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ABSTRACT

Geometric Semantic Genetic Programming (GSGP) is a re-
cently introduced form of Genetic Programming (GP) that
searches the semantic space of functions/programs. The fit-
ness landscape seen by GSGP is always – for any domain
and for any problem – unimodal with a linear slope by con-
struction. This makes the search for the optimum much
easier than for traditional GP, and it opens the way to anal-
yse theoretically in a easy manner the optimisation time of
GSGP in a general setting. Very recent work proposed a
runtime analysis of mutation-based GSGP on the class of
all Boolean functions. We present a runtime analysis of
mutation-based GSGP on the class of all regression prob-
lems with generic basis functions (encompassing e.g., poly-
nomial regression and trigonometric regression).

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

Keywords

Genetic programming, semantics, geometric crossover, run-
time analysis

1. INTRODUCTION
Traditional Genetic Programming searches the space of

functions/programs by using search operators that manipu-
late their syntactic representation, regardless of their actual
semantics/behaviour. For instance, subtree swap crossover
is used to recombine functions represented as parse trees,
regardless of trees representing Boolean expressions, math-
ematical functions, or computer programs. Although this
guarantees that offspring are always syntactically well-formed,
it is unclear why such a blind syntactic search should work
well for different problems and across domains.

In recent literature, there are a number of approaches that
use the semantics of programs in various ways to guide the
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search of GP [1, 4, 17, 6, 7]. Whereas these semantically
aware methods are promising, their implementations are
very wasteful as they are heavily based on trial-and-error:
search operators are implemented via acting on the syntax of
the parents to produce offspring, which are accepted only if
some semantic criterion is satisfied. More importantly from
a theoretical perspective, these implementations do not pro-
vide insights on how syntactic and semantic searches relate
to each other. Is a direct implementation of semantic op-
erators possible? That is, can we act on the syntax of the
parent programs and produce offspring that are guaranteed
to respect some semantic criterion/specification by construc-
tion?

Geometric Semantic Genetic Programming [12] is a novel
form of genetic programming that answers this question in
the affirmative. GSGP uses geometric crossover and ge-
ometric mutation [14, 11] to search directly the semantic
space of functions/programs. Informally, semantic geomet-
ric crossover and semantic geometric mutation generate off-
spring that are guaranteed to be, respectively, “semantically
intermediate” and “semantically near” their parents. These
search operators can be directly implemented for different
domains following a simple formal recipe [12], which was
used to derive specific forms of GSGP for a number of clas-
sic GP domains (i.e, Boolean functions, arithmetic functions
and classifiers).

The fitness landscape seen by the semantic geometric op-
erators is always unimodal with a linear slope (cone land-
scape) by construction, as the fitness of an individual is by
definition its semantic distance to the optimum individual.
This suggests that GSGP performs better than standard
GP. GSGP was compared with standard GP on several well-
known problems across domains (finding Boolean functions,
polynomial regressions, and classification tasks) and it con-
sistently found much better solutions with the same budget
of fitness evaluations [12]. Furthermore, GSGP has been
found more efficient and generalising better than standard
GP on some initial studies on real-world problems [2].

Genetic programming has been hard to analyse theoreti-
cally. The current literature on GP theory is heterogeneous.
Perhaps the most developed theory of GP is the schema
theory [8]. There is also some work on Markov models of
GP search [10]. There are theory-laden methods to combat
bloat based on an exact formalisation of the dynamics of
average program size [16]. Other works focus on the analy-
sis of some static structural features of the search space of
GP programs (e.g., proportions of programs encoding the
same function for different program sizes), and experimen-
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tal hardness studies of fitness landscapes [8]. There is also
some theoretical works on GP from a semantic perspective.
In [15], a notion of geometric mutation based on a semantic
distance was used to show that the No Free Lunch theorem
does not apply to GP. Furthermore, the work [9] analyses
traditional subtree crossover in terms of “semantic building
blocks” in Boolean functions, reporting that most of the time
this crossover does not make useful search in the semantic
space.

Runtime analysis is the standard approach to analyse an-
alytically algorithmic performance. In the last decade it
has been applied, with an ever increasing success, to ran-
domised search heuristics and it is establishing itself as a
leading theory. Despite its success, the analysis is done
on a per-algorithm-and-per-problem basis. Obtaining in-
teresting, general runtime results holding on a large class of
problems for non-trivial search algorithms would be a ma-
jor progress. Due to the difficulty of analysing GP, there is
only very initial work on its runtime analysis. Durrett et
al. [3] present the runtime analysis of a mutation-based GP
with a tree representation on very simplified problems (the
ORDER and MAJORITY problems).

The cone landscape seen by GSGP makes it very attrac-
tive from a theoretical point of view. When GSGP is applied
to search the space of Boolean functions, the GSGP search is
equivalent to a GA search on OneMax-like problems. Based
on this, very recently [13], a runtime analysis of GSGP with
various types of mutations on the class of all Boolean func-
tions has been possible by simply extending known runtime
results for GAs. Remarkably, it was found that GSGP finds
the optimum Boolean function in polynomial time on most
of the Boolean problems. We continue this line of inves-
tigation and present a runtime analysis of GSGP on the
class of all regression problems with generic basis functions
(encompassing e.g., polynomial regression and trigonomet-
ric regression). This is a large class of regression problems,
which is, however, only a subclass of general symbolic regres-
sion that is the natural target class of traditional GP. This
work is the first step towards the analysis of more general
regression problems.

