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We consider a homogeneous fluid of viscosity ν confined within an oblate spheroidal
cavity of arbitrary eccentricity E marked by the equatorial radius d and the polar radius
d
√
1− E2 with 0 < E < 1. The spheroidal container rotates rapidly with an angular ve-

locityΩ0 about its symmetry axis and precesses slowly with an angular velocityΩp about
an axis that is fixed in space. It is through both topographical and viscous effects that
the spheroidal container and the viscous fluid are coupled together, driving precessing
flow against viscous dissipation. The precessionally driven flow is characterized by three
dimensionless parameters: the shape parameter E , the Ekman number Ek = ν/(d2|Ω0|)
and the Poincaré number Po = ±|Ωp|/|Ω0|. We derive a time-dependent asymptotic
solution for the weakly precessing flow in the mantle frame of reference satisfying the
non-slip boundary condition and valid for a spheroidal cavity of arbitrary eccentricity
at Ek ≪ 1. No prior assumptions about the spatial-temporal structure of the precessing
flow are made in the asymptotic analysis. We also carry out direct numerical simulation
for both the weakly and the strongly precessing flow in the same frame of reference using
a finite element method that is particularly suitable for non-spherical geometry. A sat-
isfactory agreement between the asymptotic solution and direct numerical simulation is
achieved for sufficiently small Ekman and Poincaré numbers. When the nonlinear effect
is weak with |Po| ≪ 1, the precessing flow in an oblate spheroid is characterized by an
azimuthally travelling wave without having a mean azimuthal flow. Stronger nonlinear
effects with increasing |Po| produce a large-amplitude, time-independent mean azimuthal
flow that is always westward in the mantle frame of reference. Implications of the preces-
sionally driven flow for the westward motion observed in the Earth’s fluid core are also
discussed.

1. Introduction

Recent computations of the thermal and electrical conductivities of liquid iron mix-
tures at the Earth’s core conditions suggest that both the conductivities are two to three
times higher than previous estimates, which severely restricts the thermal power avail-
able for sustaining the geodynamo (Pozzo et al. 2012). This restriction reminds us of an
alternative cause for generating and maintaining the geomagnetic field: the lunar-solar
precession-driven flow in the Earth’s liquid core of oblate spheroidal shape (see, for exam-
ple, Bullard 1949; Malkus 1968). Kerswell (1996) estimated that there exists abundant
precessional energy to drive the geodynamo while Tilgner (2005) and Wu and Roberts
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(2009) showed that the precession-driven flow can generate and sustain magnetic fields.
In addition to the geodynamo, the lunar dynamo may be once driven by precession in
its liquid core Dwyer at el. (2007). It is the abundant energy and the persistent nature
of precession in an oblate spheroid that make it geophysically significant.
Over the past several decades, the problem of precessing flow in spheres or spheroids has

been extensively studied. In experimental studies of the problem, the various structures
of precession-driven flow are observed in weakly and strongly precessing systems (see, for
example, Vanyo et al. 1995; Noir et al. 2001, 2003; Goto et al. 2007). Since the rotation
axis of a fluid sphere in laboratory experiments is typically not parallel to the rotation
axis of the Earth, the resulting weakly precessing flow is recently identified in spherical
rotating laboratory experiments (Boisson et al. 2012; Triana et al. 2012). In theoretical
studies of the problem, a frame of reference rotating about the precession axis is usually
adopted and the precessing flow is assumed to be stationary and in the form of rigid-
body rotation so as to simplify the mathematical analysis (Stewartson and Roberts 1963;
Roberts and Stewartson 1965; Busse 1968). Furthermore, an oblate spheroid is usually
assumed to have small eccentricity such that its departure from spherical geometry can
be treated as a small perturbation in the analysis. A relatively simple torque-balance
approach, by taking advantage of the rigid-body-rotation assumption, is also employed
to study the precessing flow (Vanyo and Likins 1972; Noir et al. 2003), and Cébron
et al. (2010) investigated the properties of the tilt-over mode in a precessing triaxial
ellipsoid. In particular, Busse (1968) incorporated the weakly nonlinear effect within the
viscous boundary layer and established the existence of a weak differential rotation in
the precession frame. The asymptotic analysis of Zhang et al. (2010) concentrated on
the time-dependent asymptotic solution in the mantle frame of reference for a precessing
sphere, whilst Kida (2011) focused on the analysis of the conical shear layer in the
critical latitudes of a precessing sphere in the precession frame. Instabilities breaking
the antipodal symmetry of the primary flow in precessing spheres and spherical shells
with small inner cores are recently examined by Hollerbach et al. (2013); see also relevant
discussions by Lorenzani and Tilgner (2001). In numerical studies of the problem, spectral
methods based on spherical harmonic expansions are usually adopted (see, for example,
Hollerbach and Kerswell 1995; Tilgner and Busse 2001; Lorenzani and Tilgner 2001). An
interesting problem about the interaction of stratification with precession in spherical
geometry is recently examined by Wei and Tilgner (2013) using spectral methods.
The present study attempts to improve our understanding of the precession prob-

lem through (i) deriving an asymptotic solution for weakly precessing flow in an oblate
spheroidal cavity of arbitrary eccentricity and (ii) simulating both weakly and strongly
precessing flow using a finite element method that is particularly suitable for non-
spherical geometry. In our asymptotic analysis, the mantle frame of reference together
with oblate spheroidal coordinates will be adopted and, more significantly, no prior as-
sumptions about the spatial-temporal structure of the flow will be made. It is noteworthy
that an analytical study postulating that precessing flow is not only stationary but also in
the form of rigid-body rotation in the precession frame is generally easier; see the relevant
discussion by Tilgner (2007). Since nearly all the theoretical and numerical studies of ro-
tating convection and convection-driven dynamos are conducted in the mantle frame of
reference and since most geophysical observations are made in the Earth’s mantle frame,
it is desirable to adopt the mantle frame of reference in the theoretical analysis of precess-
ing flow. In this connection, it should be noted that there exists no simple transformation
between a stationary solution in the precession frame and a time-dependent solution in
the mantle frame.
The precessing spheroidal container and the viscous fluid are coupled via both topo-
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Figure 1. Geometry of a precessing oblate spheroid of arbitrary eccentricity E with equato-
rial radius d and polar radius d

√
1− E2. The spheroid rotates rapidly with an angular veloc-

ity Ω0 = Ω0ẑ around the symmetry axis z and precesses slowly with an angular velocity Ωp

that is fixed in space with |Ωp|/|Ω0| ≪ 1. The angle between Ω0 and Ωp is denoted by αp

(0 < αp 6 π/2). A schematic of the spheroidal finite element meshes used for direct numerical
simulation is also illustrated, showing a denser mesh in the vicinity of the spheroidal bounding
surface.

graphical and viscous effects, which drive a precessing flow against viscous dissipation.
There are three dimensionless parameters – the shape parameter E (eccentricity) of the
container, the Ekman number Ek and the Poincaré number Po – that characterize the
precessing flow in an oblate spheroidal cavity. In this study, we shall first derive a time-
dependent asymptotic solution of the weakly precessing flow in the mantle frame of
reference valid only for 0 < Ek ≪ 1. We shall then carry out direct numerical simu-
lation for both weakly and strongly precessing flow in the same frame of reference. By
comparing the asymptotic solution to the result of numerical simulation, we demonstrate
that a satisfactory agreement between the asymptotic solution and the numerical sim-
ulation is achieved for sufficiently small Ekman and Poincaré numbers ( 0 < |Po| ≪ 1
and 0 < Ek ≪ 1) in an oblate spheroidal cavity of arbitrary eccentricity (0 < E < 1).
At the same time, we shall reveal some interesting properties of the strongly nonlinear
precessing flow in an oblate spheroidal cavity of arbitrary eccentricity.

