler (KL)

divergence [12] between q and p, where

KL(q ‖ p) =

∫
q(Ω) log

(
q(Ω)

p(Ω | D)

)
dΩ (15)

The KL divergence is non-negative, and only zero when q and p are equal. An elegant

method provided by Waterhouse et al. [37] (see also [11, 38, 39]) exploits the assumed

factorisation of the approximate posterior as

q(Ω) =
∏
i

q(Ωi | D) (16)

and leads to

log(q(Ωi)) = E/Ωi
[log(p(D,Ω))] (17)

where E/Ωi
[·] denotes the expectation based on all variables except Ωi. When conjugate

priors are chosen for the variables Ωi the resulting posterior distributions are of the
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same family and their parameters are expressed in terms of the expectations of the other

variables in the problem. Suitable posterior parameter values are found by iteratively

calculating each of the q(Ωi) in terms of the others until convergence. Ghahramani and

Beal [40] show that this method converges to a local minimum of KL(q ‖ p).

We assume that the approximate posteriors are independent of one another conditional

on the data, and are factorised based on the factorisation of the priors shown in (14):

q(s) q(d) q(t)
∏
i

∏
j

q(λi,j) (18)

We illustrate the variational method described above by estimating the approximate

posterior distribution for the first of the rotation variables, s1. From (17) we get

log(q(s1)) = E/s1

log


[∏
ij

p(yi ↔ xj | s,d, t, λi,j)
]

q(s) q(d) q(t)
∏
i

∏
j

q(λi,j)



(19)

Under this expectation all terms not directly dependent on s1 are constant, so we may

rewrite (19) as

log(q(s1)) = E/s1

[
log(N (s1 |ms1 , vs1)) +

∑
ij

log(N (yi |Wxj + t, λ−1
i,j I))

]
+ const (20)

Expanding W using (4,7-8) and absorbing some terms not dependent on s1 into the

constant term results in

log(q(s1)) = −1

2
E/s1

[
s2

1v
−1
s1 − 2s1v

−1
s1 ms1

+
∑
ij

λi,j(t− yi)
T(2S + S2)Dxj

]
+ const (21)

Expanding S using (6) and moving these additional terms into the constant gives

log(q(s1)) = −1

2

[
s2

1

(
v−1
s1 +

∑
ij

〈λi,j〉(yi−〈t〉)TG1〈D〉xj
)

− 2s1

(
v−1
s1 ms1−

∑
ij

〈λi,j〉
2

(yi−〈t〉)TH1〈D〉xj
)]

+ const (22)

where

G1 =


1 0 0

0 1 0

0 0 0

 H1 =


0 −2 −〈s3〉

2 0 〈s2〉

−〈s3〉 〈s2〉 0

 (23)
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and 〈a〉 denotes the posterior expectation of a. This is quadratic in s1, so the approximate

posterior for s1 is the Gaussian distribution shown in (28). Standard results give 〈s2
1〉 =

Σs1 + 〈s1〉2. With

G2 =


1 0 0

0 0 0

0 0 1

 H2 =


0 〈s3〉 −2

〈s3〉 0 〈s1〉

2 〈s1〉 0

 (24)

G3 =


0 0 0

0 1 0

0 0 1

 H3 =


0 〈s2〉 −〈s1〉

〈s2〉 0 −2

−〈s1〉 2 0

 (25)

similar results are obtained for s2 and s3.

Using the same procedure for the remaining variables results in the approximate poste-

riors shown in the remainder of figure 2. Since the s and d variables are all assumed

to be posteriorly independent, the posterior expectations 〈W〉 and 〈WTW〉 are easily

constructed from (4, 6–8):

〈W〉 =
(
I + 〈S〉+ 〈S2〉

)
〈D〉 (26)

〈WTW〉 = 〈D2〉 (27)

since RTR = I and D is a diagonal matrix.

These expressions do not form a closed solution as each posterior is dependent on the

posterior expectations of other variables. Instead they are evaluated iteratively until

convergence. In variational approximation procedures the order in which the posteriors

are reestimated is important as it can affect the quality of the final solution. We start

with the variables closest to the observations in the graphical model (figure 1) and work

outwards. Hence we visit the variables in the order s, d, t and finally the λi,j .

