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Position information plays a pivotal role in wireless sensor network (WSN) applications and proto-
col/algorithm design. In recent years, range-free localization algorithms have drawn much research atten-
tion due to their low cost and applicability to large scale WSNs. However, the application of range-free
localization algorithms is restricted because of their dramatic accuracy degradation in practical anisotropic
WSNs, which is mainly caused by large error of distance estimation. Distance estimation in the existing
range-free algorithms usually rely on a unified per hop length (PHL) metric between nodes. But PHL be-
tween different nodes might be greatly different in anisotropic WSNs, resulting in large error in distance
estimation. We find that, although PHL between different nodes might be greatly different, it exhibits sig-
nificant locality, i.e., nearby nodes share similar PHL to anchors that know their positions in advance. Based
on the locality of PHL, a novel distance estimation approach is proposed. Theoretical analyses show that the
error of distance estimation in the proposed approach is only one fourth of that in state-of-the-art pattern-
driven scheme (PDS). An adaptive anchor selection is devised to further improve localization accuracy by
mitigating the negative effects from the anchors that are poorly distributed in geometry. By combining the
locality-based distance estimation and the adaptive anchor selection, a range-free localization algorithm
named Selective Multilateration (SM) is proposed. Simulation results show that SM achieves localization
accuracy higher than 0.3r, where r is the communication radius of nodes. Compared with state-of-the-art
solutions, SM improves distance estimation accuracy by up to 57 percent and improves localization accuracy
by up to 52 percent consequently.
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1. INTRODUCTION
Wireless sensor networks (WSNs) have the potential to provide economical and practi-
cal solutions to many important applications, e.g., environmental monitoring [Navarro
et al. 2013], object tracking [Blumrosen et al. 2013], and wild animal monitoring and
controlling [Misra and Singh 2012]. Position information of nodes plays a pivotal role
in many WSN applications. For instance, in the environmental monitoring application-
s, the collected data should be notated with the positions where they are sensed to be
further analyzed to provide meaningful information. Position information of nodes is
also necessary in the design of many WSN protocols and algorithms, like topology con-
trol [Zhu et al. 2012a], geographical routing [Huang et al. 2012b], and event detection
[He et al. 2012]. The process of determining the positions of nodes in a WSN is usu-
ally termed as localization. Designing accurate and efficient localization algorithms
remains challenging due to the extremely limited resources of nodes and the complex
environments where the WSNs are deployed.

Range-free localization algorithms have received much research attention in the
past several years [Wang et al. 2010; Xiao et al. 2010a; Wang and Xiao 2008; Li and
Liu 2010; Lim and Hou 2009; Xiao et al. 2010b; Tan et al. 2010; Kubo et al. 2012;
Shang et al. 2004a]. Compared to range-based localization [Wang et al. 2011; Aspnes
et al. 2006] that requires special hardware to measure distances/angles among nodes,
range-free localization is more suitable to large-scale WSNs due to its low requirement
on node hardware and low cost. Instead of directly measuring distances or angles be-
tween nodes, range-free localization algorithms estimate the distances between nodes
by using network topology and the proximity relationship among nodes, e.g., DV-Hop
[Niculescu and Nath 2001] and Amorphous [Nagpal et al. 2003]. Although these al-
gorithms achieve high localization accuracy in isotropic WSNs (i.e., WSNs formed by
nodes uniformly scattered in regular regions), they face severe accuracy degradation
in anisotropic WSNs [Lim and Hou 2009; Xiao et al. 2010b; Tan et al. 2010; Kubo
et al. 2012; Wang and Xiao 2008]. The accuracy degradation mainly comes from large
error of distance estimation in anisotropic environments. For example, existing algo-
rithms like DV-Hop and Amorphous usually rely on a unified per hop length (PHL)
to estimate distances between nodes. In anisotropic WSNs, PHL between different n-
ode pairs might be greatly different from each other, making algorithms replying on
DV-Hop and Amorphous output largely erroneous distance estimates. The inaccurate
distance estimates consequently result in inaccurate position estimates.

Improving the accuracy of range-free localization in anisotropic WSNs has been one
of the main focuses in WSN localization research [Li et al. 2005; Wang and Xiao 2008;
Kung et al. 2009; Yang and Liu 2010; Xiao et al. 2013; Li and Liu 2010; Wang et al.
2010; Xiao et al. 2010b; Lim and Hou 2009; Shang et al. 2004b; Xiao et al. 2010a;
Tan et al. 2010; Shang et al. 2004a]. Existing solutions can be roughly classified in-
to four categories. The first category of approaches employ robust statistical location
estimates to tolerate the large error in distance estimation [Li et al. 2005; Wang and
Xiao 2008; Kung et al. 2009; Yang and Liu 2010; Xiao et al. 2013]. The second category
of approaches rectify the distance estimates within an additional phase and calculate
positions of nodes with the rectified distances [Li and Liu 2010; Wang et al. 2010; Xiao
et al. 2010b; Lim and Hou 2009; Lederer et al. 2009] in order to improve localization
accuracy. The third category of approaches are more conservative that they just simply
simply discard the distance estimates that might have large error according to heuris-
tic rules [Shang et al. 2004b; Xiao et al. 2010a; Tan et al. 2010]. There are also some
other approaches exploit the local isotropy of the network to build accurate local coor-
dinate systems and form the global coordinate system by combining local ones [Shang
et al. 2004a; Costa et al. 2006; Ji and Zha 2004]. However, most of these approaches
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are reactive, i.e., they try to make improvement on the erroneous distance estimates
obtained with traditional approaches like DV-Hop and Amorphous. They fail to tack-
le the problem proactively at the starting point, i.e., designing novel approaches to
obtaining accurate distance estimation between nodes.

In this paper, a novel approach is proposed to obtain accurate distance estima-
tion between nodes in anisotropic WSNs. The key observation is that, although in
an anisotropic network PHL between different node pairs might be greatly different,
it exhibits significant locality: For two nearby nodes, their PHL to the anchors (nodes
that know their positions in advance) are similar. Based on the locality of PHL, a novel
distance estimation approach is proposed that outputs more accurate distance esti-
mates than state-of-the-art pattern-driven scheme (PDS) [Xiao et al. 2010b] does. We
also devise an algorithm to adaptively select a subset of anchors for every node to per-
form localization, which can further improve the localization accuracy. By combining
the two techniques, we propose a range-free localization algorithm that achieves high
localization accuracy in anisotropic WSNs.

In summary, this paper makes the following main contributions:

— A novel distance estimation approach is proposed based on the locality of PHL. The-
oretical analyses show that the expected error of distance estimation in the proposed
approach is only one fourth of that in PDS [Xiao et al. 2010b], i.e., 0.1r in our ap-
proach versus 0.4r in PDS, where r is the communication radius of nodes.

— An efficient algorithm is devised to adaptively select a subset of anchors for every
node to perform localization. The selection of anchors effectively improves localiza-
tion accuracy by mitigating the negative effects from the anchors that are poorly
distributed in geometry.

— By combining the locality-based distance estimation and the adaptive anchor selec-
tion, a range-free localization algorithm named Selective Multilateration (SM) is pro-
posed. SM achieves localization accuracy higher than 0.3r, well satisfying the basic
requirements of location-dependent protocols/algorithms in WSNs, i.e., 0.4r as point-
ed out in [He et al. 2005].

