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Abstract

Radio Frequency Identification (RFID) is a key enabling technology of In-

ternet of Things (IoTs) and has attracted much research attention in recent

years. RFID can support automatic information tracing and management

during the management process in many fields. A typical application of RFID

is modern warehouse management, where products are attached with RFID

tags and the inventory is managed by retrieving tag IDs. Many practical ap-

plications require searching a group of tags to determine whether they are in

the system or not. The existing studies on tag searching have mainly focused

on improving time efficiency and paid little attention to energy efficiency that

is extremely important for active tags powered by built-in batteries. To fill

in this gap, this paper investigates the tag searching problem from the angle

of energy efficiency. We first propose an Energy-efficient tag Searching pro-

tocol in Multiple reader RFID systems, namely ESiM, which pushes per tag

energy consumption to the limit as each tag needs to exchange only one bit

Email addresses: sgzhang@csu.edu.cn (Shigeng Zhang),
csxuanliu@comp.polyu.edu.hk (Xuan Liu), jxwang@csu.edu.cn (Jianxin Wang),
csjcao@comp.polyu.edu.hk (Jiannong Cao), g.min@exeter.ac.uk (Geyong Min)

Preprint submitted to Information Sciences August 12, 2014



data with the reader. We then develop a time efficiency enhanced version

of ESiM, namely TESiM, which can dramatically reduce the execution time

while increasing transmission overhead only slightly. Extensive simulation

experiments reveal that, compared to state-of-the-art solution in the current

literature, TESiM reduces per tag energy consumption by more than one

order of magnitude subject to comparable execution time. Furthermore, in

most scenarios, TESiM even reduces the execution time by more than 50

percent.

Keywords: Internet of Things, RFID tag searching, Energy efficiency,

Active tags, IoT in industry

1. Introduction

Internet of Things (IoT) has been considered as a novel paradigm that has

the potential to bring revolutionary changes to our lifetime [1]. IoT integrates

Radio Frequency Identification (RFID) technology, sensor technology, actu-

ators, and novel wireless technologies like near field communications (NFC)

to build Internet-like infrastructure for objects that are identifiable. All the

things in IoT could be automatically managed and inventoried by computers,

and thus the management efficiency could be improved greatly. Currently,

IoT is exploiting its application in a wide scope of industry fields [1–4].

As a key enabling technology of IoT, RFID can be used in many industri-

al fields to support intelligent process management, e.g., retailing industry,

transportation and logistics industry, healthcare industry, and construction

industry [5–9]. For example, a typical application of RFID technology in

logistics industry is RFID-enabled warehouse management. The RFID sys-
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tem deployed in a modern warehouse usually consists of a large number of

RFID tags that are attached to products and multiple RFID readers. RFID

tags can be accessed by readers wirelessly from a distance without line-of-

sight interaction, and thus are more flexible than the traditional barcode

tags that are severely limited in operational range. Multiple RFID readers

are deployed in different places of the warehouse in order to cover the whole

area. By collecting all the tag IDs, the warehouse can manage and update

the inventory of products in an automatic manner, and thus can improve

management efficiency significantly.

There are mainly two types of RFID tags [10, 11]: passive tags and ac-

tive tags. Passive tags harvest energy from the radio signal broadcasted

by the reader to backscatter their data, and thus have very limited opera-

tional range. Passive tags are suitable for small range applications like fast

checkout. Active tags are powered by built-in batteries, and thus have much

longer operational distance. In large scale RFID systems that cover a very

wide area, e.g., a big warehouse, active tags are more preferable. Further-

more, active tags are necessary in many application scenarios that require

sensing environment data because they have rich on-chip sensors. Although

currently passive tags are more sold and used than active tags [12, 13], it is

forecasted that the market of active tags will raise to 25% of the total RFID

market in 2020. Thus it is necessary and meaningful to investigate active

RFID tags.

Rather than collecting all the tag IDs, many applications in warehouse

require determining whether a certain group of tags are in the system or not.

Consider a big warehouse that stores products for many different manufac-
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turers. Given a list of tag IDs that represent flawed products, a manufacture

wants to search which of them are in the warehouse in order to recall and

fix them. Such a task is referred to as tag searching where the tags to be

searched are called wanted tags. Tag searching is of great importance to many

practical applications in industry. For example, a manufacture may store its

products in different warehouses due to the constraint in logistic budget. It

can learn the distribution of its products by searching which products are

in which warehouse. Tag searching can also help update the inventory of a

(or several) specified type(s) of products, or provide input to RFID polling

protocols that aim to collect information from some specified tags [14]. In

this paper, rather than consideration of the special scenarios for searching a

single tag, we consider the generalized scenarios in which a group of tags are

searched simultaneously.

Although the tag searching problem can be solved by collecting the IDs

of all the tags in the system, it is far from efficiency in terms of both time

and energy, especially in large scale RFID systems that may contain tens

of thousands of active tags. The identification throughput is only several

hundreds tags per second [15–17]. It might be imagined that we can solve

the tag searching problem by using a dedicated database to trace which tags

enter or leave the system. This approach, however, faces several problems as

follows. First, the system might have no infrastructure to record which tags

enter or leave the system. For example, if the RFID system is temporari-

ly built with mobile readers, it may have no specially designed database to

record which tags enter or leave the system. Second, in the current standard

[18][19][17], because the reader has no simple way to distinguish the tags that
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are not enrolled yet from those that have already been enrolled, it has to col-

lect all the tags in its interrogation region. In fact, how to efficiently read

only the tags that have not been enrolled into the system is an interesting

problem called unknown tag identification [20–22] that has not been thor-

oughly solved. Third, tags in the system might be stolen or missing, making

it difficult to exactly trace which tags have left the system. If such stolen or

missing tags are not detected, the searching accuracy might be affected. In

fact, missing tag detection is also an interesting problem that have attracted

much research attention in recent years [23–25].

