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Predicting critical transitions in dynamical systems from time series using nonstationary
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A time series analysis method for predicting the probability density of a dynamical system is proposed. A
nonstationary parametric model of the probability density is estimated from data within a maximum likelihood
framework and then extrapolated to forecast the future probability density and explore the system for critical
transitions or tipping points. A full systematic account of parameter uncertainty is taken. The technique is generic,
independent of the underlying dynamics of the system. The method is verified on simulated data and then applied
to prediction of Arctic sea-ice extent.
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I. INTRODUCTION

Many complex dynamical systems which are subject
to slowly varying external conditions may exhibit critical
transitions or tipping points; that is, they show a structural
change in the observed macroscopic behavior when a critical
threshold of a control parameter is crossed. Such tipping
points are linked to bifurcations or phase transitions of the
underlying dynamical system. At a critical value of a control
parameter, an attractor becomes unstable and an alternative
attractor emerges. Examples of real-world systems range from
financial markets [1], over ecological systems [2], to the
climate system [3]. Critical transitions in these systems may
be of huge socioeconomic importance.

In recent years, there has been much interest in extracting
early-warning signals of critical transitions from time series
in order to detect, anticipate, or even predict impending
tipping points [4]. Particular emphasis lies in generic indicators
which do not require detailed knowledge of the underlying
dynamics of the system. The techniques discussed so far are
based on critical slowing down [5,6], detrended fluctuation
analysis [7], increasing variance [8,9], multiple equilibria in
the underlying potential or the quasistationary probability
density [10,11], and (nonlinear) softening in the dynamics
[12,13].

The present paper extends recent work on detection of
critical transitions based on analysis of quasistationary prob-
ability densities and their modality [10,11]. In these earlier
studies, the probability density is assumed to be stationary
over a chosen data window. Here, a method is developed
for estimating from time series data a nonstationary model
of a slowly evolving probability density. This model is then
extrapolated into the future, allowing for genuine prediction
(rather than just detection or anticipation) of the nature and
timing of future transitions in the probability density of the
system. These transitions may be mere shifts (e.g., trends or
cyclic variations in the mean or the variance) or may lead to
bifurcations of the dynamical structure (e.g., changes in the
number or stability of system states), including emergence of
an alternative, previously unseen stable state.
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The paper first outlines the general methodology. The
technique is then verified on simulated data and applied to
the prediction of Arctic sea-ice extent.

II. METHODOLOGY

A. Modeling the quasistationary probability density

We consider a high-dimensional, complex system which is
subject to slow variations in its parameters. These variations
may cause changes in the statistical characteristics of the
emergent macroscopic behavior of the system. A scalar
variable x of the system is observed. The quasistationary
probability density p(x; t) is introduced as the (marginal)
stationary density or invariant measure the system adopts under
constant parameters equal to those at time t . It is represented
as

p(x; t) = Z−1(t) exp [−U (x; t)], (1)

with a time-dependent normalization constant given by

Z(t) =
∫ +∞

−∞
exp [−U (x; t)] dx. (2)

The potential function U (x; t) is approximated by a polyno-
mial ansatz

U (x; t) =
M∑
i=1

ai(t)x
i. (3)

The degree of the polynomial M is an even integer in order
to obtain a physically meaningful and normalizable stationary
density. The low-order polynomial ansatz focuses the model
on the large-scale features of the probability density. The
time-dependent expansion coefficients ai(t) are themselves
expanded in terms of prescribed time-dependent functions
fi,j (t) as

ai(t) =
Ji∑

j=0

αi,j fi,j (t). (4)

We always set fi,0(t) = 1; thus the case Ji = 0 for all i

corresponds to a time-invariant probability density [10,11,14].
For convenience of notation the constant part is not explicitly
separated here from the time-dependent part. Natural choices
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for the time-dependent functions fi,j (t) for j > 0 are trends
(polynomial or other), cycles (represented by cosine and sine
functions), or other external covariates whose time series is
known.