2. GEOMETRIC SEMANTIC

GENETIC PROGRAMMING
A search operator CX : S×S → S is a geometric crossover

w. r. t. the metric d on S (set of candidate solutions) if for any
choice of parents p1 and p2, any offspring o = CX(p1, p2)
is in the segment [p1, p2] between parents, i.e., it holds that
d(p1, o) + d(o, p2) = d(p1, p2). A search operator M : S →
S is a geometric ǫ-mutation w. r. t. the metric d if for any
parent p, any of its offspring o = M(p) is in the ball of
radius ǫ centered in the parent, i.e., d(o, p) ≤ ǫ. Given a
fitness function f : S → R, the geometric search operators
induce or see the fitness landscape identified by the triple
(f, S, d). Many well-known recombination operators across
representations are geometric crossovers [11].

For most applications, genetic programming can be seen
as a supervised learning method. Given a training set made
of fixed input-output pairs T = {(x1, y1), ..., (xN , yN )} (i.e.,
fitness cases), a function h : X → Y within a certain fixed
class H of functions (i.e., the search space specified by the
chosen terminal and function sets) is sought that interpo-
lates the known input-output pairs. I.e., for an optimal so-

lution h∗ it holds that ∀(xi, yi) ∈ T : h∗(xi) = yi. The
fitness function FT : H → R measures the error of a candi-
date solution h on the training set T . Compared to other
learning methods, two distinctive features of GP are (i) it
can be applied to learn virtually any type of functions, and
(ii) it is a black-box method, as it does not need explicit
knowledge of the training set, but only of the errors on the
training set.

We define the genotype-phenotype mapping as the func-
tion P : H→ Y |X| that maps a representation of a function
h (i.e., its genotype) to the vector of the outcomes of the
application of the function h to all possible input values
in X (i.e., its phenotype), i.e., P (h) = (h(x1), ..., h(x|X|)).
We can define a partial genotype-phenotype mapping by re-
stricting the set of input values X to a given subset X ′ as

follows: PX′ : H→ Y |X
′| with PX′(h) = (h(x1), ..., h(x|X′|))

with xi ∈ X ′. Let I = (x1, ..., xN ) and O = (y1, ..., yN )
be the vectors obtained by splitting inputs and outputs of
the pairs in the training set T . The output vector of a
function h on the training inputs I is therefore given by
its partial genotype-phenotype mapping PI(h) with input
domain restricted to the training inputs I, i.e., PI(h) =
(h(x1), ..., h(xN )). The training set T identifies the partial
genotype-phenotype mapping of the optimal solution h∗ re-
stricted to the training inputs I, i.e., PI(h

∗) = O.
Traditional measures of error of a function h on the train-

ing set T can be interpreted as distance between the target
output vector O and the output vector PI(h) measured us-
ing some suitable metric D, i.e., FT (h) = D(O,PI(h)) (to
minimise). For example, when the space H of functions con-
sidered is the class of Real functions, the input and output
spaces are X = R

n and Y = R, and the output vector re-
stricted to the training inputs is a real vector of size N (i.e.,
size of training set). A suitable metric D to measure the er-
ror as a distance between real vectors is e.g. the Euclidean
distance (ED), or also the Manhattan distance (MD).

We define semantic distance SD between two functions
h1, h2 ∈ H as the distance between their corresponding out-
put vectors measured with the metric D used in the defini-
tion of the fitness function FT , i.e., SD(h1, h2) =
D(P (h1), P (h2)). The semantic distance SD is a geno-
typic distance induced from a phenotypic metric D, via the
genotype-phenotype mapping P 1.

We define semantic geometric crossover and mutation as
the instantiations of geometric crossover and geometric mu-
tation to the space of functions H endowed with the dis-
tance SD. E.g., semantic geometric crossover SGX on Real
functions represented e.g. as trees returns offspring Real
functions (i.e., trees) such that the output vectors of the
offspring are in the Euclidean segment between the output
vectors of the parents (w. r .t. all xi ∈ X).

When the training set covers all possible inputs, the se-
mantic fitness landscape seen by an evolutionary algorithm
with semantic geometric operators is, from the definition of
semantic distance, a unimodal landscape in which the fit-
ness of a solution is its distance in the search space to the
optimum. This holds for any domain of application of GP
(e.g., Boolean, Arithmetic, Program), any specific problem

1P is generally non-injective (i.e., different genotypes may
have the same phenotype), but it can be made bijective by
interpreting a genotype as a representation of a semantic
class (i.e., of all functions with the same semantics) without
affecting the subsequent analysis (see [13]).
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within a domain and for any choice of metric for the error
function. Naturally, in practice, the training set covers only
a fraction of all possible input-output pairs of a function.
This has the effect of adding a particular form of neutrality
to the cone landscape, as only the part of the output vec-
tor of a function corresponding to the training set affects its
fitness, the remaining large part is “inactive”.

GP search with geometric operators w. r .t. the semantic
distance SD on the space of functions H (represented e.g.
as trees) is formally equivalent to EA search with geometric
operators w. r .t. the distance D on the space of output vec-
tors. This is because: (i) semantic classes of functions are
in bijective correspondence with output vectors, as “func-
tions with the same output vector” is the defining property
of a semantic class of function; (ii) semantic geometric op-
erators on functions (i.e., trees) are isomorphic to geometric
operators on output vectors, as SD is induced from D via
the genotype-phenotype mapping P (see also diagram (1)
and explanation in the next section). Despite this formal
equivalence, actually encoding a function in an EA using its
output vector instead of, say, a parse tree, is futile: in the
end we want to find a function represented in an intensive
form (i.e., as a tree) that can represent concisely “interest-
ing” functions and that allows for meaningful generalisation
of the training set.