In [15] the authors proposed the Compact Approximator based Tag Search-

ing (CATS) protocol to search tags in a large scale RFID system. CATS aims

to reduce the searching time by avoiding tag ID collection. It employs Bloom

filter to compact the information exchanged between the tags and readers,

and finds the searching result by estimating the intersection of the two bloom

filters respectively representing the set of wanted tags and the set of all the

tags in the system. However, CATS paid little attention to energy consump-

tion. In CATS, each tag needs to receive a large volume of data from the

reader, causing very high per tag energy consumption. In [26] the authors

proposed a time-efficient tag searching protocol in RFID systems containing

multiple readers. However, both of them are not suitable to RFID systems

that are built with active tags powered by built-in batteries.

Energy efficiency is an important objective in designing RFID tag search-

ing protocols for the systems built upon active tags, and is still an open

research issue. With the advantages in longer operational distance and rich

on-chip sensors, active tags are more likely to be used in large scale RFID
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systems. However, to the best of our knowledge, energy efficient tag search-

ing in large scale RFID systems has not been thoroughly investigated and

remains a challenging problem. To fill in this gap, we study the tag searching

problem from the angle of energy efficiency. The major contributions of this

paper include:

• We propose an Energy-efficient tag Searching protocol in Multiple read-

er RFID systems, namely ESiM, which pushes per tag energy consump-

tion to a limit. Each tag in ESiM needs to exchange only one bit data

with the reader, which is two orders of magnitude less than the best of

the existing solutions.

• In order to further improve the time efficiency of ESiM, we develop the

TESiM (i.e., Time efficiency enhanced ESiM) protocol that adopts a

multiple round method to shorten the frame size and hence dramati-

cally reduce the execution time. Meanwhile, TESiM increases energy

consumption on each tag only slightly.

• Extensive simulation experiments are conducted to evaluate the per-

formance of the two proposed protocols. The results demonstrate that,

compared to state-of-the-art solution in the current literature, TESiM

reduces per tag energy consumption by more than one order of magni-

tude subject to comparable execution time.

The rest of this paper is organized as follows. Section 2 overviews the

related work. Section 3 presents the system model and problem statement.

In Section 4, the detailed descriptions of ESiM and TESiM are given, along

with theoretical analysis on their performance in terms of energy, time, and
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sensitivity to different system parameters. In Section 5, the simulation results

are reported and analyzed. Finally, Section 6 concludes this paper.

2. Related Work

Tag identification protocols can be naturally used to solve the tag search-

ing problem, but they are neither energy efficient nor time efficient in per-

forming the task of tag searching. Generally, the existing RFID tag identifi-

cation protocols can be classified into two categories [10, 11]: ALOHA-based

protocols [27–30] and tree-based protocols [19, 31]. In ALOHA-based proto-

cols, on average a tag needs to transmit its ID e times to the reader before

being successfully identified [10, 27], where e is the base of natural logarithm

whose value is approximately equal to 2.72. The typical length of a tag ID is

96 bits [17, 32]. Thus, it incurs 2.72× 96 ≈ 261 bits data transmission from

every tag to the reader. Meanwhile, the time efficiency of tag identification is

also low because the throughput of tag identification is only 100 to 200 tags

per second [15, 16, 33]. As a comparison, in the searching protocol proposed

in this paper, every tag needs to transmit only ten to twenty bits data to the

reader, more than one order of magnitude less than that in tag identification

protocols.

The RFID tag searching protocol, CATS, proposed in [15] aims to improve

high time-efficiency. CATS is a two-phase protocol that uses Bloom filters

to quickly find which of the wanted tags are in the system. In the first

phase, a Bloom filter representing all the wanted tags is constructed and

broadcasted to all the tags in the system. After receiving the filter, tags in

the system check whether they are in the filter and determine whether they
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should participate in the second phase or not accordingly. The goal of the

first phase is to reduce the number of tags participating in the second phase.

In the second phase, the reader constructs a virtual Bloom filter representing

all the remaining tags in the system by scanning replies from tags, and filters

out those wanted tags that are not in the virtual filter. CATS achieved much

better time efficiency than tag identification protocols [15], but it paid little

attention to energy consumption of tags. In the first phase of CATS, every

tag needs to receive a very long filter, and thus consumes a lot of energy

(note that for active tags receiving one bit consumes the same energy as

transmitting one bit[14, 24]). Compared to CATS, our protocols proposed

in this paper reduce per tag energy consumption by more than two orders of

magnitude.

Multiple reader scheduling has attracted much research attention in recen-

t years [34–37]. Most of the reader scheduling algorithms target to improve

the tag identification throughput by allowing as many readers as possible to

work simultaneously. Waldrop, Engels, and Sarma [34] proposed a distribut-

ed reader scheduling algorithm based on graph coloring called Colorwave.

Zhou et al. [35] proposed a centralized reader scheduling algorithm based on

STDMA (Spatial Time Division Multiple Access). Tang et al. [36] proposed

the RASPberry protocol that tries to make the system work in a stable way

in a long term when the arrival rate of tags is within the capacity region of

the readers. They further proposed a scheduling algorithm to maximize the

number of served tags per time slot while avoiding interference among read-

ers in [37]. Our reader scheduling algorithm is also based on graph coloring

[34] but makes important enhancement in order to guarantee the high energy
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and time efficiency of the tag searching protocols proposed in this paper.

