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Abstract—Variety and veracity as two distinct characteristics of
big data, are foundations to improve our understanding of under-
lying information in large scale and heterogeneous data. However,
efficient representing and processing the massive heterogeneous
data with a unified scheme are becoming challenges in big data
area. Existing data representation methods and dimensionality
reduction techniques are not suitable for streaming heterogeneous
big data, and new solutions are urgently needed to address the
challenges.

In this paper, a unified tensor model is presented to represent
the unstructured data (e.g. video clip), semi-structured data (e.g.
XML document), and structured data (e.g. GPS data). With
tensor extension operator, various types of data are represented
as low order sub-tensors and then merged to a high order unified
tensor. In order to extract core data sets of the unified tensor,
we propose a novel Incremental High Order Singular Value
Decomposition (IHOSVD) method. Through recursively calling
the incremental matrix decomposition algorithm, IHOSVD can
dynamically update the orthogonal bases of tensor unfolding
and compute out the new core tensor. Time complexity of the
proposed method is O(k2n) as well as the space complexity
is O(n). A case study of intelligent transportation illustrates
that approximate data reconstructed from 18% core sets can
guarantee 93% accuracy in general which is measured by
tensor Frobenius Norm. Theoretical analyses and experiment
results demonstrate that the proposed unified tensor model and
IHOSVD method are efficient for big data representation and
dimensionality reduction.

Index Terms—Tensor, HOSVD, Dimensionality Reduction, Da-
ta Representation

I. INTRODUCTION

B IG data are a collection of datasets consist of massive
unstructured, semi-structured, and structured data. The

four main characteristics of big data are volume (amount
of data), variety (range of data types and sources), veracity
(data quality), and velocity (speed of incoming data). Although
many studies have been done on big data processing, very little
are known about following two issues: (1) how to represent the
various types of data with a simple model; (2) how to extract
core data sets which are smaller but contain more valuable
information, especially for streaming data. The purpose of
this paper is to explore above raised issues which are closely
related to the variety and veracity characteristics of big data.

Logic and ontology [1], two knowledge representation
methodologies, have been investigated by many researchers.
Composed of syntax, semantics and proof theory, logic system
is used for making statements about the world. Although the
logic is concise, unambiguous and expressive, it only works
with the statements that are true or false and is hard to be used
for reasoning with unstructured data. Ontology is the set of
concepts and relationships that can help people communicate

and share knowledge, it is definitive and exhaustive, but
it also causes incompatibilities among different application
domains, and is not suitable for representing and integrating
heterogeneous big data.

The study of data dimensionality reduction has been re-
ported in the literature. Previous approaches include Principal
Component Analysis (PCA) [2], Incremental Singular Value
Decomposition (SVD) [3], and Dynamic Tensor Analysis
(DTA) [4, 5]. The mentioned methods are available for low
dimension reduction. However, these methods suffer from
some limitations, they are time-consuming when performed
on high-dimension data and fail to extract core data sets for
streaming big data.

This paper presents a unified tensor model for big data
representation and an incremental dimensionality reduction
method for high-quality coreset extraction . Data with different
formats are employed to illustrate the representation approach,
and equivalent theorems are proved to support the proposed
reduction method. The major contributions are summarized as
follows.

• Unified Data Representation Model: We develop a
novel tensor model that can unify unstructured, semi-
structured, and structured data as a compact model. The
tensor model has extensible orders to which new orders
can be dynamically appended through the proposed ten-
sor extension operator.

• Core Tensor Equivalence Theorem: To solve the re-
calculation and order inconsistency problems in big data
processing with tensor model, we prove a core tensor
equivalence theorem which can serve as the theoretical
foundation for designing incremental decomposition al-
gorithms.

• Recursive Incremental HOSVD Method: We propose
a recursive incremental high order singular value de-
composition method for streaming data dimensionality
reduction. Detailed analysis including time complexity,
space complexity and approximation accuracy are also
investigated.

The remainder of the paper is organized as follows. Sec-
tion II recalls the preliminaries of tensor decomposition. We
present a unified order tensor model for big data representation
in Section III. Section IV proposes an novel incremental
dimensionality reduction method. A case study of intelligent
transportation is investigated in Section V. After reviewing the
related works in Section VI, we conclude the paper in Section
VII.
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II. PRELIMINARIES

This section reviews the preliminaries on singular value
decomposition and tensor decomposition. The core tensor and
truncated bases described in the preliminaries can be employed
to make big data smaller.

Definition 1: Singular Value Decomposition (SVD). Let
M ∈ Rm×n denotes a matrix, the factorization

M = UΣV T (1)

is called the SVD of M . The matrices U and V refer to the
left singular vector space and the right singular vector space
of matrix M respectively. Both U and V are unitary orthog-
onal matrices. Matrix Σ = diag(σ1, σ2, ..., σr, ..., σk), k =
min{m,n} is a diagonal matrix that contains the singular
values of M . In particular,

Mr = UrΣrV
T
r (2)

is called the rank-r truncated SVD of M , where Ur =
[u1, .., ur], Vr = [v1, .., vr], Σr = diag(σ1, ..., σr), r < k.
The truncated SVD of M is much smaller to store and faster
to compute. Among all rank-r matrices, Mr is the unique
minimizer of ∥M −Mr∥F .