The commutative diagram below illustrates the relation-
ship between the semantic geometric crossover GXSD on
genotypes (e.g., trees) on the top, and the geometric crossover
(GXD) operating on the phenotypes (i.e., output vectors)
induced by the genotype-phenotype mapping P , at the bot-
tom. It holds that for any T1, T2 and T3 = GXSD(T1, T2)
then P (T3) = GXD(P (T1), P (T2)).

T1 × T2
GXSD

−−−−−−−−−−−→ T3




y

P





y

P





y

P

O1 × O2
GXD

−−−−−−−−−−−→ O3

(1)

The problem of finding an algorithmic characterization
of semantic geometric crossover can be stated as follows:
given a family of functions H, find a recombination operator
GXSD (unknown) acting on elements of H that induces via
the genotype phenotype mapping P a geometric crossover
GXD (known) on output vectors. E.g., for the case of Real
functions with fitness measure based on Euclidean distance,
output vectors are real vectors and GXD is a line crossover
that returns offspring vectors on the (Euclidean) line seg-
ment between parent vectors. We want to derive a recom-
bination operator acting on Real functions that corresponds
to a line crossover on their output vectors. Note that there
is a different type of semantic geometric crossover for each
choice of space H and distance D. Consequently, there are
different semantic crossovers for different GP domains.

Definition 1. Given two parent functions T1, T2 : Rn →
R, the recombinations SGXE and SGXM return the real
function T3 = (T1 ·TR)+((1−TR) ·T2) where TR is a ran-
dom real constant in [0, 1] (SGXE) (see Fig. 1), or a random
real function with codomain [0, 1] (SGXM). Given a parent
function T : Rn → R, the mutation SGMR with mutation
step ms returns the real function TM = T+ms·(TR1−TR2)
where TR1 and TR2 are random real functions.

Theorem 1. SGXE and SGXM are semantic geometric

Table 1: Training set for the polynomial regression
problem (first 2 columns). Output vectors of trees
in Figure 1 (last 4 columns): of parents T1 and T2,
of random value TR, and of offspring T3.

X Y P (T1) P (T2) P (TR) P (T3)
-1 1 0 0 0.5 0

-0.5 0.75 0.5 -0.75 0.5 -0.125
0 1 1 -1 0.5 0

+0.5 1.75 1.5 -0.75 0.5 0.375
+1 3 2 0 0.5 1

crossovers for the space of real functions with fitness func-
tion based on Euclidean and Manhattan distances, respec-
tively, for any training set and any real problem. SGMR is
a semantic ǫ-geometric mutation for real functions with fit-
ness function based on Euclidean and Manhattan distances.
The mean of its probability distribution is the parent, and ǫ
is proportional to the step ms.

The proof of the previous theorem can be found in [12].
In the following, we give an example to illustrate the the-
orem for the SGXE crossover. Let us consider the simple
symbolic regression problem, in which, we want to find an
expression whose values match those on the quadratic poly-
nomial x2+x+1 in the range [−1,+1]. Let us say the target
function values for x ∈ {−1,−0.5, 0,+0.5,+1} are given as
training set (see two leftmost columns of Table 1, X inputs
and Y outputs). The target output vector Y is the real
vector (1, 0.75, 1, 1.75, 3) (column 2 of Table 1). For each
tree representing a real function, one can obtain its output
vector by querying the tree on the inputs X. The output
vectors of the trees in Figure 1 are in the last 4 columns
of Table 1. The fitness f(T ) of a tree T (to minimise)
is the Euclidean distance between its output vector P (T )
and the target output vector Y (restricted to the outputs of
the training set), e.g., the fitness of parent T1 is f(T1) =
ED(P (T1), Y ) = ED((0, 0.5, 1, 1.5, 2), (1, 0.75, 1, 1.75, 3)) ≃
1.436. The semantic distance between two trees T1 and
T2 is the Euclidean distance between their output vectors
P (T1) and P (T2), e.g., the semantic distance between par-
ent trees T1 and T2 is SD(T1, T2) = ED(P (T1), P (T2)) =
ED((0, 0.5, 1, 1.5, 2), (0,−0.75,−1,−0.75, 0)) ≃ 3.824. Let
us now consider the relations between the output vectors of
the trees in Table 1. This crossover on output vectors is a
geometric crossover w.r.t. Euclidean distance, as P (T3) is in
the Euclidean segment between P (T1) and P (T2) as P (T3)
is obtained as a convex combination of P (T1) and P (T2).
We can also verify this on the example using the distance
relation for the line segment:
ED((0, 0.5, 1, 1.5, 2), (0,−0.125, 0, 0.125, 1)) +
ED((0,−0.125, 0, 0.125, 1), (0,−0.75,−1,−0.75, 0)) =
1.912 + 1.912 = 3.824 =
ED((0, 0.5, 1, 1.5, 2), (0,−0.75,−1,−0.75, 0)).
This shows that the crossover on trees in Figure 1 is a se-
mantic geometric crossover w.r.t. Euclidean distance.

