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Abstract 19 

Microscopic plastic debris (microplastics, <5mm in diameter) is ubiquitous in the marine environment. 20 

Previous work has shown that microplastics may be ingested and inhaled by the shore crab Carcinus maenas 21 

although the biological consequences are unknown. Here, we show that acute aqueous exposure to polystyrene 22 

microspheres (8µm) with different surface coatings had significant but transient effects on branchial function. 23 

Microspheres inhaled into the gill chamber had a small but significant dose dependent effect on oxygen 24 

consumption after 1 hour of exposure, returning to normal levels after 16 h. Ion exchange was also affected, 25 

with a small but significant decrease in hemolymph sodium ions and an increase in calcium ions after 24 h 26 

post exposure. To further asses the effects on osmoregulation, crabs were challenged with reduced salinity 27 

after microplastic exposure. Neither microspheres nor natural sediments altered the crab’s response to osmotic 28 

stress, regardless of plastic concentration added. Carboxylated (COOH) and aminated (NH2) polystyrene 29 

microspheres were distributed differently across the gill surface, although neither had a significant adverse 30 

impact on gill function. These results illustrate the extent of the physiological effects of microplastics, 31 

compared to the physiological resilience of shore crabs in maintaining osmoregulatory and respiratory 32 

function after acute exposure to both anthropogenic plastics and natural particles.   33 
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1. Introduction 34 

Microplastics (plastic particles <5 mm)
1
 are an emerging environmental problem, and have been accumulating 35 

in coastal habitats for at least four decades.2 Microplastics come from sewage releases of microbeads added to 36 

cosmetic product to give exfoliation properties, paints, coatings and industrial pellets and from the breakdown 37 

of larger plastics.3 This second source is enhanced by abiotic processes such as wave action, UV degradation 38 

and general heat stress, and by biological transformation. For example, the shore crab Carcinus maenas is able 39 

to break down any microscopic rope fibres that it has ingested through the gastric mill digestive processes.4 40 

Ingestion of microplastics has been documented in over 200 marine and aquatic species .
5
 Polystyrene 41 

microspheres (0.4−30.6 µm) have been found to be consumed by numerous organisms such as zooplankton,6, 7 42 

filter feeding molluscs
8
 and scavenging decapod crustaceans

9, 10
. Most of these studies have concentrated on 43 

the uptake of microplastic by ingestion and the potential for feeding activity to then be disrupted. For example, 44 

Wright et al.
11

 showed depletion of energy reserves of up to 50% in lugworms (Arenicola marina) cultured for 45 

up to a month in sediment spiked with polyvinylchloride (PVC), an effect attributed to reduced feeding 46 

activity. Similarly, a decrease has been reported in the energy available for growth in C. maenas when 47 

consuming plastic contaminated food.4 48 

Shore crabs are omnivores and frequently feed on bivalves such as the common blue mussel Mytilus edulis. 49 

Trophic transfer experiments  9, 10 have shown that crabs can ingest microplastics from contaminated mussels, 50 

leading to a reduced allocation of energy for growth.
4 
Crabs can also take up microplastics by ventilation into 51 

the gill chambers,10 where they may remain for up to 22 days. Most microplastics in C. maenas are found 52 

adhered to the posterior gills, which are a known major site for ion regulation.
12

 The emerging paradigm is 53 

that ingestion of microplastic can reduce fitness in marine species by altering their food consumption and 54 

energy allocation.13 The purpose of this paper is to assess whether inspiration of microplastic through the 55 

ventilatory mechanism can also reduce fitness.  56 

In aquatic organisms gills are the main site for gaseous and ionic exchanges, and acid-base balance.14 57 

Therefore, any factor such as microbial growth 
15

, or contaminants 
16

 impairing gill function might have 58 

detrimental consequences for the organism. Exposure to marine contaminants such as 59 

dichlorodiphenyltrichloroethane (DDT), arsenite, cadmium, silver, copper, and mercury have, in fact, been 60 

reported to have detrimental effects for osmoregulation and ion exchange.17 Although the uptake and retention 61 

of microplastics across the gill surface have been documented,
10

 the potential effects on the crab’s gaseous 62 

exchanges and ability to ion and osmoregulate, have not been evaluated to date.  63 