The rest of this paper is organized as following. Section 2 introduces background
on range-free localization. Section 3 shows the locality of PHL in anisotropic WSNs
and gives theoretical explanation of the locality. The locality-based distance estima-
tion approach is detailed in Section 4, along with the analyses on its accuracy. Section
5 describes the adaptive anchor selection algorithm. Section 6 proposes the SM algo-
rithm built on top of the locality-based distance estimation approach and the anchor
selection algorithm. Extensive simulation experiments are conducted to evaluate the
performance of SM and make comparisons with state-of-the-art solutions, and the re-
sults are reported in Section 7. Section 8 reviews related work. Finally, Section 9 gives
some conclusion remarks.

2. BACKGROUND
2.1. Range-Free Distance Estimation
In range-free distance estimation approaches [Niculescu and Nath 2001; Nagpal et al.
2003], the distance between two nodes is estimated as the multiplication of the PHL
and the hop count between them. Let hij be the hop count between node si and node
sj . Then the distance dij can be estimated as

dij ≈ hij ∗ PHL. (1)

PHL represents the expected distance each hop progresses. As to be revealed in Section
3.1, PHLs between different node pairs are similar in isotropic WSNs. Thus, its value
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Fig. 1. Estimating proximity level between si and sj : The proximity level can be inferred from A(S1)/A(S2),
where A(S1)(A(S2)) is the area of region S1(S2). A(S1)/A(S2) can be approximately represented as the ratio
of |N(si)−N(sj)| (the number of black nodes) to |N(si)

⋂
N(sj)| (the number of gray nodes).

can be estimated by sampling on anchors [Niculescu and Nath 2001]

PHL ≈
∑
si 6=sj ,si,sj∈A dij∑
si 6=sj ,si,sj∈A hij

, (2)

where A is the set of all anchors, dij is the Euclidean distance between two anchors
si and sj which can be calculated according to the two anchor’s coordinates. This ap-
proach, usually called DV-Hop, is the basic technique employed by most range-free
localization algorithms [Wang et al. 2010; Xiao et al. 2010a; Wang and Xiao 2008; Li
and Liu 2010; Xiao et al. 2010b; Tan et al. 2010; Kubo et al. 2012; Li et al. 2005] to
estimate distance between nodes. It can output fairly accurate distance estimates in
isotropic WSNs, but faces severe accuracy degradation in anisotropic WSNs. We will
discuss the reason behind this in Section 3.1.

2.2. Sub-Hop Proximity Estimation
In recent years, there have been some researches focusing on sub-hop proximity es-
timation between adjacent nodes, i.e., obtaining proximity information more fine-
grained than hop count to improve the accuracy of range-free localization algorithms
[Wu et al. 2012; Zhu et al. 2012b; Zhong and He 2011]. Figure 1 illustrates the intu-
ition to estimate sub-hop proximity between two adjacent nodes. si and sj share some
common neighbors. The ratio of common neighbors is related to the distance between
them. For example, when dij is small, i.e., the two nodes are very close to each oth-
er, most of their neighbors are common neighbors. In contrast, when dij is large, they
share only a few or even no common neighbors. We can infer more fine-grained prox-
imity information than traditional hop-count by using the ratio of common neighbors.

We briefly explain how to estimate the proximity level between si and sj by using
Figure 1 as an example. Consider the case in which the communication radius r (i.e.,
one longest hop in traditional approaches) is divided into K proximity levels. The prox-
imity level between si and sj can be estimated as

κ = d dij
r/K

e = dK ∗ dij
r
e. (3)

Let A(S1) and A(S2) be the area of region S1 and S2 in Figure 1, respectively. The ratio
of A(S1) to A(S2) is determined by only dij , i.e.,

A(S1)

A(S2)
= f(dij) =

πr2

2 arccos
dij
2r r

2 − dij
√
r2 − d2ij/4

− 1. (4)
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Fig. 2. The impact of the number of proximity levels (K) and node degree on the correlation coefficient
between distance and proximity estimation.

Let N(si) be the set of all the neighbors of si. Then for si, A(S1)/A(S2) can be approxi-
mated as

f(dij) ≈
|N(si)−N(sj)|
|N(si)

⋂
N(sj)|

. (5)

Then dij can be estimated as

dij ≈ f−1(
|N(si)−N(sj)|
|N(si)

⋂
N(sj)|

). (6)

Substituting Eq. (6) into Eq. (3), si can obtain the proximity level between itself and
sj . In the same way, sj can obtain its proximity level between itself and si. Note the
proximity levels obtained by si and sj might be different due to uneven distribution
of nodes. In this case, si and sj can exchange their estimated proximity levels and use
the mean value as the final proximity level estimation.

The number of proximity levels (K) affects the distance estimation accuracy from
two aspects. On one hand, with a larger K more fine-grained proximity information
can be obtained and hence the distance estimation accuracy can be improved. On the
other hand, more proximity levels might induce larger proximity level estimation er-
ror. For instance, let κ and κ′ be the ground-truth and the estimated proximity level,
respectively. The maximum proximity level estimation error would be about r ∗ |K−1|K ,
i.e., κ = 1 but κ′ = K or κ = K but κ′ = 1. When K = 2, the maximum estimation error
would be 0.5r. When K = 10, the maximum estimation error would be 0.9r.

The value of K should be appropriately selected. Figure 2 plots the Pearson corre-
lation coefficient (ρ) between the proximity estimation and the corresponding ground-
truth distance between two nodes when K and node degree (to be defined in Section
7) change. It can be observed that ρ becomes almost stable when K ≥ 4. Thus we
set K = 4 through this paper. Meanwhile, we observe that ρ is always larger than
0.6 when the node degree is larger than eight, showing that the proximity estimation
can effectively represent the distance between two nodes. To be consistent with the
existing works, we still use the term “hop” to denote one proximity level in this paper.
In other words, there might be κ hops between two adjacent nodes si and sj , where
1 ≤ κ ≤ K.
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Fig. 3. (a): A typical isotropic network, and (b) a typical anisotropic network. The squares represent an-
chors.

3. LOCALITY OF PHL
3.1. Locality of PHL in Anisotropic WSNs
In this section we investigate the different properties of PHL in isotropic and
anisotropic WSNs.

Definition 3.1 (PHL vector). Consider a network consisting of n nodes, among
which m are anchors. We label the n nodes as {s1, . . . , sm, sm+1, . . . , sn}, where
s1, . . . , sm are anchors. The PHL vector of si (1 ≤ i ≤ n) is defined as Vi = [u1, . . . , um],
where the k-th element is the PHL between si and sk, i.e.,

uk =
dik
hik

. (7)

When si itself is an anchor, ui = 0.