Definition 2: Tensor Unfolding. Given an N -
order tensor T ∈ RI1×I2×...×IN , the tensor unfolding
T(n) ∈ RIn×(In+1In+2...INI1I2...In−1) contains the element
ti1i2...inin+1...iN at the position with row number in and
column number that is equal to

(in+1 − 1)In+2...INI1...In−1 + (in+2 − 1)
In+3...INI1...In−1 + ...+ (i2 − 1)I3I4...In−1

+ · · ·+ in−1.

Example 1. Consider a 3-order tensor T ∈ R2×4×3, Fig. 1
shows the three unfolded matrices T(1), T(2), T(3).

21 22 23 24

25 26 27 28

11 12 13 14

15 16 17 18

1 2 3 4

5 6 7 8

1    11    21     2    12    22     3   13    23     4    14    24

5    15    25     6    16    26     7   17    27     8    18    28=

1     5    11    15    21    25

2     6    12    16    22    26

3     7    13    17    23    27

4     8    14    18    24    28

1      2      3      4      5      6    7     8

11    12    13    14    15    16    17  18

21    22    23    24    25    26    27  28

T(1)

=T(2) =T(3)

T

Fig. 1. 3-order tensor unfolding, tensor T is unfolded to 3 matrices.

Definition 3: n-mode product of a tensor by a matrix.
Suppose a tensor T ∈ RI1×I2×...×In−1×In×In+1×...×IN and
a matrix U ∈ RJn×In , the n-mode product (T×nU) ∈
RI1×I2×...×In−1×Jn×In+1×...×IN is defined as

(T×nU)i1i2...in−1jnin+1...iN

=
In∑

in=1

(ai1i2...in−1inin+1...iN × ujnin).
(3)

The n-mode product is a key linear operation for dimen-
sionality reduction, the truncated left singular vector matrix

I2
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I4

I5
I6
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× =
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I3

I4

I5
I6

I1

Fig. 2. Tensor dimensionality reduction with n-mode product, dimensionality
of the 2nd order is reduced from 8 to 2 by a 2× 8 matrix.

UJn×In (Jn < In) is used to reduce the dimensionality of
order In from In to Jn.

Definition 4: Core Tensor and Approximate Tensor. For
initial tensor T , the core tensor S and approximate tensor T̂
are defined as

S = T×1U1
T×2U2

T...×NUN
T, (4)

and
T̂ = S×1U1×2U2...×NUN . (5)

Core tensor S is viewed as a compressed version of initial
tensor T . Big data applications can simply keep the core tensor
S and truncated bases U1, ..., UN . When needed, data can be
reconstructed by generating the approximation tensor with Eq.
(5). In general cases, the reconstructed data are more efficient
than original data because noise, inconsistency and redundancy
are removed.

1 2

3

^

Fig. 3. Illustration of core tensor and approximate tensor. The core tensor and
truncated orthogonal unitary bases (U1, U2, U3) are called core data sets that
can be used to make big data smaller, while the reconstructed approximate
tensor is a substitute for initial tensor.

III. A UNIFIED DATA REPRESENTATION MODEL

This section proposes a tensor-based data representation
model and tensorization approach for transforming hetero-
geneous data to a unified model. Firstly, a extensible order
tensor model and tensor extension operator are presented.
Secondly, we illustrate how to tensorize the unstructured,
semi-structured, and structured data as sub-tensors. Thirdly,
the integration of sub-tensors as a unified tensor is studied.
Tensor order and tensor dimension, two confusing concepts,
are discussed in the end.

A. Extensible Order Tensor

In general, time and space are two basic characteristics
of data collected from different areas, while users are major
recipients of data service. Therefore, a general tensor-based
data model is defined as
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T ∈ RIt×Is×Iu×I1×...×IN . (6)

Eq. (6) shows a (N + 3)-order tensor which contains two
parts, namely the fixed part RIt×Is×Iu and the extensible part
RI1×...×IN .

In the tensor model, data characteristics are represented as
tensor orders. For example, the color space characteristic of
unstructured video data can be modeled as Ic. For heteroge-
neous data, various characteristics are represented as tensor
orders and attached to the fix part using the proposed tensor
extension operator.

Definition 5: Tensor Extension Operator. Let A ∈
RIt×Is×Iu×I1 , and B ∈ RIt×Is×Iu×I2 , the tensor extension
operator is given by following function

f : A×⃗B → C, C ∈ RIt×Is×Iu×I1×I2 . (7)

Operator ×⃗ satisfies the associative law, in other words,
(A×⃗B)×⃗C = A×⃗(B×⃗C). With Eq. (7), heterogeneous data
can first be tensorized as low order sub-tensors and then
extended to a high order unified tensor. The operator merges
the identical orders while keep the diverse orders. Elements
of the identical order are accumulated together. For instance,
sub-tensor Tsub1 and sub-tensor Tsub2 have time order denoted
as It−1, It−2, where It−1 ∈ {i1, i2}, It−2 ∈ {i1, i3}. After
extension, time order of the new tensor T = Tsub1×⃗Tsub2

becomes It ∈ {i1, i2, i3}.