3. System Model and Problem Statement

3.1. System Model

We consider a large scale RFID system consisting of multiple readers and

a large number of active tags. A back end server communicates with all

the readers and coordinates them to avoid collisions between nearby readers.

The communication between the back end server and readers can be either

wired or wireless. Because the interrogation range of a single reader is very

limited, large RFID systems that cover a very wide area usually need to

deploy multiple readers to cover the whole area. In this paper, we consider

the generalized scenarios where multiple readers are needed. However, our

solutions can also be applied to the special cases where only a single reader

is contained.

We mainly focus on RFID systems built with active tags that are powered

by built-in batteries, e.g., Philips I-code tags [17]. Tags adopt the frame

slotted ALOHA [18] protocol as the basic communication protocol. In the

ALOHA protocol, the reader issues queries to and receives replies from tags

in consecutive frames. Every frame is further divided into many slots. At

the beginning of each frame, the reader broadcasts a query that contains the

frame size f and a random seed s. After receiving the query, a tag calculates

a hash value S = H(IDt||s) mod f , where IDt denotes the tag’s ID. It then

replies to the reader in the S-th slot. Because tags may collide with each

other, the reader may need to issue multiple frames to collect all the replies

from tags. It has been proven that, on average, a tag needs to transmit its
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ID e times before it could be successfully identified [18]. In our tag searching

protocol, when the searching task completes, tags enter sleeping mode to

save energy and prolong lifetime.

According to the number of tags that transmit in each slot, there are

three different types of slots. A slot is called an empty slot if no tags trans-

mit in it, or is called a non-empty slot otherwise. A non-empty slot can be

either a singleton slot, in which only one tag transmits to the reader, or a

collision slot, in which more than one tags transmit to the reader simultane-

ously. In our protocols, a reader only needs to distinguish between empty and

non-empty slots. To achieve this goal, a tag can transmit a short response

containing only one bit to the reader [14, 24]. In contrast, in the traditional

tag identification protocols, a tag transmits its ID to the reader. Let te, tb,

and tid denote the time duration of an empty slot, a slot in which a one-bit

short response is transmitted, and a slot in which a tag ID is transmitted,

respectively.

Nearby readers cannot work simultaneously due to potential collisions.

In this paper we consider two types of collisions between readers [35, 36]:

Reader-Tag collisions and Reader-Reader collisions. If a tag t is in reader

A’ interrogation range and reader B’s interference range simultaneously, its

reply to reader A may be ruined by the signal from reader B, which causes a

Reader-Tag (R-T) collision. If t is in the interrogation range of both A and

B, it then cannot correctly receive the commands sent by either reader, which

causes a Reader-Reader (R-R) collision. The readers should be scheduled to

avoid R-R and R-T collisions.
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3.2. Problem Statement

This section defines the tag searching problem. Let S and T denote

the set of all the wanted tags and the set of all the tags in the system,

respectively. Given S, we want to find which tags in S are present in T , i.e.,

the intersection T
⋂
S. The goal is to reduce the energy consumption of tags

during the searching procedure. Meanwhile, we also want to minimize the

time spent in performing the searching task.

In some cases it is acceptable to include some false positive results, i.e.,

the searching result could contain some tags in T − T
⋂
S. For example,

when the warehouse manager wants to search a particular set of products

with manufacturing flaws, it is acceptable to include a few extra normal

products provided that all the flawed products are found [15]. We use the

parameter α to denote the tolerable false positive rate threshold. Denote

by R the searching result. We aim to guarantee that |R−(T
⋂
S)|

|T −S| ≤ α. More

specifically, for any tag in S but not in T (and thus should not be included

in the searching result), the probability that it is included in the searching

result should not exceed α.

4. The Proposed Protocols

In this section, we first develop the ESiM protocol that pushes per tag

energy efficiency to the limit as each tag needs to transmit only one bit

to the reader. Then in Section 4.2 we develop the TESiM protocol that

uses a novel approach to reduce the execution time but increases energy

consumption slightly, and analyze the sensitivity of its execution time to

several key system parameters. Finally, we consider the effects of reader
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collisions and propose the new reader scheduling algorithm in Section 4.3.

4.1. ESiM: Energy-Efficient Tag Searching in Multiple Reader RFID Systems

4.1.1. Protocol Design

Our tag searching protocol is motivated by the following observation: In a

multiple reader RFID system, if a wanted tag is in the system, it must reside

in at least one reader’s interrogation range. In contrast, if a wanted tag is

absent from all the readers’ interrogation range, it must be absent from the

system. With this observation, for any wanted tag, we test its existence in

all the readers’ interrogation range and determine whether it is in the system

or not according to the testing results. If a wanted tag is absent from all the

readers’ range, it is excluded from the wanted tag set S. After all such tags

are excluded, the remaining tags constitute the searching result.

ESiM utilizes empty slots in a frame to test whether a wanted tag is in a

reader’s interrogation range or not. Let T (Ri) denote the local system tags

of reader Ri, i.e., those tags residing in Ri’s interrogation range. Ri starts

a frame with broadcasting two parameters fi and si. All the local system

tags of Ri reply with one-bit short responses. The reader then scans the

frame and constructs a reply pattern RPN = {b0, . . . , bi, . . . , bfi}, where bi

indicates the status of the i-th slot in the frame. If the i-th slot is empty,

then bi = 0; otherwise, bi = 1. For every wanted tag t ∈ S, ESiM calculates

the expected slot index j for t assuming that t is in T (Ri) . It then checks

bj in RPN . If bj is equal to zero, then it can be judged that t must not be

in T (Ri) and can be safely excluded from S. After all the wanted tags are

tested, the remaining tags in S represent those wanted tags residing in Ri’s

range. We call these tags the local searching result of reader Ri, and denote
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them by S(Ri). After all the readers are tested, we combine all the local

searching results to obtain the final result R = ∪Mi=1S(Ri), where M is the

number of readers.