Definition 3.2 (Similarity between two PHL vectors). Given two nodes’ PHL vectors
Vi and Vj, we define their similarity as the cosine of the angle between them, which
is calculated as

Sim(Vi,Vj) =
< Vi,Vj >

|Vi||Vj|
, (8)

where < Vi,Vj > is the inner product of the two vectors

< Vi,Vj >=

m∑
k=1

Vi[k] ∗Vj[k], (9)

and |Vi| (|Vj|) is the length of Vi (Vj).
The similarity between different nodes’ PHL vectors exhibits different properties

in isotropic and anisotropic WSNs. In isotropic WSNs like Figure 3(a), the similarity
between different nodes’ PHL vectors is always very high and concentrates in a very
small interval. In contrast, in anisotropic WSNs like Figure 3(b), the similarity be-
tween different nodes’ PHL vectors scatters in a much larger interval. As an example,
we randomly select two nodes, i.e., A in Figure 3(a) and B in Figure 3(b), and plot the
similarity between their PHL vectors and other nodes’ PHL vectors in the same net-
work. The similarity between A and other nodes’ PHL vectors is plotted in Figure 4(a),

ACM Transactions on Sensor Networks, Vol. xx, No. xx, Article 1, Publication date: March 2014.



Accurate Range-Free Localization for Anisotropic Wireless Sensor Networks 1:7

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0 . 9 2

0 . 9 4

0 . 9 6

0 . 9 8

1 . 0 0

 N e i g h b o r  n o d e s
 O t h e r  n o d e sSim

ilar
ity

N o d e  I D

 

 

(a) A vs. other nodes in Figure 3(a)
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(b) B vs. other nodes in Figure 3(b)
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(c) Impact of distance

Fig. 4. Similarity of PHL vectors: (a) similarity between A and other nodes in Figure 3(a), (b) similarity be-
tween B and other nodes in Figure 3(b); (c) similarity between B and its neighbors versus the corresponding
distances. The similarity between A (B) and its direct neighbors is marked as squares.

and the similarity between B and other nodes’ PHL vectors is plotted in Figure 4(b). It
can be observed that most (more than 81 percent) of the similarity between A and oth-
er nodes in Figure 3(a) concentrates in a very small interval [0.993,0.998], while the
similarity between B and other nodes in Figure 3(b) scatters in a much larger interval
[0.95,1]. This is the intrinsic reason why algorithms like DV-Hop and Amorphous per-
form well in isotropic WSNs but encounter severe accuracy degradation in anisotropic
WSNs, because they rely on a unified PHL to estimate the distances between nodes.

However, PHL exhibits significant locality in anisotropic WSNs, i.e., the similarity
between two nearby nodes’ PHL vectors is very close to 1. This means that two nearby
nodes have similar PHL to anchors. In Figure 4(b) we mark the similarity between B’s
PHL vector and its direct neighbors’ PHL vectors with red squares. It can be observed
that the similarity between B and its direct neighbors is significantly higher than that
between B and other nodes. We call this property as locality of PHL. Actually, the
locality of PHL also holds in isotropic WSNs, as shown in Figure 4(a).

The locality of PHL provides an opportunity to obtain accurate distance estimates to
anchors in anisotropic WSNs. For example, assume that si is an anchor and one of its
neighbor sj wants to estimate distances to anchors. Since all the anchors’ positions are
known, si can calculate its PHL vector and broadcast the vector to sj . Then sj can use
si’s PHL vector to obtain accurate distance estimations to anchors. This locality-based
distance estimation approach will be elaborated in Section 4.

3.2. Theoretical Foundation of the Locality of PHL
In this section, we analyze how the distance between two nodes affects the similar-
ity between their PHL vectors. According to the following analyses, we will see that
when two nodes are close to each other, the similarity between their PHL vectors will
approach 1, in either isotropic WSNs or anisotropic WSNs.

Consider two nodes si and sj . We use two vectors Di = [dik]1≤k≤m and Hi =
[hik]1≤k≤m to represent si’s distances and hop counts to anchors, where dik and hik
represent the distance and the hop count between si and anchor sk, respectively. Sim-
ilarly, we use Dj and Hj to represent the two vectors for sj . The PHL vectors of si and
sj can be written as

Vi = Di ∗ (diag(Hi))
−1,Vj = Dj ∗ (diag(Hj))

−1, (10)

where diag(H) represents the diagonal matrix taking elements in H as elements on its
diagonal.
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In order to facilitate the analysis, we define two vectors Θ = [θk]1≤k≤m and Ξ =
[ξk]1≤k≤m, where

θk =
djk
dik
− 1, ξk =

hjk
hik

. (11)

Θ represents the relative difference between Di and Dj, and Ξ represents how Hi and
Hj are close to each other. With Θ and Ξ, Dj and Hj can be rewritten as

Dj = Di ∗ (I + diag(Θ)),Hj = Hi ∗ diag(Ξ), (12)
where I is the identify matrix.

In order to calculate the similarity between Vi and Vj, we first calculate < Vi,Vj >
as
< Vi,Vj >= Vi ∗Vj

T

= Di ∗ (diag(Hi))
−1 ∗ ((diag(Hj))

−1)T ∗Dj
T

= Di ∗ (diag(Hi))
−1 ∗ ((diag(Hi ∗ diag(Ξ)))−1)T ∗ (Di(I + diag(Θ))T

= Di ∗ (diag(Hi �Hi �Ξ))−1 ∗Di
T + Di ∗ (diag(Hi �Hi �Ξ))−1 ∗ diag(Θ) ∗Di

T

=

m∑
k=1

1

ξk

d2ik
h2ik

+

m∑
k=1

1

ξk
θk
d2ik
h2ik

. (13)

Here � means element-wise multiplication. For example, let A = [a1, . . . , am] and B =
[b1, . . . , bm]. Then A�B = [a1 ∗ b1, . . . , am ∗ bm].

Let ξmax and ξmin be the maximum and the minimum elements in Ξ, respectively.
Then there must exist ξmin ≤ ξ1 ≤ ξmax, such that

m∑
k=1

1

ξk

d2ik
h2ik

=
1

ξ1

m∑
k=1

d2ik
h2ik

=
1

ξ1
|Vi|2. (14)

Similarly, let θmax and θmin be the maximum and the minimum elements in Θ, respec-
tively. There must exist θmin ≤ θ1 ≤ θmax, such that

m∑
k=1

1

ξk
θk
d2ik
h2ik

= θ1

m∑
k=1

1

ξk

d2ik
h2ik

= θ1
1

ξ1
|Vi|2. (15)

Substituting Eqs. (14) and (15) into Eq. (13), we get

< Vi,Vj >= |Vi|2
1

ξ1
(1 + θ1). (16)

We calculate |Vj|2 in a similar way.

|Vj|2 = Vj ∗Vj
T

= Di ∗ (I + diag(Θ)) ∗ (diag(Hi ∗ diag(Ξ)))−1 ∗ (Di ∗ (I + diag(Θ)) ∗ (diag(Hi ∗ diag(Ξ)))−1)T

= Di ∗X ∗Di
T + 2Di ∗X ∗ diag(Θ) ∗Di

T + Di ∗X ∗ diag(Θ�Θ) ∗Di
T ,

(17)
where

X = (diag(Hi �Hi �Ξ�Ξ))−1. (18)
Note that

Di ∗X ∗Di
T =

m∑
k=1

1

ξ2k

d2ik
h2ik

. (19)
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Thus, there must exist ξmin ≤ ξ2 ≤ ξmax such that
m∑
k=1

1

ξ2k

d2ik
h2ik

=
1

ξ22

m∑
k=1

d2ik
h2ik

=
1

ξ22
|Vi|2. (20)