B. Tensorization Method

Unstructured data include video data and audio data, while
semi-structured data are composed of XML documents, ontol-
ogy data, etc. Representatives of structured data are numbers
and character strings stored in relational database. In this
paper, video clip, XML document, and GPS data are employed
to illustrate the tensorization process.
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Fig. 4. Represent video clip as 4-order tensor.

Video data can be represented as 4-order tensor or 3-
order tensor. To represent a video clip of MPEG-4 format, 25
frames per second, 768×576 resolution and RGB color space,
a 4-order tensor RIf×Iw×Ih×Ic is adopt with If , Iw, Ih, Ic
indicating frame, width, height and color space. For instance,
a 750-frame MPEG-4 video clip with resolution of 768× 576
and RGB color can be tensorized as R750×768×576×3. In some
applications, RGB color is usually transformed to gray level
using equation Gray = 0.299R+ 0.587G+ 0.114B, and the
representation is replaced by a 3-order tensor R750×768×576.
Fig. 4 shows the process of transforming a video clip to a
4-order tensor.

Extensible Markup Language (XML) is semi-structured.
Fig. 5 shows a simple XML document with seven elements
and one attribute. The elements contain tags and contents
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Liang Chen

Text
……
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……
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7 8
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<?xml version='1.0' encoding='UTF-8'  ?>

<University>

<Student Category=‘doctoral'>

<ID>20128803</ID>

<Name>Liang Chen</Name>

<Research>

<Area>Internet of Things</Area>

<Focus>Architecture;Sensor Ontology</Focus>

</Research>

</Student>

</University>

(a)

(b)

(c)

(d)

Ier

Iec Ien

Fig. 5. Represent XML document data as a 3-order tensor. (a) gives an initial
XML document, (b) is the parsed tree, (c) shows the relationships between
elements, and the 3-order tensor is illustrated in (d).

which consist of characters from unicode repertoire. An XML
document has a hierarchical structure and can be parsed as a
tree. Fig. 5(b) is the parsed tree of Fig. 5(a). XML Document
can be tensorized as a 3-Order Tensor, where Ier, Iec indicate
the row and column orders of the markup matrix, and Ien
denotes the content vector order. For example, the XML
document in Fig. 5(a) is tensorized as T ∈ R12×12×28, where
28 is the length of Element ’Focus’. Relationships among
element, attribute, and text are represented as numbers. In Fig.
5(c), number 1 is used to indicate the parent-child relationship.

Relational database is widely used to manage structured
data. In database table, simple field with number or character
string type can be modeled as a matrix. For complex field as
BLOB, new orders are needed for representation. In Fig. 6, the
structured GPS data and student data are unified as a 5-order
tensor.

Iy

×�Ix

It Iid
Iid

Iname

=

Iy

Iid

Ix

It

Iname

Record StudentID Longitude Latitude Time

1

2

3

30.51989529114.41225837 07-28 10:36:15D20128803

D20128803

D20128803

114.41209096 30.51987968 07-28 10:36:25

114.41194219 30.51992848 07-28 10:36:35

. . .

. . .

. . .

. . .

. . .

Record StudentID StudentName

1 D20128803. . .

Liang Chen. . .

. . .

Fig. 6. The upper table is modeled as 4-order sub-tensor, the lower table
is modeled as 2-order sub-tensor, the two sub-tensors are unified as 5-order
tensor.
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C. Unified Tensor Representation Model

Big data are composed of unstructured data du, semi-
structured data dsemi and structured data ds. Due to the
requirement of processing all types of heterogenous data, a
unified data tensorization operation is performed using the
following equation

f : (du ∪ dsemi ∪ ds) → Tu ∪ Tsemi ∪ Ts︸ ︷︷ ︸
T

. (8)

With Eq. (7) and Eq. (8), the du, dsemi, ds are transformed
to subtensors Tu, Tsemi, Ts which will later be integrated as
a unified tensor T . For example, on the basis of transformed
video clip, XML document and structured tables as described
in Figs. 4, 5, 6, the final tensor is consequently obtained as
follows,

T ∈ RIt×Is×Iu×Iw×Ih×Ier×Iec×Ien×Iid×Ina . (9)

In Eq. (9), order If is identical to order It, order Ix, Iy
are combined to order Is, and order Ic is unnecessary because
gray level is adopted. Since too many orders may increase the
decomposition complexity, less orders are preferable at the
data representation stage.