B. Parameter estimation

Given a learning data set of length N , {x1, . . . ,xN }, with
xn = x(tn) for n = 1, . . . ,N , the model parameters are esti-
mated according to the maximum likelihood principle. The
time series may be evenly or unevenly sampled. We introduce
the mth moment of the quasistationary probability density at
time tn given by

μm,n = Zm,n

Z0,n

, (5)

with the auxiliary quantity

Zm,n =
∫ +∞

−∞
xm exp [−U (x; tn)] dx (6)

for m = 0, . . . ,2M and n = 1, . . . ,N . We have Z0,n = Z(tn).
The likelihood function of the data is

L =
N∏

n=1

p(xn; tn); (7)

the log-likelihood function is

log L =
N∑

n=1

[−log Z0,n − U (xn; tn)]. (8)

The natural logarithm is used throughout the paper. The
log likelihood is maximized with respect to the parameters
αi,j by finding a stationary point of the gradient using the
Newton-Raphson method. The gradient of the log likelihood is

∂ log L

∂αi,j

=
N∑

n=1

fi,j,n

(
μi,n − xi

n

)
, (9)

with the abbreviation fi,j,n = fi,j (tn); the elements of the
Hessian matrix H are

∂2 log L

∂αi,j ∂αk,l

=
N∑

n=1

fi,j,nfk,l,n(μi,nμk,n − μi+k,n). (10)

The integrals Zm,n can be evaluated efficiently using standard
numerical integration techniques on a large enough finite-x
interval with relatively few mesh points as the integrand is
rather smooth and decays rapidly for |x| → ∞. We here use
the (composite) Simpson rule.

Occasionally, the Newton-Raphson method is found to
diverge if the chosen initial guess for the parameters is too
far away from the solution. The following simple extension
(see [15] for a similar algorithm) helped overcome divergence
in the examples tested while keeping the rapid convergence of
the Newton-Raphson method close to the solution: The step
taken by the Newton-Raphson method at each iteration can be

shown to be a descent direction of ‖ ∂ log L

∂α
‖2

. If the proposed

step in α is found not to decrease ‖ ∂ log L

∂α
‖2

, the step length is

halved until first encountering a decrease in ‖ ∂ log L

∂α
‖2

and that
point taken as the next iterate.

For all examples reported in the present paper, the Hessian
matrix H of log L was found to be negative definite at all points
in parameter space occurring as iterates during the maximiza-
tion procedure. This hints at a possible strict convexity of
the optimization problem, which would imply the existence
of a unique and global maximum of the likelihood function.
Convexity appears conceivable in the present context; unlike
methods for estimating parameters in ordinary or stochastic
differential equations, the present method does not construct
any trajectories and thus does not involve the variation of the
numerical integration of a nonlinear function with respect to
the parameters. A general proof, though, appears not to be
straightforward.

The method guarantees a positive leading-order polynomial
coefficient at all data points [aM (tn) > 0], which is necessary
for a normalizable probability density. No constraints need to
be applied to achieve this as the likelihood function already
acts as a barrier. For a given finite data range, a crossing below
zero of the leading-order coefficient for some n would “leak”
probability mass to infinity and thus decrease the likelihood
on that data point to arbitrarily low values.

The present method, both in the time-independent case
(Ji = 0 for all i) and the time-dependent case, is independent
of the underlying dynamics of the system. For any fixed t , the
quasistationary probability density of Eq. (1) is the stationary
density of a one-dimensional Langevin equation describing
noise-driven motion in the potential landscape U (x; t) with a
certain noise level. However, this one-dimensional dynamical
model is not assumed to be valid here. The present method just
empirically models the probability density of x and does not
refer to any transition probabilities. It also does not assume
a one-dimensional Fokker-Planck equation for the evolution
of the probability density of x. The underlying dynamics may
actually be high-dimensional and nongradient. As such, the
technique is able to capture critical transition mechanisms
beyond the one-dimensional saddle-node bifurcation scenario
which is usually considered.

The method is clearly based on two time-scale assumptions.
First, the parameter variation needs to be slow enough for
an ensemble of system states to equilibrate instantaneously
to the new quasistationary density to a good approximation.
That means the solution of the time-dependent Fokker-Planck
equation of the system initialized with its stationary solution at
some point needs to always stay close to its stationary solution,
at least for the marginal density of x. Second, the dynamics of
the system needs to be such that a single trajectory explores
state space fast enough; that is, the Fokker-Planck equation
initialized with a point distribution representing a particular
initial condition reaches its stationary solution quickly, at least
for the marginal density of x. Only then can the data set be
regarded as a representative sample of the quasistationary
density at any time. Moreover, the likelihood function of
Eq. (7) assumes independent data points. However, in most
applications there are temporal correlations, depending on the
dynamics of the system and the sampling interval of the data.
Violation of any of these assumptions may result in biases in
the parameter estimates.