Similarly, there exists θmin ≤ θ2 ≤ θmax such that

Di ∗X ∗ diag(Θ) ∗Di
T =

m∑
k=1

θk
1

ξ2k

d2ik
h2ik

= θ2 ∗
1

ξ22
|Vi|2, (21)

and exists θmin ≤ θ3 ≤ θmax such that

Di ∗X ∗ diag(Θ�Θ) ∗Di
T =

m∑
k=1

θ2k
1

ξ2k

d2ik
h2ik

= θ23 ∗
1

ξ22
|Vi|2. (22)

Substituting Eqs. (20)-(22) into Eq. (17), we have

|Vj|2 =
1

ξ22
(1 + θ2 + θ23)|Vi|2. (23)

Substituting Eqs. (16) and (23) into Eq. (8), we can write the similarity between Vi

and Vj as

Sim(Vi,Vj) =

1
ξ1

(1 + θ1)

1
ξ2

√
1 + θ2 + θ23

. (24)

According to Eq. (24), we can explain the locality of PHL as follows. When si and sj
are close to each other, for a faraway anchor sk, hik and hjk are very close to each other
and thus ξ1 and ξ2 approach 1. Similarly, when si and sj are close to each other, dij
is small. Thus for the faraway anchor sk, the distance between si and sj is relatively
very small compared to their distances to sk. In this case, θ1, θ2, and θ3 will approach 0.
Thus Sim(Vi,Vj) will approach 1 if the anchors are faraway enough, which is usually
the case in a large networks with only a small number of anchors. In Figure 4(c) we
plot how the similarity between B and its direct neighbors when the distance between
them changes. It can be clearly observed that when the distance between two nodes is
small, the similarity between their PHL vectors is very close to 1. The similarity drops
when the distance increases. For this reason, when a node can obtain PHL vectors from
more than one neighboring anchors, it should use the nearest neighbor’s PHL vector to
perform distance estimation. The proximity estimation approach given in Section 2.2
can help to determine which neighbor is the nearest one.

We should point out that locality of PHL is pervasive in both isotropic and anisotrop-
ic WSNs, because it has no special requirements on the network topology or nodal dis-
tribution. Furthermore, the locality does not mean that node pairs having high similar-
ity must be close to each other. For example, as shown in Figure 4(a), in isotropic WSNs
the similarity between two disperse nodes might also be high. However, in anisotropic
WSNs as shown in Figure 3(b), the similarity between adjacent nodes is significantly
higher than that between disperse nodes, and thus exhibits very strong locality.

4. LOCALITY-BASED DISTANCE ESTIMATION
Based on the locality of PHL, we propose a novel distance estimation approach and
analyze its accuracy.

4.1. Estimating Distances to Anchors
As being pointed out in Section 3.1, nearby nodes share similar PHL vectors. Thus, if si
has an anchor neighbor sj , it can use sj ’s PHL vector, i.e., Vj, to estimate its distances
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to other anchors. In other words, Di, the vector containing si’s distances to vectors, can
be estimated as

Di ≈ Vj �Hi. (25)
For instance, if Vj = [2.1, 2.3, 3.2] and Hi = [5, 10, 3], we obtain Di ≈ [2.1∗5, 2.3∗10, 3.2∗
3] = [10.5, 23, 9.6].

In case si has no anchor neighbors, it waits until at least one of its neighbors has
been localized and then uses that node’s PHL vector to estimate distances to anchors.
Different from anchors, the position of the localized node might contain error, which
will consequently induce error in its PHL vector. We will discuss the error accumula-
tion problem in Section 4.2. When si has more than one localized neighbors, it uses the
nearest neighbor’s PHL vector to perform distance estimation.

4.2. Accuracy Analysis
4.2.1. When Using Anchor’s PHL Vector. We first analyze the accuracy of distance estima-

tion when si uses an anchor neighbor sj ’s PHL vector to perform distance estimation.
Without loss of generality, we consider the error in distance estimate to anchor sk
(sk 6= sj). As shown in Figure 5, we consider the general case in which the shortest
paths between si and sk and between sj and sk are not detoured. We will deal with the
cases in which the shortest paths are detoured at the end of this section.

Let d1 and h1 be the distance and the hop count between sj and sk, respectively.
Similarly, denote by d2 and h2 the distance and the hop count between si and sk, re-
spectively. Obviously, d1−r≤d2≤d1+r, because si and sk can communicate with each
other. We derive the distance estimation error of d2 when the number of proximity
levels is K. .

We first computer the error of distance estimation when d2 = x. In the ideal case,
the hop counts h1 and h2 would be

h1 = d d1
r/K

e = dK ∗ d1
r
e, h2 = d x

r/K
e = dK ∗ x

r
e. (26)

Then the distance between si and sk is estimated as

d̂2 = h2 ∗
d1
h1

= dK ∗ x
r
e ∗ d1

dK ∗ d1r e
. (27)

The error of distance estimation is

ef(x) =

∣∣∣∣∣x− dK ∗ xr e ∗ d1

dK ∗ d1r e

∣∣∣∣∣ . (28)

In our previous work [Zhang et al. 2012], we have proved that the distance estimation
error is upper bounded by ef(x) ≤ 2∗h2∗r

h1−K . We now calculate the mean value of ef(x).
As shown in Figure 5, ef(x) can be treated as a constant when d2 varies in a small
interval [x, x+ ∆x]. Denote by Disk(k, x) and Disk(j, r) the two disks that center at sk
and sj with radius x and r, respectively. The size of the intersection region between
the two disks will increase when d2 increases. Denote by ∆S the increased size when
d2 increases from x to x+ ∆x. Then the probability that the distance estimation error
is ef(x) is

px =
∆S

π ∗ r2
, (29)

where

∆S =
2α

2π
π((x+ ∆x)2 − x2) ≈ 2α ∗ x ∗∆x. (30)
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Fig. 5. The distance estimation error when si uses sj ’s PHL vector to estimate distance to anchor sk.

According to the cosine law, the angle α is

α = arccos
d21 + x2 − r2

2xd1
. (31)

Thus the expected distance estimation error of d2 is

E[ef(x)] =

∫ d1+r

d1−r
ef(x) ∗ px dx. (32)

Figure 6 plots the expected distance estimation error of d2 when d1 varies from r to
20r. The average distance estimation error varies from 0.2r to 0.5r when K = 1, i.e.,
when the traditional “hop count” metric is used. When we use the approach described
in Section 2.2 to obtain sub-hop level proximity information, the expected distance esti-
mation error drops accordingly. When K = 4, i.e., the communication radius is divided
into up to four proximity levels, the expected distance estimation error is around 0.1r.
In general, the expected distance estimation error will be smaller than r/2K when the
number of proximity levels is K.

The distance estimation error is periodic and is not very relevant to the absolute
value of d1. This can help us tackle the special case when the shortest paths between
sk and si and between sk and sj are detoured. As shown in Figure 7, because si and
sj are close to each other, the shortest paths between si and sk and between sj and sk
share the same detoured sub-path. Thus we can straighten the detoured sub-path and
move sk to s′k. This straighten operation will add the same value to dik and djk. Since
the distance estimation accuracy will not be affected a lot by the distance between sj
and sk (as shown in Figure 6), the distance estimation of the detoured path dik will
also be accurate.
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Fig. 6. Expected distance estimation error of d2 for different proximity levels when d1 increases.
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Fig. 7. Accuracy analysis when the shortest path between sk and sj and that between sk and si are de-
toured.

