
SFC-based Communication Metadata
Encoding for Adaptive Mesh Refinement

Martin Schreiber a,1, Tobias Weinzierl a,2 Hans-Joachim Bungartz a,3

a Institut für Informatik 5, Boltzmannstr. 3, 85748 Garching, Germany

Abstract. The present paper studies two adaptive mesh refinement (AMR) codes
whose grids rely on recursive subdivison in combination with space-filling curves
(SFCs). A non-overlapping domain decomposition based upon these SFCs yields
several well-known advantageous properties with respect to communication de-
mands, balancing, and partition connectivity. However, the administration of the
meta data, i.e. to track which partitions exchange data in which cardinality, is non-
trivial due to the SFC’s fractal meandering and the dynamic adaptivity. We intro-
duce an analysed tree grammar for the meta data that restricts it without loss of
information hierarchically along the subdivision tree and applies run length encod-
ing. Hence, its meta data memory footprint is very small, and it can be computed
and maintained on-the-fly even for permanently changing grids. It facilitates a fork-
join pattern for shared data parallelism. And it facilitates replicated data parallelism
tackling latency and bandwidth constraints respectively due to communication in
the background and reduces memory requirements by avoiding adjacency infor-
mation stored per element. We demonstrate this at hands of shared and distributed
parallelized domain decompositions.

Keywords. dynamic adaptive mesh refinement, dynamic load balancing, space-
filling curves, connectivity meta data, run length encoding

Introduction

Dynamic adaptive meshes are an important building block of many simulation codes. For
applications with rapidly changing meshes, these codes hinge on dynamic load balancing
as static work assignment soon becomes a showstopper on massively parallel systems.
However, if the load distribution changes permanently, also the connectivity changes—
adjacent subdomains disconnect, formerly disjoint partitions connect, the amount of data
exchanged between two nodes changes. To bookkeep the connectivity properties, i.e. to
keep track who communicates with which partner with which data cardinality, demands
for memory and can grow challenging—for static but in particular for dynamic adaptive
meshes.

Statements on connectivity information always depend on the underlying enumera-
tion of grid entities. Mesh serialisation due to space-filling curves (SFCs) [1] here is a
popular choice. Examples are [2,3,4,5,6,7,8,9]. If all mesh elements are ordered along

1schreibm@in.tum.de.
2tobias.weinzierl@mytum.de.
3bungartz@in.tum.de.

Preprint version
http://ebooks.iospress.nl/volumearticle/35886

an SFC, a decomposition of the SFC induces non-overlapping subdomains. A balanced
decomposition then is straightforward due to the one-dimensional character of the curve
[1,4] though in practice re-decomposition and in particular the realisation in source code
remain non-trivial. Furthermore, the resulting partitions exhibit an advantageous surface-
volume ratio, i.e. the partitions come along with a big workload relative to their com-
munication demands [10,4]. Finally, if any two mesh elements (triangles or hypercubes)
adjacent along the SFC share a common hyperface, any partition induced by a contin-
uous SFC segment is connected, too. For d = 2, the connectivity is preserved even for
projections of partitions onto their d − 1-dimensional surface submanifold—a fact that
holds for d > 2 to the best of our knowledge exclusively for the Peano SFC [8,9]. Due to
this projection property, the SFC also induces an order on the surface data that is to be
exchanged.

If mesh elements can be aligned along an SFC, one can interpret the underlying
data structure either as topologically flat mesh or as spacetree, a generalisation of the
classical octree/quadtree concept. We follow the latter approach and augment each mesh
element with meta data: which adjacent vertex or face, respectively, is processed by or
to be exchanged with other partitions. It is then possible to reduce and subsume this
data bottom-up along the spacetree and to store it in rather coarse tree nodes instead of
the fine grid without data loss. Formally, we define an analysed tree grammar [11]. It
can easily be evaluated and updated on-the-fly if the grid or the domain decomposition
change. This way, we eliminate the need to maintain complicated tables about the mesh
decomposition.