As the syntax of the offspring of semantic operators con-
tain at least one parent, the size of individuals grows quickly
in the number of generations. To keep their size manageable
during evolution, we need to simplify algebraically offspring
sufficiently and efficiently without changing the computed
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Crossover Scheme

+
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T3 = / \ / \

T1 TR T2 -
/ \
1 TR
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+
/ \

* *
= / \ / \

X 0.5 0.5 *
/ \
X X

Figure 1: T1 and T2 are parent functions and TR is a random value in [0, 1]. The offspring T3 is obtained by
substituting T1, T2 and TR in the crossover scheme and simplifying algebraically.

function. The search of semantic crossover and semantic
mutation is unaffected by the simplification, which can then
be done at any moment and in any amount. In practice,
we need to work with “well-behaved” families of functions
whose offspring can be easily simplified. Furthermore, as
the semantic operators generate offspring as a functional
combination of their parents, it does not matter how func-
tions are actually represented (e.g., trees, graphs, sequences)
as the representation does not affect the search behaviour.
We have represented functions as trees only to contrast this
framework with traditional GP. The following analysis fo-
cuses on linear combinations of basis functions as family of
functions, which can be represented as fixed-length vectors
of coefficients, and GP with mutation only.

3. RUNTIME ANALYSIS

3.1 Problem Definition
The problem class we consider is a general form of regres-

sion – basis functions regression – defined as follows. Let
gj : Rn → R be a family of m basis functions, and H be
the class of functions expressible as linear combination of
the basis functions {gj}. Let p : Rn → R be an unknown
target function, and T = {(i1, o1), ..., (ik, ok)} be a fixed set
of input/output pairs of p. The aim is to find a function
h ∈ H that best approximates p on the training examples.
I.e., h∗ = argminh∈H{ED(PI(h), O)}. By using different
families of basis functions, one obtains well-known specific
regression classes such as simple linear regression, polyno-
mial regression, splines regression, trigonometric regression
and more. E.g., for polynomial regression with a single input
variable, one can choose gj = xj .

The general problem class can be solved directly, without
search, using the least squares method. A function h ∈ H
can be written as h(x1, . . . , xn) = c1 · g1(x1, . . . , xn) + . . .+
cm · gm(x1, . . . , xn) and it is identified in H, given {gj}, by
the vector of coefficients C = (c1, . . . , cm). The optimal vec-
tor of coefficients can be determined solving the system of
simultaneous linear equations obtained by using the training
set T , i.e., oz = c1 ·g1(iz)+. . .+cm ·gm(iz) with z = 1, . . . , k.
In matrix form is O′ = GC′ with O is the vector of training
set outputs and G is the matrix {gj(iz)}j,z. The solution is
C′ = G+O′ where G+ is the Moore-Penrose pseudoinverse
of G that is a generalisation of inverse matrix that returns
a well-defined result when the system is underdetermined
(m > k) or overdetermined (m < k). The optimal approxi-
mating function so computed minimises the Euclidean dis-
tance to the target output vector.

Symbolic regression is more flexible and general than ba-
sis functions regression as it allows to search variable length
functions and functions obtained by arbitrary functional com-
positions of a base set of functions, not only linear combina-
tions. Furthermore, traditional GP solves symbolic regres-
sion problems in a black-box setting: it does not use the
knowledge of the training set, but only the errors of candi-
date solutions on the training set. GSGP goes beyond the
least square method as it can solve the basis function re-
gression problem in the black-box setting (Sections 3.3 and
3.4), and it can search the space of variable length linear
combinations of basis functions.

3.2 Mutation Design
In [5], a runtime analysis of 1+1-ES with adaptive isotropic

Gaussian mutation on the sphere function is reported show-
ing that 1+1-ES is efficient on the sphere. This analysis
applies unchanged to the Euclidean cone landscape.

We reduce the runtime analysis of GSGP for any ba-
sis functions regression problem, i.e., any choice of basis
functions gj , any choice of function to approximate p, and
any choice of training set T , to the above settings. This
is achieved by designing a sematic mutation operator for
real functions that on the output vector space always corre-
sponds to an isotropic Gaussian mutation.

The semantic mutation we consider is of the form o(x) =
p(x) + ms · r(x) where p(x) ∈ H is the parent function,
ms ∈ R

+ is the mutation step, r(x) is the perturbing func-
tion which is sampled according to some probability distri-
bution over H. As o(x) is a linear combination of elements
of H it is also in H. For a fixed number of basis functions m,
we can represent functions in H by their (fixed-length) vec-
tors of coefficients in the linear combination. The semantic
mutation on this representation becomes co = cp + ms · cr
where co, cp, cr ∈ R

m denote the vectors of coefficients of
o(x), p(x) and r(x). Simplification of the offspring in this
representation is implicitly achieved by algebraic operations
on real vectors. The genotype-phenotype mapping on this
representation becomes a function P : Rm → R

k that maps
vectors of coefficients to output vectors.

Lemma 1. The genotype-phenotype mapping P is a linear
map. So, it holds that P (c1 + c2) = P (c1) + P (c2) and
P (λc) = λP (c) for all c1, c2, c ∈ R

m and λ ∈ R.

Proof. The mapping P from C to O can be expressed
in matrix form as O′ = GC′ (see Section 3.1). From linear
algebra, we know that this is a linear map.

Consequently, line segments and circles on the space of
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vectors of coefficients (genotypes) are projected via P to,
respectively, line segments and (possibly rotated and re-
scaled) ellipses on the output vectors space (phenotypes).
To obtain a circle on phenotype space, one needs an ellipse
in the genotype space that compensates for the transforma-
tion P . In terms of semantic operators, this means that
a line crossover on genotypes induces a line crossover on
phenotypes. A carefully chosen non-isotropic Gaussian mu-
tation on the space of genotypes corresponds to an isotropic
Gaussian mutation on the space of phenotypes. We prove
the last statement formally.