In what follows we begin by presenting the governing mathematical equations of the
problem in §2. The asymptotic analysis for weakly precessing flow in an oblate spheroidal
cavity of arbitrary eccentricity is discussed in §3 while the results of direct numerical
simulation for both weakly and strongly precessing flow are presented in §4. A summary
and some remarks highlighting a possible connection between the Earth’s precession and
the observed westward motion in the Earth’s fluid core are given in §5.
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2. Mathematical formulation of the problem

Consider a viscous, incompressible and homogeneous fluid of density ρ occupying an
oblate spheroidal cavity of arbitrary eccentricity E described by the equation

x2

d2
+

y2

d2
+

z2

d2(1− E2)
= 1,

where 0 6 E < 1 and the z−axis represents the symmetry axis of the oblate spheroid,
which is illustrated in Fig. 1. Cartesian coordinates (x, y, z), with the corresponding unit
vectors (x̂, ŷ, ẑ), are fixed in the spheroidal container. In order to develop the theory
of viscous boundary layers located on the bounding surface of a spheroidal cavity, it is
mathematically convenient to introduce oblate spheroidal coordinates (η, ϕ, τ), with the

corresponding unit vectors (η̂, ϕ̂, τ̂ ), which are related to rectangular Cartesian coordi-
nates (x, y, z) by

x2 = (E2 + η2)(1− τ2) cos2 ϕ,

y2 = (E2 + η2)(1− τ2) sin2 ϕ,

z2 = η2τ2.

In oblate spheroidal coordinates, the surfaces of constant η form oblate spheroids pro-
viding a set of coordinate surfaces with the foci of all the oblate spheroids being located
at

√
x2 + y2 = E and z = 0 while the surfaces of constant τ form hyperboloids offering

another set of coordinate surfaces with the foci of all the hyperboloids being also located
at

√
x2 + y2 = E and z = 0. The envelope S of the spheroidal cavity is simply given

by η =
√
1− E2. Three different coordinates will be employed: Cartesian coordinates

(x, y, z) for direct numerical simulation, cylindrical coordinates (s, ϕ, z) and spheroidal
coordinates (η, ϕ, τ) for deriving an asymptotic solution of the spheroidal precessing flow.
Note that the value of E is fixed by the envelope of a spheroidal cavity and that the limit
E → 0 represents the special case of spherical geometry.
Suppose that the spheroidal container, depicted in Fig. 1, rotates rapidly with an

angular velocity ẑΩ0 and, at the same time, precesses slowly with an angular velocity Ωp

that is fixed in space and inclined at an angle αp (0 < αp 6 π/2) to ẑ. In comparison
to spherical geometry, fluid motion in the precessing spheroid of arbitrary eccentricity
0 < E < 1 is driven through both viscous and topographic coupling between the container
and the viscous fluid. It is noteworthy that we choose the geometry of an oblate spheroid
because many planets and stars are rotating rapidly and, consequently, their shape,
distorted by the strong effect of rotation, is described by a oblate spheroid (see, for
example, Kong et al. 2010, 2013). On scaling the governing equations with the major
semi-axis d as the length scale, Ω−1

0 as the unit of time and ρd2Ω2
0 as the unit of pressure,

we obtain the dimensionless equations in the mantle frame of reference

∂u

∂t
+ u · ∇u+ 2

(
ẑ+ PoΩ̂p

)
× u = −∇P + Ek∇2u+ Por×

(
Ω̂p × ẑ

)
, (2.1)

∇ · u = 0, (2.2)

where P is the reduced pressure containing all the gradient terms and Ω̂p denotes the
non-dimensional, time-dependent precession vector given by

Ω̂p = sinαp (x̂ cos t− ŷ sin t) + ẑ cosαp, (2.3)

which gives rise to

r×
(
Ω̂p × ẑ

)
= −∇ [zs sinαp cos (ϕ+ t)]− ẑ [2s sinαp cos (ϕ+ t)] .
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In equation (2.1), u is the three-dimensional velocity field, the Ekman number, Ek =
ν/Ω0d

2, provides the measure of relative importance between the typical viscous force
and the Coriolis force, and the Poincaré number, Po = ±|Ωp|/Ω0, quantifies the strength
of the precessional forcing. Positive Po corresponds to the case of prograde precession
while Po < 0 for retrograde precession. The precessing flow on the bounding surface, S,
of the spheroidal container in the mantle frame of reference is at rest, which requires

n̂ · u = n̂× u = 0, (2.4)

where n̂ denotes the outward unit normal to the bounding surface S of the spheroid.
The last term on the right-hand side of (2.1) is known as the Poincaré force which drives
precessional flow against viscous dissipation.
When |Po| is sufficiently small (0 < |Po| ≪ 1) such that the weakly precessing flow

has a small amplitude |u| = O(ϵ) ≪ 1, (2.1) can be linearised for an arbitrary precession
angle αp by omitting the quadratic and product terms, which are u · ∇u = O(ϵ2) and
small perturbations to the Coriolis force∣∣∣PoΩ̂p × u

∣∣∣ = O(|Po|ϵ).

The nonlinear equations (2.1)-(2.2) can be then linearized to yield

∂u

∂t
+ 2ẑ× u = −∇p+ Ek∇2u− ẑ

(
2sPo sinαp eiϕ

)
ei t, (2.5)

∇ · u = 0, (2.6)

where i =
√
−1, p is a different reduced pressure and the real part of u will be taken as

a physical solution. It should be noted that, by neglecting the term PoΩ̂p × u with the
weak precession limit, the possible resonance discussed by Noir et al. (2003) and Busse
(1968) is removed. However, this resonance term can be readily included; see Section 5
for the detailed discussion.
The linear problem – defined by (2.5)-(2.6) subject to the boundary conditions (2.4)

– will be solved analytically in an oblate spheroidal cavity of arbitrary eccentricity with
0 < E < 1 for small Ekman numbers 0 < Ek ≪ 1. After deriving an asymptotic solution
for the weakly precessing flow, we shall obtain solutions to the fully nonlinear equations
(2.1)-(2.2) subject to the boundary conditions (2.4) through nonlinear direct numerical
simulation using a finite element method.

3. Asymptotic analysis in the mantle frame

3.1. Asymptotic expansion

In our asymptotic analysis, the mantle frame of reference will be adopted and no prior
assumptions about the spatial-temporal structure of the precessing flow will be made. In
all that follows, u and p are understood to mean the flow velocity and pressure seen in
the mantle frame of reference.
The asymptotic analysis is based on the following physical and mathematical observa-

tions. First, all the explicitly analytical solutions to (2.5)-(2.6) in the limits Po → 0 and
Ek → 0, which describe unforced inertial wave modes in an oblate spheroid of arbitrary
eccentricity with 0 < E < 1, are available (Zhang et al. 2004). An important unanswered
mathematical question in the theory of rotating fluids has been the completeness of in-
ertial waves or inertial modes(Greenspan 1968). Recently, Cui et al. (2013) is able to
provide the first mathematical proof for the completeness of inertial wave modes in a
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rotating annular channel by establishing the completeness relation, or Parseval’s equal-
ity, for any piecewise continuous, differentiable velocity u of an incompressible fluid. It
is reasonable to postulate, even though a rigorous mathematical proof for spherical or
spheroidal geometry does not exist in literature, that the set of the spheroidal inertial
modes is also mathematically complete. This offers the necessary framework for the con-
struction of a leading-order solution for time-dependent interior precessing flow without
making any prior assumptions, which has been successfully applied to constructing the
general asymptotic solution in a precessing circular cylinder (Liao and Zhang 2012a). In
other words, the velocity u0 and the pressure p0 for 0 < |Po| ≪ 1 at Ek = 0, because the

Poincaré forcing Por×
(
Ω̂p × ẑ

)
in the mantle frame is diurnal, can always be written

in the form

u0(η, ϕ, τ, t) =

[∑
m

∑
n

∑
k

Amnk umnk(η, ϕ, τ)

]
ei t,

p0(η, ϕ, τ, t) =

[∑
m

∑
n

∑
k

Amnk pmnk(η, ϕ, τ)

]
ei t,

where Amnk are complex coefficients to be determined, and the triple index notation
– m is the azimuthal wavenumber and n and k represent roughly the axial and radial
wavenumbers respectively – is used, and umnk and pmnk are complex and represent the
spatial part of an inertial mode in oblate spheroids satisfying

2 iσmnkumnk(η, ϕ, τ) + 2ẑ× umnk(η, ϕ, τ) +∇pmnk(η, ϕ, τ) = 0

and

∇ · umnk(η, ϕ, τ) = 0

with the boundary condition

n̂ · umnk = 0

on the bounding surface S of the spheroid. Here σmnk denotes the half-frequency of a
spheroidal inertial mode umnk with |σmnk| < 1.
Second, an asymptotic solution for 0 < |Po| ≪ 1 and 0 < Ek ≪ 1 can be regarded

as adding a small perturbation to (u0, p0) along with a thin viscous boundary layer,
forming a mathematically tractable asymptotic problem in the mantle frame of reference.
It follows that the velocity u and the pressure p for the weakly precessing flow marked
by 0 < |Po| ≪ 1 and 0 < Ek ≪ 1 can always be expressible as

u =

{[∑
mnk

Amnkumnk(η, ϕ, τ)

