Evolution of Connections in SHRUTI Networks

Joe Townsend, Ed Keedwell and Antony Galton
College of Engineering, Mathematics and Physical Sciences
University of Exeter
North Park Road, Exeter
jt231 @ex.ac.uk, E.C.Keedwell@ex.ac.uk, A.P.Galton@ex.ac.uk

Abstract

SHRUTI is a model of how predicate relations can
be represented and reasoned upon using a network
of spiking neurons, attempting to model the brain’s
ability to perform reasoning using as biologically
plausible a means as possible. This paper extends
the biological plausibility of the SHRUTI model
by presenting a genotype representation of connec-
tions in a SHRUTI network using indirect encod-
ing and showing that working networks represented
in this way can be produced through an evolution-
ary process. A multi-objective algorithm is used
to minimise the error and the number of weight
changes that take place as a network learns.

1 Introduction

Neural-symbolic integration concerns the representation of
symbolic information in neural networks [Bader and Hitzler,
2005; Hammer and Hitzler, 2007]. Two motivations of this
field are to combine the interpretability of symbolic systems
with the adaptability of neural networks, and to produce mod-
els that point towards how symbols may be represented in
biological neural networks. SHRUTI is a neural-symbolic
network which models reasoning in the brain in a way that
is claimed to be biologically plausible [Shastri and Ajjana-
gadde, 1993; Shastri, 1999]. The developers of SHRUTI dis-
cus the idea that the prerequisite structure required to enable
it to learn logical relations can be realised in a way which is
itself biologically plausible [Wendelken and Shastri, 2003].
They suggest that a SHRUTI network could be developed
by a genotypic representation of rules that direct its growth;
this is known as indirect encoding. However, the represen-
tation of SHRUTI networks using indirect encoding has not
been implemented to our knowledge. We show that develop-
mental genomes for creating connections between neurons in
SHRUTI networks can be produced through evolution using
artificial development [Chavoya, 2009], a form of evolution-
ary computing which uses indirect encoding.

We also want the evolved networks to yield minimal error
when presented with test questions and to learn to do so with
as few weight updates as possible, thus reducing the workload
of the learning algorithm. A multi-objective algorithm was
therefore chosen to minimise both of these properties.

2 Background

2.1 SHRUTI

SHRUTT [Shastri and Ajjanagadde, 1993; Shastri, 1999] is
a neural-symbolic model of reflexive reasoning which has a
number of biologically plausible traits: spiking neurons [Ku-
mar et al., 2010], temporal coding [Kumar et al., 20101, and
Hebbian learning [Hebb, 1949]. This section only covers the
fundamentals required for SHRUTI to represent quantifier-
free predicate logic, perform reasoning and learn relations,
but a more complete explanation of SHRUTI can be found in
the literature.

SHRUTI takes a localist approach to knowledge represen-
tation in that each concept is represented by its own ensemble
of spiking neurons. Although a more distributed representa-
tion in which each neuron participates in the representation
of multiple concepts is a more popular view in neuroscience,
the localist view has not been completely ruled out [Bowers,
2009]. The bare minimum SHRUTI requires to work is one
neuron per concept, but even by localist standards this lacks
biological plausibility, and ensembles are preferred.

Each node in figure 1 represents an ensemble of spiking
neurons. A predicate in the logic program is represented by a
cluster of these nodes (e.g. Buy(x,y)), which contains a role
node for each argument (e.g. buyer and object) and collector
(labelled ‘+’ and ‘-’) and enabler (labelled ‘?’) nodes which
direct the path of inference. Separate from the predicate clus-
ters are entity nodes that represent entities which can fulfil the
roles of predicate arguments (John, Mary, Paul and book).
A dynamic binding between a predicate argument and an en-
tity can be formed by firing the nodes representing them so
that their spike trains are in synchrony with each other. This
method of temporal coding enables SHRUTI to overcome the
variable binding problem. A predicate instance is composed
of a set of argument-entity bindings for that predicate. For
example, in order to ask the network in figure 1 ‘Does Mary
own the Book?’, the predicate Own(z,y) is instantiated as
Own(Mary, Book) by firing the owner and object nodes of
Own in synchrony with Mary and Book respectively. Activa-
tion of a predicate’s enabler triggers a search for the truth of
the current predicate instance, and activation of the positive
or negative collector nodes asserts the truth or falsity of that
instance. If neither collector is activated within a fixed time
window, then the truth is regarded as unknown.