In principle, the method is still applicable in the presence
of observational noise. It would then model the observed
probability density of x given as a convolution of the genuine
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probability density of the system and that of the observational
noise without explicitly disentangling the two components.

C. Model selection

The parameters M and Ji are hyperparameters of the
method, controlling the complexity of the probability density
model. Moreover, different choices for the functions fi,j (t)
may be conceivable in a particular application. Natural
methods for model comparison and selection are minimization
of an information criterion or a likelihood ratio test when
considering nested models. Here, the Bayesian information
criterion is chosen as being equal to p log N − 2 log L, where
p is the number of parameters in the model, N is the
length of the time series, and L is the likelihood for the
optimal parameter set. The Bayesian information criterion
quite strongly penalizes additional parameters. This appears
to be appropriate in the present context; in particular, when
dealing with short and noisy time series, one would like to go
for the most parsimonious model.

D. Parameter uncertainty

The maximum likelihood framework naturally provides
information on parameter uncertainty and allows us to take full
systematic account of it. For large enough N , the estimation
errors of the parameters are Gaussian, and their covariance
matrix is the inverse of the observed Fisher information
matrix I = −H(α∗), where α∗ denotes the parameter vector
maximizing the likelihood. Uncertainty information for the
probability density itself or diagnostics derived from it can
then be obtained by Monte Carlo simulation drawing a large
ensemble from the Gaussian parameter error distribution.

The Fisher information matrix is based on the assumption
of independent data points. In the case of temporal correlation
the uncertainty estimate derived from it may be expected to
be a lower bound on the true uncertainty. Ideally, N should
be replaced by an effective sample size which is yet hard to
obtain in the present context.

E. Predicting the future probability density

Having estimated the probability density model from
the learning data set, it can be extrapolated beyond the
learning data window to predict the future evolution of the
quasistationary probability density of the system. Given the
functions fi,j (t) at some future time t , the probability density
p(x; t) is evaluated and uncertainty information is obtained
as described above using the error covariance matrix of the
parameters.

A positive leading-order polynomial coefficient, and thus
a normalizable probability density, is no longer guaranteed
when extrapolating beyond the learning data window. The
leading-order coefficient (or the decay of the probability
density for large |x|) should be monitored. The occurrence
of a non-normalizable probability density clearly serves as an
indicator that the model is inappropriately specified and/or the
range of validity of the extrapolation is exceeded.

F. The special case of a time-invariant probability density

As a by-product, the time-independent case (Ji = 0 for all
i) provides a method for obtaining a polynomial fit to the loga-
rithm of a constant probability density in a given data window.
It is an improvement on an earlier approach [10,14] which
suggests a polynomial weighted least-squares fit to − log p(x),
where p(x) is obtained by a kernel density estimator. That
method combines nonparametric and parametric elements in
a slightly ad hoc manner and requires the specification of a
smoothing bandwidth. The present likelihood-based method is
more systematic, working directly on the given data points, and
provides a natural framework for model selection (determining
the degree M of the polynomial) and dealing with parameter
uncertainty. Moreover, the likelihood approach guarantees a
positive leading-order coefficient αM,0, which is not the case
with the earlier method.

III. RESULTS

Various aspects of the method are illustrated and verified on
a couple of simulated data sets. The technique is then applied
to a real data set from the area of climate science.

A. Ornstein-Uhlenbeck process
with time-dependent parameters

The first example system is an Ornstein-Uhlenbeck process
with drifting parameters. The governing equation is

ẋ = −γ (t)x + c(t) + ση. (11)

η denotes a white Gaussian noise process with zero mean and
unit variance. The standard deviation of the stochastic forcing
is set as σ = 2. The system is considered on the time interval
[0,200]. The damping coefficient and the deterministic forcing
have linear trends given by γ (t) = 6 − t

50 and c(t) = t
50 . The

exact quasistationary probability density of the system at time
t is a Gaussian with mean c(t)

γ (t) and variance σ 2

2γ (t) .
Figure 1(a) displays a sample trajectory of the system

initialized with x(0) = 0; the upward drift of the mean and
the increase in variance due to the decreasing damping are
clearly visible. Here and in the following, the Euler-Maruyama
scheme [16] with step size 10−4 was used to simulate stochastic
differential equations. The learning data window extends from
t = 0 to t = 150. The sampling interval is δt = 0.05, resulting
in a learning data set of size N = 3001.