Since microplastics are retained on the gills of C. maenas, we hypothesized that acute exposure to waterborne 64 

plastic microspheres could significantly impact oxygen uptake, ion exchange, and osmoregulatory capacity of 65 

crabs. We tested this hypothesis by determining the impact on crabs of an acute 24 h exposure to polystyrene 66 

microspheres of diameter 8 µm. We chose polystyrene because it is a frequent feature of marine debris, and 67 

previous experiments have confirmed this size range to be retained within the outer surface of the gill 68 

lamellae. We also tested two further types of polystyrene with different surface coatings (carboxylated 69 
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(COOH) and aminated (NH2)), to compare the influence of surface composition on biological accumulation 70 

and effects. We measured the crab’s ion regulation and respiratory processes, in the presence and absence of a 71 

low salinity challenge.  72 

Methods 73 

Aquarium procedure 74 

Non-ovigorous (without eggs) and intermoult female shore crabs (Carcinus maenas) were collected from the 75 

Exe estuary, Devon, UK (50°35.2′N, 3°23.59′W), and kept for 2 weeks in full strength (33 ppt) Artificial Sea 76 

Water (ASW) to acclimatise to aquarium conditions (14.5 
o
C, 12h:12h light: dark cycle). Crabs were fed for 77 

12 days every other day with frozen mussels Mytilus edulis, and then starved for 2 days prior to the 78 

experiments. Crabs were transferred to individual 5 L tanks filled with 2 L ASW with an air stone used to 79 

keep the partial pressure of oxygen (PO2) close to 100 % saturation. Crabs were left to acclimate to this 80 

experimental set up overnight. The next morning microplastic (8 µm polystyrene microspheres, Spherotec, 81 

neutral, carboxylated or aminated) or natural sediment (ca. 28 µm, concentration 106 L-1) was added. Plastic 82 

was added at two experimental concentrations (10
6
 and 10

7 
microspheres L

-1
) with a set of crabs held in 83 

identical conditions without plastic to act as the controls. These concentrations were chosen to emulate the 84 

acute exposures in Watts et al. 
10

. Oxygen consumption was determined at 1 h, 16 h and 24 h after the addition 85 

of plastics. At the end of the last oxygen consumption determination, a 500 µL heamolymph sample was 86 

taken. Samples were taken from the base of the 3
rd

 walking leg using an ice cooled 1 mL syringe.
18

 A 87 

subsample of heamolymph was immediately transferred to a clean ice cold 1.5 mL tube, from where 10 µL 88 

were taken and diluted in 4 mL of milli-Q water (<18 MΩ; Millipore Advantage 10 UV; Thermo Fisher 89 

Scientific), vortexed and stored at -20 oC for later ion analysis. The remaining heamolymph was then 90 

centrifuged at 8000 g for 2 minutes. Subsequently, a second subsample of 5 µL was diluted in 200 µL of 91 

ultrapure water (1:40 dilution) for later haemocyanin concentration. The remainder was mixed with 92 

anticoagulant (450 mM NaCl, 10 mM KCl, 10 mM HEPES, 10 mM EDTA-Na2, pH 7.3, 850 mOsm kg-1) at 93 

3:1 ratio, vortexed and stored at -20
 o
C for later analysis. Hemolymph osmolality was determined in a vapour 94 

pressure osmometer (Wescor 5520; Wescor Inc., South Logan, UT, USA). 95 

For salinity challenge experiments, crabs were treated as above, but a further group was subsequently 96 

transferred into clean tanks containing ASW of reduced salinity (10ppt). Oxygen consumption and water 97 

samples for ammonia were taken at 1, 6 and 24h post salinity challenge. At 24 h post treatment, 500 µL 98 

heamolymph was sampled and treated as above. 99 

Coherent Raman Scattering Microscopy. 100 

Coherent Raman scattering microscopy (CRS) is a multiphoton microscopy technique that provides label-free 101 

contrast of both the target sample and surrounding biological matrix, based on vibrational spectroscopy. The 102 

applications of CRS range from medical research,19 to more recent usage in ecotoxicology.20 Plastics have 103 

previously been successfully imaged using the CRS technique, in zooplankton
6
 and in crab gills