Our experiments study the Sierpiński curve for triangular d = 2-dimensional meshes
and the Peano curve for d ≥ 2 with hypercubes being mesh elements. They use two open
source codes [12,13]. We show that the memory footprint to hold the connectivity data
is severely reduced for low payload per element. Using the SFC grammar, this naturally
leads to a shared data parallelisation where race conditions are avoided, and we discuss
how the grammar can help to realise distributed memory data exchange hiding latency
and memory bandwidth constraints.

The remainder is organised as follows: We first formalise our notion of a spacetree
and discuss the interplay of spacetrees and adaptive mesh refinement (AMR). The seri-
alisation of the spacetree along a SFC here is of particular interest. In Section 2, we then
use this serialisation for a shared and distributed data decomposition layout. Both layouts
demand for the storage of meta communication data (Section 3) whose properties are
studied in Section 4. Section 5 provides a brief outlook and closes the discussion.

1. Spacetree grids serialised by space-filling curves

We consider computational grids where the whole computational domain Ω is embedded
into one geometric primitive. Let this geometric primitive either be a triangle or square
(for two-dimensional problems, i.e. d = 2) or a (hyper-)cube (d ≥ 3). With equidistant
cuts of the hypercube primitives along each coordinate axis or newest vertex bisection
for triangular meshes, we obtain a set of geometric elements that are affine mappings of
the original primitive (Fig. 1). As we rely on cuts, the constructed small primitives are
non-overlapping. We call each of them child element of the original primitive. �childO f
denotes this relation. Obviously, such a construction scheme can be applied recursively

T

a
a0a1

a10

a11 a0

a10

a0a111 a110

(a) (b)

(d)(c)

Figure 1. Grid construction with our recursively refined space tree elements T ordered by the Sierpiński SFC
(left, d = 2) or the Peano SFC (right, d = 3).

for each of the children. It yields a set of elements T whose unrefined entries form an
adaptive grid Ωh. The set is structured by the underlying child-parent relation. It is a tree,
a spacetree.

A tree induces a partial order on all geometric elements of the adaptive grids of
all resolution levels. The order comprises both refined and unrefined elements (leaves).
While actual solvers for partial differential equations (PDEs), e.g., might work only on
the leaves of the tree, we formally preserve the tree here. As �childO f does not prescribe
an ordering of the children of any refined element, one way to serialise the tree into a
total order is to write down a motif order for the children of one refined element and to
apply this motif for each cell in the tree recursively—suitably rotated, scaled, mirrored
and translated. A proper ordering resembles the construction of space-filling curves. For
d = 2 and triangles, an ordering along the bipartitioning Sierpiński SFC is possible. For
d ≥ 2, hypercubes, and bipartitioning along each coordinate axis, Hilbert and Morton
ordering can be used. For d ≥ 2, cubes, and threepartitioning along each coordinate axis,
the Peano SFC is a natural choice. All these SFCs in combination with �childO f serialise
the tree. If any two succeeding elements along the serialisation share a d −1 hyperface,
several properties arise:

• Any continuous SFC segment S induces one connected submesh Ωh|S ⊆ Ωh. This
does in particular not hold for the z-ordering (Morton) where induced subparti-
tions might be disconnected [14].

• The SFC defines a unique order when a vertex or edge is read for the first time
throughout a traversal. This order is induced by the minimum of the adjacent ge-
ometric elements along the SFC running through the elements (touch-first order)
[8,9].

• A similar reasoning holds for the touch-last order, i.e. when the vertex or edge is
required for the last time.

• If a grid traversal runs through a continuous SFC segment only, the two ordering
properties either can be defined globally or with respect to the local curve segment
S.

• Touch-first totally orders the vertices and edges. We can store data assigned to
them on one input stream strictly sequentially read.

• A similar reasoning holds for the output stream and writes.
• If we invert the SFC after each traversal, the touch-last order on vertices and edges

equals the inverted touch-first order of the subsequent traversal [2,8,9]. The data
access follows stack (LiFo) principles.