For the Ornstein-Uhlenbeck process the time-dependent
Fokker-Planck equation can be easily solved, and it is thus
possible to illustrate and check the validity of the time-scale
assumptions of the method. For Gaussian initial densities
the system can be fully described in terms of the mean
M = 〈x〉 and the variance V = 〈x2〉 − 〈x〉2, where 〈·〉 here
denotes the average over an ensemble of system states.
The evolution equations for the mean and the variance are
dM/dt = −γ (t)M + c(t) and dV/dt = −2γ (t)V + σ 2 [17].
They are decoupled, and we have linear relaxation towards
the quasistationary values at a relaxation time scale γ −1 for
the mean and (2γ )−1 for the variance. As initial densities we
consider an ensemble representing the quasistationary density
at t = 0, that is, M(0) = 0 and V (0) = 1/3, as well as point
distributions representing particular initial conditions, that is,
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FIG. 1. Ornstein-Uhlenbeck process with time-dependent parameters. (a) Time series of the system. The dotted vertical line indicates the end
of the learning data window. (b) Quasistationary mean (solid line) and time evolution of the mean for initial conditions M(0) = 0 (dot-dashed
line), M(0) = 1 (dashed line), and M(0) = −1 (dotted line). (c) Close-up of (b). (d) Quasistationary variance (solid line) and time evolution of the
variance for initial conditions V (0) = 1/3 (dashed line) and V (0) = 0 (dotted line). (e) Close-up of (d). (f) Evolution of the probability density:
exact probability density at t = 0, t = 150, and t = 200 (solid lines, from left to right), reconstructed probability density at t = 0 and t = 150
(dashed lines), and predicted probability density at t = 200 (dotted line). The thin dashed and dotted lines indicate a 90% confidence interval.

M(0) = x(0) and V (0) = 0, for the three example values,
x(0) = 0, x(0) = 1, and x(0) = −1. Figures 1(b)–1(e) show
the results of numerical integrations of the evolution equations
of the mean and the variance for these cases. All initial
conditions quickly asymptote to the stationary density, and the
system almost instantaneously equilibrates to the changing
quasistationary density. There is virtually no difference be-
tween the solution of the time-dependent Fokker-Planck equa-
tion and the quasistationary solution. This is due to the very
short relaxation time scale of the system. Thus both time-scale
assumptions of the method are extremely well satisfied here.

The potential function is chosen as a quadratic with
linear trends in the coefficients: U (x; t) = (α1,0 + α1,1t)x +
(α2,0 + α2,1t)x2. An ensemble of 200 members is used to
sample the uncertainty. Figure 1(f) shows the reconstructed
probability density at the start and the end of the learning

data window as well as the predicted probability density at
t = 200. They are calculated as the mean of the ensemble. The
uncertainty is indicated by a central 90% confidence interval;
that is, the 5% and 95% quantiles of the ensemble are given.
Both the reconstructed probability densities and the forecast
future probability density are quite accurate. Expectedly, the
uncertainty is larger for out-of-sample prediction than for
in-sample reconstruction.

B. Bifurcation in the underlying dynamics

We consider noise-driven motion in a nonstationary po-
tential landscape which exhibits a bifurcation. The governing
equation is

ẋ = −V ′(x; t) + ση. (12)
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FIG. 2. Noise-driven motion in a potential landscape bifurcating from two wells to one well. (a) Time series of the system. The dotted vertical
line indicates the end of the learning data window, and the dashed vertical line shows the bifurcation point. (b) Exact (solid line) and reconstructed
(dashed line) probability density at t = 0. Thin dashed lines indicate a 90% confidence interval. (c) Exact (solid line) and reconstructed (dashed
line) probability density at t = 500. Thin dashed lines indicate a 90% confidence interval. (d) Exact (solid line) and predicted (dotted line)
probability density at t = 800. Thin dotted lines indicate a 90% confidence interval. (e) Modality index of the reconstructed or predicted
quasistationary probability density as defined by local maxima (solid line) and pairs of inflection points (dashed line) as a function of time.
The dotted vertical line indicates the end of the learning data window, and the dashed vertical line shows the bifurcation point.