]
+ û(η, τ, ϕ) + ũ(η, τ, ϕ)

}
ei t, (3.1)

p =

{[∑
mnk

Amnkpmnk(η, ϕ, τ)

]
+ p̂(η, τ, ϕ) + p̃(η, τ, ϕ)

}
ei t, (3.2)

where viscous action on (u0, p0) induces a thin viscous boundary layer on S, denoted
by ũ and p̃. Furthermore, by producing a normal mass flux from, or sucking the interior
fluid into, the thin viscous boundary layer, the viscous effect drives the secondary interior
flow û and communicates to the interior fluid. Note that, apart from the mathematical
completeness of the spheroidal inertial modes umnk, no prior assumptions about the
spatial structure of a precessing flow is made in the asymptotic expansions (3.1) and
(3.2) for an oblate spheroid of arbitrary eccentricity.
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3.2. The solvability condition

Substituting (3.1) and (3.2) into (2.5), multiplying the resulting equation by u∗
mnk, the

complex conjugate of umnk, and then integrating over the spheroid, we obtain the solv-
ability condition of the problem:

i (1− 2σmnk)Amnk

∫
V
|umnk|2 dV +

∫
S
{[p∗mnk]S n̂ · û} dS

= 2Po sinαp

∫
V

(
s u∗

mnk · ẑeiϕ
)
dV, (3.3)

where
∫
V dV denotes the volume integral over the spheroid,

∫
S dS represents the surface

integral over the bounding surface S of the spheroid, the flux n̂ · û in the surface integral
is connected with the boundary flow ũ, p∗mnk denotes the complex conjugate of pmnk and
[f ]S denotes the evaluation of f at the bounding surface S and the indices, m,n and k,
take all permissible values.
A major task of our analysis is to derive an expression for all complex coefficients

Amnk by carrying out the three integrals in the solvability condition (3.3). While the first
integral on the left-hand side of (3.3) is straightforward, the volume integral on the right-
hand side of (3.3) associated with the Poincaré forcing needs careful consideration. Since
the Poincaré force, ẑ(2sPo sinαp)ei

ϕ in (2.5), is equatorially antisymmetric with respect
to the plane at z = 0 and azimuthally described by the azimuthal wavenumber m = 1,
only a subset of the spheroidal inertial modes that have the azimuthal wavenumberm = 1
with the equatorial antisymmetry can be excited by the Poincaré forcing, i.e., Amnk =
0 when m ̸= 1. A spheroidal inertial mode is said to be equatorially antisymmetric
if its pressure pmnk obeys the parity pmnk(s, z, ϕ) = −pmnk(s,−z, ϕ). The subset of
equatorially antisymmetric modes with m = 1 required in evaluating the solvability
condition (3.3) is given by

p1nk =

k∑
i=0

k−i∑
j=0

C1kijσ2i
1nk(1− σ2

1nk)
js2j+1z2i+1eiϕ, (3.4)

ŝ · u1nk = − i

2

k∑
i=0

k−i∑
j=0

C1kijσ2i
1nk(1− σ2

1nk)
j−1 (2jσ1nk + 1 + σ1nk) s

2jz2i+1eiϕ, (3.5)

ẑ · u1nk =
i

2

k∑
i=0

k−i∑
j=0

C1kijσ2i−1
1nk (1− σ2

1nk)
j(2i+ 1)s2j+1z2ieiϕ, (3.6)

ϕ̂ · u1nk =
1

2

k∑
i=0

k−i∑
j=0

C1kijσ2i
1nk(1− σ2

1nk)
j−1 (2j + 1 + σ1nk) s

2jz2i+1eiϕ, (3.7)

where k > 0, n is restricted by 1 6 n 6 (2k + 1) and

C1kij =

[
−1

(1− σ2
1nkE2)

]i+j
[2(k + i+ j) + 3]!!

2j+1(2i+ 1)!!(k − i− j)!i!j!(1 + j)!
.

The half frequencies of the spheroidal inertial modes in (3.4)–(3.7), σ1nk, are solutions of

0 =
k∑

j=0

(−1)j
[2(2k + 2− j)]!

[2(k − j) + 1]!j!(2k + 2− j)!

×
[
1− (1− σ1nk)[2(k − j) + 1]

σ1nk(1− E2)

] [
(1− E2)σ2

1nk

(1− σ2
1nkE2)

]k−j

. (3.8)
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For any given E and k, there exist (2k+1) different real solutions for (3.8) corresponding
to the (2k + 1) different inertial modes (Zhang et al. 2004), which can be arranged in
ascending order,

0 < |σ11k| < |σ12k| < |σ13k|, . . . , < |σ1nk| < ...,

where the index n for σ1nk denotes the n-th smallest root of (3.8) for given k.
Upon using the explicit expressions (3.5)–(3.7), the volume integration on the right-

hand side of (3.3) can be readily performed to yield

2Po sinαp

∫
V

(
u∗
1nk · ẑ seiϕ

)
dV = 4πPo(1− E2)1/2 sinαpInk,

where Ink denotes a two-dimensional summation for given σ1nk and E ,

Ink =
k∑

i=0

k−i∑
j=0

(−1)i+j

[
σ2
1nk(1− E2)

(1− σ2
1nkE2)

]i

×
[

(1− σ2
1nk)

(1− σ2
1nkE2)

]j [
[2(k + i+ j) + 3]!!

(2i+ 2j + 5)!!(k − i− j)!i!j!

]
, (3.9)

with k > 0 and 1 6 n 6 (2k + 1). In order to determine coefficients A1nk for all possible
n and k, we have to evaluate the summation Ink for all permissible n and k. When k = 0
and n = 1, a direct summation of (3.9) together with σ110 = 1/(2− E2) gives rise to

I10 =
1

5
.

When k = 1, a direct summation of (3.9) can be also easily carried out, which yields

In1 =
1∑

i=0

1−i∑
j=0

(−1)i+j

[
σ2i
1n1(1− σ2

1n1)
j

(1− σ2
1n1E2)i+j

] [
[2(k + i+ j) + 3]!!(1− E2)i

(2i+ 2j + 5)!!(k − i− j)!i!j!

]
= 0

for all permissible σ1n1. When k > 2, the two indices (i, j) in the summation (3.9) are so
intimately entangled that direct summation becomes unmanageable. It can be, however,
proven that Ink ≡ 0 for all k > 2. A key step in the proof is to establish a recurrence
relationship that links the large k summations of (3.9) with the small k ones, like for
k = 1, that can be then evaluated directly. For this purpose, we introduce one additional
index, M , by considering a new summation

PM
nk =

k−M∑
i=0

k−i−M∑
j=0

(−1)i+j

[
σ2
1nk(1− E2)

1− σ2
1nkE2

]i (
1− σ2

1nk

1− σ2
1nkE2

)j

×
[

[2(k + i+ j) + 3]!!

[2(i+ j +M) + 5]!!(k − i− j −M)!i!j!

]
, (3.10)

where k > 2 with (k −M) > 1. Obviously,

Ink = P0
nk at M = 0.

Let

Xnk =
σ2
1nk(1− E2)

1− σ2
1nkE2

, 1−Xnk =
1− σ2

1nk

1− σ2
1nkE2

.

Then

PM
nk =

k−M∑
i=0

k−i−M∑
j=0

(−1)i+jXi
nk (1−Xnk)

j
[2(k + i+ j) + 3]!!

[2(i+ j +M) + 5]!!(k − i− j −M)!i!j!
. (3.11)
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For any M > 0 and k > 2 with 0 6 M 6 (k − 1), (3.11) can be rewritten in the form

PM
nk =

[
2(M + 1− k)

(k −M)

]

×
k−(M+1)∑

i=0

k−i−(M+1)∑
j=0

(−1)i+jXi
nk (1−Xnk)

j
[2(k + i+ j) + 3]!!

[2(i+ j +M + 1) + 5]!![k − i− j − (M + 1)]!i!j!
,

suggesting that there exists a recurrence relationship between PM
nk and PM+1

nk

PM
nk =

[
2(M + 1− k)

k −M

]
PM+1
nk .