Give(John, Mary,Book)

{>J Buy(Paul x)

John
Mary
»— Book

Paul

giver recipient object
O

buye:tuect‘
() | Buy(xy)

rl—
Givelxyz) + . 2 .9

Give(x,y,z) — Own(y,z) Buy(x.y) — OWn(xy)

owner object |

.02
S |

Oown(x,y)

Figure 1: A simple SHRUTI network for the relations
Give(x,y,z) — Own(y,z) and Buy(x,y) — Own(x,y).

Connections between nodes represent relations between
the predicates. Instantiating Own(Mary, Book) as de-
scribed above and firing the enabler of Own propagates the
bindings to Give(x,y,z) and Buy(zx,y) so that recipient
and buyer are now bound to Mary, and the object nodes of
each are bound to Book. The network is now asking ‘Did
somebody give Mary the Book?" (Give(x, Mary, book))
and ‘Did Mary buy the book?” (Buy(Mary,x)). These
bindings are then propagated further into sub-circuits repre-
senting long-term facts which can confirm or deny the truth
of the corresponding predicate instance. Each such fact is
composed of a set of inhibitory connections (shown as filled
circles) and a fact node (shown as a triangle). The fact
node only fires when the propagated set of dynamic bind-
ings matches the static bindings encoded by the inhibitory
connections. The facts in figure 1 state that John gave
Mary the book (Give(John, M ary, Book)) and Paul bought
something (Buy(Paul, z)). Because the dynamic bindings
Give(xz, Mary, book) match the static bindings for the fact
Give(John, Mary, Book), the fact node is activated and
in turn activates the positive collector of Give. This activa-
tion propagates to the positive collector of Own to assert that
Own(Mary, Book) is true.

Using Hebbian learning [Hebb, 1949], SHRUTI can learn
relations between predicates [Wendelken and Shastri, 2003].
The training data takes the form of a sequence of events
in the form of predicate instances that reflects causal rela-
tions between the predicates. If P(a,b) is observed shortly
before)(a,b), the weights of the connections supporting
P(z,y) — Q(z,y) are strengthened according to equation 1
in order to reflect the likelihood that P is a cause of (). How-
ever, if Q(a, b) is not observed within a fixed time window of
P(a,b) occurring, the same weights are weakened according
to equation 2 to reflect the likelihood that P is not a cause of
Q. In both cases, the learning rate « is defined according to
equation 3, which ensures that when a large amount of evi-
dence has been found to support a relation it becomes more
difficult to change its weights.

wt+1 = Wt + o * (1 —(-L)t) (1)
Wil = Wy — ok Wy 2
a = 1/NumberO fUpdates 3)

New predicates can also be learned using recruitment learn-
ing [Feldman, 1982]. Nodes are divided into two groups:
recruited and free. A free node becomes recruited when its
connections to other nodes become strong enough, and when
enough nodes have been recruited a new predicate is learned.

SHRUTT’s learning model means that predicates and rela-
tions can be learned from a network of interconnected neu-
rons. However, a fully interconnected network is impractical
and lacks biological plausibility. The developers of SHRUTI
argue that some pre-organisation of the network is required,
and that this pre-organisation could be encoded in a biolog-
ically plausible way through genotypic representation [Wen-
delken and Shastri, 2003]. The idea of genome-instructed
development of neural networks is possible through artifi-
cial development, but we have not found any literature that
presents any attempts to implement the artificial development
of SHRUTI networks.

2.2 Artificial Development

Artificial development is a form of evolutionary computing
in which the genome encodes the phenotype indirectly by en-
coding a set of rules for its gradual development [Chavoya,
2009]. This is known as indirect encoding, the alternative of
which is direct encoding, in which the genome encodes the
structure of the phenotype explicitly. Indirect encoding is the
more biologically plausible of the two, because DNA encodes
instructions for the gradual development of an organism. Fur-
thermore, indirect encoding has the advantage of scalability
in that the size of the genotype is independent of that of the
phenotype, in contrast to direct encoding. Such scalability is
acheived through the compact representation of repeated sub-
structures, and therefore indirect encoding is very suitable for
the representation of SHRUTI networks, since each relation
and fact is represented by a similar sub-circuit.