η is a white Gaussian noise with zero mean and unit variance.
The potential V (x; t) slowly evolves from the double-well po-
tential V1(x) = x4 − 2x2 at initial time t = 0 to the single-well
potential V2(x) = 1

4x4 + 1
2x2 at final time t = 800 according

to V (x; t) = (1 − t
800 )V1(x) + t

800V2(x). The bifurcation from
two stable states to one stable state occurs at t = 640. The
noise standard deviation is σ = 1.5. The exact quasistationary
probability density of the system at time t is known to be
p(x; t) ∼ exp[−2V (x; t)/σ 2].

Figure 2(a) displays a sample trajectory of the system
initialized with x(0) = −1. The time series up to t = 500

forms the learning data set. The sampling interval is δt = 0.05;
the length of the learning data set is N = 10001. The potential
function is a fourth-order polynomial with linear trends in the
coefficients: U (x; t) = ∑4

i=1(αi,0 + αi,1t)xi . An ensemble of
1000 realizations drawn from the parameter error distribution
is used. Figures 2(b), 2(c), and 2(d) show the reconstructed
probability density at the start and the end of the learning data
window as well as the probability density predicted beyond the
bifurcation point at t = 800, together with their uncertainties.
Both the reconstructed and predicted probability densities are
very accurate.
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In order to diagnose the evolution of the modality of
the probability density we introduce two different notions
of the number of modes (or states) in the quasistationary
probability density p(x; t) at some time t . A straightforward
definition of the number of modes is given by the number
of local maxima in the probability density (or local minima
in the potential function). We denote this integer number
by S1. A slightly wider definition is based on inflection
points in the probability density. The curvature of p(x; t)
is p′′(x; t) = Z−1(t)[U ′2(x; t) − U ′′(x; t)] exp[−U (x; t)]. It is
positive at ±∞; inflection points occur in pairs. We count one
mode (or state) for each pair of inflection points and denote
this integer number by S2. Put differently, S2 is the number
of disjoint intervals on which p(x; t) has negative curvature,
but not necessarily a local maximum. This definition of the
number of states is different from that in [10,11], which is
based on inflection points of the potential function rather than
the probability density. We then define a modality index as the
fractional number given by m1 = 〈S1〉 or m2 = 〈S2〉, where
〈·〉 denotes the mean over the ensemble of realizations drawn
from the parameter error distribution. We always have S1 � S2

and thus m1 � m2.
Figure 2(e) displays the modality index as a function of

time. The exact probability density has S1 = S2 = 2 for 0 �
t < 640 and S1 = S2 = 1 for 640 � t � 800. The system is
correctly reconstructed as bimodal in the learning data window.
Then both modality indices indicate the impending bifurcation
and eventually drop to one after the bifurcation point. The
timing of the bifurcation is somewhat better captured with the
inflection point definition of states.

C. Transition to a previously unseen state

Again, stochastically driven motion in a nonstationary
potential is considered, governed by the equation

ẋ = −V ′(x; t) + ση, (13)

where η is a Gaussian white noise process with mean zero and
unit variance. The system is considered on the time interval
[0,1000]. The potential is given by V (x; t) = 1

4x4 − 1
2x2 −

λ(t)x, with λ(t) = t
900λ0 and λ0 = 2

√
3/9. At t = 0, this is

a symmetric two-well potential with local minima at x = −1
and x = 1. Then one well gradually shallows and the other
deepens until at λ = λ0; that is, at t = 900 a bifurcation from
double well to single well occurs. The noise level is chosen
as small as σ = 0.1. The system is then virtually confined for
a long time to the well it initially started in and only has a
considerable probability of switching to the other state when
approaching the bifurcation point.

Figure 3(a) shows a sample trajectory of the system
initialized with x(0) = −1; here, we observe a noise-induced
early escape to the other state at about t = 833. The time
interval [0,700] is used as the learning data window. The
sampling interval is δt = 0.05; the length of the learning data
set is N = 14001. The potential function is a quadratic with
linear trends in the coefficients: U (x; t) = (α1,0 + α1,1t)x +
(α2,0 + α2,1t)x2. An ensemble of size 200 is drawn from the
parameter error distribution to assess the uncertainty.