An element of the 10-order tensor in Eq. (9) is described
as an 11-tuple

t = (T, S, U,W,H,ER,EC,EN, ID,NA, V ), (10)

where T, S, U refer to the fixed order time, space and user,
W,H denote orders from video data, ER,EC,EN are XML
document characteristics, ID,NA are for GPS data, and V
is the value of element t. Such type of tuples generated
from heterogeneous tensor are usually sparse, and only the
nonzero elements are essential for storage and computation.
The generalized tuple formate accord with Eq. (6) is defined
as

t = (T, S, U, i1, ..., iN , V ). (11)

It

Is

Iu

Video

XML Document

GPS

Fig. 7. Visualization of the 2-layer space for data representation

Fig. 7 illustrates the extensible order tensor model from
another point of view. The fixed part contains T, S, U is seen
as an overall layer, while the extensible part is deemed as an
inner layer. Tensor T is simplified as a two layer spaces where
the inner space is embedded to the 3-order (It×Is×Iu) overall
space.

D. Order and Dimension

Tensor order and tensor dimension are two key concepts
for data representation, we give a brief comparison between
them. Tensor T ∈ RI1×I2×...×IN has N orders, and order
i (1 ≤ i ≤ N ) has Ii dimensions. A N -order tensor
can be unfolded to N matrices. For the mode-i unfolded
matrix T(i), the number of rows is equal to Ii, while the
number of columns is equal to

∏
1≤k≤N, k ̸=i

Ik. Because of

data redundancy and duplication, there exists serious linear
dependence which makes the dimensionality very big. In many
big data applications, it is impossible to store all dimensions,
and only valuable core data sets are essential. During core data
sets extraction, the number of tensor orders remains the same
while the dimensionality are reduced.

IV. INCREMENTAL TENSOR DIMENSIONALITY REDUCTION

A novel method is proposed for dimensionality reduction on
streaming data in this section. Firstly, two problems of tensor
decomposition are defined. Then two equivalence theorems
are proved and an Incremental High-Order Singular Value
Decomposition (IHOSVD) method that can efficiently com-
pute the core data sets on streaming data is presented. Finally,
complexity and computation accuracy of the proposed method
are disscussed.

A. Problems Definition

Two important problems related to incremental tensor di-
mensionality reduction are: (1) the recalculation problem; (2)
the order inconsistency problem. We formally define them.

Problem 1: Tensor Decomposition Recalculation. Let S1

denotes the core tensor obtained from previous tensor T1, χ
denotes a new tensor. combining T1 with χ, we obtain T2 =
T1 ∪ χ. According to Eq. (4), the new core tensor S2 of new
tensor T2 is computed with

S2 = T2×1U
T
1 ×2U

T
2 ...×NUT

N . (12)

Decomposition recalculation occurs in Eq. (12) because the
previous decomposition results during computing core tensor
S1 are not reused.

Problem 1 can be solved with algorithm 1 and 2 that are
designed with the proposed recursive incremental singular
value decomposition method.

Problem 2: Tensor Order Inconsistency. Assume T1, S2

and T2 are defined as previous tensor, new core tensor and new
combined tensor, to compute S2 with Eq. (3), the row number
of the truncated orthogonal matrix U must be consistent with
dimensionality of the tensor order In. However, one order
dimensionality of the combined tensor T2 is not equal to the
row number of truncated orthogonal matrix U .

For instance, let T1 ∈ R2×2×2 be a 3-order tensor, and
T1(1) ∈ R2×4, T1(2) ∈ R2×4, T1(3) ∈ R2×4 are three unfolded
matrices of T1. Given a new tensor χ ∈ R2×2×2, combine it
with previous tensor T1 along the third order I3, we obtain
T2 ∈ R2×2×4. The third order dimensionality of T2 is 4, while
the row number of the truncated orthogonal basis computed
from matrix T1(3) is 2. This leads to order inconsistency.
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In the following sections, theorem 1, 2 and algorithm 3 are
introduced to solve problem 2.

B. Basis and Core Tensor Equivalence Theorems

The left singular vector matrix U plays a key role on
dimensionality reduction and data reconstruction. Similarly,
the truncated r-rank orthogonal unitary bases U1, U2, ..., UN of
the unfolded matrices construct the most basic coordinate axes
of a N-order tensor. For heterogeneous big data dimensionality
reduction, the major difficulty lies in computing the bases
on variable dimension. Our approach extends dimension to
fixed length and find out equivalent basis. In this paper, two
theorems are presented and proved to support our approach.

Theorem 1: Basis Equivalence of SVD. Define M1 as a
m1 by n matrix, and M2 as a m2 by n matrix whose left
m1 columns contain matrix M1 and right m2 −m1 columns
are zero. Namely, M2 = [M1 0], M1 ∈ Rm1×n, M2 ∈
Rm2×n, m1 < m2. If the singular value decompositions of
matrix M1 and matrix M2 are expressed as

M1 = U1Σ1V
T
1 , M2 = U2Σ2V

T
2 , (13)

Then, the unitary orthogonal basis U1 is equivalent to U2.
Proof. From Eq. (13), we obtain

M2M
T
2 = [M1 0]×

[
MT

1

0

]
= M1M

T
1 . (14)

Consider

M2 ×MT
2 = U2Σ2V

T
2 × V2Σ

T
2 U

T
2 = U2(Σ2Σ

T
2 )U

T
2 , (15)

and

M1 ×MT
1 = U1Σ1V

T
1 × V1Σ

T
1 U

T
1 = U1(Σ1Σ

T
1 )U

T
1 , (16)

we obtain

U1(Σ1Σ
T
1 )U

T
1 = U2(Σ2Σ

T
2 )U

T
2 . (17)

Note that both sides of Eq. (17) are spectral decompositions
of two equal symmetric matrix. Additionally, the diagonal
matrices Σ1Σ

T
1 and Σ2Σ

T
2 consist of the eigenvalues of the

equal matrix. According to the uniqueness characteristic of
eigenvalues, Σ1Σ

T
1 and Σ2Σ

T
2 are equal. It can be concluded

that U1 is equivalent to U2. The equivalence implies that U1

can be calculated by multiply U2 with a series of Elementary
Matrices [6].