4.2.2. When Using Node’s PHL Vector. When node si has no anchor neighbors, it needs
to use one of its localized neighbor’s PHL vector to estimate its distances to anchors.
Assume that si uses sj ’s information. The problem is that sj knows only erroneous esti-
mated position rather than exact position. We now analyze how sj ’s location estimation
error affects node si’s distance estimation accuracy.

Without loss of generality, we still consider error in distance estimation to anchor
sk. Assume that the location estimation error of sj is ε. Denote by Pj and P ′j the exact
position and the estimated position of sj , respectively. Then we have |Pj − P ′j | = ε. We
use d1 to denote the exact distance between sj and sk, and use d′1 to denote the distance
calculated with sj ’s estimated position and sk ’s exact position. Let ∆d1 = d′1−d1 be the
difference between d1 and d′1. It is easy to know that

|∆d1| = |d′1 − d1| ≤ ε. (33)

Note that the location estimation error of sj affects only the calculation of d′1; it does not
affect h1 (i.e., the hop count between node j and anchor k), because h1 is determined by
only the exact positions of the two nodes and the network topology. Thus, according to
Eq. (28), si’s distance estimation error to anchor sk is

ef ′(x) =

∣∣∣∣x− h2 ∗ d1 + ∆d1
h1

∣∣∣∣
=

∣∣∣∣x− h2 ∗ d1h1 − h2 ∗ ∆d1
h1

∣∣∣∣
≤ ef(x) + |∆d1|

h2
h1

≤ ef(x) +
h2
h1
ε ≈ ef(x) + ε. (34)

Eq. (34) shows that sj ’s position estimation error affects si’s distance estimation er-
ror in an additive manner. Assume that the position estimation error approximately
equals the distance estimation error. If in average there is one anchor in si’s l-hop (here
“hop” takes its traditional meaning) neighborhood, its distance estimation error will be
approximately l ∗ r/2K. When the average node degree is ND, it requires the anchor
ratio being larger than 1/(ND ∗ l2) to have at least one anchor in si’s l-hop neighbor-
hood. For example, if we require the distance estimation error to be smaller than 0.4r
when K = 4, l should be no larger than 3.2 (l ∗ r/2K ≤ 0.4r implies l ≤ 3.2). When
ND = 10, this requires at least 1/(10 ∗ 3.2 ∗ 3.2) ≈ 0.01 anchors to achieve the required
accuracy, i.e., anchor ratio should be larger than 1%. In realistic environments, it may
require more anchors to achieve the desired accuracy because many factors other than
anchor ratio might affect the localization accuracy.
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5. ANCHOR SELECTION
Besides distance estimation error, the geometry distribution of anchors also affects the
localization accuracy of nodes [Bu et al. 2012; Yarlagadda et al. 2002; Langley 1999;
Yang and Liu 2010]. In this section, we propose an anchor selection algorithm that
jointly considers distance estimation accuracy and geometry distribution of anchors to
further improve the localization accuracy of nodes.

5.1. The Optimal Anchor Selection Problem
Let A be the set of all anchors, i.e., A = {s1, . . . , sm}. Because in the d-dimensional
space a node needs to know distance measurements to at least d+1 anchors to uniquely
determine its position, any anchor set that could be used to uniquely localize a node
contains at least d+1 anchors. Denoting by C the set of all such candidate anchor sets,
we have C = {A′ ⊆ A||A′| ≥ d + 1}. The optimal anchor set for node si to achieve the
highest localization accuracy is

A∗ = arg min
A′∈C

|PEst(A′, i)− Pi|, (35)

where PEst(A′, i) is the position estimate when anchors in A′ and the corresponding
distance estimates are used to calculate position of si, and Pi is the ground-truth posi-
tion of si. The optimal anchor selection problem is to find the anchor set A∗.

However, it is hard to find the exact optimal anchor set A∗, because we do not know
Pi. This motivates us to resort to indirect metrics (i.e., metrics that can characterize
the impact of anchors on the position error of a node without knowing its true position)
to judge the quality of an anchor set. We design an efficient algorithm to select a good
anchor set based on the geometric dilution of precision (GDOP) metric [Yarlagadda
et al. 2002; Langley 1999].

5.2. GDOP-Threshold based Anchor Selection
5.2.1. GDOP Calculation. GDOP is widely used to measure how the geometry distribu-

tion of anchors affect the position error [Yarlagadda et al. 2002; Langley 1999]. The
GDOP value of a set of anchors can be roughly interpreted as the ratio of position er-
ror to the distance estimation error. Thus, a small GDOP means that the anchors are
well distributed in geometry and can generate accurate position estimation with high
probability.

Without loss of generality, we assume that node si obtains distance estimates to all
the m anchors. Then si calculates the GDOP of the m anchors as follows [Yarlagadda
et al. 2002; Langley 1999]. Let (xk, yk) (1 ≤ k ≤ m) be the position of anchor sk, and let
(x, y) be the position of si. The distance between si and sk could be expressed as

ρk =
√

(x− xk)2 + (y − yk)2. (36)
We construct a m× 2 matrix

H =


∂ρ1
∂x

∂ρ1
∂y

...
...

∂ρm
∂x

∂ρm
∂y

 . (37)

The GDOP of the m anchors can be calculated as

g =
√
tr((HTH)−1). (38)

Note that because node si does not know its true position, it needs to use one of its
localized neighbor’s position to calculate the GDOP. For example, if one of si’s neigh-
bor sj knows its position (e.g., sj is an anchor or a localized node), the GDOP can be
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calculated as

g =
√
tr((HTH)−1)

∣∣
x=xj ,y=yj , (39)

where (xj , yj) is sj ’s (estimated) position. When si has more than one localized neigh-
bors, it uses the neighbor with whose PHL vector it estimates distance to anchors to
calculate the GDOP.

5.2.2. Anchor Selection. The GDOP metric characterizes only the geometry distribu-
tion of anchors. It does not take the accuracy of distance estimate into account. In
this section, we propose an efficient two-stage anchor selection algorithm that jointly
considers distance estimation accuracy and geometry distribution of anchors.

The algorithm runs on every node in a distributed manner. In the first stage, the
node sorts all the anchors in ascending order according to their distance estimate er-
rors (we will discuss how to do this in our localization algorithm in Section 6). We
denote the sorted anchor list as {sπ(1), . . . , sπ(m)}, where the distance estimation error
to anchor sπ(k) is no larger than the distance estimation error to anchor sπ(k′) when
π(k) < π(k′).

In the second stage, the node uses a GDOP-threshold based method to select an-
chors. To mitigate the negative effects of distance estimations with large error, it
first picks anchors in the front of the sorted anchor list. In detail, it first sets A∗ =
{sπ(1), . . . , sπ(d+1)} and calculates the GDOP of A∗. If the GDOP is smaller than a spec-
ified threshold gt, the node uses anchors A∗ to calculate its position. Otherwise, it adds
the next anchor in the list into A∗ and repeats the procedure until the GDOP of A∗ is
smaller than gt. Then the node uses anchors in the final A∗ to calculate its position.