Artificial development has a number of applications, but
the application of relevance to this paper is that of construct-
ing neural networks. Some models for the artificial develop-
ment of neural networks use graph grammars [Kitano, 1994;
Gruau, 1994], which are adapted from Lindenmayer systems
[Lindenmayer, 1968]. A number of other approaches to in-
direct encoding which do not involve graph grammars and
exhibit more biological plausibility also exist [Eggenberger,
1997; Hotz et al., 2003; Khan et al., 2010]. In these mod-
els, the connections between neurons are often referred to by
their biological counterpart of axons, and have positional at-
tributes. A neuron’s axons can grow in Euclidean grid space
according to the genotypic instructions and connections be-
tween neurons are formed when axons meet [Eggenberger,
1997; Hotz et al., 2003; Khan et al., 2010].

3 Evolving SHRUTI Networks

This paper aims to demonstrate that simple SHRUTI net-
works can be produced through artificial development, sup-
porting the claim of SHRUTT’s developers that the prerequi-
site structure required to learn relations can be realised in a
biologically plausible way. However only certain elements of
the SHRUTT architecture have been accounted for. Though
the current genome model supports the Hebbian learning of

relations, it is not yet capable of developing networks that can
produce new predicates through recruitment learning. In gen-
eral, this genome assumes the pre-existence of neuron clus-
ters representing facts and predicates and therefore does not
develop neurons, only the connections between them. Fur-
thermore, each node is implemented with only one neuron
and these experiments have yet to be tested on SHRUTI mod-
els that represent nodes as ensembles of neurons.

3.1 The SHRUTI Genome

This section presents an existing genome model produced by
the authors for developing connections in a SHRUTI network
[Townsend er al., 2012]. Figure 2 shows an example set of
rules for developing a working SHRUTI network both as they
appear in the genome and as they appear in the form of a de-
cision tree, where each rule is represented by a path from the
root node to a leaf node. Leaf nodes represent actions to be
performed and all other nodes represent conditions necessary
for that action to take place. The network is presented with a
temporal sequence of predicate instances supporting a set of
causal relations. At each time ¢, all predicate instances oc-
curring at ¢t are observed and any existing connection weights
are updated according to SHRUTT’s Hebbian learning algo-
rithm. The rules in the genome are then assessed for each
possible node pair and the actions of any satisfied rules are
executed. These actions may be the addition of a connection
with a specified weight, or the removal of an existing connec-
tion. Each node in a possible node pair has a different label
in the genome. ‘SELF’ refers to the node for which an input
connection is being considered, and the node from which the
connection is being considered is labelled ‘P_INPUT’ (pos-
sible input) if the connection does not exist or ‘E_INPUT’
(existing input) if it does exist.

The genome is a string of elements that describes the struc-
ture of the decision tree. Each sub-string describes one node
(condition or action) so that each node is referenced by the
index of the corresponding sub-string. Each condition’s sub-
string contains an element for the attribute to be tested, the op-
erator (<,<,=,>,>,#), the value to test that attribute against,
and the indices of the action or condition to branch to when
the current condition is evaluated as true or false. For ex-
ample, the first sub-string in the genome represents condi-
tion 1, and can be interpreted as follows: if the activity of
SELF is above 0.5, branch to condition (sub-string) 4, oth-
erwise branch to condition 3. If an index of 0 is specified,
then the search terminates. Genomes may also contain condi-
tions or actions which although not currently expressed (e.g.
condition 2 in figure 2), may come to be if an index gene is
mutated to branch to it.

Attributes which can be tested in this model are the node’s
current level of activity, its type (role, enabler or collector),
the total number of inputs, the remaining time before the time
window for coactivation closes, and the firing delay, which
corresponds to a node’s current phase. Additional attributes
may be tested for existing inputs: the weight and the number
of updates (how many times a connection has been strength-
ened or weakened).

