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In this paper, integral sliding mode control ideas are combined with direct control allocation in order to create a fault
tolerant control scheme. Traditional integral sliding mode control can directly handle actuator faults; however, it cannot do
so with actuator failures. Therefore, a mechanism needs to be adopted to distribute the control effort amongst the remaining
functioning actuators in cases of faults or failures, so that an acceptable level of closed-loop performance can be retained.
This paper considers the possibility of introducing fault tolerance even if fault or failure information is not provided to the
control strategy. To demonstrate the efficacy of the proposed scheme, a high fidelity nonlinear model of a large civil aircraft
is considered in the simulations in the presence of wind, gusts and sensor noise.
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1. Introduction

Reliability and safety is an ever increasing requirement
in modern engineering, especially in safety critical
applications (e.g., fly-by-wire aircraft, drive-by-wire
automobiles, etc.). Reliability can be enhanced using fault
tolerant control schemes (Wu et al., 2000). A survey of
different design methodologies and their comparison in
the framework of fault tolerant control (FTC) has been
presented by Zhang and Jiang (2008), who argued that
while designing an FTC system a trade-off between the
achievable performance and available actuator capabilities
should be carefully examined to deal with worst case
situations. Achieving a performance close to the nominal
one and maintaining an overall closed-loop stability in the
face of actuator faults/failures as well as in the presence
of aerodynamic disturbances (i.e., wind gusts) and sensor
noise is the main objective to be met in any FTC design.

∗Corresponding author

Recently an active FTC approach has been proposed
by Castaldi et al. (2014) for nonlinear aerospace models,
which is an extended version of their previous attempt
(Castaldi et al., 2011), where a fault detection and
isolation (FDI) module is designed via a nonlinear
geometric approach, giving fault estimates, analytically
decoupled from other faults and disturbances (vertical
wind gusts). To maintain closed-loop stability in the
case of failures in certain actuators, the control effort
can be redistributed to healthier actuators to obtain the
desired performance, or at least some level of acceptable
performance. To design such a control system, the plant
itself must be equipped with redundant control effectors,
which can be exploited to achieve fault tolerance (Zhang
and Jiang, 2003). The work described by Ducard (2009)
and Edwards et al. (2010), for example, provides an
overview of the most recent results in the area of FTC for
aerospace applications.
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Control allocation (CA) is a technique which has the
capability to use redundant control effectors in an efficient
way in order to achieve fault tolerance without the need to
reconfigure the underlying control law (Davidson et al.,
2001). The advantageous feature of CA is that the
underlying “virtual” control effort can be created using
any suitable control paradigm. In this context, CA
can be viewed as a mechanism for distributing a lower
order virtual control signal generated by an appropriate
control paradigm to the physical actuator (Harkegard and
Glad, 2005; Bošković and Mehra, 2002) to affect FTC. A
recent survey of different CA algorithms for a range of
engineering applications is documented by Johansen and
Fossen (2013).

Sliding mode control (SMC) (Utkin et al., 1999;
Edwards and Spurgeon, 1998; Alwi et al., 2011)
is a nonlinear approach which is inherently robust
against matched uncertainty. Due to the fact that
actuator faults can be effectively modelled as matched
uncertainty, the SMC approach (Edwards et al., 2012) is
inherently advantageous from an FTC viewpoint because
it “naturally” copes with actuator faults. However, in
the case of a total actuator failure, redundancy and
a mechanism to exploit advantageously the redundant
actuators are required. The combination of SMC with
CA provides a complete solution to handle both actuator
faults and failures. To deal with actuator faults/failures,
the most commonly employed strategy is to distribute
the control effort equally amongst the actuators (Shtessel
et al., 2002; Wells and Hess, 2003). However, to minimise
the use of faulty actuators, or particularly reroute the
control effort in the case of ineffective actuators, the
schemes proposed by Alwi and Edwards (2008a; 2008b)
use actuator effectiveness levels provided by a suitable
fault detection and isolation scheme to achieve fault
tolerance.

The FTC schemes of Alwi and Edwards (2008a;
2008b) as well as Hess and Wells (2003), due to the
reaching phase, only guarantee tolerance against actuator
faults/failures after the occurrence of the sliding mode
(Utkin and Shi, 1996). To address this shortcoming, the
idea of integral sliding mode (ISM) control was proposed
by Utkin and Shi (1996) to eliminate the reaching phase,
so that the sliding mode can be enforced throughout
the closed-loop system response. Recently, the ideas of
ISM control have been used in the framework of active
FTC, for state feedback and output feedback systems
(cf. Hamayun et al., 2012; 2013). In both the schemes
of Hamayun et al. (2012; 2013), information about
actuator effectiveness levels was explicitly used in the CA
component.