Figure 3(b) displays the reconstructed empirical probability
density of the time series at the start and at the end of the
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FIG. 3. Noise-driven motion in a potential landscape with transi-
tion to a previously unseen state. (a) Time series of the system. The
dotted vertical line indicates the end of the learning data window, and
the dashed vertical line shows the bifurcation point. (b) Reconstructed
empirical probability density of the time series at t = 0 (solid line)
and t = 700 (dashed line) as well as the extrapolated probability
density at t = 900 (dotted line). The corresponding thin lines indicate
a 90% confidence interval. (c) Cumulative probability Pr(x > −0.5)
calculated from the reconstructed or predicted probability density as
a function of time (solid line) with a 90% confidence interval (dashed
lines). The dotted vertical line indicates the end of the learning data
window, the dot-dashed vertical line shows the time of noise-induced
early escape, and the dashed vertical line shows the bifurcation point.

learning data set as well as an extrapolation to the bifurcation
point. It should be noted that these probability densities are
filtered by the system trajectory and are confined to the part
of state space the time series actually has explored. The
second time-scale assumption discussed above is violated here.
The true quasistationary probability density of the system (as
sampled by an infinitely long trajectory) at t = 0 and t = 700 is
bimodal with increasing probability mass around x = 1. At the
bifurcation point, the exact probability density of the system
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has a single maximum with most of the probability mass
around x = 1. The method cannot be expected to reconstruct or
predict these as it cannot learn about the unseen state. What the
evolution of the empirical probability density of the time series
does show is the shift in the mean and the increasing variance
due to the softening of the dynamics when approaching the
bifurcation point. The latter is a generic feature of a critical
transition [8,9] and is picked up by the method well ahead of
the bifurcation point, and a further softening is extrapolated
towards the bifurcation point.

Figure 3(c) displays the reconstructed or predicted
cumulative probability for x > −0.5. It is virtually zero
in the learning data window and is projected to increase
rapidly towards the bifurcation point, indicating an increasing
probability of the system to move away from its current state.
The cumulative probability Pr(x > −0.5) is a diagnostic of the
probability density, indicating its changing shape; it cannot be
easily interpreted as or related to an actual escape probability
of the trajectory as the dynamics of the system is not modeled
here.

The analysis can be refined in several ways. Higher-order
(e.g., quadratic) trends may be important, particularly close
to the bifurcation point. A fourth-order polynomial potential
function allows for simultaneous analysis of also skewness
[18] and kurtosis and their time evolution. In particular, the sign
and time evolution of the skewness would give an indication
on which side of the current state the new state will emerge.

D. Gaussian process with cyclic variation and drift

The system here is a Gaussian process

x(t) ∼ N (μ(t),σ 2), (14)

with time-dependent mean μ(t). The mean exhibits a linear
trend and a cyclic variation with period 1, whose amplitude
again has a linear trend: μ(t) = t

40 + (1 + t
40 ) sin(2πt + π

4 ).
The process is considered on the time interval [0,40]. The
standard deviation is σ = 0.2.

Figure 4(a) shows a sample time series of the system. The
first half of the time series up to t = 20 is used as a learning
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FIG. 4. Gaussian process with cyclic variation and drift. (a) Time series of the system. The dotted vertical line indicates the end of the
learning data window. (b) In-sample prediction: observed time series (solid line), estimate of the mean state (dashed line), and 90% confidence
interval for the data points (dotted lines). (c) Close-up of (b). (d) Out-of-sample prediction: observed time series (solid line), estimate of the
mean state (dashed line), and 90% confidence interval for the data points (dotted lines). (e) Close-up of (d).
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FIG. 5. Prediction of Arctic sea-ice extent. (a) Time series of Arctic sea-ice extent from 26 October 1978 to 31 December 2012.
(b) In-sample prediction in the learning data set from 1978 to 2007: observed time series (solid line), estimate of the mean state (dashed
line), and 90% confidence interval for the data points (dotted lines). (c) Probability plot for in-sample prediction in the learning data set from
1978 to 2007 (dashed line) and from 1978 to 2012 (dotted line). (d) Out-of-sample prediction for the period 2008–2012: observed time series
(solid line), estimate of the mean state (dashed line), and 90% confidence interval for the data points (dotted lines). (e) In-sample prediction for
the learning data set from 1978 to 2012: observed time series (solid line), estimate of the mean state (dashed line), and 90% confidence interval
for the data points (dotted lines). (f) Prediction of future sea-ice extent: estimate of the mean state (dashed line) and 90% confidence interval
for the data points (dotted lines). (g) Probability of future sea-ice loss.
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data set. The sampling interval is δt = 0.02, resulting in a
learning data set of length N = 1001. An ensemble of size
200 drawn from the parameter error distribution is used to
describe the uncertainty. The potential function to capture all
the features of the system is U (x; t) = [α1,0 + α1,1t + (α1,2 +
α1,3t) cos 2πt + (α1,4 + α1,5t) sin 2πt]x + α2,0x