The genome in figure 2 contains two rules. Rule 1 removes
redundant connections and rule 2 establishes connections be-

[SELF.act [>[0.5] 4 | 3 [EIN.nInputs[<[4 [6 [0 |
(1) Condition (2) Condition
[[EIN.weight[<[0.1] 6 [0 [[PIN.act [>[0.5] 5 [0 |
(3) Condition (4) Condition
[[PIN.type|=[SELF.type] 7 [0 [DEL| [JADD[0.1]

(5) Condition (6) Action (7) Action
(1) SELF
Activity > 0.5
A
(3) E_INPUT (4) P_INPUT
Weight < 0.1 Activity > 0.5
R K
(6) DEL (5) P_INPUT
Type = SELF.Type
Rule 1
(Rule 1) B
(7) ACTION
ADD 01
(Rule 2)

Figure 2: Rules for developing SHRUTI networks as they
appear in the genome and as they appear in a decision tree.

tween two active neurons of the same type. The genome was
tested on a number of different event sequences, each sup-
porting sets of relations of different sizes. Each network de-
veloped was tested with a set of ‘true or false’ questions in
the form of predicate instances and was found to answer all
of these questions correctly. Statistics for the networks de-
veloped from these event sequences are presented in table 1.
Even though sets may contain the same number of relations
and predicates (e.g. sets 5 to 7), the number of arguments in
each predicate may differ, resulting in different statistics for
these sets. Although the size of the genome is fixed, the size
of each developed network is different, showing that the size
of the genotype is independent of the size of the phenotype
and that the genome is therefore scalable.

Table 1: Number of connections and weight updates for net-
works produced by the genome in figure 2.

Set | Relations | Predicates | Connections | Updates
1 2 3 22 139
2 3 4 64 719
3 4 5 86 1056
4 4 7 53 535
5 5 6 65 721
6 5 6 80 852
7 5 6 83 1064
8 6 7 80 1168
9 6 7 73 730

3.2 Fitness Function

The aim of evolving SHRUTI networks was to minimise
both the area beneath the error-time graph and the number
of weight updates performed in training the network.

As the network develops, error will change during develop-
ment as it learns more relations. Therefore the area beneath
the error-time graph (which will henceforth be referred to as
e-area) was chosen as an objective in order to encourage the
algorithm to converge not only towards networks of minimum
error but towards networks that can achieve minimum error as
early as possible. To calculate an approximation of the e-area,
error was measured at five intervals during the development
of the network.

Error was measured as the difference between maximum
accuracy and the accuracy obtained. Accuracy is based on
how many questions the network is capable of answering cor-
rectly, and therefore maximum accuracy is achieved by an-
swering all questions correctly. A question takes the form of
a predicate instance, for example P(a, b), which a developed
network must assert as true, false, or unknown. However,
rather than simply counting the number of correct answers,
accuracy is a function on the number of correct collector ac-
tivations. Each answer to a question consists of a positive
and negative collector state, and therefore takes one of four
values: [1,0] (true), [0,1] (false), [0,0] (unknown) and [1,1]
(contradiction).

Answers are contained in a matrix a, where each row a;
represents one answer and contains an element for each col-
lector activation. Matrix a is compared against a target ma-
trix . Each row a; in the answer matrix is assigned a score
and accuracy is measured as the sum of these scores as in
equation 4. In the original scoring function S, a score of 1
was assigned to each correct collector activation as shown in
equation 5. However, this resulted in high accuracies even
when all questions were answered as unknown. All correct
answers contain at least one inactive collector, and therefore
by simply guessing [0,0] (unknown) for all questions the total
accuracy could be a high percentage of the maximum accu-
racy as shown in table 2 (6 compared to a maximum accuracy
of 8). Furthermore, this is higher than the accuracy obtained
by guessing [1,1] for all questions, which may be considered
‘better’ from an evolutionary perspective since such networks
are at least trying to answer questions. To overcome this prob-
lem, the score function was modified to create a new func-
tion S as shown in equation 6, which gives a total accuracy
of 0 to networks which always answer [0,0], and adds more
weight to correct ‘true’ or ‘false’ questions by assigning them
a score of 3 as opposed to just 2. Table 2 shows that by using
So, networks only answering [0,0] are now assigned the ab-
solute minimum accuracy, and that the accuracy of networks
answering all questions correctly is even greater than before.