Note that the expressions for the variances for s and the match noise precisions in the λi,j

do not preclude negative values. Where this situation arises the posterior distribution is

set to the prior for that variable. This only occurs during the initial iterations, not at

convergence.
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q(sk) = N (sk |µsk ,Σsk) (28)

Σsk =

v−1
sk

+
∑
ij

〈λi,j〉(yi − 〈t〉)TGk〈D〉xj

−1

µsk = Σsk

v−1
sk
msk −

1

2

∑
ij

〈λi,j〉(yi − 〈t〉)THk〈D〉xj



q(dq) = N (dq |µdq ,Σdq ) (29)

Σdq =

(
v−1
dq

+
∑
ij

〈λi,j〉x2
q,j

)−1

µdq = Σdq

(
v−1
dq
mdq +

∑
ij

〈λi,j〉〈aq〉xq,j
)

〈a〉 =

I +
1

2


−〈s2

1〉 − 〈s2
2〉 −〈s2〉〈s3〉+ 2〈s1〉 〈s1〉〈s3〉+ 2〈s2〉

−〈s2〉〈s3〉 − 2〈s1〉 −〈s2
1〉 − 〈s2

3〉 −〈s1〉〈s2〉+ 2〈s3〉

〈s1〉〈s3〉 − 2〈s2〉 −〈s1〉〈s2〉 − 2〈s3〉 −〈s2
2〉 − 〈s2

3〉




T

(yi − 〈t〉)

q(t) = N (t |µt,Σt) (30)

Σt =

(
V−1

t +
∑
ij

〈λi,j〉
)−1

µt = Σt

(
V−1

t mt +
∑
ij

〈λij〉(yi − 〈W〉xj)
)

q(λi,j) = G(λi,j |αλi,j
, βλi,j

) (31)

αλi,j = aλ +
D

2

βλi,j = bλ +
1

2

(
yT

i yi + xT

j 〈WTW〉xj + 〈tTt〉 − 2yT

i (〈W〉xj + 〈t〉) + 2〈t〉〈W〉xj
)

Figure 2 Calculations for the approximate posterior distributions for each of the model variables.
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2.3. Matching algorithm

The previous section describes how, given a set of point mappings, we use variational

Bayesian approximation to estimate the linear transformation. To complete the algorithm

we now describe how the current estimate of the transformation is used to determine a

new set of point mappings.

We start by constructing a Ny × Nx matching matrix, M, where element Mi,j is the

logarithm (for mathematical convenience) of the probability that yi is mapped to xj ,

based on the posterior expectations of the transformation variables:

Mi,j = log(N (yi | 〈W〉xj + 〈t〉, 〈λi,j〉−1I)) (32)

These values are calculated for every possible match.

For an exact matching scheme we might define Dirichlet priors over each row of M;

we know that every yi must have a match in X, so
∑

exp(Mi,:) = 1. We could then

contemplate estimating M variationally. Consider, however, the case of a point yi that is

truly unmatched. The Dirichlet would identify the most likely match for yi, but not the

absolute probability that the match is true. For a truly unmatched point we would like

all its match probabilities (the values in the corresponding row of M for points in Y or

column of M for points in X) to be very small. For this reason, and because we require

the one-to-one correspondence to be bidirectional, the Dirichlet is not appropriate here

and we must resort to cruder means to extract the best set of matches from M.

Ideally we would select from this matrix the set of mappings yi ↔ xj that maximises∑
ijMi,j , in other words finding a permutation of the columns of M that maximises the

sum of the values on its main diagonal. But this is in itself a hard problem. An obvious

method is to select the element of M with the highest value, Ma,b, form a mapping

between ya and xb, remove row a and column b of M from consideration and then

repeat the process until all points in Y (the smaller set) are mapped. This is the greedy

algorithm. Although initially attractive, it is very prone to converging prematurely on

local optima. An alternative, the random permutation algorithm, is to visit each row of

M in a random order and map the point in Y corresponding to that row with the point

in X corresponding to the element in that row that has the highest value. This leads
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Algorithm 2 Inexact Bayesian point set matching

randomly initialise s, d (hence W) and t

while not converged do

calculate M using (32)

select the set of matches from M (2.3)

for the current set of matches do

update the posteriors for s using (28)

update the posteriors for d using (29)

calculate 〈W〉 and 〈WTW〉 using (26–27)

update the posterior for t using (30)

for i = 1 to Ny do

for j = 1 to Nx do

update the posterior for λi,j using (31)

end for

end for

end for

end while

calculate M using (32)

select the final set of matches from M (2.3)

to a wider exploration of the search space and significantly increases the frequency with

which the global optimum is found. However, in noisy datasets that contain unmapped

points this algorithm tends not to converge on a single, stable solution. We use the

random permutation algorithm for the first iterations to ensure wider exploration and

then switch to the greedy algorithm to force a stable convergence.