2. Parallelisation

Let p : T �→N∪{⊥} assign each geometric element of the spacetree an integer partition
marker or the undefined symbol ⊥. Each unrefined element has a marker unequal to ⊥
(see (1)) which assigns it to a partition. Partitions in turn are dynamically mapped onto
a compute unit (MPI rank, thread, core, e.g.) responsible to perform different kinds of
computations on all elements of its partitions. If two leaves hold the same marker, each
unrefined spacetree element in-between along the SFC traversal shall hold this marker,
too. Let

b ∈ T : � ∃a �childO f b ⇒ p(b) �=⊥, (1)

(∃p �=⊥)∧ (∀a �childO f b : p(a) = p) ⇒ p(b) = p, and (2)

(a,b �childO f c : p(a) �= p(b)) ⇒ p(c) =⊥. (3)

If we restrict the SFC to all spacetree elements holding the same marker, this yields a
connected mesh segment. The markers induce a non-overlapping domain decomposition
on the spacetree’s fine grid Ωh .

We furthermore note that whenever a refined spacetree element holds a marker, all of
its children and descendants hold the same marker due to (2) and (3). Markers comprise
hierarchy.

If a refined spacetree element holds ⊥, different strategies to assign it to a compute
unit do exist: some codes map it to a compute unit responsible for one of the child
elements, others duplicate the element for each compute unit responsible for at least one
child. Both variants work for the present algorithm.

If a grid is rebalanced, p is adopted accordingly. If a grid changes, the marker of
any refined former leaf and (2) yield the markers for new subgrid elements unless the
grid is rebalanced. If mesh elements are removed, formerly unlabelled elements might
have to be assigned to partitions to fulfill (1). While each geometric element belongs
to at most one marker/compute unit, vertices and edges adjacent to several subdomains
are not uniquely assigned to a compute unit. Two different strategies exist to handle this
ambiguity.

With a shared data layout, all compute units adjacent to one vertex, edge, hyper-
face share one instance of this grid entity. While it is straightforward to formalise grid
modifications as broadcast/reduction and to realise them on multiple copies of the grid
entity, in the end the entity exists only once on one global input and output stream.

Initial read and final write access have to fit to the global touch-first and touch-
last order without data races. A shared approach maps directly to cache-coherent shared
memory parallelisation, PGAS or one-sided MPI.

With a replicated data layout, we clone vertices, edges, hyperfaces for each adja-
cent partition. Updates on edge and vertex data then are embarrassing parallel. However,
modifications once per traversal have to be synchronised among all partitions holding du-
plicates. The data cardinality (number of vertices, e.g.) sent to one destination through-
out a traversal by a given source equals the number of records received at the end of the
traversal from this communication partner. As each local SFC is a subset of the global
SFC, each partition sends data along the local touch-last order. In the subsequent itera-
tion, each compute unit receives data along the touch-first order (cmp. stack principle)
and merges duplicated data.

These activities have to address the proper communication partners, i.e. find out
where to send data to and receive in return. Exploiting the causality of many read and
write buffers and the fact that each spacetree refinement makes communication buffers
grow at most by a given element number in parallel, we avoid overheads induced by real-
location of the stacks wherever possible. In particular, we infer upper limits for the max-
imum required buffer capacity a priori and hence avoid reallocation during grid traversal
completely. Prospective stack allocation for vertices extends our previous work [6,15]. A
replicated layout maps either to shared memory or distributed memory parallelisation.

3. Communication meta data

To realise a domain decomposition, we have to track where to send data to or which part
for communication stream to read and write.

We introduce two different yet cognate approaches for the two data layouts that both
allow for run length encoding of the meta data yielding a low memory footprint and are
easy to derive given a decomposition. For this, let each element in the spacetree formally
hold a tuple (read,write,C). This is the communication meta data.

Shared data layout. In each unrefined element, touch-first defines globally how many
adjacent vertices are read by this element for the very first time throughout the present
traversal. read holds this counter. write is the corresponding value for writes to the
output stream. For any refined spacetree element a with p(a) �= ⊥, let read(a) =
∑b�childO f a read(b) and and write(a) = ∑b�childO f a write(b). Both quantities can be
analysed bottom-up and are a run length code specifying for whole subtrees how many
data are read by this subtree from a global input stream or written, respectively.