On the basis of theorem 1, the following two corollaries can
be derived.

Corollary 1: Let M1 = [v1, v2, ..., vn], M2 =
[v1, v2, ..., 0, ..., 0, ..., vn], where vi is column vector, then the
two matrices have equivalent left singular vector bases.

Corollary 2: Suppose M2 =

[
M1

0

]
, then matrix M1

and matrix M2 have equivalent left singular vector bases.
With corollary 2, the orthogonal basis U1 can be obtained
by trimming the bottom zeros of the orthogonal basis U2.

Theorem 1 and corollaries 1, 2 are employed to proved
Theorem 2 defined as follows. Before the proof, we introduce
a special matrix which will be used in Theorem 2.

Definition 6: Extension Matrix. An extension matrix is
defined as

M =

[
I
0

]
, M ∈ RJn×In , Jn > In.

Multiply the N -order tensor T ∈ RI1×I2×...×In×...×IN with
extension matrix M along order n, the dimensionality of this
order is extended from In to Jn.

Theorem 2: Core Tensor Equivalence of HOSVD. Let T
and G be N-order tensors, where T ∈ RI1×I2×...×IN and G ∈
RI1×I2×...×(kIn)×...×IN . Define M as an extension matrix,
M ∈ RIn×(kIn). Tensor T and G satisfy

T = G×nM = G×n

[
In
0kn

]
.

Proof. Unfold tensor T and tensor G to N matrices
T(1), T(2), ..., T(N), and G(1), G(2), ..., G(N). According to
Theorem 1 and Corollaries 1, 2, the corresponding unfolded
matrices of tensor T and G have equivalent left singular vector
bases. Besides, n-mode product of tensor T and matrices A,B
posses following properties

T×mA×nB = T×nB×mA, (18)

and
T×nA×nB = T×n(BA). (19)

Employing Eq. (4), core tensors ST , SG are calculated with
following equations

ST = T×1U
T
1 ×2U

T
2 ×3...×NUT

N , (20)

and
SG = G×1U

T
1 ×2U

T
2 ×3...×NUT

N . (21)

With Eqs. (18), (19), (20) and (21), we obtain

ST = T×1U
T
1 ×2U

T
2 ×3...×NUT

N

= (G×nM)×1U
T
1 ×2U

T
2 ×3...×NUT

N

= G×1U
T
1 ×2U

T
2 ×3...×NUT

N×nM
= SG×nM.

(22)

Theorem 2 reveals that extending a tensor by padding zero
elements will not transform the core tensor. After unified
representation of big data, order number of the incremental
tensor and the initial tensor are equal, but the dimensionality
are different. Theorem 2 can be used to solve this problem by
resizing dimensionality.

C. Incremental High Order Singular Value Decomposition

We propose an IHOSVD method for incremental dimension-
ality reduction on streaming data. IHOSVD method consists
of three algorithms that are used for recursive matrix singular
value decomposition and incremental tensor decomposition.
The three algorithms are separately described in detail.

Algorithm 1 is a recursive algorithm with recursive function
given in Eq. (23). During running process, function f will call
itself (Step 4) over and over again to decompose matrices Mn

and Cn. Each successive call reduces the size of matrix and
moves closer to a solution until finally matrix M1 is reached,
the recursion stops, and the function can exit.
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f(Mn, Cn) =

{
svd(M1), n = 1
mix(f(Mn−1, Cn−1), Cn), n > 1

(23)

Algorithm 1 calls function mix (Step 5) to merge column
vectors of the incremental matrix with the decomposed com-
ponents of initial matrix. Detailed procedures of function mix
is described in algorithm 2.

Algorithm 1 Recursive matrix singular value decomposition,
(U, Σ, V ) = R−MSvd(Mn, Cn).

Input:
Initial matrix Mn.
Incremental matrix Cn.

Output:
Decomposition results U, S, V of matrix [Mn Cn].

1: if (n == 1) then
2: [U, Σ, V ] = svd(M1).
3: else
4: [Um, Σm, Vm] = R−MSvd(Mn−1, Cn−1).
5: [U, Σ, V ] = mix(Mn−1, Cn−1, Um, Σm, Vm).
6: end if
7: return U, S, V.

For most tensor unfolding, the number of rows is less than
the number of columns. For such type of matrices, Algorithm
1 can efficiently compute the singular values and singular
vectors by splitting the columns for recursive decomposition.