This means that

P0
nk =

[
−2(k − 1)

k

]
P1
nk = · · · =

[
(−2)k−1(k − 1)!

k!

]
Pk−1
nk

or

Ink = P0
nk =

[
(−2)k−1

k

]
Pk−1
nk . (3.12)

At M = k − 1, the summation (3.10) can be easily carried out:

Pk−1
nk =

1∑
i=0

1−i∑
j=0

(−1)i+j

[
σ2
1nk(1− E2)

1− σ2
1nkE2

]i (
1− σ2

1nk

1− σ2
1nkE2

)j

×
[

1

(1− i− j)!i!j!

]
≡ 0.

By virtue of the recurrence relationship (3.12) and the summation (3.10) at M = k − 1,
we conclude that

Ink ≡ 0 for k > 1,

implying that coefficients A1nk are

A110 ̸= 0 but A1nk = 0 when k > 1, 1 6 n 6 (2k + 1).

The solvability condition (3.3) then reduces to

−
(

i E2

2− E2

)
A110

∫
V
|u110|2 dV +

∫
S
{[p∗110]S n̂ · û} dS

=

(
4π iPo sinαp

5

)
(2− E2)

√
1− E2, (3.13)

where, upon using (3.5)–(3.7) with n = 1, k = 0 and σ110 = 1/(2− E2), we have∫
V
|u110|2 dV =

3π(1− E2)3

10
√
1− E2

.

It is worth mentioning that the boundary-layer flux (n̂ · û) on the left-hand side of (3.13)
is a function of the unknown coefficient A110 in connection with the viscous boundary
layer ũ.

3.3. Asymptotic solution

Since the boundary layer flow ũ on the bounding surface S, which produces the flux
(n̂ · û)S in (3.13), is required, we now adopt spheroidal polar coordinates (η, τ, ϕ) which
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is mathematically more convenient for performing the boundary-layer analysis in an
oblate spheroid of arbitrary eccentricity. In oblate spheroidal coordinates, the inertial
mode with m = 1 needed in the solvability condition (3.13) is of the form

p110(η, τ, ϕ) =
3

2
(η2 + E2)1/2(1− τ2)1/2ητeiϕ, (3.14)

η̂ · u110(η, τ, ϕ) = i

[
3(2− E2)

4(1− E2)

]
τE2

√
1− τ2

(
1− E2 − η2

)√
η2 + τ2E2

eiϕ, (3.15)

ϕ̂ · u110(η, τ, ϕ) =

[
3(2− E2)

4(1− E2)

]
ητeiϕ, (3.16)

τ̂ · u110(η, τ, ϕ) = i

[
3(2− E2)

4(1− E2)

]
η
√
η2 + E2

(
1− E2 + τ2E2

)√
η2 + τ2E2

eiϕ, (3.17)

which is valid for an oblate spheroid with 0 < E < 1.
The viscous boundary-layer flow (ũ, p̃) on the bounding surface S in the asymptotic

expansions (3.1) and (3.2) is described by

i ũ+ 2ẑ× ũ+ n̂ (n̂ ·∇p̃) =
∂2ũ

∂ξ2
,

where a boundary-layer stretched coordinate,

ξ =

[
(1− E2)1/2 − η

]
√
Ek

,

is introduced: ξ = 0 at the bounding surface S while ξ → ∞ defines the edge of the
thin viscous boundary layer for 0 < Ek ≪ 1. Decompose the boundary flow ũ into the
tangential and normal components,

ũ = ũtang + n̂ (n̂ · ũ) .

By applying the operators n̂× and n̂×n̂× onto the above second-order differential equa-
tion and, then, combining the two resulting equations to form a single equation for the
tangential component ũtang of ũ, we obtain a fourth-order differential equation(

∂2

∂ξ2
− i

)2

ũtang +

(
2τ√

1− E2 + E2τ2

)2

ũtang = 0, (3.18)

subject to the four boundary conditions

(ũtang)ξ=0 = −3(2− E2)A110

4(1− E2)1/2

[
i(1− E2 + τ2E2)1/2τ̂ + τ ϕ̂

]
eiϕ,

(ũtang)ξ=∞ = 0,(
∂2ũtang

∂ξ2

)
ξ=0

=
3(2− E2)A110

4(1− E2)1/2

×
{[

(1− E2 + τ2E2)1/2 − 2τ2

(1− E2 + τ2E2)1/2

]
τ̂ + i τ ϕ̂

}
eiϕ,(

∂2ũtang

∂ξ2

)
ξ=∞

= 0.

A straightforward analysis shows that the tangential component ũtang of ũ satisfying
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E (Ir)num (Ir)asym (Ii)num (Ii)asym

0.01 −0.1949 −0.1949 −1.9763 −1.9763
0.05 −0.1937 −0.1937 −1.9729 −1.9724
0.1 −0.1899 −0.1899 −1.9622 −1.9603
0.2 −0.1755 −0.1748 −1.9189 −1.9117
0.3 −0.1535 −0.1495 −1.8448 −1.8306
0.4 −0.1273 −0.1142 −1.7375 −1.7171

Table 1. Several numerical (with the subscript num and computed from numerical integration)
and asymptotic (with the subscript asym and computed from the corresponding asymptotic
expression) values for Ir and Ii with different values of E .

both (3.18) and the four conditions is

ũtang =
i 3(2− E2)A110

8(1− E2)1/2

[ (
τ −

√
1− E2 + E2τ2

)(
τ̂ + i ϕ̂

)
eγ

+ξ

+
(
τ +

√
1− E2 + E2τ2

)(
−τ̂ + i ϕ̂

)
eγ

−ξ
]
eiϕ, (3.19)

where γ± is a function of τ and E ,

γ+ = −
√
2

2

[
1 +

i(
√
1− E2 + E2τ2 + 2τ)∣∣√1− E2 + E2τ2 + 2τ

∣∣
] ∣∣√1− E2 + E2τ2 + 2τ

∣∣1/2
(1− E2 + E2τ2)1/4

,

γ− = −
√
2

2

[
1 +

i(
√
1− E2 + E2τ2 − 2τ)∣∣√1− E2 + E2τ2 − 2τ

∣∣
] ∣∣√1− E2 + E2τ2 − 2τ

∣∣1/2
(1− E2 + E2τ2)1/4

.

Evidently, the viscous boundary layer breaks down at the critical spheroidal latitudes

τc = ±
[
(1− E2)/(4− E2)

]1/2
, where the thickness of the boundary layer may change

from O(Ek1/2) to O(Ek2/5) (Roberts and Stewartson 1965). However, this is unlikely to
significantly affect the leading-order solution at an asymptotically small Ek because the
total influx from the singular region is small (Roberts and Stewartson 1965; Busse 1968;
Hollerbach and Kerswell 1995; Tilgner and Busse 2001).

With the availability of the tangential component of ũ, the mass flux at the outer edge
of the boundary layer (n̂ · û)S in (3.13), which links the boundary-layer solution to the
secondary interior flow, can derived from the boundary-layer mass conservation:

(n̂ · û)S =

√
Ek√

1− E2 + E2τ2

∫ ∞

0

{[
i(1− E2 + E2τ2)

(1− τ2)1/2
ϕ̂ · ũtang

]
+

∂

∂τ

[√
(1− E2 + E2τ2)(1− τ2) τ̂ · ũtang

]}
eiϕ dξ. (3.20)

This expression is needed for evaluating the surface integral in the solvability condition
(3.13) which determines the amplitude A110:

− i 3πA110E2(2− E2)2

10(1− E2)1/2
+

9 iπ(2− E2)
√
Ek A110

4
√
2

(Ir + i Ii)

=
i 4πPo sinαp

5

(
2− E2

) (
1− E2

)1/2
, (3.21)
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where Ir and Ii denote the two integrals

Ir =

∫ +1

−1

{(
1− E2 + E2τ2

)3/4
×

[(
−τ +

√
1− E2 + E2τ2

) (
1− 2τ2 + τ

√
1− E2 + E2τ2

)
|2τ +

√
1− E2 + E2τ2|1/2

]}
dτ,

Ii =
∫ +1

−1

{(
1− 2τ2 + τ

√
1− E2 + E2τ2

)
×

(
2τ +

√
1− E2 + E2τ2

) (
τ −

√
1− E2 + E2τ2

) (
1− E2 + E2τ2

)3/4
|τ +

√
1− E2 + E2τ2|3/2

}
dτ.