There may be some false positive results in R. For example, for a wanted

tag t that is not in the system, there may happen to be a local tag t′ that

selects the same slot as t does. The reader cannot distinguish t′ from t with

only a one-bit short response in the slot. In this case, t cannot be excluded

from S by ESiM, and thus it will be incorrectly included in the local searching

result and consequently be included in the final result.

We now present how to set the frame length fi to guarantee the false

positive rate, i.e., to guarantee that

PFP ≤ α, (1)

where PFP is the false positive rate (i.e., the probability a wanted tag that

does not exist in the system is incorrectly included in the final result), and

α is a system parameter. In order to calculate PFP , we need to know the

probability Pw that a tag is incorrectly included in the local searching result

of a reader Ri when it is not in Ri’s range. Recall that a tag not in the

system is incorrectly included in the final result only when it is incorrectly

included in the local searching results of at least one of the M readers. Thus,

PFP is given by

PFP = 1− (1− Pw)M . (2)

Without loss of generality, we consider how to calculate Pw for the reader

Ri. For a random slot in the frame, the probability that none of the local
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system tags of Ri (i.e., tags in T (Ri)) selects this slot is

P0 = (1− 1

fi
)|T (Ri)| ≈ e−|T (Ri)|/fi . (3)

The expected number of empty slots in the frame can thus be calculated as

N0 ≈ fi × P0. If a wanted tag t is not in Ri’s range (i.e., t /∈ T (Ri)), only

when it selects a non-empty slot in the frame it will be incorrectly included in

the local searching result. Thus, Pw is equal to the probability that t selects

a non-empty slot in the frame, and can be written as

Pw =
fi −N0

fi
≈ 1− e−|T (Ri)|/fi . (4)

Substituting Eqs. (2), (3), and (4) into Eq. (1), we get

fi ≥
−|T (Ri)| ×M

ln(1− α)
. (5)

Define the local load factor of reader Ri as ρi = fi/|T (Ri)|. From Eq. (5)

reveals that in order to guarantee a false positive rate lower than α, the

minimum local load factor for reader Ri should be −M
ln(1−α) .

Figure 1 plots ρi in a system containing 16 readers when α changes from

0.01 to 0.1. This figure shows that when α is small, ρi could be vary large,

which means that we need to set a very large frame size (fi) to guarantee a low

false positive rate. Furthermore, from Eq. (5) we know that the minimum

frame length increases linearly along with the number of readers M . This

limits the application of ESiM in very large RFID systems that may contain

a huge number of readers. In order to overcome this limitation, we develop
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Figure 1: Local load factor (ρi) when the false positive rate threshold (α) varies. The
number of readers in the system (M) is 16.

the TESiM protocol that reserves the high energy efficiency property of ESiM

but dramatically improves the time efficiency and scales well for large scale

RFID systems.

4.1.2. Energy Efficiency of ESiM

We now analyze the energy efficiency of ESiM. For active tags, most

energy is consumed in transmitting data between the reader and the tag.

Thus, the energy efficiency could be measured by the total number of data

exchanged between the reader and the tag. For every tag that should be

included in the final result (i.e., tags in T
⋂
S), it needs to transmit at

least one bit to the reader. Otherwise, it is impossible for the reader to

judge whether the tag is in the system or not. Thus, the number of bits to

be exchanged between tags and readers in any possible solutions to the tag

searching problem is strictly no less than |T
⋂
S|. This represents an upper

bound on the energy efficiency of any tag searching protocols. ESiM achieves

this upper bound when T ⊆ S, i.e., all the tags in the system are wanted

tags.
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When some tags in the system are not wanted tags, ESiM’s energy ef-

ficiency is lower than the upper bound. However, in practice, every tag in

the system should transmit at least one bit to the reader; otherwise, it is

difficult for the reader to judge whether the tag is a wanted tag or not. Thus

the total number of bits transmitted from the tags to the readers should be

no less than |T |. In ESiM, every tag in T needs to transmit only one bit

data to the reader, so the total number of bits transmitted to the readers in

ESiM is exactly |T |. Therefore, ESiM actually achieves the limit in energy

efficiency in practice, as it requires every tag to transmit only one bit data

to the reader.

4.2. TESiM: Time-Efficiency Enhanced ESiM

4.2.1. Protocol Design

In order to achieve low false positive rate, ESiM needs to use an extremely

long frame to test the existence of wanted tags. This leads to the low time

efficiency of the ESiM protocol. Intuitively, we can use a short frame to

perform the existence test and reduce the execution time. However, this

will lead to higher false positive rate. In order to guarantee that the false

positive rate is below the desired threshold, we can perform the existence

test for several rounds with several short frames. By carefully selecting the

number of frames and the length of each frame, we show that the execution

time of ESiM can be dramatically reduced while the transmission overhead

of tags remains low. We call this time efficiency enhanced ESiM protocol as

TESiM.

In TESiM, every reader Ri uses k frames to perform the existence test for

wanted tags. In each of the k frames, Ri issues a frame with length fk and
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excludes tags from S in the same way as in the ESiM protocol. After the

k frames, the reader takes the remaining tags as the local searching result

S(Ri). We can obtain the final result by combining all the local searching

results of all the M readers.