The overall method alternates between variationally estimating the linear transformation

and finding the best set of point matches from M until the match set converges, as is

shown in algorithm 2. It is not guaranteed to find the optimum solution, but we run

it several times on a given dataset, with different random starting positions for the

transformation variables, and select the solution that results in the highest final value of∑
ijMi,j .
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2.4. Unmatched points

We could use the probabilities in the matching matrix corresponding to the final set

of point mappings to estimate which points are truly unmatched, but a more intuitive

decision may be made based on the associated λi,j values.

The standard deviation corresponding to these precisions, σi,j =
√

1/λi,j , is a measure

of the distance between yi and xi after the linear transformation has been taken into ac-

count. A very small σi,j means that the points are closely aligned and are thus likely to be

a true match, while a large value indicates a less likely match. Problem-specific informa-

tion may indicate a specific threshold to differentiate between matched and unmatched

points; this method is used for the real data described in section 4.2. Alternatively, it

is often the case that plotting the σi,j values in ascending order highlights an obvious

transition from which a threshold may be derived. The latter is the method used for the

synthetic data described in the next section.

3. Illustration: synthetic data

In the first instance we demonstrate the effectiveness of the method on pairs of point sets

that are related by known transformations, with unmatched points but no noise. First

20,000 points are uniformly randomly sampled across a 1,000 unit cube centred on the

origin. The points falling within the central 100 unit cube (approximately 200 points)

make up the first set of points. The larger cube is then randomly scaled, rotated and

translated with respect to the origin and a second set of points extracted from the 100

unit cube centred on the origin with the same orientation as the first. This simulates

the real case described in section 4.2 where the points are extracted from 3-dimensional

images of a substance photographed before and after the substance has been stretched

and moved/rotated with respect to the camera.

1,000 pairs of point sets were generated using different, randomly-generated transfor-

mations, with the rotation angles uniformly sampled from a range of ±10◦, the scaling

variables in the range 0.95 to 1.05 and translations within a sphere of radius 20 units.

The prior parameters were set as follows: ms = mt = 0, md = 1, vs = 1, Vt = 402I,
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Figure 3 The values of the estimated transformation variables plotted against the actuals for

the 1,000 tests datasets, with no noise. The diagonal black lines mark the locations of esti-

mate=actual.

vd = 10−3I, aλ = 1 and bλ = 1. The overlap between the two point sets was, on average,

86% of the number of points in X, with a standard deviation of 5.

The model was run for 10 repetitions against each dataset and the best result, i.e. that

with the highest
∑
ijMi,j value, within the 10 repetitions selected as the final solution

in each case. Each run was for 100 iterations and the greedy algorithm was used for

selecting point mappings for the last 50 iterations.

For each of the 1,000 tests we used a λi,j threshold of 0.05 (found empirically) to deter-
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Figure 4 Convergence of the rotation variables s1 and s2 over each of the 10 repetitions for

one example dataset. The cross-hairs identify the location of the true values and the random

starting points are shown in grey.

mine which points were estimated to be matched and which unmatched. The mappings

for the matched points were compared with the true mappings; in 946 of the 1,000 tests

the mappings were exactly correct, that is all the truly matched points were correctly

matched and all the truly unmatched points were correctly identified as being unmatched.

Figure 3 shows the values estimated by the model against the true values for the rotation,

scaling and translation variables. The correlation between estimates and actuals is very

good for this range of transformations, but it does deteriorate for larger transformations

as the search space expands and the overlap between the point sets diminishes. This

would be mitigated by increasing the number of repetitions executed for each dataset.

As an example, figure 4 shows, for one of the test datasets, how the rotation variables

s1 and s2 converge on the same values in each of the 10 repetitions. In this case they

converge on the true solution, as identified by the cross-hairs.

Figure 5 shows a histogram of the number of times the best solution is found within the

10 repetitions for each of the 1,000 test datasets. In 165 cases the same result is found

in all 10 repetitions and in 856 cases the best result is found in more than 50% of the

repetitions.
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Figure 5 A histogram which shows how often the best result is identified in 10 repetitions across

1,000 test datasets.

Using the first 100 test datasets, the points in Y were perturbed by varing amounts of

noise. The perturbations were generated from the Gaussian distribution N (0, σ2), where

the standard deviation, σ, was set successively to the integer values in the range 0 to 10.