Theorem 2. The non-isotropic Gaussian mutation on geno-
types co = cp +ms · cr with cr ∼ N(0, G+IG′+) induces the
isotropic Gaussian mutation on phenotypes P (co) = P (cp)+
ms · P (cr) with P (cr) ∼ N(0, I).

Proof. co = cp + ms · cr; P (co) = P (cp + ms · cr); For
linearity of P : P (co) = P (cp) + ms · P (cr); P (cr)

′ = Gc′r
is a linear transformation of the multivariate Gaussian cr:
P (cr) ∼ N(0, G ·G+IG′+ ·G′) = N(0, I ·I ·I ′) = N(0, I)

The implementation of the semantic mutation requires to
sample cr from N(0, G+IG′+). This can be done by mul-
tiplying G+ by a vector formed by sampling k times the
normal distribution N(0, 1).

3.3 Analysis with Known Training Inputs
In [5], an asymptotic runtime analysis to obtain an ap-

proximated solution within ǫ from the optimum 2 of the
standard (1+1)-ES with the 1/5-rule (Algorithm 1) on the
Euclidean cone is reported. It was found that it takes Θ(n)
generations (where n is the dimension of the search space) to
halve the distance |c| from the initial point c to the optimum.

Consequently, it takes Θ(n log2(
|c|
ǫ
)) generations to find an

approximated solution within ǫ from the optimum. When
the search space is a hyper-box with length of the sides con-
stant in n and ǫ, the maximum distance of the initial point
to the optimum is given by the length of the longest diag-
onal of the hyper-box, which is Θ(

√
n). The runtime then

becomes Θ(n log2(
√
n
ǫ
)). The algorithm is very efficient both

in n for any fixed ǫ, as the runtime is Θ(n log n), and in 1
ǫ

for a fixed n, as the runtime is Θ(log( 1
ǫ
)).

Algorithm 1 (1+1)-ES with 1/5-rule for adaptation

1: initialise curr ∈ R
n with a starting point

2: σ := f(curr)/n; gen := 0; succ := 0
3: while f(curr) > ǫ do

4: choose mutation vector mut ∈ R
n randomly ∼ N(0, I)

5: create offspring vector off := curr + σ · mut
6: if f(off) ≤ f(curr) then curr := off ; succ := succ+1 endif

7: if gen%n = 0 then

8: if succ < n · 1/5 then σ := σ/2 else σ := σ · 2 endif

9: succ := 0
10: end if

11: gen := gen + 1
12: end while

13: return curr

The GSGP algorithm that corresponds to Algorithm 1 on
the space of output vectors can be obtained from it with
the following modifications. The search space is the space
of functions in H represented by vectors of coefficients, so

2In continuous domains, there is zero probability of hitting
exactly the optimum.

curr,mut ∈ R
m, and n is m. The fitness function f(x)

returns the Euclidean distance of the output vector of the
function x to the target output vector. The mutation vector
mut is sampled from N(0, G+IG′+). The pseudo-inverse
matrix G+ is needed to sample mut, which is pre-computed
in the initialisation of the algorithm. This algorithm is only
partly black-box because it uses knowledge of the inputs of
the training set (but not of the outputs) in the computation
of G+. In the next Section, a complete black-box algorithm
is presented.

When the unknown target function p belongs to the search
space H or when the number of basis functions m is larger
or equal to the number of points in the training set k, GSGP
may in the limit find a function h∗ that passes through all
points of the training set, i.e., f(h∗) = 0. When p 6∈ H
and m < k, the best approximating function h∗ ∈ H has
non-zero fitness on the training set. This fitness value is the
smallest error ǫmin GSGP searching H can achieve.

From a runtime viewpoint, the search done by (1+1)-GP
is equivalent to the search of (1+1)-ES on the output vector
space. The dimension of the space is the size k of the train-
ing set, which is therefore a natural definition of problem
size. The size of the hyper-box delimiting the output vector
space depends on the endpoints of the interval co-domains of
the basis functions {gj}, the endpoints of the ranges of the
coefficients of linear combinations, which we consider both
constant w.r.t. k and ǫ, and on the number of basis func-
tions m, which we consider to be some function of k (e.g.,
m = k to find an interpolating function). The length of the
sides of the hyper-box is therefore Θ(m), and the runtime to

find a function h with f(h) − f(h∗) < ǫ is Θ(k log2(
m
√
k

ǫ
)).

In particular, the runtime is constant in the number of input
variables n of the functions searched.

3.4 Analysis with Random Training Inputs
In Machine Learning, when one can choose the training

examples, they are normally selected to cover evenly the
input domain X of the functions h ∈ H so that the distance
between any pair of closest training inputs in X is the same
(i.e., they form a grid covering the input domain). In this
case, the training inputs are known, and the GSGP analysis
in the previous section applies. When one cannot choose
the training examples, the standard assumption is that they
were sampled uniformly at random on the input domain X.
We present an analysis for the second case, in which the
sampled training inputs are not known (i.e., full black-box
scenario).

The idea behind the analysis is as follows. As the num-
ber of sampled input points grows, their spatial distribu-
tion tends to approximate better and better a grid on X.
Asymptotically, GSGP with random training inputs behaves
as GSGP with a grid of training inputs covering X. The
grid can be determined from the geometry of the domain
X. Hence, we can reduce the asymptotic runtime analysis
of GSGP with unknown random training inputs to that of
GSGP with a known grid of points.