2.
In-sample prediction within the learning data set [Figs. 4(b)

and 4(c)] and out-of-sample prediction in the unseen second
half of the data set [Figs. 4(d) and 4(e)] are performed. The
mean state and a central 90% confidence interval for the
individual data points (given by the 5% and 95% quantiles)
are forecast. The uncertainty intervals comprise the inherent
stochasticity of the process as well as the estimation un-
certainty of all the parameters. Both in-sample and out-of-
sample predictions are very accurate; the mean state and the
uncertainty are faithfully captured.

E. Predicting Arctic sea-ice extent

As an application to a real-world data set, the method is
used to predict Arctic sea-ice extent. The Arctic summer sea
ice and its possible loss in the future have been identified as
one of several potential tipping elements in the Earth’s climate
system [3].

Figure 5(a) displays the time series of Arctic sea-ice extent
from 26 October 1978 to 31 December 2012. It is provided
by the National Snow and Ice Data Centre (NSIDC), derived
from satellite data sources [19]. Observations were recorded
every second day until 9 July 1987 and daily thereafter. The
time series has N = 10 856 data points.

The data are characterized by an annual cycle with
increasing amplitude as well as an overall downward trend.
The annual cycle is pronouncedly nonsinusoidal; this is
due to the strongly nonlinear threshold processes involved
in the freezing and melting of sea ice. The fluctuations
around the annual cycle are non-Gaussian; they are actually
strongly leptokurtic. These features are taken into account
by a fourth-order potential function, a quadratic overall
trend, and a representation of the annual cycle using higher
harmonics with a linear trend in some of them: U (x; t) =
[α1,0 + α1,1t + α1,2t

2 + (α1,3 + α1,4t) cos 2πt + (α1,5 + α1,6t)
sin 2πt + (α1,7 + α1,8t) cos 4πt + (α1,9 + α1,10t) sin 4πt +
α1,11 cos 6πt + α1,12 sin 6πt]x + α2,0x

2 + α3,0x
3 + α4,0x

4.
An ensemble of size 200 is used to sample the uncertainty.

In order to assess the performance of the method within the
time period covered by the data set we first withhold the last
five years of data. Only the period from 26 October 1978 to
31 December 2007 is used as a learning data set, resulting

in N = 9029 data points. Figure 5(b) illustrates in-sample
prediction. The predicted mean and central 90% confidence
interval for the data points are given together with the actual
time series. Both the mean prediction and the uncertainty are
quite accurate. The uncertainty is larger in summer than in
winter. In order to assess the accuracy of the reconstructed
probability density in more detail a probability plot is shown
in Figure 5(c). The predicted cumulative probability is plotted
against the relative frequency of observing a data point below
the predicted quantile. The points should ideally lie on the unit
diagonal. The probability density turns out to be very reliable
across the whole range of quantiles. Figure 5(d) displays out-
of-sample prediction for the withheld time period 2008–2012.
The accelerated downward trend and increase in the amplitude
of the annual cycle are well captured. The actual data points lie
well within the predicted uncertainty interval, except for some
anomalies.

For prediction of future sea-ice extent the model is learned
anew from the whole available data set. Figure 5(e) shows
the in-sample performance of the model. Again, the model
describes the learning data set very well, along with the newly
included five years with the accelerated trends. The probability
density is again reliable over the whole range of quantiles
[Fig. 5(c)]. Figure 5(f) displays the results for prediction
of future sea-ice extent. Figure 5(g) gives the cumulative
probability mass put on values below zero, which can be
naturally interpreted as the probability of complete sea-ice
loss. The model projects the complete loss of the Arctic
summer sea ice during the 2020s. The predicted mean is below
zero for the first time in 2025. There is a substantial probability
of complete summer sea ice loss from the early 2020s; it
approaches 1 towards the end of the 2020s. The uncertainty of
the prediction increases further into the future.