The mean distance between 200 points uniformly distributed within a 1003 unit cube is

approximately 64 units, so a standard deviation of 10 is significant. The model was run for

10 repetitions for each dataset and each value of σ, and the best result selected as before.

Figure 6 shows how the standard deviations of the transformation variables’ posterior

distributions increases as the magnitude of the noise increases (results are very similar

for the rotation and scaling variables, though with much smaller standard deviations),

showing how the model becomes less certain of the estimates where there is more noise.

It is often remarked (e.g. [41, 42, 43]) that there is a tendency for variational models to

underestimate the uncertainty, so the values should be treated as a lower bound. As the

noise increases, so the proportion of correct matches decreases, as is shown in figure 7.

Finally, in order to investigate how the degree of overlap between the two point sets

affects the quality of the matching, we generated two identical point sets and progressively

replaced points in Y with new random points. We performed 10 repetitions of matching

and recorded the number of times all the points in the overlap region were correctly

matched. The results are shown in figure 8 and show that, generally, as the overlap

proportion decreases, the proportion of correct matches also decreases, but the decrease

does not until the overlap region drops to about 50%.
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Figure 6 The change in posterior standard deviations for the translation variable, t, as the

noise increases. Each box indicates the median and 25th and 75th percentiles of the standard

deviations across the 100 tests.

Figure 7 For the 100 tests, the proportion of correct matches for different noise levels. As the

standard deviation of the noise, σ, increases, so the proportion of correct matches decreases.
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Figure 8 For point sets containing 100 points, this graph shows the effect of reducing the overlap

between the two sets. For each size of overlap, matching was performed for 10 repetitions and

the number of repetitions in which the overlap region was correctly matched is plotted.
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4. Results: real data

The model is demonstrated on two sets of real data: 2-dimensional images from the CMU

house dataset [44] (a series of 111 images of a toy house rotating in 3D) and 3-dimensional

microscopy images of a sample of cartilage.

4.1. 2D CMU house

The locations of the same thirty features from each of the CMU house images were man-

ually recorded. For each image a further ten locations were selected uniformly randomly

across the image as noise. Figure 9 shows the first image in the sequence on the left in

both columns and image 20 on the right, with the locations of true features marked as

dots and those of the noise features as crosses. The top pair of plots record the matches

between images 1 and 20 made using the standard ICP algorithm1 [1, 7]; the bottom

pair record the highest-probability matches (those with loge probability greater than -5.5)

identified by the algorithm described in this paper. Both algorithms appear to perform

similarly, but our algorithm allows selection of well-matched points on the basis of their

posterior match probability. Note that the low probability matches are associated with

the noise points.

These matching images do not highlight the differences between the two algorithms. To

illustrate these differences, the features from image 1 were translated, rotated and (for the

new method) scaled according to the transformations estimated by the two algorithms.

Figure 10 shows them (as dots) superimposed on image 20 and the features from that

image (plotted as squares). Matched features are joined by a line. For the model, each

match has an associated probability (one standard deviation is shown as a circle around

each transformed feature) and we can see that it has achieved a strong set of matches

for those features located on and around the main roof of the house, a generally good

set of matches for the rest of the true features and generally low probability matches for

the noise features.

1We used Per Bergström’s Matlab version of the ICP algorithm from http://www.mathworks.com/

matlabcentral/fileexchange/12627-iterative-closest-point-method
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Figure 9 CMU house images 1 (left) and 20 (right) with matches made by the standard ICP

algorithm (top) and this new model (bottom). Dots mark the true features; crosses the added

noise features.

Using the new method, low probability matches have little influence on the transfor-

mation. ICP tries to find a transformation that best aligns all the points, so the noise

features have as much influence as the genuine features. The results of this influence are

shown more clearly in figure 11 where some of the features associated with image 1 were

removed before matching, as if the lower part of the image were occluded. All points

below the horizontal dashed line in figure 11b were removed, amounting to 20 of the 30

true features and 4 of the 10 noise features. The probabilistic model has again “locked

onto” the features on and around the main roof with high-probability matches. The

effect of the occlusion has clearly had a significant effect on the quality of the matches

achieved by ICP.
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(a) ICP (b) new model

Figure 10 CMU house image number 20 marked with the true features for this image as black

squares and the noise features as white squares. The features from image 1 have been trans-

formed according to the results of each of the algorithms and are overlaid as black dots for true

features and white for noise. Black lines indicate the matches obtained from each algorithm.

Figure (b) is also overlaid with circles indicating one standard deviation of the match probability

distribution; low probability matches are shown as dotted lines and circles. Note how the low

probability matches are associated with the (white) noise points.