This anchor selection algorithm jointly considers both distance estimation accuracy
and geometry distribution of anchors. First, because anchors are sorted in ascend-
ing order according to their distance estimation error, the selected anchors are among
those who have small distance estimation errors. Second, by setting a suitable thresh-
old gt, we can obtain an anchor set with good geometry distribution. The threshold gt
should be selected carefully. On one hand, with a very large gt, only a few anchors will
be selected and the node cannot well exploit the redundancy of anchors to improve lo-
calization accuracy. On the other hand, with a very small gt, almost all the anchors will
be selected, which makes the location estimation suffer from large distance estimation
errors of some anchors.

6. PUT THEM TOGETHER: SELECTIVE MULTILATERATION
In this section we present the Selective Multilateration (SM) localization algorithm
that integrates the locality-based distance estimation (Section 4) and the adaptive an-
chor selection (Section 5).

6.1. Algorithm Framework
The framework of SM is presented in Algorithm 1. The first step is to calculate hop
counts for all the nodes to the anchors. This step is the same as in DV-Hop except
that hop counts in SM are calculated based on proximity estimations by using the
method given in Section 2.2. Then anchors calculate their PHL vectors and broadcast
the vectors to their direct neighbors. After receiving the PHL vector, a node estimates
its distances to all anchors. It then selects suitable anchors and calculates its position
by using multilateration. This is the reason why we name our algorithm as selective
multilateration.

SM is an iterative algorithm in the means that localized nodes could help other nodes
perform localization. As shown in Algorithm 1, when a node has no anchor neighbors,
it can request PHL vector from one localized neighbor to estimate distances to anchors.
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ALGORITHM 1: Framework of the SM Algorithm
for Every node si do

Obtain proximity estimation to neighbors // Section 2.2;
Obtain the hop counts to anchors;
if si is an anchor or a localized node and some of its neighbors are not localized
then

Calculate its PHL vector Vi and broadcast Vi to direct neighbors;
end
if si is not localized and hears PHL vector from neighbors then

Estimate its distances to anchors // Section 4;
Select suitable anchors to perform localization // Section 5.2.2 and Section 6.2;

end
end
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Fig. 8. Distance estimation errors (after sorting) of two randomly selected nodes in Figure 3(b).

Note that not all the localized nodes need to broadcast their PHL vectors. Only when
it has at least one non-localized neighbors, a localized node needs to calculate its PHL
vector and broadcast it. Note that PHL vector defined in Section 3.1 contains only PHL
to anchors. Thus localized nodes’ estimated positions will not be used to calculate the
position of other nodes, which effectively suppresses error accumulation.

6.2. Sorting of Anchors
Because the exact distance estimation errors to anchors are unknown, in SM we use
a heuristic method to sort anchors. We observe from experiments that anchors with
larger hop counts usually have larger distance estimation errors. We thus sort anchors
in ascending order according the node’s hop counts to them. We argue that although
this approach cannot generate exact anchor ordering as required in Section 5.2.2, in
general it can sort anchors with relatively smaller distance estimation errors before
those with relatively larger errors.

Figure 8 plots the sorting result of two randomly selected node in Figure 3(b). We
observe that the distance estimations with large errors are put at the end of the sorting
result. Because our anchor selection algorithm first picks nodes in the front of the list,
the negative effect of anchors with large distance estimation errors can be effectively
mitigated because they usually will not be selected. Note that this heuristic works
in only our locality-based distance estimation approach. In other range-free distance
estimation algorithms like DV-Hop it might not work.
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6.3. Communication Overhead Analysis
In SM, every anchor needs to flood its position information to all the nodes in the
network once. Every anchor also needs to broadcast its PHL vector to its direct neigh-
bors. Besides, some localized nodes might need to broadcast their PHL vectors to direct
neighbors. Let l be the total number of nodes (including anchors) that need to broad-
cast their PHL vectors. The total communication cost in SM is O(nm+ lm), where the
first term represents the communication cost to flood anchors’ position information,
and the second term represents the communication cost incurred in broadcasting PHL
vectors (each PHL vector containsm values). Because l is usually much smaller than n,
the total communication cost of SM is O(nm). This is as low as the communication cost
of DV-Hop [Niculescu and Nath 2001] and the PDS algorithm proposed in [Xiao et al.
2010b], and is much lower than that in PDM [Lim and Hou 2009] and MDS-MAP(P)
[Shang et al. 2004a].

7. SIMULATION RESULTS
We develop a simulator using JAVA programming language to evaluate the perfor-
mance of SM and compare SM with two algorithms: the PDS algorithm [Xiao et al.
2010b] and the MDS-MAP(P) algorithm [Shang et al. 2004a]. PDS is state-of-the-art
range-free anchor-based localization algorithm for anisotropic WSNs. It can tolerate
multiple anisotropy factors of the network and achieves comparable accuracy as PDM
[Lim and Hou 2009] with lower communication cost. The MDS-MAP(P) algorithm uses
the divide and conquer paradigm to deal with global anisotropy of the network. It is an
anchor-free connectivity-based localization algorithm designed for anisotropic WSNs.
We mainly consider the performance of these algorithms in WSNs with moderate den-
sity, thus we do not compare with the algorithm proposed in [Kubo et al. 2012] because
it requires very high network density.

7.1. Simulation Settings and Performance Metrics
Network topology: Two types of anisotropic topologies are used to evaluate the per-
formance of different algorithms: the C-shape topology (see Figure 3(b)) and the O-
shape topology (see Figure 9(a)). C-shape topology is the de facto topology to test the
performance of range-free localization algorithms in anisotropic WSNs [Kubo et al.
2012; Wang et al. 2010; Kung et al. 2009; Lim and Hou 2009; Wang and Xiao 2008; Li
and Liu 2010; Xiao et al. 2010b]. O-shape topology appears in many practical applica-
tions like volcano monitoring [Huang et al. 2012a], and PDS outperforms many other
algorithms in this topology.

Performance metrics: We mainly consider the following metrics.

— Distance estimation accuracy: The estimation accuracy of dij is defined as µ(i, j) =

|dij − d̂ij |, where d̂ij is the estimate of dij . The distance estimation accuracy of an al-
gorithm is defined as the average estimation accuracy over all the distance estimates
that are used in localizing nodes.

— Localization accuracy: The localization accuracy of si is defined as γi = |Pi − P ′i |,
where Pi and P ′i represent si’s ground-truth position and estimated position, respec-
tively. The localization accuracy of an algorithm in a network is the average localiza-
tion accuracy over all the nodes in the network.

— Computational cost: The computational cost of an algorithm is represented by the
average number of anchors used to localize a node.

Controlled parameters: We tune the following parameters to investigate their
impact on the performance of the considered algorithms.
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Fig. 9. Example execution of SM: (a) 400 nodes including 32 anchors (red squares) are deployed in an O-
shape network (ND ≈ 15, AR = 0.08), (b) results after the first round: 256 nodes are localized, the average
distance estimation accuracy is 0.16r, and the average localization accuracy is 0.27r (red lines), (c) results
after the second round: 98 nodes are localized, the average distance estimation accuracy is 0.22r, and the
average localization accuracy is 0.37r (green lines), (d) results after the third round: the remaining 14 nodes
are localized, the average distance estimation accuracy is 0.28r, and the average localization accuracy is
0.4r (black lines). The overall localization accuracy is 0.3r.