The application to other grid entities such as edges is straightforward. We note
that touch-first for d − 1-dimensional (hyper)faces implies touch-first for all lower-
dimensional grid entities, i.e. such information can be reconstructed.This note links read
and write to the automaton grammars of [1,2,8,9] et al.

p induces a recursive fork pattern for a shared data traversal where all input grid
entities are serialised along one input stream and all grid entities have to be written to
one output stream. Let the grid traversal run through the spacetree top-down serially.
Whenever it encounters a node with r �= ⊥, it can fork the traversal of the respective
subtree and continues to traverse the remaining tree.

read defines how many grid entities are read by a particular subtree, i.e. partition,
along the global touch-first order. For each traversal fork, we cull read elements en bloc
from the input stack and assign this data chunk to the a compute unit running computa-
tions on this subdomain. Here, it has to read data along its local touch-first order.

If this read coincides with the global touch-first order, the compute unit takes the
data from the input data chunk, performs computations on it, and provides them as read-
only data to all other adjacent forked compute units. Otherwise, the respective grid entity
is processed by another compute unit. The write process is similar: Prior to each traversal
fork, we allocate write entries on the output stream en bloc. Each forked compute unit
then fills this continuous chunk again following the global touch-last order and performs
the corresponding reductions.

Due to overhead considerations, forking load and store traversals only pays off if
the number of reads and writes is significantly high, i.e. if the load per forked compute

unit is sufficiently high. It consequently does make sense to augment the marker analysis
with a subtree size threshold. Our meta data analysis both defines a way how to paral-
lelise tree load and store processes for a shared input/output serialisation, and it defines a
methodological way, which data is to be read or stored, respectively, by which thread. As
a result, we hold the meta data only for spacetree elements where a fork is reasonable.
For all other nodes, meta data is discarded. This reduces the meta data footprint. If the
grid is repartitioned or changed, an update of the meta data is straightforward throughout
the subsequent tree traversal.

Replicated data layout. In each unrefined element, touch-first defines locally which
adjacent vertices are read by this element for the very first time throughout the present
traversal of a given partition.

touch-last yields the write counterpart. Consequently, the local touch-last order iden-
tifies whether a vertex will be reused by the local partition in this traversal. If not, it has
to be synchronised with all other adjacent compute units before it is filed for the subse-
quent traversal, i.e. its data updates have to be shared. touch-first is the counterpart: prior
to any work with the vertex, all synchronisation updates have to be received and merged
into the grid entity.

Let C hold a sequence of (#n, p) tuples specifying along the local order of the
vertices of a given element how many grid entities #n have to be sent to a particular
partition p. The receive data sequence derives from the very same set due to the stack
principle. For any refined spacetree element a with p(a) �= ⊥, we concatenate the C
sequences of the leaves.Afterwards, subsequences ((#n1, pi),(#n2, pi)) are replaced by
((#n1 +#n2, pi)). C is analysed bottom-up and run length encoded.

C is to be held per grid entity type (vertex, edge, face, etc.). We however propose
an optimisation extending [6]: Given the adjacency information for the d̂ < d manifolds,
we can derive from this meta data which d̂ −1 entities of each cell are adjacent to other
compute units if we insert additional tuples (0, p). These tuples denote that an d̂−1 entity
connects to a partition p that is not connected to the current cell through an d̂ entity.

A sequence (3, p1),(0, p2),(0, p3),(4, p4) for edges in a two-dimensional setting,
e.g., implies that a subdomain surface consists of three edges connecting to partition p1
followed by four edges connecting to p4. The vertex in-between links to both p1 and p4
as well as additional partitions p2 and p3. As the SFC induces compact and connected
partitions, these special cases are rare and allow to plant additional information into the
adjacency sequences with low memory footprint.

p induces a decomposition of the global spacetree into sequence of subtrees. We
denote, extending the notion from [15], a sequence of these subtrees with one p as cluster.
It is straightforward to initialise the required communication buffers prior to the traversal
and to exploit the possibility to exchange data en block rather than to send individual
messages.