1nC −

mU L

KJ

Pro
jec
tion

Projection

Coordinates

Coordinates

J

mU

K

L

mΣ

(a)

(b)

mU J

I

× × × ×

U Σ VmV

Fig. 8. (a): Incrementally incoming column vectors are projected on unitary
orthogonal bases; (b): The middle quasi-diagonal matrix is diagonalized and
previous singular vector matrices are updated.

Algorithm 2 applies SVD updating [3] technique for in-
crementally matrix factorization. Included in matric Cn−1

are the additional columns which will be projected on the
unitary orthogonal bases of previous matrix Mn−1 (Step 1).
Some column vectors are linear combination of orthogonal
unitary bases Um, others are components orthogonal to the
space spanned by Um. As illustrated in Fig. 8, these two
types of vectors are separated to obtain the bases Um, J and
coordinates L,K. The operations are implemented as Steps
2 ∼ 4 . The column space of singular vector matrix U are
spanned by the direct sum of above two unitary orthogonal
bases as follows

CS(U) = span(Um ⊕ J). (24)

Combining the coordinates with previous singular values,
we obtain a quasi-diagonal sparse matrix which is easy for
decomposition. The new equation consists of above orthogonal
bases and coordinates is defined as

[Mn−1, Cn−1] = [Um, J ]

[
Σm L
0 K

] [
V 0
0 I

]T
. (25)

Let U ′, V ′ denote the unitary orthogonal bases of the quasi-
diagonal matrix in Eq. (25), the updated singular vector
matrices are

U = [Um J ]× U ′, V =

[
V 0
0 I

]
V ′. (26)

Eq. (3) suggests only the left singular vector matrix U is
essential for tensor decomposition, therefore, computation of
matrix V can be omitted in Step 6 of algorithm 2.

Algorithm 2 Merge incremental matrix with decomposition
results, (U, Σ, V ) = mix(Mn−1, Cn−1, Um, Σm, Vm).
Input:

Initial matrix Mn−1 and incremental matrix Cn−1.
Decomposition results Um, Σm, Vm of matrix M .

Output:
New decomposition results U, Σ, V.

1: Project Cn−1 on the orthogonal space spanned by Um,
L = UT

m × Cn−1.
2: Compute H which is orthogonal to Um, H = Cn−1 −

Um × L.
3: Obtain the unitary orthogonal basis J from matrix H .
4: Compute the coordinates of matrix H , K = JT ×H .
5: Execute SVD on the new matrix [U J ], [U ′, Σ′, V ′] =

svd([U J ]).
6: Obtain new decomposition results, ([U J ], U ′) →

U, Σ′ → Σ, V ′ → V .
7: return U, S, V.

Employing above two algorithms, we propose Algorithm
3 for incrementally computing core tensor. In the algorithm,
extension matrix is used to ensure order consistency (Step 1).
Unitary orthogonal bases U(1), ..., U(N) are updated from Step
2 to Step 4, as well as the new core tensor S is obtained in
Step 6. For demonstration of the running process, Fig. 9 shows
a simple example with a 3-order tensor.

X

T

1.Extension 2.HO-SVD

3.Extension 4.Unfolding

5.Update U1,U2,U3

1U

2U

3

U

X

S

6. New 
U1,U2

U3,S

T

(1)X

(2)X

(3
)

X

Fig. 9. Example of incremental tensor decomposition, truncated orthogonal
bases U1, U2, U3 of new tensor χ are updated incrementally.



7

Algorithm 3 Incremental tensor singular value decomposition,
(S, [U, Σ, V ]new) = I − TSvd(χ, T, [U, Σ, V ]initial).
Input:

New tensor χ ∈ RI1×I2×...×IN .
Previous tensor T ∈ RI1×I2×...×IN .
Previous unfolded matrices SVD results [U, Σ, V ]initial.

Output:
New truncated SVD results [U, Σ, V ]new.
New core tensor S.

1: Extend tensor χ and tensor T to identical dimensionality.
2: Unfold new tensor χ to matrices χ(1), ..., χ(N).
3: Call algorithm R − MSvd to update above unfolded

matrices.
4: Truncate the new orthogonal bases.
5: Combine new tensor χ with initial tensor T .
6: Obtain new core tensor S with n-mode product.
7: return S, and [U, Σ, V ]new.

D. Complexity and Computation Accuracy

1) Time Complexity: Time consumption processes of the
proposed IHOSVD method consist of matrix unfolding, in-
crementally singular value decomposition of each unfolded
matrices, and n-mode product of tensor by the truncated bases
U1, ..., UN . Let Timeunf , Timeisvd, Timeprod denote the
time consumed by above process respectively, the total time
consumption T satisfies

Time = Timeunf + Timeisvd + Timeprod. (27)

Tensor unfolding is a simple transformation with O(1) time
complexity. Timeisvd is equal to Time1 + Time2 + ... +
TimeN =

∑N
i=1 Timei, where Timei refers to the time

consumed by unfolded matrix T(i). According to Eq. (23),
time Timeisvd are

Time(n) =

{
C1, n = 1
Time(n− 1) + C2, n > 1

, (28)

C1, and C2 are constants. The recursive calling process first
add columns and then update them with previous decompo-
sition results, the time complexity of one unfolded matrix is
O(k2n) and the total time complexity is

∑N
i=1 k

2
i Ii, where Ii

denotes the length of order i. The time complexity of Tisvd is
O(k2n) in general.