Solving (3.21) for A110 yields

A110 =
16
√
2Po sinαp (1− E2)

45
√
Ek (Ir + i Ii)

√
1− E2 − 6

√
2(2− E2)E2

. (3.22)

In the expansion (3.1), setting Amnk = 0 for m ̸= 1 and A1nk = 0 for n ̸= 1 and
k ̸= 0 and inserting the expressions for A110,u110 and ũtang result in the leading-order
asymptotic solution for the weakly precessing flow

u(η, τ, ϕ, t) =

[
i 4
√
2Po sinαp (2− E2)

15
√
Ek (Ir + i Ii)

√
1− E2 − 2

√
2E2(2− E2)

]

×
{[τE2

√
(1− τ2)

(
1− E2 − η2

)√
η2 + τ2E2

η̂ − i (ητ) ϕ̂+
η
√
η2 + E2

(
1− E2 + τ2E2

)√
η2 + τ2E2

τ̂
]

+
(1− E2)1/2

2

[ (
τ −

√
1− E2 + E2τ2

)(
τ̂ + i ϕ̂

)
eγ

+ξ

+
(
τ +

√
1− E2 + E2τ2

)(
−τ̂ + i ϕ̂

)
eγ

−ξ
]}

ei(ϕ+t), (3.23)

which satisfies the no-slip boundary condition (2.4) and is valid for an oblate spheroid of
arbitrary eccentricity with 0 < E < 1 and arbitrary precession angle with 0 < αp < π/2.
The corresponding kinetic energy density Ekin neglecting the small contribution from the
viscous boundary layer is

Ekin =
1

2V

∫
V
|u|2 dV

=
144(Po sinαp)

2(1− E2)(2− E2)3

5

{[
45Ir

√
Ek(1− E2)− 6

√
2 E2(2− E2)

]2
+ 2025(1− E2)I2

i Ek

} , (3.24)

which measures the typical amplitude of a precessing flow and can be used to compare
with the result of direct numerical simulation.
Though both the classical solution of Poincaré (1910) (the Poincaré flow) and our

asymptotic solution (3.23) are valid for a spheroid of arbitrary eccentricity, there are at
least four essential differences between them: (i) (3.23) satisfies the non-slip boundary
condition while the Poincaré solution obeys only the inviscid condition; (ii) the amplitude
of the Poincaré flow depends on Po and E but the amplitude of (3.23) is a function of
Ek ,Po and E ; (iii) the limit E → 0 in the Poincaré solution is singular while (3.23) is
valid for 0 6 E < 1 and, moreover, the limit E → 0 gives rise to the spherical precessing
flow (Zhang et al. 2010); (iv) the Poincaré solution is, since the spheroidal container
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is viscously uncoupled from the fluid, non-unique (Wu and Roberts 2009) while this
non-uniqueness is removed by the effect of viscosity in (3.23).
Unfortunately, both the integrals, Ir and Ii in the expressions (3.23) and (3.24), have to

be evaluated, in general, via a numerical method. When E is moderately small, however,
an asymptotic expression for Ir or Ii can be obtained. Note that a careful manipulation is
required in evaluating Ir and Ii because there exist two critical values of τc at which the
boundary-layer solution breaks down. For an oblate spheroid with small E , the integrals
Ir and Ii can be evaluated approximately on the basis of expansion in E2, which gives

Ir = − 2

35

(
19− 9

√
3
)
+ E2

[
2

385

(
1669

9
− 51

√
3

)]
+O(E4),

Ii = − 2

35

(
19 + 9

√
3
)
+ E2

[
4

77

(
47

9
+ 15

√
3

)]
+O(E4).

These provide a reasonably accurate approximation to Ir and Ii for moderate small
values of E . For example, the numerical integration at E = 0.25 gives (Ir)num = −0.1653
while the asymptotic formula yields (Ir)asym = −0.1634; the numerical integration of Ii
at E = 0.25 gives (Ii)num = −1.886 while the asymptotic formula produces (Ii)asym =
−1.875. More examples of both the numerical and asymptotic values for Ir and Ii are
listed in Table 1. Integrability of the two singular integrals Ir and Ii in a way reflects
the fact that the total influx from the singular regions of the boundary layer is small.
With the above expressions for Ir and Ii, the asymptotic solution of a weakly precess-

ing flow in slightly flattened oblate spheroids can be written in the explicitly analytical
form

u =
i 4
√
2Po sinαp (2− E2)

15
√
Ek

√
1− E2 [(−0.195 + 0.504E2) + i (−1.98 + 1.62E2)]− 2

√
2E2(2− E2)

×
{[τE2

√
(1− τ2)

(
1− E2 − η2

)√
η2 + τ2E2

η̂ − i (ητ) ϕ̂+
i η
√
η2 + E2

(
1− E2 + τ2E2

)√
η2 + τ2E2

τ̂
]

+
(1− E2)1/2

2

[ (
τ −

√
1− E2 + E2τ2

)(
τ̂ + i ϕ̂

)
eγ

+ξ

+
(
τ +

√
1− E2 + E2τ2

)(
−τ̂ + i ϕ̂

)
eγ

−ξ
]}

ei(ϕ+t). (3.25)

The corresponding kinetic energy density Ekin becomes

Ekin =
144(Po sinαp)

2(1− E2)(2− E2)3

5

{[
(−88.942 + 72.942E2)

√
(1− E2)Ek

]2
+

[
(−8.7725 + 22.701E2)

√
Ek(1− E2)− 6

√
2 E2(2− E2)

]2 }−1

, (3.26)

valid for an oblate spheroid with a moderately small value of E (see Table 1). A possible
transformation between the asymptotic solution of Busse (1968) obtained in the preces-
sion frame for E ≪ 1 to our asymptotic solution (3.25) in the mantle frame is discussed
in §5.

4. Direct numerical simulation

The primary objectives of direct numerical simulation, which is not restricted by 0 <
|Po| ≪ 1 and 0 < Ek ≪ 1, are twofold: (i) to validate the asymptotic solutions (3.23)
and (3.24) that are valid only for the weakly precessing flow at Ek ≪ 1 and (ii) to reveal
the key characteristics of the strongly precessing flow for an oblate spheroid of arbitrary
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Figure 2. Kinetic energies, Ekin, of the precessing flows for Ek = 10−4 plotted as a function of
|Po| at two different values of E (E = 0.1 and E = 0.6). The solid lines represent the asymptotic
solutions computed from the expression (3.24) while the circles show the results obtained from
fully nonlinear numerical simulation.

eccentricity. Nonlinear numerical simulation concentrates on the cases with 0 < Ek ≪ 1
and moderate values of |Po| such that direct comparison between the asymptotic and
numerical solutions can be readily made and nonlinear effects on the precessing flow can
be clearly illustrated.
Local numerical methods like finite element methods are particularly suitable for an

oblate spheroid of arbitrary eccentricity where the standard spectral method would be
obviously inconvenient. For the sake of completeness, we shall briefly discuss the finite
element method which is employed in simulating precession-driven flow in spheroidal
cavities; the details of the numerical method can be found in Chan et al. (2010). A three-
dimensional tetrahedralization of the spheroidal cavity produces a finite element mesh
that does not have pole or central numerical singularities, and the three-dimensional mesh
is flexible enough to construct not only an oblate spheroid of arbitrary eccentricity but
also more nodes in the vicinity of its bounding surface in order to resolve the thin viscous
boundary layer. A sketch of the finite element mesh for a spheroidal cavity with E = 0.5
is illustrated in Fig. 1. In our numerical simulation, we typically use a finite element
mesh of nearly 106 nodes with about 3×106 unknowns. A mixed finite element of Hood-
Taylor type is adopted: in each tetrahedral element, a piecewise quadratic polynomial is
employed to approximate the velocity u while a piecewise linear polynomial is used to
approximate the pressure p.
After making the tetrahedralization of the whole spheroidal cavity, we construct the

temporal discretization of the numerical precession model. Let Tf be a fixed final time
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Ωp

Ω0

Ωf

αp βf

Figure 3. Sketch of the three vectors describing a precessing flow in the mantle frame: Ω0 is
at the symmetry axis and independent of t, Ωp is the time-dependent precession vector inclined
at an angle αp (0 < αp 6 π/2) to Ω0 described by the expression (2.3), and Ωf represents
the rotation vector of fluid motion that moves retrogradely on a cone (indicated by the dashed
circle) inclined at an angle βf (0 < βf 6 π/2) to Ω0.

of a numerical simulation. We divide the time interval [0, Tf ] into M equally spaced
subintervals using the following nodal points

0 = t0 < t1 < t2 < . . . < tM = Tf ,

where tn = n∆t for n = 0, 1, . . . ,M . Let u(r, t) be a function continuous with respect
to t. We shall denote un(r) = u(r, tn) for n = 0, 1, . . . ,M . An implicit time stepping
scheme is then employed for the time advancement of integration in which we adopt a
second-order backward differentiation formula for the time derivative(

∂u

∂t

)n+1

=
3un+1 − 4un + un−1

2∆t
+O(∆t2)

while the nonlinear term u · ∇u at t = tn+1 is approximated by the implicit formula

un+1 · ∇un+1 = (2un − un−1) · ∇un+1 +O(∆t2).