— Node degree (ND): The node degree is defined as the average number of neighbor
nodes in the network, i.e., ND = 1

n

∑n
i=1 |N(si)|, where N(si) denotes the set of si’s

neighbors.
— Anchor ratio (AR): The anchor ratio is defined as the ratio of the number of anchors

to the total number of nodes in the network, i.e., AR = m/n.
— Communication irregularity: We adopt the widely used Degree of Irregularity (DOI)

model [Kuhn et al. 2008; Xiao et al. 2010b] to investigate the impact of communica-
tion irregularity. Within the DOI model, the probability that two nodes can commu-
nicate with each other is controlled by a parameter d (0 ≤ d ≤ 1):

P (i, j) =


1,

dij
r ≤ 1− d

dij−r(1−d)
2rd , 1− d < dij

r < 1 + d

0,
dij
r ≥ 1 + d

. (40)
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Fig. 10. Distance estimation accuracy versus (a) anchor ratio, and (b) node degree.

General settings and data collection: In default, we deploy 400 nodes in a 10r ×
10r square area, where r is set to 20m according to the previous studies [Wang and
Xiao 2008; Lim and Hou 2009; Zhang et al. 2012]. The size of the void area in the
C-shape topology (Figure 3(b)) and in the O-shape topology (Figure 9(a)) are 20r2 and
9πr2, respectively. This results in ND ≈ 14 and ND ≈ 15 in the C-shape topology
and the O-shape topology, respectively. The default anchor number is 32, resulting in
AR = 0.08. For every parameter setting, we randomly generate 100 network instances
and report the average data over them.

7.2. A Glance at SM’s Execution
We use the network plotted in Figure 9(a) to illustrate the execution flow of SM. In
this figure, anchors are marked as squares and nodes are marked as circles. In the
first round, every anchor calculates its PHL vector and broadcasts the vector to direct
neighbors. Those nodes having at least an anchor neighbors can use SM to localize
themselves. Figure 9(b) plots the result after the first round, in which 256 nodes are
localized with 0.16r distance estimation accuracy and 0.27r localization accuracy. In
the second round, nodes localized in the first round help their neighbors that are not
localized in the first round to perform localization. In the second round 98 nodes are
localized with localization accuracy 0.37r, as shown in Figure 9(c). This procedure re-
peats until all the nodes are localized. In this example, all the nodes are localized after
the third round, and the overall localization accuracy is 0.3r.

7.3. Distance Estimation Accuracy
7.3.1. Impact of Anchor Ratio. Figure 10(a) plots the distance estimation accuracy in SM

and PDS when AR changes from 0.05 and 0.15. It can be observed that the distance
estimation accuracy in both SM and PDS improves when there are more anchors. For
SM, the case with more anchors means that most nodes can use anchor’ PHL vector to
perform distance estimation, which effectively suppresses error accumulation caused
by nodes’ position error (Section 4.2). For PDS, the case with more anchors means that
more nodes fall into the concentric ring (CR) pattern or the centrifugal gradient (CG)
pattern, in which PDS can output fairly accurate distance estimation.

Another observation is that PDS performs worse in O-shape topology than in C-
shape topology, while SM performs nearly the same in the two topologies. The reason
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Fig. 11. GDOP threshold (gt) versus (a) localization accuracy and (b) average number of anchors used to
perform localization.

is that in O-shape topology, the shortest path between nodes might bend like a curve,
but PDS requires the shortest path being a series of line segments to rectify the ob-
tained distance estimation. Thus, the accuracy of PDS degrades in O-shape topologies.
Compared with PDS, SM improves the accuracy of distance estimation by up to 34
percent in C-shape topology and up to 57 percent in O-shape topology, respectively.

7.3.2. Impact of Node Degree. Figure 10(b) plots the distance estimation accuracy in
SM and PDS when ND varies. It can be observed that both algorithms achieve higher
distance estimation accuracy with higher node degree. SM can obtain more accurate
proximity estimation between adjacent nodes when the degree of nodes increases, thus
its distance estimation accuracy improves. For PDS, because it uses a monte carlo
method to smooth the estimation of the last hop which achieves higher accuracy when
node degree increases, its accuracy also improves. SM always achieves much higher
distance estimation accuracy than PDS, by up to 57 percent in the C-shape topology
and up to 59 percent in the O-shape topology, respectively.

7.4. Localization Accuracy
7.4.1. Impact of the GDOP Threshold. The GDOP threshold (gt) affects which anchors

would be selected to perform localization for a node, and thus should be carefully set.
Figure 11(a) plots the localization accuracy of SM in C-shape topology (the results for
O-shape networks are similar) when gt varies from 0 to 1.2. It can be observed that
when gt is very small (≤ 0.4) or very large (≥ 1), the localization accuracy degrades.
When gt is very small, as shown in Figure 11(b), almost all anchors are selected. In this
case, those anchors to which the distance estimations contains large error will lower
down the node’s localization accuracy. On the other hand, when gt is very large, only a
few anchors would be selected (Figure 11(b)). In this case, the node cannot exploit the
redundancy of anchors to improve localization accuracy. With extensive simulations,
we observe that in most cases the highest accuracy is achieved when gt = 0.7, and use
this value in the following experiments.

7.4.2. Impact of Anchor Ratio. Figure 12(a) and Figure 12(b) plot the localization accu-
racy of SM and PDS in C-shape topology and in O-shape topology when AR varies
from 0.05 to 0.15, respectively. It can be observed that the accuracy of SM and PDS
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Fig. 12. Localization accuracy versus anchor ratio: (a) In C-shape topology; (b) In O-shape topology.

both improves when AR increases. The reason is that, as analyzed in Section 7.3.1,
in SM and PDS the distance estimation accuracy improves with more anchors, and
thus their localization accuracy improves when AR increases. Note that we do not plot
the localization accuracy of MDS-MAP(P) because MDS-MAP(P) is actually an anchor-
free algorithm that can run without anchors. In MDS-MAP(P) anchors are only used
to translate the obtained relative coordinate system to the absolute coordinate sys-
tem determined by anchors; they are not helpful to improving localization accuracy. In
contrast, SM and PDS rely on anchors to determine positions of nodes.

In most cases, the localization accuracy of SM is higher than 0.4r and even higher
than 0.3r when AR ≥ 0.1. As have been pointed out in [He et al. 2005], 0.4r is the
critical accuracy below which many location-based protocols cannot function proper-
ly. Thus SM can satisfy the needs of many such protocols, e.g., geographical routing
[Huang et al. 2012b] and event detection [He et al. 2012]. PDS also achieves fairly
high localization accuracy in C-shape topology (higher than 0.4r when AR > 0.08), but
its accuracy in O-shape network is always lower than 0.4r. In average, compared with
PDS, SM improves localization accuracy by 20 percent in C-shape topology and by 42
percent in O-shape topology, respectively.