10
. For a more 104 

detailed explanation of the theory behind CRS imaging of biological samples see Goodhead et al20. Briefly, 105 
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Raman scattering provides a great deal of chemical information by examining the light that is scattered by 106 

molecular vibrations. Raman scattered light is emitted at a slightly shifted wavelength with respect to the 107 

incident light, the shift in energy corresponding to the vibrational frequency of a molecular bond within the 108 

sample. The CRS process involves two lasers where the frequency of the first laser is constant, while the 109 

frequency of the second one can be tuned in a way that the frequency difference between the two lasers equals 110 

the frequency of the Raman-active or vibrational mode of interest. The molecules in resonance produce a 111 

larger signal than those off resonance, providing a vibrational contrast in a CRS image. Here six crabs were 112 

exposed to non-labelled polystyrene spheres with different surface characteristics (three with carboxyl groups; 113 

three with amino groups) at a concentration of 1 x 105 spheres L-1 for 19h. Posterior gills were dissected fresh 114 

and analysed with CRS microscopy.  115 

Oxygen consumption 116 

Oxygen consumption was assessed by closed respirometry. Briefly, air was switched off and initial dissolved 117 

oxygen was determined and re-measured after 1 h. The air was then switched back on. Six supplementary 118 

tanks (not containing crabs) with 2 L ASW (either 10 or 33 ppt) were used as controls to measure oxygen 119 

diffusion from the air water interface or bacterial oxygen consumption. The exact time the air was switched 120 

off, oxygen measured and air switched back on was recorded for each tank. For full salinity experiments (33 121 

ppt) oxygen was assessed in ~0.5 mL via a Strathkelvin oxygen electrode connected to a 781 oxygen meter. 122 

The oxygen electrode was housed in a water jacket, irrigated with water at the same temperature as the crabs 123 

(14.5 oC). For the salinity challenge experiments, dissolved oxygen was assessed using a needle type fiber 124 

optic sensor (Firesting OXR 230) connected to a FSO2-4 optical oxygen meter. Oxygen electrodes were 125 

calibrated daily with fully aerated water (100% oxygen saturation) and a saturated sodium sulphite solution 126 

(0% oxygen saturation). To avoid compensatory responses associated with depleted dissolved oxygen 127 

concentrations, the chamber PO2 values were always in excess of ~120 mmHg (~15.5 kPa). Oxygen 128 

consumption was calculated as the difference in water oxygen content over time and displayed in ml O2 g
-1 h-1. 129 

Haemocyanin and protein in the heamolymph  130 

 A 5 µL subsample of heamolymph was added, per triplicate, to a 96 well plate followed by addition of 200 131 

µL of milli-water and mixed for 45 sec. The absorbance at 335 nm was measured with path length correction 132 

on a plate reader (Tecan, NanoQuant Infinite M200 Pro). Oxy-haemocyanin concentration was determined 133 

using an extinction coefficient (ε) of 17.26 calculated on the basis of a functional subunit of 74,000 Daltons 134 

for crabs.21 Protein in the heamolymph was quantified via Bradford22, using a bovine serum albumin standard 135 

curve.  136 

 137 

Ions 138 

Haemolymph Na+, K+ and Ca2+ were quantified in the diluted samples (10 µL in 4 mL) via flame photometry 139 

(Sherwood Instruments). Standard curves were constructed using 1 mM solutions of NaCl, KCl and CaCl.  140 

Statistics 141 
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To test if the microplastic treatment or the salinity challenge explained the variation observed in the 142 

physiological parameters, a General Linear Model (GLM) was performed followed by a Tukey post hoc test 143 

when the GLM was significant. Parametric assumptions of normality of residuals and homogeneity of 144 

variances was met. The GLM and post hoc analysis was performed in MINITAB. A repeated measures 145 