4.2. 3D microscopy images of cartilage cells

This real data comprises pairs of 2 photon fluorescence image stacks of cartilage captured

by a multiphoton microscope [45]. The xy plane is approximately parallel to the surface

of the cartilage and the individual images in the stack are “slices” obtained by moving

the focal plane progressively deeper in the z direction. An example image from one of

these stacks is shown in figure 12a; the in-focus cartilage cells are clearly discernable as

dark, approximately elliptical shapes against a lighter background. Each cell appears in

the same position in a number of adjacent images in the stack and does not, generally,

have any uniquely identifiable features.

The locations of the cells are identified by an automated image processing program

which fails to identify some cells and spuriously identifies non-existant cells. The two

point sets are the locations of the centres of the cells identified in pairs of z-stacks

recorded before and after the tissue has been subjected to a stretch along the x axis.

Photo-bleaching leads to after stacks that are notable shorter in the z direction than the
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(a) ICP (b) new model

Figure 11 CMU house matches with occlusion.All points from image 1 below the black dashed

line shown in (b) were removed prior to matching. The new model has achieved a very good

match for the features on and around the main roof section, while ICP has not achieved a

reasonable match. See figure 10 for the key to the symbols used.

corresponding before stacks. In addition to any stretch applied to the samples, the nature

of the experimental procedure means that the sample may also have rotated slightly and

moved in relation to the original field of view.

The tissue between the rather sparse cells is inhomogenous, causing cells at different

locations to be perturbed in different directions. The aim is to perform matching on

the cells so that bio-medical researchers can study these inhomogenous perturbations

[45]. Since the registration process also measures the size and orientation of the cells,

matching provides additional information regarding the changes to the cells themselves.

Figure 12b shows some results from an experiment in which a sample was strained by

approximately 5% along the x axis. The figure shows the matching results associated

with the example image shown in figure 12a, with manually-added annotations indicating

areas of localised consistency in the cell movements. Each point set contained 800 cells

and 10 repetitions of 400 iterations of the algorithm was used.

The priors for most variables were set as for the synthetic data, apart from the translation

expectation, mt, which was set to align the tops of the two stacks (i.e. to align the images

at the surface of the cartilage). The estimates made by the model are as follows (in order
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(a) original before image (b) cell mappings

Figure 12 Real results for cartilage strained by 5% in tension. An example original before image

is shown in (a); the matching results for that image are shown in (b). Grey, filled-in ellipses

are the cells identified in the before image. Black ellipses are those identified in the after stack,

after the estimated transformation has been reversed. The centre of each matched before cell is

marked by a dot from which emanates a line linking it to the centre of its mapped after cell. The

dashed lines are annotations indicating a region of no perturbation (the circle) and a direction

(the arrow) in which the cells are perturbed in a consistent manner.

of x, y, z): rotation angles (in degrees) 0.0005, 0.0042, −0.0019; scaling 1.0344, 0.9365,

1.0290; translation −4.3, −24.5, 3.5 pixels (each image is 512 pixels square and there

are 81 images in the before stack). The translation variables have a posterior standard

deviation of 0.17; those for the rotation and scaling are of the order of 10−3. From

these results we can see that the stretch detected by the model is about 3.4% in the

x direction (rather than the 5% estimated by the experimenter) and there is about a

6.4% compression in the y direction. Having inspected the images, we surmise that the

apparent stretch in the z direction is caused by non-linear bowing of the sample at the

top and bottom edges.
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5. Conclusions

This new model has been described in terms of point locations only. Further attributes

such as colour or shape associated with these locations are easily incorporated into the

Bayesian framework.

The computation time taken by the algorithm scales quadratically with the number

of points in Y (the smaller of the two point sets), but linearly with the number of

points in X. Performance enhancements can be gained by reducing the number of points

in Y, perhaps by random sampling to ensure that the subset is unlikely to contain

only points that are truly unmatched. As an example, 100 iterations of the (untuned)

Matlab implementation of the model running for two points sets containing 500 points

each took approximately 130 seconds on a 12 core Linux server. However, we note

that the algorithm converged before the 100 iterations were completed and stopping at

convergence would reduce the computation time. While standard ICP is much faster

(about 14 seconds on the same server), the two algorithms are not directly comparable

(for example, ICP does not allow for scaling). We draw attention to both the quality of

match and the measure of match quality provided by this model, especially where some

points are occluded.

Future work is focussed on extending this methodology to affine and non-linear transfor-

mations.
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