7.4.3. Impact of Node Degree. Figure 13(a) and Figure 13(b) plot the localization ac-
curacy of the three algorithms in C-shape topology and O-shape topology when ND
increases, respectively. It can be observed that when ND increases, the accuracy of SM
and MDS-MAP(P) significantly improves while the accuracy of PDS improves only s-
lightly. For SM, with a larger ND it can obtain more accurate distance estimations (see
Section 7.3.1) and thus achieves higher accuracy. For MDS-MAP(P), with a larger ND
it can build more accurate local coordinate systems and thus improve its localization
accuracy. In contrast, in the PDS algorithm ND mainly impacts the estimation accu-
racy of the last hop, which limits the improvement in its overall localization accuracy.
MDS-MAP(P) achieves comparable localization accuracy as PDS when ND is larger
than 18, but SM always outperforms both of them. Compared with PDS, SM improves
localization accuracy by up to 30 percent in C-shape topology and up to 52 percent in
O-shape topology, respectively.

7.4.4. Impact of Communication Irregularity. MDS-MAP(P) requires symmetrical commu-
nication between nodes, and thus it cannot deal with communication irregularity. Fig-
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Fig. 13. Localization accuracy versus node degree: (a) In C-shape topology; (b) In O-shape topology.
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Fig. 14. Localization accuracy versus communication irregularity in SM and PDS.

ure 14 plots the localization accuracy of SM and PDS under different communication
irregularity. It can be observed that SM is more robust to the communication irregu-
larity than PDS. When d is smaller than 0.1, the localization accuracy of SM is almost
not affected. Even when d is as large as 0.2, SM still achieves high accuracy, i.e., 0.43r
in C-shape topology and 0.4r in O-shape topology. In contrast, the accuracy of PDS
quickly degrades when d increases. When d increases from 0 to 0.2, the accuracy of
PDS drops from 0.44r to 0.68r in C-shape topology, and drops from 0.58r to 0.78r in
O-shape topology. The reason of the dramatic accuracy degradation of PDS is that it
builds its distance estimation algorithm on top of Amorphous [Nagpal et al. 2003],
whose accuracy severely degrades when the communication is highly irregular. In con-
trast, SM uses a novel locality-based distance estimation approach, which is affected
by only local differences between nodes and thus is more robust to communication
irregularity.

7.5. Computational Overhead
Figure 15 plots how the average number of anchors every node uses to perform local-
ization changes when the total number of anchors increases. It can be observed that
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Fig. 15. Average number of anchors every node uses in localization versus the total number of anchors.

no matter how many anchors there are in the network, the average number of an-
chors every node used to perform localization is only slightly larger than ten, which is
nearly independent to the total number of anchors. In contrast, in traditional range-
free localization algorithms, all the anchors are used to perform localization. Thus the
computational overhead of SM is fairly light, making it suitable to large scale WSNs.

8. RELATED WORK
Early researches on range-free localization target isotropic WSNs, e.g., DV-Hop
[Niculescu and Nath 2001], Amorphous [Nagpal et al. 2003], APIT [He et al. 2005]
and MDS-MAP [Shang et al. 2004a]. The two pioneering works, DV-Hop and Amor-
phous, provide basic technique to estimate distance between nodes and thus are the
basis of many following researches including [Li and Liu 2010; Wang and Xiao 2008;
Wang et al. 2010; Xiao et al. 2010b; Shang et al. 2004b; Tan et al. 2010]. However,
DV-Hop and Amorphous heavily rely on the isotropy of the network to obtain accurate
distance estimation. In anisotropic WSNs, their accuracy severely degrade and thus
result in poor localization accuracy.

Some robust position estimators [Wang and Xiao 2008; Kung et al. 2009; Li et al.
2005] are proposed to tolerate erroneous distance estimations in anisotropic WSNs.
The i-Multihop estimator proposed in [Wang and Xiao 2008] can recognize and fil-
ter out largely erroneous distance estimations and achieve higher accuracy than tra-
ditional minimum mean square error (MMSE) estimator. The snap-inducing shaped
residuals (SISR) estimator developed in [Kung et al. 2009] is applicable to cases in
which distance estimations are either very accurate or contain very large error. The
least median square (LSM) estimator [Li et al. 2005] improved localization accuracy
by minimizing median square error instead of mean square error. Our locality-based
distance estimation approach can be combined with these estimators to exploit their
advantage to further improve localization accuracy.

Rectifying the obtained distance estimations before using them to calculate node
positions is another direction to cope with distance estimation errors in anisotropic
WSNs [Li and Liu 2010; Wang et al. 2010; Xiao et al. 2010b; Tan et al. 2010; Lim and
Hou 2009]. The Proximity Distance Mapping (PDM) algorithm replaces PHL with a
proximity-distance mapping matrix to estimate distance between nodes and anchors.
Although improving distance estimation accuracy, the PDM algorithm incurs much
higher communication cost than DV-Hop. The REnded Path (REP) algorithm [Li and
Liu 2010] exploited geometric feature of the network to rectify the distance estimation
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of detoured paths. In [Wang et al. 2010] and [Tan et al. 2010] the authors proposed
two methods to identify turning points of detoured paths, according to which the dis-
tance estimation of detoured paths can be rectified. In the PDS algorithm [Xiao et al.
2010b], three different patterns are identified and nodes in different patterns use d-
ifferent method to rectify the obtained distance. These algorithms first adopt DV-Hop
or Amorphous to obtain distance between nodes and then perform rectification. Our
locality-based distance estimation approach could be integrated into these algorithms
as a replacement of DV-Hop or Amorphous.

Different anchor combinations will impact the localization accuracy. In [Shang et al.
2004b] the authors proposed a simple heuristic algorithm that uses four nearest an-
chors to perform localization. The algorithm cannot fully utilize the redundancy in an-
chors to improve localization accuracy when the deployment region has complex shape.
In [Yang and Liu 2010] the authors proposed the quality of trilateration (QoT) metric
to characterize the quality of a trilateration result. However, the QoT metric cares
only trilateration and incurs high computational cost when used in multilateration.
Compared with them, our GDOP-based anchor selection algorithm jointly considers
geometry distribution and distance estimation accuracy of anchors and can be used in
multilateration.

9. CONCLUSION
In this paper, we revealed the locality of PHL in anisotropic WSNs, and proposed a
novel distance estimation approach that achieves much accurate distance estimation
accuracy than state-of-the-art solutions. We devise an adaptive anchor selection algo-
rithm that jointly considers geometry distribution and distance estimation accuracy of
anchors to improve localization accuracy. The SM localization algorithm built on top of
the locality-based distance estimation and the adaptive anchor selection achieves lo-
calization accuracy higher than 0.3r, which can well satisfy the requirements of typical
location-dependent protocols/algorithms in WSNs.

Our locality-based distance estimation approach can be used as the replacement of
DV-Hop or Amorphous in many range-free localization algorithms [Li and Liu 2010;
Wang et al. 2010; Wang and Xiao 2008; Xiao et al. 2010b; Tan et al. 2010]to provide
more accurate distance estimates. In the future, we plan to investigate how to inte-
grate this approach with existing distance rectifying techniques to further improve
accuracy of range-free localization algorithms in both isotropic and anisotropic WSNs.
The performance of the proposed
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