An implicit temporal discretization of the full equations (2.1)–(2.2) produces

3un+1 − 4un + un−1

2∆t
+ (2un − un−1) · ∇un+1 + 2

(
ẑ+ Ω̂n+1

p

)
× un+1

= −∇Pn+1 + E∇2un+1 + Po
[
r×

(
Ω̂n+1

p × ẑ
)]

, (4.1)

∇ · un+1 = 0, (4.2)

which are solved, starting from an arbitrary initial condition, to find un+1, Pn+1 for given
un and Pn on modern parallel computers. Note that the velocity un+1 and pressure Pn+1
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Figure 4. Kinetic energy Ekin of the precessionally driven flows for several different values of
Po plotted as a function of t: (a) for E = 0.1, E = 10−4 at αp = 23.5o and (b) for E = 0.6,
E = 10−4 at αp = 23.5o.

are solved together as a saddle point problem (Chan et al. 2010). Although a fixed time-
step approach is adopted in the current precession model, a variable time-step scheme
can be readily implemented. The implicit scheme allows us to use a relatively large time-
step ∆t ranging from 10−3 to 10−1 in our simulation. No spatial symmetries with respect
to the equator or a meridian plane are imposed on our fully three-dimensional nonlinear
numerical simulation. It is worth mentioning that our simulation becomes quite expensive
when both Ek and E are small such that the viscous boundary layer plays an active
role: it usually takes about O(Ek−1/2) dimensionless time units to reach the nonlinear
equilibrium state of a precessing flow starting from an arbitrary initial condition. In a
way, very expensive computation at small Ek and E signals that the coupling between
the spheroidal container and the viscous fluid becomes viscously predominant.
A satisfactory quantitative agreement, when Ek 6 10−4, is achieved between the ana-

lytical expressions (3.23)–(3.24) and nonlinear direct numerical simulation for 0 < E < 1
when |Po| ≪ 1. Both the asymptotic expression (3.24) and the result of nonlinear nu-
merical simulation at E = 10−4 are presented in Figure 2, showing the kinetic energies
Ekin of the precessing flows as a function of |Po| at two different values of eccentricity,
E = 0.1 and E = 0.6. It is shown that the asymptotic solution provides an accurate ap-
proximation for the precessing flow in an oblate spheroid of arbitrary eccentricity when
|Po| ≪ 1 and Ek ≪ 1.
An important question is how to illustrate, and thus to help understand, the spatial

structure of a time-dependent, nonlinear numerical solution in the mantle frame of refer-
ence. It is found that the primary features of a precessing flow in an oblate spheroid are
largely characterized by the three vectors – the basic rotation vector Ω0, the precession
vector Ωp and the rotation vector Ωf of fluid motion – which are depicted in Figure 3.
The direction of Ω0 is fixed at the symmetry axis and independent of t in the mantle
frame, the direction of Ωp inclined at an angle αp (0 < αp 6 π/2) to Ω0 varies with t in
the way described by the expression (2.3), and the direction of Ωf inclined at an angle
βf (0 < βf 6 π/2) to Ω0 is time-dependent and moves retrogradely on a cone (which is
indicated by the dashed circle attached to the vector Ωf in Figure 3) with an angle βf

to Ω0. Our discussion will center on the size of the angle βf and its connection with an
azimuthal mean flow.
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(a) (b)

(c) (d)

Figure 5. Isosurface of the azimuthal flow together with the position of the three vectors –
Ω0, Ωp and Ωf – obtained with E = 0.1, E = 10−4 and αp = 23.5o: (a) for Po = −0.01 with

βf = 80o and (b) for Po = −0.2 with βf = 46o. The corresponding contours of ϕ̂ · u in a
meridional plane: (c) for Po = −0.01 and (d) for Po = −0.2. Blue colour of the isosurface in
(a,b) indicates retrogradely azimuthal flow with respect to the vector Ωf . In (c,d), solid contours
denote flow into the paper while dashed contours are for flow out of the paper.

For a time-dependent numerical solution obtained in the mantle frame of reference,
the size of the angle βf can be approximately determined by transforming the numerical
solutions at various instants from the computational coordinate system based on the
vector Ω0 to a coordinate system that defines the vector Ωf . The calculation for deter-
mining the angle βf (or Ωf ) is not straightforward, involving an iterative process. Let
cartesian coordinates (x′, y′, z′), with the unit vectors (x̂′, ŷ′, ẑ′), be another cartesian
coordinates with ẑ′ being parallel to Ωf . For a given Ωf , we can transfer the numerical
solution u(x, y, z, t) in the coordinates (x, y, z) at any instant t to u′(x′, y′, z′, t) in the
coordinates (x′, y′, z′) and, then, compute the quantity Q defined as

Q(Ωf ) =

∫
V |ẑ′ · u′(x′, y′, z′, t)|2 dV∫

V |u(x, y, z, t)|2 dV
.

Obviously, it is the position of Ωf that determines the size of Q. The vector Ωf is
determined, through an iterative process, such that Q reaches its minimum which is
typically between 0.1 and 0.2 for the nonlinear precessing solutions reported in this
paper. Note that the vector Ωf obtained in this way is global and dependent only on
time as illustrated in Figure 3. Our extensive calculations suggest that the size of βf

strongly depends on the nonlinearity (the size of |Po|) of a precessing flow. In the limit
Po → 0, we always have Ωf · Ω0 → 0 at any instant, i.e., βf → 90o. This is because,



18 K. Zhang, K. Chan and X. Liao

(a) (b)

(c) (d)

Figure 6. Isosurface of the azimuthal flow together with the position of the three vectors – Ω0,
Ωp and Ωf – obtained with E = 0.6 and αp = 23.5o: (a) for Po = −0.01 with βf = 89o and (b)

for Po = −0.2 with βf = 35o. The corresponding contours of ϕ̂ ·u in a meridional plane: (c) for
Po = −0.01 and (d) for Po = −0.2.

except for within the thin boundary layer, Ω0 · (∇× u) = 0 where u is given by (3.23)
and ∇×u is always perpendicular to Ω0, independent of the spatial variables and, hence,
global. In consequence, the mean azimuthal flow U in the mantle frame, which is defined
as

U(s, z) =
1

2π

∫ 2π

0

[
1

2π

∫ 2π

0

ϕ̂ · u(s, ϕ, z, t) dϕ
]
dt, (4.3)

always vanishes, i.e., U → 0 when Po → 0. At any fixed instant, the interior part of the
expression (3.23), which is valid for |Po| ≪ 1 and Ek ≪ 1, describes fluid motion in the
form of rigid-body rotation whose axis Ωf lies in the equatorial plane with Ωf ·Ω0 → 0.
When the nonlinear effect becomes stronger with increasing |Po|, the most significant

change is that the direction of Ωf moves towards Ω0 with the angle βf gradually decreas-
ing from 90o to a smaller value whilst the amplitude of the precessing flow may become
time-dependent. Figure 4 shows kinetic energies Ekin as a function of t for several different
values of Po at fixed E = 0.1 (Figure 4(a)) and E = 0.6 (Figure 4(b)) with E = 10−4 and
αp = 23.5o. In Figure 4(b), the special feature that Ekin(Po = −0.2) > Ekin(Po = −0.5)
is likely to be caused by the resonance associated with Po < 0, which was discussed by
Busse (1968) and Noir et al. (2003) [see also (5.10) in Section 5]. It is interesting to notice
that the variation of the strongly nonlinear flows shown in Figure 4 is much slower than
the period of the main rotation. In order to reveal the spatial structure of the nonlinear
precessing flow as well as the size of the angle βf , we also depict (i) a three-dimensional
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isosurface of the azimuthal flow with respect to the vector Ωf and (ii) contours of the
azimuthal flow in a meridional plane. Displayed in Figure 5(a) is an isosurface of the az-
imuthal flow, along with the three characteristic vectorsΩ0, Ωp and Ωf , for the nonlinear
precessionally driven flow at an instant obtained with E = 0.1, E = 10−4,Po = −0.01
and αp = 23.5o. The corresponding contours of the component uϕ at that instant is
illustrated in Figure 5(c). For the weakly precessing flow at |Po| = 0.01, the angle βf

is estimated to be about βf = 80o. When |Po| increases to 0.2, βf decreases to about
βf = 46o which is shown in Figure 5(b) and Figure 5(d). It is worth mentioning that,
although the kinetic energies of the precessing flow at |Po| = 0.2 become time-dependent,
the size of the angle βf remains largely unchanged at different times.