The FTC scheme proposed in this paper considers the
possibility of introducing fault tolerance without having
information about actuator effectiveness levels or fault
information from an FDI scheme. To provide the solution,

the idea of direct control allocation is incorporated within
the ISM FTC framework. The contribution of this paper as
compared to the FTC schemes by Hamayun et al. (2012;
2013) is that the proposed scheme has the capability to
deal with actuator faults/failures without any FDI scheme
and is suitable for the case where fault information
is not available to the controller. A detailed LMI
based procedure is provided to synthesize the controller
parameters, and a rigorous closed-loop stability analysis
is carried out in the presence of unmatched uncertainty
for a suitable set of actuator faults/failures. The proposed
scheme is compared in simulation with the FTC scheme
by Hamayun et al. (2012) by considering the same
manoeuvre on a high fidelity nonlinear model of transport
aircraft in the presence of wind, gusts and sensor noise.

The paper is organised as follows. Section 2
presents problem formulation and describes the model of
an over-actuated system with actuator faults or failures.
Section 3 describes the FTC scheme using integral
sliding modes with direct control allocation. A detailed
LMI based procedure is also provided to synthesize the
controller parameters to ensure closed loop stability in the
presence of unmatched uncertainty for a suitable set of
actuator faults/failures. Sections 4 and 5 demonstrate how
the proposed scheme’s performance can be compared,
in simulation, with the recently published active fault
tolerant control scheme by Hamayun et al. (2012) by
considering the same manoeuvre in the presence of wind,
gusts and sensor noise, on a high fidelity nonlinear model
of a transport aircraft. Finally, Section 6 concludes the
paper by highlighting the main achievements of the work.

2. Problem formulation

Consider an over-actuated system with actuator faults or
failures modelled as

ẋ(t) = Ax(t) +BWu(t) +Dξ(t, x), (1)

where A ∈ R
n×n and B ∈ R

n×m are the state
and input distribution matrices, respectively. Here it
is assumed that B has full column rank. The term
W = diag{w1, . . . , wm} is a diagonal weighting
matrix wherein the scalars w1, . . . , wm model the
effectiveness/efficiency levels of the actuators. If
the diagonal entry wi = 1, this indicates that the
corresponding i-th actuator is healthy/fault-free, whereas
if 1 > wi > 0, the i-th actuator is faulty. Finally, the
value wi = 0 indicates that the corresponding actuator
has failed. In this paper it is assumed that the actuator
effectiveness level (i.e., the matrix W ) is not available.

In Eqn. (1), the function ξ(t, x) represents
uncertainties/nonlinearities in the system. The structure
of D matrix is assumed to be such that BTD = 0,
i.e., D is in the null space of B. Assume that the input
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Fig. 1. FTC strategy with direct control allocation.

distribution matrix B in (1) can be partitioned as

B =

[
B1

B2

]
, (2)

where B1 ∈ R
(n−l)×m and B2 ∈ R

l×m is of rank
l < m. It will be demonstrated later in the paper that the
norm of ‖B1‖ plays a significant role in the closed-loop
stability analysis. In this paper, as in the work of Alwi
and Edwards (2008a), it is assumed that ‖B2‖ > ‖B1‖,
so that B2 is more dominant in the delivery of the control
effort to the system compared with B1. Note that state
permutation may be required to achieve the form in (2). It
is also assumed without loss of generality that the states
are scaled to ensure B2B

T
2 = Il. This will help in

simplifying the analysis and design in the sequel.
In order to track a reference demand, a tracking

capability (Ogata, 2002) is included in the design. For
this purpose, the states x(t) in (1) are augmented with
integral action states xr(t) creating the vector xa(t) =
col[xr(t), x(t)], where

ẋr(t) = r(t) − Cx(t). (3)

In (3) the signal r(t) is the reference command to be
tracked, whereas C ∈ R

l×n is the output distribution
matrix which extracts the controlled outputs from the
states. The overall augmented system becomes

ẋa(t) = Aaxa(t)+BaWu(t)+Brr(t)+Daξ(t, x), (4)

where the augmented matrices are

Aa =

[
0 −C
0 A

]
, Ba =

[
B1a

B2

]
,

B1a =

[
0
B1

]
, Br =

[
Il
0

]
,

Da =

[
0
D

]
. (5)

Note that, by definition, Ba has full column rank
(inherited from B). It is assumed that the function ξ(t, x)
satisfies the relation ξ(t, x) = φ(t, x)x, where ‖φ(t, x)‖
is bounded. In the next section, an integral sliding mode
FTC scheme with direct CA will be proposed for the
system in (4).