n

Accuracy(a) = Z S(a;) 4

=0

Si(a;) = Z 1—ti; —ai;)
j=0

0 it Z;'n:o ai; =0
Sg(ai) = 3 lfzjm:o ti,j = 1and Sl(ai) =2 (6)
Si(a;) otherwise

Table 2: A comparison of the outputs of two different scoring
functions. Numbers given in bold denote total accuracies.

Expected Score 1 (S7) Score 2 (S5)
answer
+ - All | All All All | All All
0,0 | 1,1 | correct || 0,0 | 1,1 | correct
1 0 1 1 2 0 1 3
0 1 1 1 2 0 1 3
0 0 2 0 2 0 0 2
0 0 2 0 2 0 0 2
6 2 8 0 2 10

In addition to minimising e-area, the second objective was
to minimise the number of weight updates performed on the
network. Minimising this reduces the workload of the learn-
ing algorithm and constrains the number of connections in the
network, because as the number of connections in a network
increases, so does the number of the weights the algorithm
has to update.

3.3 Evolutionary Algorithm

Given that this is a multi-objective problem, NSGA-II [Deb
et al., 2002] was chosen to evolve the networks. The algo-
rithm was run with an initial population size of 100 over 500
generations, repeated over 50 trials. Genomes were fixed at
a size of twelve conditions or actions and binary tournament
selection with replacement was used to select genomes for
recombination. Crossover was performed at a rate of 90%
by randomly swapping a sub-tree from each parent. Chil-
dren were then mutated by selecting sub-strings representing
nodes with a probability of 10%, randomly choosing one of
the elements from each and choosing new values according
to a uniform distribution.

Fitness was calculated on a set of training questions and the
performance of the final population was tested against a set of
test questions. Set 7 from table 1 was chosen as the event se-
quence used for training and testing evolved networks. The
set of training questions contained the minimum set of ques-
tions required to demonstrate that the desired relations had
been learned correctly. In this case, the set contained three
questions for which the expected answer was ‘true’, three ex-
pected to be ‘false’ and seven expected to be ‘unknown’, to-
talling thirteen questions and a maximum accuracy of 32 ac-
cording to the scoring function. The test questions contained
all other possible questions with the exception of predicate
instances which were already encoded as facts, since these
would always be answered correctly.

4 Results

4.1 Performance on Training Questions

Figure 3 shows samples obtained from 50 trials when min-
imising the e-area and the number of weight updates per-
formed by a network during the learning process. Points
marked with a dot in figure 3 indicate genomes which de-
veloped networks capable of answering all training questions
correctly. 224 zero-error networks were found across 49 of
the trials. In general, three very distinct groups of networks
emerged, each of which was found to employ a different strat-
egy for answering questions. These groups are indicated by
the three boxes in figure 3. Each group’s behaviour was anal-
ysed by sampling ten genomes from each.

2000 [*®
(9]
[
]
o
& 1500}
S
=
g, -
£ 1000| |*
-
o -
—_ -
g -
c soor (B
2 i ¢ [X
§< X
[x
0 NE T TSI
0 500 1000 1500 2000

Area beneath error-time graph (e-area)

Figure 3: Points obtained from 50 trials on training data.
Points marked with a dot represent genomes that answered
all questions correctly.

First group: 0 < e-area < 250

Errors in this group range between 0 and 2, though the error of
the majority is 0. Genomes which construct these networks
behave like rule 2 from the genome constructed in section
3.1, in that connections between SELF and P_INPUT are pro-
duced when both nodes are active and of the same type. How-
ever, equivalent conditions or combinations of conditions also
emerged, rather than testing activity or type directly (figure
4(a)).