3.4.1 Uni-dimensional Case

Let A and B be collections of points of X = R with
|A| = |B| = n. We say that the spatial distribution of
A approximates that of B within tolerance ǫ if there is a
bijective assignment σ : A → B such that the distance be-
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tween corresponding points via σ is never greater than ǫ,
i.e., maxa∈A |a− σ(a)| ≤ ǫ.

Let us consider X = [0, 1]. Let A = { 1
n+1

, 2
n+1

, . . . , n
n+1

}
be a grid on X and B be a set of n points sampled uni-
formly at random in X. Let σ be the assignment obtained
by ordering B in ascending order and pairing its elements
with elements of A also considered in ascending order, i.e.,
the smallest element in B corresponds to 1

n+1
, the second

smallest to 2
n+1

, and so on.
The elements of A have been chosen to coincide with

the expected values of the order statistics of B. The order
statistics of B are the random variables b(1), b(2), . . . , b(n)
obtained by ordering in ascending order the independent
random variables b1, b2, . . . , bn ∼ U([0, 1]). E.g., b(1) =
min{b1, b2, . . . , bn} and b(n) = max{b1, b2, . . . , bn}. As n
grows, the order statistics concentrate towards their expected
values. This means that uniformly sampled points become
closer and closer to the points of the grid for larger n. We
make this precise.

Theorem 3. The random points B are approximated by
the grid A within an arbitrarily small error ǫ > 0 with over-
whelming probability w.r.t. n.

Proof. The order statistics of B are b(k) ∼ Beta(k, n−
k + 1) for k = 1 . . . n, with means m(k) = k

n+1
. The cdf

of Beta(α, β) is the regularised incomplete beta function
I(x;α, β).

The grid A approximates the random points B with tol-
erance ǫ > 0, when |b(k) − m(k)| < ǫ for all k = 1 . . . n.
We want a lower-bound of P = Pr(|b(k) −m(k)| < ǫ, ∀k =
1 . . . n). Note that b(k) are not independent. We can es-
timate P using the union bound: P ≥ 1 −∑

Pr(|b(k) −
m(k)| > ǫ).

As bi ∼ U([0, 1]), the distributions of b(k) and of b(n −
k + 1) are mirror images of each other w.r.t. the mid-point
of [0, 1].

∑

k=1,n Pr(|b(k)−m(k)| > ǫ) =
∑

k=1,n(Pr(b(k) > m(k) + ǫ) + Pr(b(k) < m(k) − ǫ)) =
∑

k=1,n Pr(b(k) > m(k)+ǫ)+
∑

k=1,n Pr(b(k) < m(k)−ǫ) =

2
∑

k=1,n Pr(b(k) > m(k) + ǫ) by mirror symmetry.

The cdf I is related to the cdf F (x; q, p) of the binomial
distribution Bin(q, p) as follows: F (x; q, p) = 1 − I(p;x +
1, q − x). So, Pr(b(k) > m(k) + ǫ) = 1 − I( k

n+1
+ ǫ; k, n −

k + 1) = F (k − 1;n, k
n+1

+ ǫ).
The Hoeffding’s inequality gives an upper-bound for the

cdf of the binomial: F (x; q, p) ≤ 1
2
exp(−2 (qp−x)2

q
).

Hence Pr(b(k) > m(k) + ǫ) ≤ 1
2
exp(−2 (n( k

n+1
+ǫ)−(k−1))2

n
).

Let us write the index k ∈ {1, . . . , n} as k = r · n with
r ∈ [0, 1] a constant w.r.t. n. We have then

Pr(b(k) > m(k) + ǫ) ≤ 1
2
exp(−2 (n( r·n

n+1
+ǫ)−r·n+1))2

n
). For

n → ∞, for any k: Pr(b(k) > m(k) + ǫ) ≤ 1
2
exp(−2nǫ2).

Then P = 1−2∑k=1,n Pr(b(k) > m(k)+ǫ) ≥ 1−n exp(−2nǫ2)
i.e., overwhelming probability of success for any choice of
ǫ > 0.

Theorem 4. With overwhelming probability, the GSGP
algorithm with unknown uniformly random training inputs
with continuous basis functions that uses a regular grid as a
surrogate for the inputs has the same asymptotic runtime of
GSGP with knowledge of the inputs.

Proof sketch. Let us consider a function F that maps
the set of training inputs I to the runtime T of GSGP with

the inputs I, i.e., T = F (I). Let Ir be the set of the actual
training inputs, and Ig be the surrogate input grid. The
runtime of GSGP on these two input sets is Tr = F (Ir)
and Tg = F (Ig). As Ir → Ig w.o.p., then Tr → Tg w.o.p.
provided the function F is continuous. We show that when
the basis functions are continuous, F is continuous.
The random inputs Ir converge w.o.p. to the input grid

Ig. For the continuity of the basis functions gj , the ma-
trix Gr = {gj(iz)}j,z with iz ∈ Ir converges w.o.p. to
the matrix Gg = {gj(iz)}j,z with iz ∈ Ig. For the con-
tinuity of the operator of matrix inversion, G−1

r converges
w.o.p. to G−1

g . For continuity of matrix product, the muta-
tion vector mutr = Gr · rv converges w.o.p. to mutg =
Gg · rv with rv ∼ N(0, I). The distribution of the off-
spring offr = curr + σ · mutr converges w.o.p. to the
distribution offg = curr + σ · mutg. The fitness distri-
bution f(offr) = ED(Gg · offr, O) converges w.o.p. to
the fitness distribution f(offg) = ED(Gg · offg, O). Then
the probability of improvement over the parent and the ex-
pected improvement in fitness also converge. Consequently,
the runtime Tr converges w.o.p. to the runtime Tg.