ANOVA (Sigma plot) was used to determine differences in oxygen consumption over time. Differences were 146 

considered significant at a p ≤ 0.05. 147 

 148 

Results 149 

No mortalities were found during or after any of the experimental treatments. Furthermore, no evident changes 150 

in behaviour were noted in any of the plastic treatments.  151 

Uptake of carboxylated and aminated polystyrene microparticles 152 

All (6) crabs sampled for Coherent Raman scattering microscopy analysis had detectable microspheres on 153 

their gills. In Figure 1 gill tissue taken from a crab exposed to (A) aminated (NH2) polystyrene and (B) 154 

carboxylated (COOH) polystyrene is shown. 155 

Full strength salinity (33 ppt) 156 

Oxygen consumption  157 

The oxygen consumption of crabs at 1h, 16h and 24h post treatment with neutrally charged polystyrene is 158 

shown in Figure 2A. After 1h post treatment crabs with the highest concentration of plastic (10
7
 microspheres 159 

L-1) had a significantly lower oxygen consumption (0.014 ± 0.002 mL O2 g-1 h-1) compared to the control 160 

(0.028 ± 0.004 mL O2 g
-1

 h
-1

) (F2,29=3.99, p=0.030). However, after 16h and 24h post-treatment there was no 161 

significant difference between either treatments and the control (F2,29=0.05, p=0.956), (F2,29=1.17, p=0.325). 162 

There was no significant difference in the oxygen consumption between treatment groups in the particle study 163 

with carboxyl and amino coated polystyrene or sediment at any time point. 164 

Heamolymph constituents 165 

There was a slight but significant drop in the concentration of Na
+
 ions (Figure 2B) within the heamolymph 166 

with increasing neutral plastic dose (F2,29 = 4.75, p = 0.017). Crabs held in control conditions had an average 167 

of 564 ± 6.70 mmol L
-1

 Na
+
, while crabs exposed to 10

6
 microspheres L

-1
 presented a heamolymph Na

+ 
168 

concentrations of 546 ± 5.62 mmol L-1 which was not significantly different from the controls. Crabs, 169 

however, treated with 10
7 
microspheres L

-1
 had significantly lower concentration of Na

+
 (522 ± 14.31 mmol L

-
170 

1) than control crabs (Tukey p<0.05). There was a significant increase in the concentration of Ca2+ ions (Figure 171 

2C) within the heamolymph with increasing plastic dose (F2,29 = 31.5, p < 0.001). Crabs held in control 172 

conditions had an average of 61.1 ± 0.75 mmol L-1 Ca2+, crabs treated with 106 microspheres L-1 had 62.9 ± 173 

0.92 mmol L
-1

 Ca
2+

, and crabs treated with 10
7 
microspheres L

-1
 had 70.3 ± 0.93 mmol L

-1
 Ca

2+
, significantly 174 

higher than the controls and lower plastic concentration (Tukey P<0.05). There was no significant difference 175 

in the concentration of K
+
 ion (F2,29 = 1.05, p = 0.363).  176 
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There was no dose dependant effect seen with heamolymph protein concentration. There was a slight but 177 

significantly higher concentration of haemocyanin within the heamolymph with increasing plastic dose (F2,29 = 178 

4.99, p = 0.014). Crabs held in control conditions had an average haemocyanin concentration of 0.48 ± 0.03 179 

mmol L
-1

, while crabs treated with 10
6 
microspheres L

-1
 presented a significantly lower concentration (0.46 ± 180 

0.01 mmol L-1) (Tukey p<0.05). Haemocyanin concentration were similar to controls at the highest 181 

concentration of plastic used (10
7 

microspheres L
-1

), with a value of 0.59 ± 0.04 mmol L
-1

. Although protein 182 

concentration in the heamolymph followed the same pattern as haemocyanin, there was no significant 183 

differences found (F2,29 = 2.72, p = 0.084) (see SI.1).  184 

There was no significant effect on haemocyanin (F5,33 = 0.17, p = 0.974), heamolymph protein (F5,33 = 0.72, p= 185 