We now analyze how to set k and fk to minimize the execution time. For

a wanted tag t that does not reside in the interrogation range of reader Ri,

the only chance that it remains in the local searching result of Ri is that

TESiM fails to exclude it from S in all the k frames. In any frame, the

probability that TESiM fails to exclude t is given by

PW,1 = 1− e−|T (Ri)|/fk . (6)

The probability that TESiM fails to exclude t after all the k frames can be

written as

PW,k = P k
W,1 = (1− e−|T (Ri)|/fk)k. (7)

If tag t does not exist in the system (i.e., t 6∈ S
⋂
T ), the probability that

it is correctly excluded from the final result equals the probability that it is

correctly excluded by all the M readers, which is

Pc = (1− PW,k)M . (8)

So the probability that tag t is incorrectly included in the final result (thus

it is a false positive result) is given by

PFP,k = 1− Pc = 1− [1− (1− e−|T (Ri)|/fk)k]M . (9)
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In order to guarantee that the false positive rate is below the threshold α,

we should make

PFP,k ≤ α. (10)

Substituting Eqs. (6), (7), (8), and (9) into Eq. (10), we find that in order

to guarantee the false positive rate, the length of each frame should satisfy

fk ≥
−|T (Ri)|

ln(1− (1− (1− α)1/M)1/k)
. (11)

It can be seen that when α is fixed, fk is a function of both M and k. As

the value of M is often fixed in a warehouse, we only need to consider how

to set k to minimize the searching time, which is given by

Tk = k ∗ fk ∗ tb. (12)

It is obvious that when k is fixed, Tk takes its minimal value when fk takes

the minimal feasible value

fk =
−|T (Ri)|

ln[1− (1− (1− α)1/M)1/k]
. (13)

In this case, we have

Tk = k ∗ tb ∗
−|T (Ri)|

ln[1− (1− (1− α)1/M)1/k]
. (14)

To find the value of k that minimizes Tk, we let

∂Tk
∂k

= 0. (15)
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Figure 2: Optimal number of frames (k) in TESiM when the false positive rate threshold
(α) varies. M indicates the number of readers in the system.

The value of Tk is minimized when k satisfies the following equation

−|T (Ri)|
ln[1− (1− (1− α)1/M)1/k]− k ln k

ln2[1− (1− (1− α)1/M)1/k]
= 0. (16)

Eq. (16) shows that the optimal k is determined by both α and M . In

Figure 2 we plot the optimal k for different α when M =16, 64, and 256,

respectively. It can be observed that k gradually increases when α decreases,

and it also increases slightly when M increases. More analysis on the impact

of M and α on Tk will be given in the next section.

Similar to that in the ESiM protocol, we define the local load factor for

reader Ri as ρi = Tk/|T (Ri)| and plot its value for different combinations

of α and M in Figure 3. Compared with Figure 1, we observe dramatic

decrease of ρi. For example, when M = 16 and α = 0.01, ρi = 1592 in

the ESiM protocol and drops to 15.34 in TESiM. The improvement is more

than two orders of magnitude. Even when there are as many as 256 readers

(M = 256), ρi remains small in TESiM: Its value is only 16.23 when α = 0.1
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Figure 3: Local load factor (ρi) when the false positive rate threshold (α) varies. M
indicates the number of readers in the system.

and is 21.12 when α = 0.01.

4.2.2. Sensitivity Analysis on Tk

Tk is affected by both the number of readers (M) and the required false

positive rate (α). In this section, we first give a simplified expression of Tk,

then analyze its sensitivity to M and α.

We observe that when k takes optimal value, the ratio of fk to |T (Ri)|

remains at a constant η = 1.4427 ≈ 1/ ln 2. With this observation, we can

get a simplified expression of Tk and obtain a closed form solution of optimal

k based on this simplified expression.

According to Eq. (13), when k takes optimal value, we have

fk
|T (Ri)|

=
−1

ln[1− (1− (1− α)1/M)1/k]
≈ 1

ln 2
=
−1

ln 1
2

. (17)

Note here we use observation that fk/|T (Ri)| ≈ 1/ ln 2. According to Eq.
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(17), we can get the relationship between k, α, and M as

1− (1− (1− α)1/M)1/k = 1/2, (18)

which implies that

k = log0.5(1− (1− α)1/M). (19)

We rewrite the expression of Tk as

Tk = fk × k = |T (Ri)| ∗
1

ln 2
∗ log0.5(1− (1− α)1/M)

=
−|T (Ri)|

ln2(2)
∗ ln(1− (1− α)1/M). (20)

Sensitivity to M . We first analyze the sensitivity of Tk to M . Taking the

first order derivative of Tk on M , we get

∂Tk
∂M

=
−|T (Ri)|

ln2(2)
∗ ln(1− α)

M2[(1− α)−1/M − 1]
. (21)

Expending (1− α)−1/M with the Taylor series, we get

(1− α)−1/M ≈ 1 + (ln(1− α)) ∗ −1

M
+

(ln(1− α))2

2!

1

M2
+ o(

1

M3
). (22)

Combining Eq. (21) and Eq. (22), we have

∂Tk
∂M

≈ −|T (Ri)|
ln2(2)

∗ ln(1− α)

−M ln(1− α) + (ln(1−α))2
2! + o( 1

M )
∝ 1

M
. (23)

It can be seen that the first order derivative is approximately inversely pro-

portional to M . This means that when M changes, the change of Tk will not

be large. Thus Tk is not sensitive to the change of M .
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Sensitivity to α. We now analyze the sensitivity of Tk to α. Taking the first

order derivative of Tk on α, we have

∂Tk
∂α

=
−|T (Ri)|

ln2(2)
∗ 1

M

1

(1− α)1−1/M − (1− α)
(24)

≈ −|T (Ri)|
ln2(2)

∗ 1

M

1
α
M

+ 1−M
2M2 α2 + o(α2)

∝ 1

α
.