Computation cost of n-mode product of tensor by matrix
lies in the matrix-matrix computation. For a truncated orthog-
onal basis U with k column vectors, the time complexity is
O(k2n). Conclusion can be drawn that time complexity of
the proposed IHOSVD method is O(1) +O(k2n) +O(k2n),
namely O(k2n).

2) Space Complexity: Let Spaceu denotes the space used
to store all truncated orthogonal bases of unfolded matrices,
and Spacer−msvd, Spacemix refer to the memory space for
recursive process in algorithm 1. The total space consumed by
IHOSVD method is defined as

Space = Spaceu + Spacer−msvd + Spacemix. (29)

Complexity of Spaceu is equal to O(n). To incrementally
compute the core tensor, IHOSVD method needs to keep

all the truncated orthogonal bases, the consumed space are∑N
i=1 kiIi. During the recursive process, the temporary spaces

needed are

Mn + Cn +Mn−1 + Cn−1 + ...+M1 + C1. (30)

Complexity of above temporary space is O(n). It can be
concluded that space complexity of IHOSVD method is O(n).

3) Computation Accuracy: Reconstruction error between
initial tensor and approximate tensor can be exactly measured
with Frobenius Norm [7] as∥∥∥T − T̂

∥∥∥
F
= (

I1∑
i1=1

, ...,

IN∑
in=1

(ai1,...,in − âi1,...,in)
2
)

1
2 . (31)

For the unfolded matrix T(i) of initial tensor T , the approx-
imate matrix is T̂(i) = UiΣiV

T
i . The reconstruction error is

caused by approximation of all unfolded matrices. To clearly
analyze tensor dimensionality reduction degree and tensor
approximation degree, we present two ratios.

Definition 7: The Dimensionality Reduction Ratio of tensor
T is defined as

ρ =

nnz(S) +
N∑
i=1

nnz(Ui)

nnz(T )
, (32)

where S denotes the core tensor, and Ui is the mode-i
truncated orthogonal basis. The core data sets of tensor T
are composed of S (core tensor) and U1, U2, ..., UN . Because
only nonzero elements of the core data sets are stored, ratio ρ
can accurately reflect dimensionality reduction degree.

Definition 8: The Reconstruction Error Ratio of tensor T
is defined as

e =

∥∥∥T − T̂
∥∥∥
F

∥T∥F
. (33)

Ratio e reflects the degree of reconstruction error with ten-
sor Frobenius Norm. In this paper, pair (ρ, e) is used to
describe the reduction degree and error degree. Obviously,
the ratio ρ is inversely proportional to ratio e. Computation
accuracy is important for tensor data approximation, and
in most applications, HOSVD type algorithms can find a
better approximation. To obtain higher accuracy, High-Order
Orthogonal Iteration (HOOI) [8] method can be utilized to find
the best rank approximation.

V. CASE STUDY

In this section, we illustrate the proposed unified data
representation model and incremental dimensionality reduc-
tion method with an Intelligent Transportation case. Tensor
unfolding is demonstrated as well as performance of the
proposed method is evaluated.

A. Tensor Unfolding Demonstration

We construct a 5-order tensor T ∈ R480×640×3×2×3 by
extracting three frames from unstructured video clip and
three users from semi-structured XML document. Fig. 10(a)
shows the five unfolded matrices of tensor T . The five orders
represent height, width, color space, time and user respectively.
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T

T(1)

T(2)

T(3)

T(4)

T(5)

Video

User

(a) Five unfolded matrices of 5-order tensor.

Incremental Tensor Data

Previous Tensor Data

It

Is

Iu

Ier

…

Order Inconsistency

(b) Incremental data on unfolded matrices of 8-order tensor.

Fig. 10. Heterogenous tensor unfolding and incremental tensor unfolding.

To demonstrate incremental tensor unfolding, an 8-order
tensor T ∈ RIt×Is×Iu×Ih×Iw×Ic×Iec×Ier is constructed. In-
cremental data are appended along the time order It. Unfolded
matrices of the combined new tensor (initial tensor and incre-
mental tensor) are shown in Fig. 10(b). Order inconsistency of
the new tensor occurs in order It, because the incremental data
are appended as rows on the bottom of the unfolded matrix.

Figs. 10(a), (b) and Fig. 7 in section III illustrate the tensor
model from different viewpoints, and demonstrate how the
heterogeneous data are stacked together.

B. Dimensionality Reduction and Reconstruction Error

There exists a tradeoff between dimensionality reduction
and approximation error. Fig. 11 shows two video frames
reconstructed from above 5-order tensor under three different
approximation error ratio, namely 0.4%, 7%, and 24%. Fig.
12(a) plots the two ratios together, and illustrates that the
reconstruction error ratio increases gradually as the dimen-
sionality reduction ratio decreases. The core data sets are
composed of core tensor S and truncated orthogonal bases
U1, ..., U5. Fig. 12(b) shows their proportions to the dimen-
sionality reduction ratio. Generally, the proportion of the core
tensor is bigger than the truncated bases.