When the nonlinear effect becomes stronger with increasing |Po|, another change is
caused by instabilities of the primary flow which are signaled by irregular variations of
the kinetic energy shown in Figure 4(a). To identify the precise nature of instabilities
would be a difficult task as discussed by Lorenzani and Tilgner (2001, 2003). There may
exist at least three different instabilities: (i) an elliptical instability associated with the
elliptical shape of bulk streamlines (Kerswell 1993); (ii) an instability originating from
the interior shear caused by large deviations of the precessing flow from the uniform
vorticity (Malkus 1968); and (iii) an instability due to strong shears in the thin Ekman
boundary layer on the bounding surface of the container Lorenzani and Tilgner (2001).
Our computational results, as suggested by Figures 5 and 6, seem to point to the third
instability – which is driven by strong shears in the vicinity of the viscous boundary layer
– as a possible mechanism. It should be pointed out that instabilities in the spheroidal
precession problem are, by comparison, less physically significant than those taking place
in the problem of thermal convection. This is because an instability in convection usually
leads to a totally different flow marked by the new spatial structure while an instability
in spheroidal precession only slightly modifies the spatial structure of the primary flow,
which is clearly indicated in Figures 5 and 6. A primary nonlinear effect in moderate
nonlinear regimes is to reduce the size of the angle βf without dramatically changing the
pattern of precessing flow. This is why our focus is placed on the size of the angle βf .

The nonlinear behaviors remain largely similar for more flattened oblate spheroids.
An example of the nonlinear precessing flow for E = 0.6 is shown in Figure 6. For the
weakly precessing flow at Po = −0.01, the angle βf is estimated to be about 89o which
is illustrated in Figures 6(a) and 6(c). It decreases to βf ≈ 35o ( Figures 6(b) and 6(d) )
when |Po| increases from 0.01 to 0.2. Although the kinetic energies Ekin of the nonlinear
precessing flow, as shown in Figure 4, may become time-dependent when |Po| becomes
sufficiently large, a detailed examination indicates that the main global structure of the
nonlinear precessing flow is always approximately described by a time-dependent vector
Ωf moving along the cone of an angle βf (depicted in Figure 3) whose size is primarily
determined by the size of |Po| at Ek ≪ 1.

It is the size of the angle βf that determines the amplitude of the mean azimuthal
flow U defined by equation (4.3). When Ωf · Ω0 ≈ 0 at 0 < |Po| ≪ 1, there exists no
significant projection of Ωf onto the direction of Ω0 and, consequently, the azimuthal
mean flow U is nearly zero. As the direction of Ωf for a nonlinear precessing flow shifts
towards Ω0 as |Po| increases, a substantial projection onto the direction of Ω0 results in
a substantial mean flow U . The profiles of the mean flow U , which is time-independent
and always westward, are shown in Figure 7 for two different cases with E = 0.1 and
E = 0.6 for αp = 23.5o and Po = −0.2 at E = 10−4. In both the cases, by comparing
to the differential rotation discussed by Busse (1968), the mean flow U in Figure 7 is
westward everywhere, does not seem to exhibit singular behaviors at the critical latitudes
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(a) (b)

Figure 7. Contours of the mean azimuthal flow U for αp = 23.5o, Po = −0.2 and E = 10−4:
(a) for E = 0.1 and (b) for E = 0.6 . The mean flow U represents the westward motion of fluid
relative to the spheroidal container.

and has an amplitude of the same order as that of the leading-order precessing flow, i.e.,
U = O(cosβf |u|).
The mechanism of generating a mean azimuthal flow U in precessing spheroids is funda-

mentally different from that in spherical rotating convection. For nonlinear convection in
spheres or spherical shells, it is the nonlinear interaction of spiralling convective rolls with
amplitude |u| = O(ϵ) that, via the Reynolds stresses, generates the mean flow marked
by the amplitude U = O(ϵ2) (Zhang 1992). More significantly, the mean azimuthal flow
U generated by this mechanism is distinctly marked by having both eastward and west-
ward directions (see, for example, Liao and Zhang 2012b). For nonlinear precession in
oblate spheroids, the mean azimuthal flow U is produced by changing the orientation
of the vector Ωf for a precessing flow with amplitude |u| = O(ϵ). In consequence, the
mean azimuthal flow U must be westward everywhere and would be of the same order
as that of the precessing flow, U = O(ϵ), if the angle βf is moderate. Furthermore, our
computation suggests that the mean flow generated by this mechanism, driven by either
prograde or retrograde precession, is distinctly characterized by having only westward
direction.

5. Summary and remarks

We have studied, through both asymptotic analysis and direct numerical simulation,
precessionally driven flows confined in an oblate spheroidal cavity of arbitrary eccen-
tricity. Without making prior assumptions about the spatial-temporal structure of the
flow, we have derived a time-dependent asymptotic solution (3.23) in the mantle frame
of reference satisfying the non-slip boundary condition and valid for an oblate spheroidal
cavity of arbitrary eccentricity. Fully nonlinear numerical simulation using a finite ele-
ment method shows a satisfactory agreement between the asymptotic solution and the
numerical simulation when 0 < Ek ≪ 1 and 0 < |Po| ≪ 1. It is found that, when
the nonlinear effect becomes strong with increasing |Po|, the vector Ωf moves towards
Ω0 with the size of the angle βf gradually decreasing from nearly 90o to as small as
about 35o. The substantial change of the orientation of Ωf results in a large-amplitude,
time-independent azimuthal mean flow in the form of westward fluid motion. While the
nonlinear effect in thermal convection in spheres can generate a mean azimuthal flow
marked by both eastward and westward directions, the azimuthal mean flow U produced
by precession in oblate spheroids is always westward, which is clearly shown in Figure 7.
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(a) (b)

Figure 8. (a) Isosurface of the azimuthal flow together with the position of the three vectors,
Ω0, Ωp and Ωf , obtained for E = 0.6,Ek = 10−4,Po = −0.1 and αp = 90o with βf ≈ 45o, and

(b) the corresponding contours of ϕ̂ · u in a meridional plane.

We have concentrated on the cases with αp = 23.5o and Po < 0 in our discussion. An
extensive simulation with different sizes of αp was also performed using both positive and
negative values of Po at Ek ≪ 1, showing a largely similar feature to that depicted in
Figures 5 and Figure 6. For example, the positions of the three vectors, Ω0, Ωp and Ωf ,

along with the contours of ϕ̂ ·u in a meridional plane, are shown in Figure 8 for αp = 90o

with E = 0.6 and Po = −0.1 in which case the angle βf is approximately about 45o.
Displayed in Figure 9 is a summary of the angle βf as a function of Po for two different
eccentricities, E = 0.1 and E = 0.6, at Ek = 10−4. For E = 0.1, the minimum size of βf is
about 46o when Po ≈ −0.23 while the minimum βf for E = 0.6 reaches about 25o when
Po ≈ −0.17.

An important unanswered question is concerned with (i) the precise mechanism that
determines the size of the angle βf and (ii) the minimum βf that can be attained in
precessing spheroids at Ek ≪ 1. Evidently, the nonlinear effect within the spheroidal
viscous boundary layer is likely to play a key role. Understanding the precise mechanism
and, then, determining the minimum βf for given E at Ek ≪ 1 would require the asymp-
totic analysis of fully nonlinear spheroidal boundary layers, which represents a difficult
mathematical problem.