Where the number of updates is greater, at least one of
the conditions that restrict the number of connections may
be missing from the rules. For example, if the genome in fig-
ure 2 bypassed condition 4, i.e. did not require that P_INPUT
was active in order for a connection to be created, a maxi-
mum accuracy network would still be developed. However
the resulting network would contain a number of superflu-
ous connections, therefore increasing the number of weight
change operations the network has to perform.

Second group: 400 < e-area < 900

Errors in this group range between 5 and 15. However only
one genome is found for errors of both 5 and 15, so the bound-
aries of any real interest are networks with errors of 6 and 14.
Answers given by networks in this range depend only on the
predicate queried without reference to its arguments. For ex-
ample, the network might always answer ‘true’ for predicate

(1) P_INPUT

| (1) SELF
DELAY = SELF.DELAY

DELAY =0

|+ K
(2) P_INPUT
Tlhsle) F\'M'NSSJV > TYPE =ENABLER
SELF.TIME_WINDOW ‘ .
F__— T
— (3) P_INPUT
- T ACTIITY > 0.5
(3) P_INPUT (4) ACTION
TIME_WINDOW < ADD 0.85 T

SELF.TIME_WINDOW
(4) ACTION

‘ T ADD 0.7

(4) ACTION
ADD 0.85

() (b)

Figure 4: Example genomes for constructing networks from
the first (a) and second (b) groups.

P, ‘false’ for predicate Q and ‘unknown’ for predicate R. As
error increases, questions for a greater number of predicates
were always answered with ‘unknown’, from networks with
an error of 6 and up to networks with an error of 14. 14-error
networks always answer ‘true’ or ‘false’ for only one of the
predicates and ‘unknown’ for everything else. Anything less
will result in all questions being answered ‘unknown’ and the
genome’s performance will be penalised to the maximum er-
ror of 32. For all of these genomes, connections were only
formed between enablers and collectors, but there was some
restriction on the number of inputs that a node could have
before a connection could be added. Figure 4(b)) shows a
genome for constructing networks that yield an error of six.

Third group: 1050 < e-area < 1900

Errors in this group range between 11 and 32, though the
error of the majority is 32, i.e. the maximum possible er-
ror. In the maximum-error genomes in this cluster with the
largest e-areas, any add actions they contained were never
expressed. Therefore connections are never created, result-
ing in empty networks which always answer [0,0] (unknown)
for every question at any time. As a result, the error and the
e-area are always maximum whilst the number of weight up-
dates is minimal. Maximum-error networks with a smaller e-
area construct some connections and temporarily yield a non-
maximal error, but remove these connections after a time and
yield maximum error at the end of development.

4.2 Performance on Test Questions

The evolved genomes were tested by asking the developed
networks a set of test questions which was larger than the
set of training questions. Figure 5 shows how the networks
performed on the test set. The general shapes of the Pareto
fronts remain roughly the same for both sets. In particular, ev-
ery genome capable of developing networks which answered
all training questions correctly could also answer every test
question correctly. Because most of the evolved networks
perform as well in the test questions as they do on the training
questions, these results demonstrate that the performance of
evolved genomes is robust to unseen test questions.

2000+ .
(%)
]
)
3
Qo 1500
E]
=
—g‘ .
¢ 1000} *
o
o -
o .
g 1]
€ 500 e
S <
= -

x
0 WO 3 o K R F BT S

(] 1000 2000 3000 4000 5000
Area beneath error-time graph (e-area)

Figure 5: Points obtained by running genomes from 50 trials
on test data.

5 Conclusions

Using NSGA-II, three groups of genomes for developing con-
nections in SHRUTI networks emerged, each with its own
distinct strategy for answering questions. One of these groups
was successful in producing networks that behaved like reg-
ular SHRUTT networks, answering all questions correctly
based on evidence learned from observed events. One claim
of SHRUTT’s developers was that reasoning can be the spon-
taneous and natural outcome of a system of neurons, and
the findings in this paper support the idea that this itself can
be the outcome of an evolutionary process. This supports
another claim of the SHRUTI developers that the prerequi-
site structure required to enable the learning of relations in
SHRUTI can be realised through a model of biological devel-
opment, adding another dimension of biological plausibility
to the model. However, the results only account for the ba-
sic SHRUTI model. The genome does not yet support nodes
formed of multiple neurons, the creation of new neurons and
the formation of new predicates through recruitment learning.
To support the idea of a developmental SHRUTI model even
further, we propose to investigate this.