0.611), Na
+ 

(F5,53= 1.98, p= 0.099), K
+
 (F5,33= 1.04, p= 0.405), or Ca

2+
 (F5,53= 0.42, p = 0.832) ions when 186 

exposed to sediment, carboxyl or amino coated plastics. 187 

As there was a dose dependant effect between neutral plastics and oxygen consumption and Na
+ 

and Ca
2+

 ions, 188 

a reduced salinity experiment was performed to see whether these effects would exaggerate or disappear 189 

during an osmotic challenge.  190 

Reduced Salinity 191 

Oxygen consumption 192 

The oxygen consumption of crabs at 1h, 6h and 24h post salinity challenge is shown in Figure 3A. There 193 

wereno significant differences between any treatments or control after 1h (F4,44 = 0.40, P = 0.808) or 6h (F4,44 = 194 

2.05, p = 0.106). However, after 24h there was a significant increase in oxygen consumption (F4,44 = 5.25, p = 195 

0.002) with control crabs kept at 33ppt having a significantly lower oxygen consumption than crabs at reduced 196 

salinity with 0, 105 and 106 microspheres per L-1 (Tukey p < 0.05). There were no significant changes in 197 

oxygen consumption, within any of the treatments over time (F4,46 = 1.605, p = 0.192, repeated measures 198 

ANOVA), nor a significant effect of plastic concentration. 199 

Heamolymph constituents 200 

There was a significant effect of salinity on all ions (Na
+
( F4,43 = 30.97, p<0.001) (Figure 3B) Ca

2+
 (F4,43 = 201 

56.11, p < 0.001) (Figure 3C) and K+ (F4,43 = 50.17, p < 0.001)) and heamolymph osmolality (F4,40 = 35.83, p < 202 

0.001) (osmolality and K+ seen in SI.2). Whilst all values were lower in the crabs challenged by low salinity, 203 

there was no significant effect of plastic concentration (Tukey, p>0.05). There was no significant difference in 204 

the haemocyanin concentration (F4,43 = 1.57, p = 0.201) or heamolymph protein concentration (F4,42 = 0.62, p = 205 

0.649) between salinity or plastic treatments were also found. 206 

Discussion 207 

In the current study we show that polystyrene microspheres with different surface coatings are readily taken 208 

up onto the gills of crabs following exposure through water, but that the physiological consequences to the 209 

crabs, under the short term exposure conditions of our experiments, were minimal.Transient, dose dependent 210 

Page 8 of 15

ACS Paragon Plus Environment

Environmental Science & Technology



changes in oxygen consumption and ion regulation were found, which returned to normal levels within the 211 

acute time frame of the exposures. This shows that the crabs are able to recover gas exchange for example by 212 

recruiting more lamellae, increasing perfusion or water flow in the branchial chamber. Na+ and Ca2+ were both 213 

significantly altered by increasing concentrations of plastic with less Na
+
 and more Ca

2+
 within the crab 214 

lamellae at the highest concentrations of plastic. These are however minor differences; Na+ dropped by 7.45 % 215 

and Ca
2+

 rose by an average 15.1 % compared to the control. To put this into context when Carcinus maenas 216 

was exposed to 10 mg L-1 of copper, Na+ decreased from 347 ± 14 mmol L-1 to 269 ± 54 mmol L-1 a drop of 217 

22 %.
23

 In this study a change of salinity from 33 ppt to 10 ppt in crabs not dosed with microplastic resulted in 218 

a 39.8 % drop in Na+ plasma concentration (from 508 ± 4.35 mmol L-1 to 306 ± 18.21 mmol L-1). Evidently, 219 

crabs are able to overcome these minor effects on ion exchange induced by exposure to the polystyrene 220 

microspheres used here by minor physiological regulation. 221 

When exposed to a low salinity challenge, crabs also showed an increase in oxygen consumption.
24

 This is 222 

thought to be associated with the increased cost of osmoregulation in the face of an osmoregulatory challenge 223 

(difference between internal and external mediums). No effects of either microplastics or sediments were 224 

found in the face of low salinity challenge, suggesting that no additive effect or interaction occurs between the 225 

mechanisms by which plastics affects ion balance and crab ion regulation.  226 

We were able to show using bio-imaging that polystyrene microspheres with different surface coatings 227 

carboxylated (COOH) and aminated (NH2) were taken up into the gill chambers. We categorised the potential 228 

charge of these plastics (Supplemental Information SI.3) showing that the small positive or negative charges 229 

would be masked in the external medium by the large buffering capacity of sea water. Once inside the gill 230 

chamber, we did not find any effect of these particles on oxygen consumption and ion exchange although 231 

there were some qualitative variations in the pattern of distribution across the surface of the gills (Figure 1). In 232 

vertebrates, the in vivo behaviour of micro and nano polymers varies depending on numerous physico-233 

chemical properties of the particles, including size, surface charge, aspect ratio, porosity and surface corona.25 234 