After each traversal, C defines how many records are sent or fetched from other
partitions. We buffer the received data and pop it from this buffer throughout the sub-
sequent traversal. In a shared memory environment, send and receive buffers can be di-
rectly accessed by the compute units. In a distributed memory environment, they have to
be exchanged via MPI, e.g., explicitly.

As the coarsened meta data hold all adjacency information, we remove it from all
finer elements in the spacetree. This reduces the meta data footprint. If the grid is repar-
titioned, an update of the meta data is straightforward [6] either throughout a subsequent

tree traversal or due to incremental modifications of the sequences interplaying with
mesh element reassignments.

4. Results

All experiments were conducted on SandyBridge nodes being either part of the Super-
MUC or TUM’s MAC cluster. A node has two processors with eight cores each that share
a total of 32 GBytes main memory.

Studies on the shared data layout were conducted with the software Peano [13].
Studies on the replicated data layout rely on Sierpiński [12]. We used Intel’s Threading
Building Blocks (TBB) for shared memory systems and MPI on distributed memory
environments. As application scenarios, we used Euler and Shallow water equations for
d = 2 and a simple heat diffusion setting in a inhomogeneous medium for d = 3 with
state-of-the-art (discontinuous) Galerkin FEM discretization in space and Euler explicit
1st order integration in time.

 10

 100

 1000

 10000

 0 0.2 0.4 0.6 0.8 1

Simulated time

#fine grid elements
#markers

 0

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 9e-06

1 2 4 6 8 16 32

N
o
rm

a
lis

e
d

 r
u
n
ti

m
e
,
[t

]=
s

Threads

3^d elements
3^{2d} elements
3^{3d} elements
3^{4d} elements
3^{5d} elements

Figure 2. Left: snapshot of two characteristic 3d experiments tracking both the total number of elements on
the finest grids and the number of tree elements holding read and write marker; right: typical cost per unknown
of the load process.

The memory footprint of both data layouts is, by construction, very small but de-
pends on the actual partition shapes, i.e. it depends on how coarse within the tree data
can be held. For the shared data layout, we identified reasonable minimal values of read
and write constraining the minimal forked tasks’ size, i.e. the size of a partition p, by
exhaustive search. O(33d) turned out to be the smallest reasonable value independent of
grid structure and threads available (Fig. 2). Furthermore, it turned out that, interplaying
with [16], read and write operation forks pay off solely for regular stationary subregions
of the grid—for other regions, the handling of hanging vertices and dynamic refinement
outperform the loads and stores anyway.

If we hold the meta data read and write only for regular subregions, around every
20th fine grid element corresponds to a element in the spacetree annotated with the two
counters (Fig. 2). Combining these two selection criteria, the number of markers relative
to the fine grid elements is neglectable.

Our replicated data layout holds communication meta data per cluster. Obviously,
the memory footprint depends on the shape of the clusters, their number, and their RLE
compression rate. A cluster’s surface-to-volume ratio is quasi-optimal due to the use of
SFCs [10], i.e. it is only by a constant worse than a spherical domain layout. This opti-
mality applies to the cluster boundary faces to be labelled and kept tracked by the meta

data storage scheme. Good cluster sizes depend on the grid layout as well as overhead
considerations vs. concurrency level if they are atomic entities to dynamic load balanc-
ing [6,15]. If we compare the cardinality of cluster boundary elememts (edges) to the
number of meta data tuples of our approach (Fig. 3), the bigger the cluster the bigger the
pay-off. For typical cluster sizes from 4096 through 8192, our scheme induces a memory
footprint reduction factor from 9 to 12.

0

2

4

6

8

10

12

14

16

16 64 256 1024 4096 16384

R
LE

 s
to

ra
ge

 im
pr

ov
em

en
t

maximum cluster/partition threshold

0

100

200

300

400

500

600

700

800

0 32 64 96 128 160 192 224 256

M
eg

a
C

el
ls

 p
er

 S
ec

on
d

Number of cores

Linear scaling (baseline: 16 cores)

Communication scaling

Figure 3. Left: Ratio of cluster boundary edges and vertices to C entries for typical maximal cluster sizes with
maximum and minimum ratios; right: scaling of a simulation on a SFC based regular grid with non-blocking
MPI communication for different numbers of MPI compute units (ranks).