IV. CONCLUSIONS

A method for predicting the probability density of a
dynamical system from time series data has been derived.
It is based on estimating a nonstationary probability density
model on a learning data window and then extrapolating it
into the future. The predicted future density can be used
to forecast critical transition phenomena of interest. The
technique has been verified on simulated data with different
shift, bifurcation, and tipping scenarios. The method was
then applied to prediction of Arctic sea ice extent, projecting
the complete loss of summer sea ice during the 2020s. The
discussed approach should be useful in various scientific areas
where critical transitions play a role.

[1] D. Sornette and A. Johansen, Phys. A 245, 411 (1997).
[2] M. Scheffer, S. R. Carpenter, J. A. Foley, C. Folke, and

B. Walker, Nature (London) 413, 591 (2001).
[3] T. M. Lenton, H. Held, E. Kriegler, J. W. Hall, W. Lucht,

S. Rahmstorf, and H. J. Schellnhuber, Proc. Natl. Acad. Sci.
USA 105, 1786 (2008).

[4] M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R.
Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk, and
G. Sugihara, Nature (London) 461, 53 (2009).

[5] H. Held and T. Kleinen, Geophys. Res. Lett. 31, L23207
(2004).

[6] V. Dakos, M. Scheffer, E. H. van Nes, V. Brovkin, V. Petoukhov,
and H. Held, Proc. Natl. Acad. Sci. USA 105, 14308 (2008).

[7] V. N. Livina and T. M. Lenton, Geophys. Res. Lett. 34, L03712
(2007).

[8] S. R. Carpenter and W. A. Brock, Ecol. Lett. 9, 311 (2006).
[9] P. D. Ditlevsen and S. J. Johnsen, Geophys. Res. Lett. 37, L19703

(2010).

052917-9

http://dx.doi.org/10.1016/S0378-4371(97)00318-X
http://dx.doi.org/10.1038/35098000
http://dx.doi.org/10.1073/pnas.0705414105
http://dx.doi.org/10.1073/pnas.0705414105
http://dx.doi.org/10.1038/nature08227
http://dx.doi.org/10.1029/2004GL020972
http://dx.doi.org/10.1029/2004GL020972
http://dx.doi.org/10.1073/pnas.0802430105
http://dx.doi.org/10.1029/2006GL028672
http://dx.doi.org/10.1029/2006GL028672
http://dx.doi.org/10.1111/j.1461-0248.2005.00877.x
http://dx.doi.org/10.1029/2010GL044486
http://dx.doi.org/10.1029/2010GL044486


FRANK KWASNIOK PHYSICAL REVIEW E 88, 052917 (2013)

[10] V. N. Livina, F. Kwasniok, and T. M. Lenton, Clim. Past 6, 77
(2010).

[11] V. N. Livina, F. Kwasniok, G. Lohmann, J. W. Kantelhardt, and
T. M. Lenton, Clim. Dyn. 37, 2437 (2011).

[12] J. M. T. Thompson and J. Sieber, Int. J. Bifurcation Chaos 21,
399 (2011).

[13] J. Sieber and J. M. T. Thompson, Philos. Trans. R. Soc. A 370,
1166 (2012).

[14] F. Kwasniok and G. Lohmann, Phys. Rev. E 80, 066104
(2009).

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes, 3rd ed. (Cambridge University
Press, Cambridge, 2007).

[16] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic
Differential Equations (Springer, Berlin, 1999).

[17] C. Gardiner, Stochastic Methods, 4th ed. (Springer, Berlin,
2010).

[18] V. Guttal and C. Jayaprakash, Ecol. Lett. 11, 450 (2008).
[19] The data are available at ftp://sidads.colorado.edu/DATASETS/

NOAA/G02135/north/daily/data/

052917-10

http://dx.doi.org/10.5194/cp-6-77-2010
http://dx.doi.org/10.5194/cp-6-77-2010
http://dx.doi.org/10.1007/s00382-010-0980-2
http://dx.doi.org/10.1142/S0218127411028519
http://dx.doi.org/10.1142/S0218127411028519
http://dx.doi.org/10.1098/rsta.2011.0372
http://dx.doi.org/10.1098/rsta.2011.0372
http://dx.doi.org/10.1103/PhysRevE.80.066104
http://dx.doi.org/10.1103/PhysRevE.80.066104
http://dx.doi.org/10.1111/j.1461-0248.2008.01160.x
ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/daily/data/
ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/daily/data/