Similarly, we can observe that the value of the first order derivative is in-

versely proportional to α. Thus Tk is also not sensitive to the changes of

α.

4.3. Multiple Reader Scheduling

R1
R4

R3

R2

R5

(a) Reader deployment

R1 R2 R4

R5R3

(b) Reader conflict graph

Figure 4: An example reader conflict graph: (a) a system containing five readers; (b) the
corresponding conflict graph.

We did not consider the time delay caused by reader scheduling when

designing the tag searching protocols in the previous sections. As mentioned

in Section 3.1, adjacent readers cannot work together because there may be

collisions between them, e.g., R-R collisions or R-T collisions. In this section,

we discuss how to schedule readers to avoid such collisions.

Consider that all the M readers are scheduled to work in L different
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rounds. The total execution time is

Ttotal = Tk × L. (25)

In order to minimize Ttotal, we should minimize L. In other words, we should

use as few rounds as possible to schedule all the readers to work. This nat-

urally maps to the minimum coloring problem on the conflict graph of the

readers (we will explain how to construct the conflict graph soon). The

minimum coloring problem has been proven to be a NP-hard problem [38].

Considering that the conflict graph of RFID readers is usually sparse, we

adopt a sequential coloring algorithm called DSATUR [39] that can gener-

ate near optimal solution when the graph is sparse. The complexity of the

DSATUR algorithm is O(n3), where n is the number of vertices in the graph.

For the TESiM protocol, there is a little more attention to be paid. Recall

that in TESiM per tag energy consumption (k) and the execution time in

every round (Tk) both increase along with M . Thus, in order to keep k and

Tk as small as possible, we should use as few readers as possible to cover

the whole system. This is different from existing RFID reader scheduling

algorithms that aim to maximize identification throughput by scheduling as

many readers as possible to work simultaneously. In order to achieve our goal,

we add a reader pruning phase before finding a feasible scheduling of readers.

For each reader, we check whether it is redundant, i.e., its interrogation region

can be covered by its nearby readers. We then remove all the redundant

readers from the reader set and schedule only the left readers to work.

Algorithm 1 shows our reader scheduling algorithm. First, we prune the

redundant readers. For every reader Ri, we check whether its interrogation
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Algorithm 1 Reader Scheduling for ESiM/TESiM

1: Prune redundant readers, and get the remaining reader set
{R1, . . . , RM ′}.

2: Construct the conflict graph G =< V,E > for the remaining reader set.
3: Find a minimum coloring on G with the DSATUR algorithm.
4: Construct a scheduling of readers based on the coloring result, and acti-

vate readers to run ESiM/TESiM in the order determined by the coloring
result.

range can be covered by some nearby readers. If Ri is redundant, it is

removed from the reader set. The pruning process is repeated until there are

no redundant readers. Second, we construct the conflict graph G =< V,E >

according to the remaining readers. In the conflict graph, vertex vi ∈ V

corresponds to reader Ri in the remaining reader set. There is an edge

between two vertices vi and vj if and only if there is an R-R collision or an

R−T collision between Ri and Rj. Figure4 shows an example of the conflict

graph constructed for a five reader RFID system. After the conflict graph

is constructed, we run the DSATUR algorithm to find a minimum coloring

on the conflict graph G. Finally, we construct a scheduling according to the

coloring result: If vi is colored with integer l, we let Ri work in the l-th round.

Assume that there are totally c colors in the result, i.e., {1, . . . , c}. We first

activate all the readers with color 1 and let them execute ESiM/TESiM, and

then activate all the readers with color 2 to run our protocols, and so on.

Note that the parameters in ESiM/TESiM are computed with the number

of readers after the pruning phase.
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5. Performance Evaluation and Comparison

5.1. Performance Metrics and Simulation Settings

Three key metrics are used to evaluate the performance of the proposed

searching protocol:

• The first metric is the precision of the searching result, i.e., the ratio

of wanted tags that are actually in the system to the total number of

tags in the searching result. This metric is defied as

precision =
|S

⋂
T |

|R|
, (26)

where R is the searching result.

• The second metric is per tag energy consumption. As the majority of

energy is consumed in transmitting data between tags and readers, we

use the total number of bits exchanged between a tag and the reader

covering it to measure energy efficiency. Note that this metric considers

both the data sent to and received from the reader, because for active

tags it takes nearly the same energy to send or receive a bit.

• The third metric is the execution time, which refers to the time spent

in performing the searching task. We use the timing scheme of the

Philips I-Code active tags [17] to calculate the execution time.

In the evaluation, we compare ESiM and TESiM with the state-of-the-art

CATS protocol proposed in [15] as well as two baseline approaches, namely

Collection and Broadcast. In the Collection approach, the readers simply

collect IDs of all the tags in the system (i.e., T ) and find the searching result
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by comparing S and T . In the Broadcast approach, the readers broadcast

tag IDs in S one by one. If a tag finds that the received ID matches its own

ID, it transmits a one-bit short response to the reader to notify the matching.

The reader then adds the tag into the searching result. After all the tag IDs

in S have been broadcasted, the readers can find the result.