As the communication meta data encoding yields communication data exchange
cardinality and as the SFC’s touch first/last order ensures that communication data is
read and written continuously, communication buffers can be transferred en block. No
accummulation or pre-/postprocessing overhead is induced. This insight is reflected by
MPI efficiencies of 95,6% (Fig. 3). A similar pattern is found for the shared data lay-
out, where the elimination of meta data entries below a given threshold both saves mem-
ory and guides the parallelisation not to fork additional tasks for those sub-spacetrees.
Given such a threshold as discussed before, we observe convincing scaling as no data
synchronisation is required—race conditions are avoided a priori due to replicated data
layout.

We validate our results by a theoretical analysis of the ratio between memory im-
provements of our RLE and per-element payload W for different cluster sizes. We con-
sider a regular triangulated subdomain refined to depth via bisection yielding 2depth cells.
For the bipartitioning Sierpiński curve, the number of communication partners for a sin-
gle triangle hence is bounded by S := 3+ 2 · 5+ 1+W taking into account that two
out of seven adjacent elements have an edge of the element itself encoded by the meta
data entries and the vertex at the triangle legs requiring only one RLE entry. This yields a
required storage capacity of R := 2 · (3+2 ·5+1) words taken for the RLE encoding on
regular grids for all possible communication information elements with the factor of two
considering the memory to store the run length encoding. The ratio of per-element and

RLE stored memory requirement is then given by S ·2depth

R+W ·2depth
2depth→∞,L.H.

= S
W +1. Graphs

for different payloads per element and cluster sizes are given in Fig. 4.
For a payload of 4 words per cell, used for typical finite volume simulations, the

model shows that our RLE encoding is already beneficial for cluster with only a few
cells, and typical cluster sizes are in the magnitude of hundreds of cells. For a payload
exceeding 64 words per element, the savings are almost close to one, thus the benefits
are not given by less memory consumption. Though, RLE based communication is still
advantageous procuring communications en block.

R
at

io
 o

f p
er

 c
el

l a
nd

 R
LE

ad
ja

ce
nc

y
in

fo
rm

at
io

n

Elements per cluster/partition

per cell = 4
per cell = 8
per cell = 16
per cell = 32
per cell = 64

Payload
Payload
Payload
Payload
Payload

Figure 4. Factor of saved memory with RLE cluster encoding compared to storing adjacency information
per-cell. The asymptotical behavior to 14

W +1 is clearly visible, thus providing a constant limit of the memory
required for per-element adjacency information.

We only considered a single word used for communication. Extending the adjacency
information with further information such as MPI ranks, identifiers, etc. would increase
S and thus makes our RLE yet more valuable.

5. Conclusion and outlook

If parallel mesh-based PDE solvers or, in general, applications rely on the interplay of
space-filling curves and spacetrees, it is a natural choice to exploit these two ingredients
not only for sophisticated mesh management and computations but also for communica-
tion meta data.

The present paper introduces one such approach: an analysed tree grammar is used
to derive, maintain, and store communication meta data efficiently and economically.

Our algorithmic efforts yield a small meta data memory footprint and fall elegant
into place. However, they add yet another nuance of implementation complexity to the
spacetree codes. In practice, one carefully has to balance whether this additional tree
grammar and the savings in memory are worth the effort. In many cases, plain yet ex-
pensive lookup tables to store connectivity and topology might work as well on todays
computers.

On the long run, supercomputing roadmaps however suggest that the impact of com-
munication and the efficient realisation of its administration—in particular with respect
to memory—can not be overestimated. Our algorithmic ideas then materalise one out of
many building blocks.