It is the extremely small size of the Ekman number, a consequence of the Earth’s
rapid rotation and the small viscosity in its liquid core, that causes severe difficulties
in numerical modelling of the Earth’s core dynamics. Even using modern powerful par-
allel supercomputers, we still cannot achieve the geophysically realistic value which is
O(10−9) 6 Ek 6 O(10−15). In this sense, the analytical expression (3.23) valid for an
arbitrarily small Ekman number would be particularly useful. For example, a geophys-
ically important question is whether the precessionally driven flow in the Earth’s fluid
core can produce westward fluid motion with amplitude O(10−4m/s). If we assume that
(i) the expression (3.23), as demonstrated in Figure 2, gives a correct amplitude of the
weakly nonlinear precessing flow for 0 < Ek ≪ 1 and (ii) the primary nonlinear effect at
0 < Ek ≪ 1 is to reduce the size of the angle βf , we would be able to provide an estimate
for the amplitude of westward motion in the Earth’s fluid core driven by its precession.
Define the dimensional speed of the westward fluid motion, V , of the precessing flow in
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Figure 9. A summary of the angle βf is shown as a function of Po for two different eccentricities
at Ek = 10−4: the circles represent the solutions for E = 0.1 while the squares denote the
solutions for E = 0.6.

the Earth’s spheroidal fluid core as

V = cosβf

[
1

V

∫
V
|u|2 dV

]1/2
(roΩ0),

where u is given by (3.23), V = 4π(1 − E2)/3, ro = 3.485 × 106m, Ω0 = 7.27 × 10−5/s.
Taking |Po| = 10−7, αp = 23.5o, E = 0.082 and Ek = 10−9 appropriate for the Earth
together with its typical speed V ≈ 10−4m/s, we obtain βf = 600 which is not unrea-
sonable. In other words, the Earth’s precession, via both the viscous and topographical
coupling between its fluid core and solid mantle, is capable of driving a sufficiently strong
westward flow required to explain the geomagnetic secular variation if we assume that
the angle βf can be reduced, by nonlinear effects, from 900 to about 600.
Though the mathematical analysis of the precessing flow in the mantle frame is usually

complicated and lengthy for spheroidal geometry, it offers a desirable potential that we
may unify the mathematical theories of buoyancy-driven convection and precessionally
driven flow in the same frame. This unified approach, considering that there exists a severe
restriction on the thermal power available for sustaining the geodynamo, is particularly
significant for constructing a planetary dynamo model in that both driving mechanisms,
convection and precession, are energetically important.
It is desirable to discuss the possibility of transforming the weak precession solutions

derived by Busse (1968) valid for E ≪ 1 and αp ≪ 1 in the precession frame to (3.25) in
the mantle frame obtained from the general solution (3.23) via the expansion of small E .
Such a transformation, if possible, would allow a precise comparison between the mantle-
frame solution (3.25) and the precession-frame solution. For this purpose, it is desirable
to provide a brief summary of the Busse (1968)’s solution largely using his notation. By
assuming that the precessing flow is stationary, the governing equations for the velocity
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vector q and the pressure pq in the precession frame are

q · ∇q+ 2Ω× q = −∇pq + Ek∇2q, (5.1)

∇ · q = 0, (5.2)

which can be compared to (2.1)-(2.2) in the mantle frame. Busse (1968) solved (5.1)-(5.2)
for 0 < Ek ≪ 1 and 0 < |Ω| ≪ 1 subject to the non-slip boundary condition

q = k× r (5.3)

on the bounding surface S of the container, where k being the unit vector in the di-
rection of the basic rotation. The boundary condition (5.3) in the precession frame can
be compared to (2.4) in the mantle frame. Moreover, the precession vector Ω in (5.1) is
independent of time with |Ω| = |Po|. The mathematical analysis in the precession frame
becomes particularly convenient by further postulating that the precessing flow is not
only stationary but also in the form of rigid-body rotation given by

q = ω × r, (5.4)

where ω is a constant vector to be determined. When 0 < |Po| ≪ 1, the weakly precessing
flow q is written in the form

q = qi + q̃ = ω × r+ ϵq̃
(1)
0 + . . . , (5.5)

where qi (or ω×r) denotes the interior flow, the boundary layer flow q̃ (or q̃
(1)
0 ) satisfies

the condition

ϵq̃
(1)
0 = (k− ω)× r

on the bounding surface S and ϵ is small and assumed to be ϵ2 = |k − ω|2. Expansion
(5.5) in the precession frame can be compared with our most general expansions (3.1)
and (3.2) that make no prior assumptions about the spatial structure of the flow in the

mantel frame. Busse (1968) showed that q̃
(1)
0 in (5.5) is given by

n̂× q̃
(1)
0 + i q̃

(1)
0 = [n̂× (ω+ × r) + i (ω+ × r)] e−κ+ξ

+ [n̂× (ω− × r) + i (ω− × r)] e−κ−ξ

− 1

ϵ

(
1− k · ω

ω2

)
[n̂× (ω × r) + i (ω × r)] e−κξ, (5.6)

where

ω± = −ω × (ω × k)

2ω2ϵ
±

(
ω × k

2ωϵ

)
i

and κ+, κ− and κ are determined by the relations

κ2
± − 2 i (Ω+ ω) · n̂ = ± iω,

κ2 − 2 i (Ω+ ω) · n̂ = 0,

taking the root with positive real part, while the angular velocity ω of the fluid in (5.5)
is

ω = kω2 + ω2

×
k×Ω2.62(Ekω)1/2 + k× (Ω× k)

[
0.259(Ek/ω)1/2 + ηω2 + k ·Ω

][
0.259(Ek/ω)1/2 + ηω2 + k ·Ω

]2
+ (2.62)2Ekω

, (5.7)

where the ellipticity η and the eccentricity E are related by E2 = η(2 − η) with η ≪ 1,
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and ω2 = 1− ϵ2. In the weak precession limit, the term k ·Ω, along with the associated
resonance when k ·Ω < 0, can be removed from (5.7).

Can q expressed implicitly by (5.5) in the precession frame – for which q̃
(1)
0 is given

by (5.6) and ω by (5.7) – be easily transformed to u expressed explicitly by (3.25) in the
mantle frame? It is found that such a transformation is, at least, not straightforward.
In fact, there are no existing studies in literature that demonstrate this transformation
can be readily performed in any geometries. The major complication stems from the
facts that (i) the two precession solutions, q given by (5.5) and u given by (3.25), for
0 < Ek ≪ 1 are derived from the asymptotic match between the two different complicated
boundary solutions and the relatively simple interior solutions, and (ii) the two problems
– the boundary layer and the interior – are intricately coupled and inseparable. We seem
to reach a conclusion that there exists no simple transformation between (5.5) in the
precession frame and (3.25) in the mantle frame.
Finally, we would like to point out that the term k ·Ω in (5.7) of the Busse (1968)’s

solution valid for αp ≪ 1 can be readily included in our general asymptotic solution
in the mantle frame of reference. When both the precession rate Po and the precession
angle αp are sufficiently small [see (3.20) in Busse (1968)] with |PoΩ̂p × u| ≫ |u · ∇u|,
the momentum equation (2.5) becomes

∂u

∂t
+ 2ẑ× u = −∇p+ Ek∇2u− ẑ

(
2sPo sinαp eiϕ

)
ei t − 2PoΩ̂p × u. (5.8)

It follows that the solvability condition (3.13) requires an extra term representing per-
turbations to the Coriolis force:

−
(

i E2

2− E2

)
A110

∫
V
|u110|2 dV +

∫
S
{[p∗110]S n̂ · û} dS

=

(
4π iPo sinαp

5

)
(2− E2)

√
1− E2 +

(
i 2Po cosαp

2− E2

)
A110

∫
V
|u110|2 dV, (5.9)

which introduces an extra term in the expression for A110 given by (3.22) which now
becomes

A110 =
16
√
2Po sinαp (1− E2)

45
√
Ek (Ir + i Ii)

√
1− E2 − 6

√
2(2− E2)(E2 + 2Po cosαp)

. (5.10)

This suggests that the resonance may occur when Po < 0 such that (E2+2Po cosαp) = 0.
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