We consider three parameters that may affect the performance of different

protocols. The first parameter is the false positive rate threshold α, which

affects the performance of probabilistic approaches including ESiM, TESiM

and CATS. The second parameter is the ratio of wanted tags to the tags

in the system, which is defined as γ = |S|/|T |. This parameter affects the

performance of approaches in which tags need to receive large volume of data

from the reader, e.g., Broadcast and CATS. The third parameter is the scale

of the system, which is represented by the number of readers deployed in the

system. When γ is fixed, this parameter affects the number of tags in S and

consequently affects the performance of protocols like Broadcast and CATS

whose performance heavily depends on the size of S. This parameter also

affects the performance of TESiM and ESiM because their execution time is

affected by the number of readers.

Following previous studies on multiple reader protocols [15, 40], in the

default settings we deploy 64 readers in a grid topology to cover a 10r× 10r

area, where r is the interrogation radius of readers. We randomly distribute

1,000,000 tags in the system, resulting that every reader covers approximately

31400 tags. We take the same default settings as in the CATS protocol, i.e.,

α = 0.05 and γ = 0.1.
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Figure 5: Precision of ESiM and TESiM: (a) when the false positive rate threshold (α)
changes (η = 0.5); (b) when the ratio of found wanted tags (η) changes (α = 0.05).

5.2. Precision

When α is fixed, the precision of ESiM and TESiM is determined by the

ratio of the number of tags in |S ∩ T | to the total number of wanted tags,

i.e.,

η =
|S ∩ T |
|S|

. (27)

According to Eq. (26), we have

precision =
|S

⋂
T |

|R|
(28)

≈ |S| ∗ η
|S| ∗ η + |S| ∗ (1− η) ∗ α

=
η

η + (1− η) ∗ α
.

It is obvious that in Collection and Broadcast the precision is always 1.

Figure 5(a) plots how the precision of ESiM and TESiM changes when α

changes (η = 0.5). The precision drops when α increases but remains high

(≥ 0.9) even when α is as large as 0.1. Figure 5(b) shows how η affects the

precision of ESiM and TESiM when α = 0.05. When η is small, the precision
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is low. For example, when η = 0.1, the precision is only 0.69. However, when

η increases, the precision improves quickly. when η ≥ 0.3, the precision is

higher than 0.9. In practice, the system operator should have some priori

knowledge about the wanted tag set S, and thus η should be relatively large,

in which case our searching protocols will achieve very high precision.

5.3. Energy Consumption

In Figure 6 depicts per tag energy consumption in different protocols.

The energy consumption in Collection and ESiM are both constant (1 and

261, respectively). We observe that the energy consumption in Broadcast

and CATS are much higher than that in other protocols. Compared with

Broadcast and CATS, the per tag energy consumption in TESiM is more

than four orders of magnitude lower. Compared with Collection, the energy

consumption in TESiM is more than one order of magnitude lower. We fur-

ther observe that in TESiM and CATS per tag energy consumption increases

along with the decrease of α. However, as we have analyzed in Section 4.2.2,

per tag energy consumption in TESiM is not sensitive to the change of α. In

Figure 6(a), when α drops from 0.1 to 0.01, the total number of bits every

tag needs to exchange with readers in TESiM increases only from 9.25 to

12.6. In contrast, in CATS per tag communication overhead increases with

a much faster speed, from 3.6 ∗ 105 bits when α = 0.1 to 5.1 ∗ 105 bits when

α = 0.01.

The energy consumption in Broadcast and CATS greatly depends on the

size of the wanted tag set S. In Figure 6(b) we plot the energy consump-

tion of Broadcast, CATS and TESiM when the system scale (measured in the

reader number M) increases. When the system scales up, per tag energy con-
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sumption in Broadcast and CATS increases dramatically. When the reader

number increases from 16 to 128, per tag energy consumption in Broadcast

and CATS increases 8 times and 3.09 times, respectively. In Broadcast and

CATS, every tag needs to receive a large volume of data from the reader that

greatly depends on the number of wanted tags (|S|), which increases when

the system scales up. In contrast, in TESiM per tag energy consumption in-

creases only 1.36 times in the same scenario, from 8.29 to 11.3. Compared to

Broadcast and CATS, the energy consumption in TESiM is far less sensitive

to changes of the system scale.

The per tag energy consumption in Broadcast and CATS also depends

on γ when the system scale is fixed. Figure 6(c) plots the per tag energy

consumption in Broadcast and CATS when γ increases from 0.01 to 0.2.

We also plot the data of TESiM for comparison, although in TESiM per

tag energy consumption is independent to γ when M and α is fixed. We

observe 20 times and 6.1 times increase in energy consumption in Broadcast

and CATS, respectively, when γ increases from 0.01 to 0.2. Thus the energy

consumption in Broadcast and CATS is sensitive to both M and γ.

5.4. Execution Time

When calculating the execution time of different protocols, we use the

timing scheme specified in the Philips I-Code specification [17]. In this spec-

ification, two consecutive transmissions are separated by a waiting time of

302 µs. Thus te = 0.302 ms. We set the transmission rate at 26.5 Kb/sec,

with which it takes 37.76 µs to transmit one bit from the tag to reader or

vice versa. According to this specification, tid = 3.927 ms and tb = 0.34 ms.

For better readability, we do not plot the execution time of ESiM because it
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Figure 6: Energy consumption comparison: (a) when the false positive rate threshold (α)
changes; (b) when the system scale (M) changes; (c) when the ratio of the number of
wanted tags to the total number of tags in the system (γ) changes.

is much higher than other protocols. Instead, we list the execution time of

ESiM in different simulation settings in Table 1 and discuss the performance

of ESiM in a dedicated paragraph.