Future steps hence comprise the combination of the present ideas with other paral-
lelisation aspects to tackle simulations on the large-scale within the two open source code
environments [12,13]. Here, we expect the present ideas to be an enabling technique.
We also expect that real-world runs yield further insight about the present algorithm’s
properties—how the low memory footprint facilitates and interplays with dynamic load
balancing, the invasion of computational resources as they might be found in urgent
computing, and heterogeneous architectures.

Acknowledgements

This work was supported by the German Research Foundation (DFG) as part of the
Transregional Collaborative Research Centre “Invasive Computing (SFB/TR 89). It is
partially based on work supported by Award No. UK-c0020, made by the King Abdullah
University of Science and Technology (KAUST). All software is freely available at [12]
or [13].

References

[1] M. Bader. Space-Filling Curves - An Introduction with Applications in Scientific Computing, volume 9
of Texts in Comp. Science and Engineering. Springer-Verlag, 2013.

[2] M. Bader, C. Böck, J. Schwaiger, and C. A. Vigh. Dynamically Adaptive Simulations with Minimal
Memory Requirement - Solving the Shallow Water Equations Using Sierpinski Curves. SIAM Journal
of Scientific Computing, 32(1), 2010.

[3] C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable Algorithms for Parallel Adaptive Mesh
Refinement on Forests of Octrees. SIAM Journal on Scient. Comp., 33(3):1103–1133, 2011.

[4] M. Griebel and G. Zumbusch. Parallel multigrid in an adaptive PDE solver based on hashing and space-
filling curves. Parallel Computing, 25(7):827–843, 1999.

[5] A. Rahimian, I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D. Malhotra, L. Moon, R. Sampath,
A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros. Petascale direct numerical simulation
of blood flow on 200k cores and heterogeneous architectures. In Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’10,
pages 1–11. IEEE Computer Society, 2010.

[6] M. Schreiber, H.-J. Bungartz, and M. Bader. Shared memory parallelization of fully-adaptive simula-
tions using a dynamic tree-split and -join approach. Puna, India, 2012. IEEE International Conference
on High Performance Computing (HiPC), IEEE Xplore.

[7] V. Springel. The cosmological simulation code gadget-2. Monthly Notices of the Royal Astronomical
Society, 364:1105–1134, 2005.

[8] T. Weinzierl. A Framework for Parallel PDE Solvers on Multiscale Adaptive Cartesian Grids. Diss.,
Institut für Informatik, Technische Universität München, München, 2009.

[9] T. Weinzierl and M. Mehl. Peano—A Traversal and Storage Scheme for Octree-Like Adaptive Cartesian
Multiscale Grids. SIAM Journal on Scientific Computing, 33(5):2732–2760, 2011.

[10] H.-J. Bungartz, M. Mehl, and T. Weinzierl. Euro-Par 2006, Parallel Processing, 12th International
Euro-Par Conference, volume 4128 of LNCS, chapter A Parallel Adaptive Cartesian PDE Solver Using
Space–Filling Curves. Springer-Verlag, 2006.

[11] D. E. Knuth. The genesis of attribute grammars. In P. Deransart and M. Jourdan, editors, WAGA:
Proceedings of the international conference on Attribute grammars and their applications, pages 1–12.
Springer-Verlag, 1990.

[12] M. Schreiber. Sierpiński—a Framework for Full Adaptive 2D Simulations, 2013.
www5.in.tum.de/sierpinski.

[13] T. Weinzierl et al. Peano—a Framework for PDE Solvers on Spacetree Grids, 2013. www.peano-
framework.org.

[14] M. J. Aftosmis, M. J. Berger, and S. M. Murman. Applications of space-filling curves to cartesian
methods for cfd. AIAA Paper, 1232:2004, 2004.

[15] M. Schreiber, T. Weinzierl, and H.-J. Bungartz. Cluster optimization and parallelization of simulations
with dynamically adaptive grids. In EuroPar 2013, 2013. (accepted).

[16] W. Eckhardt and T. Weinzierl. A Blocking Strategy on Multicore Architectures for Dynamically Adap-
tive PDE Solvers. In Parallel Processing and Applied Mathematics, PPAM 2009, number 1 in LNCS,
2010.