3.4.2 Multi-dimensional Case

Analogously to the uni-dimensional case, we will choose
a grid of points A on the input domain X = R

d, define a
bijective assignment σ from A to B, and then show that for
any ǫ > 0 asymptotically w.o.p. dist(A,B) = maxa∈A ‖a −
σ(a)‖∞ ≤ ǫ.

Given the vectors a, b ∈ R
d, ‖a − b‖∞ = max(|a1 −

b1|, . . . , |ad − bd|). Hence dist(A,B) ≤ ǫ is equivalent to re-
quiring the maximum absolute difference in each coordinate
of all points of A to corresponding points in B is ≤ ǫ.

Let us consider X = [0, 1]d. Let |A| = |B| = nd for n
integer. Let A = { 1

n+1
, 2
n+1

, . . . , n
n+1

}d be a grid on X and
B be a set of points sampled uniformly at random in X.

We create the assignment σ from A to B as follows. We
order all points of B in ascending order on the first coordi-
nate regardless of the values on the other coordinates. Then
we make n groups, putting in group B1 the first n points in
the ordered list, in group B2 the following n points, and so
on. For each group Bi, we order all its points in ascending
order on the second coordinate. Then we make n subgroups,
putting in group Bi,1 the first n points of Bi, in group Bi,2

the following n points of Bi, and so on. We continue to form
new nested levels of subgroups until all d coordinates have
been considered. Now, each group of the last level contains
exactly a single point of B, which is uniquely identified by
the d-dimensional index of its group. The assignment σ put
into correspondence points of B to points of A with the same
index, interpreting A as a d-dimensional matrix.

Theorem 5. The points B tend to the grid A w.o.p.

Proof. Let us consider a bi-dimensional input space i.e.,
d = 2, and letB be a set ofN = n2 points sampled uniformly
at random in [0, 1].
We first determine the joint probability distributions of

the coordinates of the ordered points Bi,j on [0, 1]2. The
coordinates of the points in B are i.i.d. r.v. x, y ∼ U([0, 1]).
The set of points obtained ordering B on the x-coordinate
have their x-coordinates distributed as the order statistics
u1:N , u2:N , . . . , uN :N of U([0, 1]), and their y-coordinates i.i.d.
∼ U([0, 1]). The ordered points are then grouped in n groups
with the distributions:
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B1 = {(u1:N , U([0, 1])), . . . , (un:N , U([0, 1])),
B2 = {(un+1:N , U([0, 1])), . . . , (u2n:N , U([0, 1])), . . .,
Bn = {(uN−n+1:N , U([0, 1])), . . . , (uN :N , U([0, 1])).
The points of each group Bi are ordered on the y-coordinate
and split in n subgroups obtaining the distributions:
B1,1 = (U({u1:N , . . . , un:N}), u1:n), . . . ,
B1,n = (U({u1:N , . . . , un:N}), un:n),
. . .
Bn,1 = (U({uN−n+1:N , . . . , uN :N}), u1:n), . . . ,
B1,n = (U({uN−n+1:N , . . . , uN :N}), un:n).
Using the law of total probability, the cdf of the compound
distribution U({u1:N , . . . , un:N}) can be determined explic-

itly: Pr(U({u1:N , . . . , un:N}) ≤ z) =
∑

i=1,n Pr(ui:N≤z)

n
, and

E[U({u1:N , . . . , un:N})] =
∑

i=1,n E[ui:N ]

n
.

We can now verify that E[Bi,j ]→ Ai,j for n→∞.
The means of the distributions u1:N . . . un:N are evenly

distributed in the interval [0, 1/n] at locations 1
n2+1

, . . . , n
n2+1

.
These distributions concentrate around their means for grow-
ing n in the same way (see proof of Theorem 3). As the in-
terval [0, 1/n] converges towards a single point for n → ∞,
the means of u1:N . . . un:N converge to the mean of
U({u1:N , . . . , un:N}), and asymptotically U({u1:N , . . . , un:N})
concentrates around its mean in the same way as u1:N . . . un:N .

For a given ǫ > 0, the probability that a point in B is
not within ǫ from the corresponding point in A in the x-
coordinate is ≤ exp(−2Nǫ2) ≤ exp(−2N1/2ǫ2), and in the

y-coordinate is ≤ exp(−2N1/2ǫ2). By the union bound, the
probability that all points in B are within ǫ in both coor-
dinates is ≥ 1 − 2N exp(−2N1/2ǫ2). Generalising the rea-
soning to d dimensions we obtain a probability of success
≥ 1− d ·N exp(−2N1/dǫ2).