Diverse data types can result in different dimensionality
reduction ratios and approximation error ratios. With repeated
experiments on video clips, XML documents and GPS data
in this case study, results show that 18% core data sets
can guarantee 93% accuracy in general (7% reconstruction
error ratio). In practice, the balance between dimensionality
reduction and computation accuracy is determined by the

Initial Tensor

0.4%e = 7%e =

Approximate Tensor 

24%e =0%e =

Fig. 11. Video frames reconstructed with different approximation error ratios.

application requirement.

1 2 3

5%

15%

25%

35%

45%

 

 

Dimensionality Reduction Ratio (ρ)
Reconstruction Error Ratio (e)

24%

5%
7%

18%

0.4%

41%

(a)

1 2 3

5%

15%

25%

 

 

Core Tensor

Tuncated U
1

Truncated U
2

Truncated U
3
,U

4
,U

5

(b)

Fig. 12. (a) Tradeoff between dimensionality reduction and reconstruction
error. (b) Proportion of the core tensor to truncated orthogonal bases. X-
Coordinate denotes the serial number of experiment, while Y -Coordinate
denotes the experiment result.

C. Consumption of Time and Memory

Compared with the volume of big data, capability of a
single computer is limited. This paper mainly focus on the
variety and veracity characteristics of big data. To evaluate
the proposed incremental dimensionality reduction method,
we specially execute the algorithms on a computer with low
hardware configurations, i.e., Intel Pentium Dual 1.60 GHz
CPU, and 1 GB RAM. Fig. 13 shows that recalculation time
of general SVD is 568 seconds which is the sum of all times
consumed for decomposing various size of data. Time used in
recursive incremental SVD is 428 seconds. The experimental
result indicates that the recalculation time is greater than time
used in the proposed IHOSVD method. From theoretical point
of view, with more orthogonal bases are appended to the left
singular vector matrix, the middle quasi-diagonal contains less
orthogonal columns, and the time consumption during the
diagonalization process decrease. Moreover, IHOSVD method
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has low space complexity and can decompose tensor more
than 30M bytes on the low performance computer, it is
because the incremental method projects additional matrices
to the previous truncated orthogonal bases rather than directly
execute orthogonalization procedure.
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Fig. 13. Comparison between recursive SVD and general SVD, tensor size is
measured in Megabyte. Decomposition is conducted with four kinds of size,
namely, 10MB, 20MB, 30MB and 40M.

VI. RELATED WORK

This section reviews related works on data representation
and high order singular value decomposition.

Data Representation: Big data are composed of unstruc-
tured, semi-structured, and structured data. In particular, the
multimedia as an unstructured data, is mostly encoded as
MPEG4 and H.264. MPEG-4 [9] is a method for defining
compression of audio and visual digital data. H.264 [10] is
a widely used standard for video compression. The semi-
structured Extensible Markup Language (XML) [11, 12] is
a flexible text format that defines a set of rules for Encoding
documents. XML is both for human-readable and machine-
readable. The characteristics making up an XML document are
divided into markup and content. Kim and Candan [13] pro-
posed an tensor-based relational data model that can process
multi-dimensional structured data. Ontology, such as resource
description framework (RDF) [14] and web ontology language
(OWL) [15], is playing an ever important role in the exchange
of a wide variety of data.

Higher Order Singular Value Decomposition: A ten-
sor [16, 17] is the generalisation of a matrix and usually
called multidimensional array. Tensor is a more effective data
representation model from which valuable information can
be extracted using high order singular value decomposition
(HOSVD) [18] method. Because HOSVD imposes orthogonal
constraints on the truncated column bases, it may be consid-
ered as a special case of the commonly used TUCKER [19]
decomposition. Although low rank truncation of the HOSVD
is not the best approximation of the initial data, it is considered
to be sufficiently good for many applications. Analysis and
mining of data with HOSVD has been adopted in many
applications such as tag recommendations [20, 21], trajectory
indexing and retrieval [22], hand-written digit classification
[23].

VII. CONCLUSIONS AND FUTUREWORK

This paper aims at representing and processing the large
scale heterogeneous data generated from multiple sources.

Firstly, we present a unified tensor-based data representation
model that can integrate unstructured, semi-structured, and
structured data. Secondly, according to the proposed model,
an incremental high order singular value decomposition (I-
HOSVD) method is proposed for dimensionality reduction on
steaming data, besides, we provide and prove two theorems
that can solve the problem of decomposition recalculation
and order inconsistency. Finally, an intelligent transportation
case is investigated for evaluating the method. Theoretical
analysis and results of the case study provide evidence that
the proposed data representation model and incremental di-
mensionality reduction method are promising, and they can
pave a way for efficiently mining and analyzing in big data
applications.

Future work may focus on recursive and incremental method
on CANDECOMP/PARAFAC [24] decomposition, as well as
parallel and distributed decomposition on unified tensor model.
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