The circulation time of particles within the body is significantly enhanced for hydrophilic and positively 235 

charged particles26.  Positively charged particles generally show higher cytotoxicity across a range of model 236 

systems than negatively charged ones, This has been attributed to the interaction of cations with the negatively 237 

charged cell membrane. 27 238 

Acrylic ester nano- and micro-polymers showed low toxicity following inhalation in rats, which may have 239 

been due to their anionic surface charge.28 Studies in which the surface charge of stearylamine-polylactic acid 240 

(PLA) polymer particles were modified from positive to negative confirmed that those with a positive charge 241 

showed higher toxicity in the lung and were taken up more readily into cells.29 The influence of surface 242 

characteristics of particles on the binding capacity within the gills of aquatic animals would be an intriguing 243 

avenue for future study. 244 

In conclusion, we show here that acute inhalation of polystyrene microsphere into the gill chambers of crabs 245 

lead to a small but transient change in oxygen consumption and ion regulation. Neither microspheres nor 246 
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natural sediments altered the crab’s response to osmotic stress, regardless of plastic concentration added. 247 

Carboxylated (COOH) and aminated (NH2) polystyrene microspheres were distributed differently across the 248 

gill surface; likely due to their interaction with the gill surface, although neither had a significant adverse 249 

impact on gill function. These results illustrate the physiological resilience of shore crabs in maintaining 250 

osmoregulatory and respiratory function after acute exposure to both anthropogenic plastics and natural 251 

particles.  252 
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Figure 1 Coherent Raman scattering visualisation of gill lamellae, compromised of a backwards detected 
coherent anti-Stokes Raman image, a forwards detected stimulated Raman scattering image and a 

transmitted light image, merged in false colour. (A) 8 µm amino coated polystyrene (green dots) indicate 
amino coated polystyrene trapped between the gill lamellae (B) 8 µm carboxylated polystyrene (red dots) 

indicates carboxylated polystyrene distributed across and around the gill lamellae. Both images were 
obtained at 3050 cm-1 and show particles adhering to the gill surface. Scale bars are 100 µm.  
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Figure 2 Results from the full salinity experiments. a) Oxygen consumption at 1, 16 and 24 h post addition 
of plastic, b) Plasma Na+ ion concentration, c) Plasma Ca2+ ion concentration at 24 h post addition of plastic 

in the shore crab Carcinus maenas subjected to three treatments of 8 µm microplastic. White bars crabs 

with no plastic added to the tank (n=10), grey bars crabs with 106 microspheres L-1 within 2 L of water. 
Black bars represent crabs with 107 microspheres L-1 with 2 L water added. Error bars are one standard 

error. Means that do not share a letter are significantly different. Bars with no letters indicate no significant 
difference. Significant differences in oxygen consumption were tested at each time point independent of 

each other time points.  
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Figure 3 Results from the reduced salinity experiments. a) Oxygen consumption at 1, 6 and 24 h post 
salinity change, b) Plasma Na+ ion concentration, c) Plasma Ca2+ ion concentration at 24 h post salinity 

change in the shore crab Carcinus maenas subjected to four treatments of 8 µm microplastic. White bars 

crabs with no plastic added to the tank (n=10), light grey bars crabs with 105 microspheres L-1 grey bars 
crabs with 106 microspheres L-1 within 2 L of water. Black bars represent crabs with 107 microspheres L-1 
with 2 L water added. Dots within bars represent crabs that have been added to 10 ppt artificial sea water 

after 16 h of plastic exposure. Clear bars represent crabs changed into clean 33 ppt ASW. Error bars are one 
standard error. Means that do not share a letter are significantly different. Bars with no letters indicate no 

significant difference. Significant differences in oxygen consumption were tested at each time point 
independent of each other time points.  
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