4. EXPERIMENTS
We have provided analytical asymptotical runtime results

for GSGP for the black-box basis functions regression prob-
lem. In the following, we compare experimentally GSGP
and the standard (1+1)-ES with 1/5-rule for adaptation on
the vector of coefficients to search the space of functions
(hereinafter (1+1)-ES). These algorithms differ only on the
mutation operator used, i.e, GSGP uses the semantic mu-
tation and (1+1)-ES uses the isotropic Gaussian mutation.
Unlike GSGP, (1+1)-ES (to search the space of functions) is
difficult to analyse theoretically as its mutation operator is
distorted by the genotype-phenotype mapping, and it corre-
sponds to a non-isotropic mutation on the space of output
vectors. We also compare GSGP, that uses the knowledge of
training inputs in the mutation operator, with GSGPg that
replaces it with a surrogate regular grid of inputs points cov-
ering the input space. The asymptotical runtime of GSGP
and GSGPg are the same, but they may be different for fi-
nite training set size k. Comparison with standard GP is
not included here. In [12], it was shown that (1+1)-ES (to
search the space of functions) is much faster than standard
GP on polynomial regression.

We test the algorithms on randomly generated problem
instances. A random problem p is a polynomial of a single
input variable x of degree m with coefficients generated uni-
formly at random in [−1, 1]. A random instance of the prob-
lem p is a set T of k input/output pairs obtained by querying
p with inputs sampled uniformly at random in [−1, 1]. Each
point in the graphs in Figure 2 reports the average number
of generations of 100 runs, each on a new random instance of

a new random problem. The basis functions are powers of x,
i.e., gi(x) = xi for i = 0 . . .m. We always choose the degree
of the polynomial p equal to the number of basis functions.

Figure 2(left) compares GSGP and (1+1)-ES in terms of
the number of generations (on the ordinates) to get a solu-
tion within tolerance ǫ = 0.05 from the optimum, for increas-
ing size of the training set k (data points for k = 8, 12, 16, 20
on the abscissa). The number of basis functions m is set
to k. GSGP is much faster and scales in k much better
than (1+1)-ES. Standard deviations are not reported on the
graph. (1+1)-ES has very large standard deviations, almost
equalling the average, GSGP has much smaller standard de-
viations. This suggests that the performance of (1+1)-ES
is much strongly affected by the specific problem instance.
The performance curve of GSGP is approximately fitting a
k log k, in line with the theoretical analysis.
Figure 2(centre) compares GSGP and (1+1)-ES in terms

of the number of generations (on the ordinates) to get in-
creasingly better approximations to the optimum, measured
as log( 1

ǫ
) on the abscissa (data points for ǫ = 1, 0.5, 0.1, 0.05).

The size of the training set k and the number of basis func-
tions m are kept fixed as m = k = 20. GSGP scales linearly
in log( 1

ǫ
), in line with the theory. (1+1)-ES reaches a cer-

tain approximation to the optimum quickly, after that it
takes increasingly longer time to get better approximations,
i.e., its approximation performance does not scale well.

Figure 2(right) shows the effect on the performance of
GSGP and GSGPg of the number of basis functions m (data
points for m = 4, 6, 8, 10) for a fixed training set size k = 18,
and a fixed approximation ǫ. GSGP and GSGPg have sim-
ilar performances, as they have asymptotically by the the-
ory, when k is large w.r.t. m. Their performance difference
becomes marked as m gets closer to k. However, asymptoti-
cally the theory predicts that this effect should vanish as the
continuity of the basis functions guarantees the continuity
of G. The reason for this discrepancy is not entirely clear,
and further experiments are needed to cast light on it.

5. SUMMARY AND FUTURE WORK
Geometric semantic genetic programming is a formal frame-

work to design search operators that act directly on the
semantic space of functions. The landscape seen by these
operators is always a cone by construction. This makes the
search potentially more effective than traditional GP, and
allows us to easily derive general runtime results, an impor-
tant open challenge.

We have considered GSGP for Basis Functions Regres-
sion, which is a large class of regression problems. Prob-
lems in this class can be solved directly by the least squares
method. However, GSGP can solve them in a black-box
setting. We have shown a tight link between GSGP for
real functions and Evolutionary Strategy. In particular, we
have designed a semantic mutation operator that makes the
search of GSGP for any basis functions regression problem
equivalent to standard (1+1)-ES with isotropic mutation on
the sphere function. We could then transfer known run-
time results for the (1+1)-ES to GSGP with this semantic
mutation, in both partial and complete black-box scenar-
ios. GSGP is very efficient in terms of scalability in both
the size of the training set k (Θ(k log k)) and the target
approximation to the optimum ǫ (Θ(log( 1

ǫ
))). Preliminary

experiments have shown that GSGP with the new semantic
mutation performs well in practice.
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Figure 2: Comparison of GSGP and (1+1)-ES to reach an approximation ǫ = 0.05 (left). Comparison of GSGP
and (1+1)-ES with m = k = 20 to reach different levels of approximation (centre). Comparison of GSGP using
grid and GSGP using the training input for k = 18 and different values of m (right).

There is plenty of future work. Two defining character-
istics of GP are those of working with variable-length func-
tions, and searching more complex families of functions. We
would like to extend this work to variable length linear com-
binations of basis functions, which is within reach, and ex-
plore the possibility of working with more general combi-
nations of functions, like in symbolic regression. Also, we
would like to do further experimental investigations of GP
with the new semantic operators on standard GP bench-
marks, to see how they perform on more practical problems.
At present, how functions trained by GP generalise on un-
seen inputs is a big mystery. As the effect of semantic op-
erators on the output vectors is transparent, this may allow
us to explicitly characterise the dependencies between train-
ing and testing sets reveling exactly what the inductive bias
of GSGP is. Finally, we want to analyse GSGP on other
domains. This seems to be within reach as, e.g., semantic
operators for classifiers give rise to cone landscapes on inte-
ger vectors, which have been studied already for traditional
GA, and whose analysis may be extended to GSGP.
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