Figure 7(a) plots the execution time of Collection, Broadcast, CATS and

TESiM when α changes. The execution time of Collection and Broadcast

is not affected by α. In contrast, the execution time of CATS and TESiM

increases when α decreases. The reason is that when α is large, more false

positive results can be tolerated and TESiM can use less rounds to complete

the searching task. Compared with Collection, the execution time in CATS

and TESiM is reduced by 33% and 56% on average, respectively. We can

also observe that the execution time of CATS is more sensitive to α than

TESiM is. When α decreases from 0.1 to 0.01, the improvement of CATS

over Collection drops from 49% to 2%. This indicates that when we require

very precise searching result (α ≤ 0.01), CATS performs nearly the same

as or might be worse than Collection. In contrast, in the same scenario

TESiM can always effectively improve time efficiency over Collection. The
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Figure 7: Execution time comparison: (a) when the false positive rate threshold (α)
changes; (b) when the system scale (M) changes; (c) when the ratio of the number of
wanted tags to the total number of tags in the system (γ) changes.

improvement of TESiM over Collection drops only slightly, from 61% to

48%, when α decreases from 0.1 to 0.01. Thus TESiM can effectively reduce

searching time even when the precision requirement is very high.

Figure 7(b) shows how the system scale affects the execution time of dif-

ferent protocols. The searching time of Collection is almost not affected by

the system scale. This is reasonable because the execution time of Collec-

tion depends on only the number of local tags in one reader’s interrogation

range and the number of rounds used to schedule all the readers. The execu-

tion time in other three protocols increases when the system scales up. For

Broadcast and CATS, the increase in execution time is mainly due to the

increase in the number of wanted tags (|S|). We can observe that the execu-

tion time increases more significantly in Broadcast than in CATS. However,

the increase in the execution time of TESiM is not due to the increase of

|S|. As we have pointed out in Section 4.2, when M increases, TESiM needs

more rounds to guarantee that the false positive rate does not exceeds α, and

thus the frame size in each round is larger. Furthermore, the execution time

31



increase in TESiM is much slower than that in Broadcast and CATS.

We also observe crossovers between the execution time of different pro-

tocols in Figure 7(b). When the system scale is small (e.g., M < 48), the

execution time of CATS is shortest, even shorter than TESiM. The execu-

tion time of Broadcast is also shorter than that of Collection when M ≤ 32.

However, the execution time of Broadcast and CATS increases rapidly when

M becomes large. They even use longer time than Collection when M > 32

(Broadcast) and M > 48 (CATS), respectively. In contrast, the execution

time of TESiM is still 12% less than that in Collection even when there are

as many as 128 readers.

We see similar change trend in the execution time of the four protocols

in Figure 7(c) and also observe crossovers. The execution time of Broadcast

and CATS increases when γ increases, because the number of wanted tags |S|

increases when γ becomes large. However, the execution time of TESiM re-

mains unchanged when γ increases. Compared with Collection, the execution

time in TESiM is 55% less in average. In most cases, the execution time of

TESiM is less than that of Broadcast and CATS. Compared with Broadcast

and CATS, the execution time of TESiM is 62% and 34% less respectively

when γ = 0.1, and is 81% and 66% less respectively when γ = 0.2.

Broadcast and CATS perform well when the number of wanted tags is

extremely small. For example, when M = 16 and γ = 0.1, the execution time

of CATS is only about 1/3 of the execution time of Collection, or about one

half of the execution time of TESiM. In the default setting where M = 64 and

γ = 0.01, the execution time of CATS is only about 1/7 of the execution time

of Collection, and only one third of the execution time of TESiM. However,
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Table 1: Execution time of ESiM

α(M = 64) 0.02 0.04 0.05 0.06 0.07 0.08 0.09 0.19

Time(×104s) 12.0 5.95 4.74 3.93 3.35 2.91 2.58 2.31

M(α = 0.05) 16 32 48 64 80 96 112 127

Time(×104s) 1.18 2.37 3.55 4.74 5.92 7.10 8.29 9.47

the execution time of CATS increases quickly and is longer than that of

TESiM when M > 32 and γ > 0.6, respectively. To summarize, when |S|

is extremely small, Broadcast and CATS can be applied if we only consider

time efficiency. In other cases, TESiM is more suitable.

In Table 1 we list the execution time of ESiM in different settings. The

execution time of ESiM is much longer than other protocols, about one order

of magnitude longer. We can also observe that the execution time of ESiM

increases when α decreases and when the system scale (M) increases. Thus,

ESiM is suitable in cases where energy consumption is the top consideration

and a long execution time can be tolerated.

6. Conclusion

As a key enabling technology of IoT, RFID have attracted a lot research

attention in recent years. RFID tag searching is very important to many in-

dustrial applications, e.g., warehouse management in logistics industry, and

inventory control in retailing industry. Although there are some prior stud-

ies on improving time efficiency of tag searching, energy efficiency in tag

searching has not been investigated thoroughly. In this paper, we study the

tag searching problem from an energy efficient angle. Two energy efficient

tag searching protocols are proposed for large scale RFID systems built with

active tags: ESiM and TESiM. ESiM is extremely energy efficient as it re-
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quires each tag to exchange only one bit data with readers, but its execution

time may become long in large-scale RFID systems. TESiM greatly reduces

the execution time while increasing per tag energy consumption only slight-

ly, achieving a better balance between energy consumption and execution

time. The per tag energy consumption in TESiM is more than one order of

magnitude less than the best of existing solutions. Moreover, compared with

state-of-the-art solutions to tag searching, in most cases TESiM even reduces

execution time by more than 50 percent.
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