References

[Bader and Hitzler, 2005] Sebastian Bader and Pascal Hit-
zler. Dimensions of Neural-Symbolic Integration: A Struc-
tured Survey, volume 1, pages 167-194. College Publica-
tions, London, 2005.

[Bowers, 2009] Jeffrey S Bowers. On the biological plau-
sibility of grandmother cells: Implications for neural net-
work theories in psychology and neuroscience. Psycho-
logical Review, 116(1), 2009.

[Chavoya, 2009] Arturo Chavoya. Artificial Development,
volume 1 of Studies in Computational Intelligence, pages
185-215. Springer, 2009.

[Deb er al., 2002] Kalyanmoy Deb, Amrit Pratap, Sameer
Agarwal, and T Meyarivan. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, 6(2):182-197, 2002.

[Eggenberger, 1997] Peter Eggenberger. Creation of neural
networks based on developmental and evolutionary prin-

ciples. In Proceedings of the International Conference
on Artificial Neural Networks, pages 337-342. Springer-
Verlag, 1997.

[Feldman, 1982] Jerome A. Feldman. Dynamic connections
in neural networks. Biological Cybernetics, 46:27-39,
1982.

[Gruau, 1994] Frédéric Gruau. Automatic definition of mod-
ular neural networks. Adaptive Behaviour, 3(2):151-183,
1994,

[Hammer and Hitzler, 2007] Barbara Hammer and Pascal
Hitzler. Perspectives of Neural-Symbolic Integration.
Springer, Berlin, 2007.

[Hebb, 1949] Donald Olding Hebb. The Organization of Be-
havior: A neuropsychological theory. Wiley, New York,
1949.

[Hotz er al., 2003] Peter Eggenberger Hotz, Gabriel Gémez,
and Rolf Pfeifer. Evolving the morphology of a neural
network for controlling a foveating retina - and its test on
a real robot. In Proceedings of The Eighth International
symposium on artificial life, pages 243-251, 2003.

[Khan et al., 2010] Gul Muhammad Khan, Julian F. Miller,
and David M. Halliday. Intelligent agents capable of
developing memory of their environment, pages 77-114.
UEFS, 2010.

[Kitano, 1994] Hiroaki Kitano. Neurogenetic learning: an
integrated method of designing and training neural net-
works using genetic algorithms. Physica D: Nonlinear
Phenomena, 75(1-3):225-238, 1994.

[Kumar et al., 2010] Arvind Kumar, Stefan Rotter, and
Ad Aertsen. Spiking activity propagation in neuronal net-
works: reconciling different perspectives on neural cod-
ing. Nature Reviews Neuroscience, 11(9), 2010.

[Lindenmayer, 1968] Aristid Lindenmayer. Mathematical
models for cellular interactions in development. Journal
of Theoretical Biology, 18(3):280-299, 1968.

[Shastri and Ajjanagadde, 1993] Lokendra Shastri ~ and
Venkat Ajjanagadde. From simple associations to
systematic reasoning. Behavioral and Brain Sciences,

16(3):417-494, 1993.

[Shastri, 1999] L. Shastri. Advances in SHRUTI - a neu-
rally motivated model of relational knowledge representa-
tion and rapid inference using temporal synchrony. Ap-
plied Intelligence, 11:79—-108, 1999.

[Townsend et al., 2012] Joe Townsend, Ed Keedwell, and
Antony Galton. A scalable genome representation for
neural-symbolic networks. Birmingham, 2012. Proceed-
ings of the First Symposium on Nature Inspired Comput-
ing and Applications (NICA) at the AISB/IACAP World
Congress 2012.

[Wendelken and Shastri, 2003] Carter Wendelken and Lok-
endra Shastri. Acquisition of concepts and causal rules in
shruti. In Proceedings of the Twenty Fifth Annual Confer-
ence of the Cognitive Science Society, Boston, MA, 2003.
Proceedings of the Twenty Fifth Annual Conference of the
Cognitive Science Society.