3. Integral sliding mode FTC scheme with
direct control allocation

In the FTC scheme which will be proposed, the fault
information (i.e., the matrix W ) is not required for the
control allocation scheme and hence the scheme can be
regarded as “passive” (Verhaegen et al., 2010). The
proposed strategy “distributes” the control effort among
all the actuators and constitutes a passive fault tolerant
control scheme. The ISM FTC scheme, incorporating
direct CA, is shown in Fig. 1.

In this paper, a virtual control input (Harkegard and
Glad, 2005), ν(t) ∈ R

l, is defined as

ν(t) = B2u(t), (6)

where B2 is taken from (5). Here the physical control law
u(t) is chosen as

u(t) = BT
2 ν(t). (7)

Using the fact that B2B
T
2 = Il, BT

2 is a right
pseudo-inverse of B2, and hence the choice of the control
law in (7) satisfies (6). In the sequel, a framework for the
design of the virtual control law ν(t) will be formulated.
Substituting (7) into (4) yields

ẋa(t) = Aaxa(t) +

[
B1aWBT

2

B2WBT
2

]
︸ ︷︷ ︸

Bwa

ν(t)

+Brr(t) +Daξ(·).

(8)

The so-called ISM approach (Utkin and Shi, 1996)
will be used to design the virtual controller ν(t) in (8),
based on the nominal fault free system (i.e., when W =
Im). Substituting W = Im in (8) yields

ẋa(t) = Aaxa(t) +

[
B1aB

T
2

Il

]
︸ ︷︷ ︸

Bνa

ν(t)

+Brr(t) +Daξ(·),

(9)

where it is assumed that the pair (Aa, Bνa ) is (preferably)
controllable but at least stabilizable. Note that

‖B1aB
T
2 ‖ ≤ ‖B1a‖‖BT

2 ‖ ≤ ‖B1a‖ ≤ ‖B1‖
because ‖BT

2 ‖ = 1 as B2B
T
2 = I , and the last inequality

follows from the definition in (5). Consequently, the
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control contribution in the first n channels of (9) is still
small. To design ν(t) based on an ISM methodology,
an integral switching function which eliminates the
reaching phase and aims to retain the nominal closed-loop
performance is defined as

σ(xa, t)

= Gaxa(t)−Gaxa(t0)

−Ga

∫ t

t0

(
(Aa −BνaF )xa(τ) +Brr(τ)

)
dτ,

(10)

where the matrix Ga ∈ R
l×(n+l) is design freedom.

In (10), the matrix F ∈ R
l×(n+l) is a state feedback

gain chosen to make the matrix (Aa − BνaF ) Hurwitz.
The associated sliding motion occurs on the surface S =
{xa ∈ R

n+l : σ(xa, t) = 0}. The choice of Ga suggested
by Hamayun et al. (2012), which will also be employed
here, is

Ga := B2(B
T
a Ba)

−1BT
a , (11)

which is a left pseudo-inverse of Bνa , i.e., GaBνa = I .
The inverse in (11) exists because the control distribution
matrix Ba is assumed to have full column rank. The
choice of Ga in (11) brings some simplifying properties
to the closed-loop analysis, which are explained later. The
sliding motion associated with the surface in (10), in the
presence of faults or failures, will now be analysed.

The time derivative of (10) along the trajectories of
the differential equation (8) is given by

σ̇a(xa, t) = GaBwaν(t) +GaBνaFxa(t). (12)

Note that (12) does not depend on the reference signal r(t)
because

GaBr = B2(B
T
a Ba)

−1BT
a Br

= B2(B
T
a Ba)

−1
[
0 BT

] [ Il
0

]
= 0

Also note that (12) is independent of the uncertainty
ξ(t, x) because

GaDa = B2(B
T
a Ba)

−1 BT
a Da︸ ︷︷ ︸
0

= 0

by assumption. In order to obtain an expression for the
closed-loop motion during sliding, an equivalent control
approach (Utkin et al., 1999) will be adopted.

The equivalent control (Utkin et al., 1999) which
maintains the motion on the surface in (10) is obtained
by equating σ̇a = 0 in (12) to obtain

νeq(t) = −(GaBwa)
−1GaBνaFxa(t). (13)

Note the expression in (13) is not the virtual control signal
used in (7) to obtain the physical control signal, but it is

purely an abstraction used to obtain an expression for the
sliding motion (Utkin et al., 1999). For the existence of
such a control, GaBwa needs to be nonsingular, which
will be discussed later in Assumption 1. It is easy to verify
that, with the choice of Ga in (11),

GaBwa = B2(B
T
a Ba)

−1(BT
a Ba)WBT

2 = B2WBT
2 .

Therefore, the expression for the equivalent control in (13)
can be simplified to

νeq(t) = −(B2WBT
2 )

−1Fxa(t). (14)

Assumption 1. It is assumed that W belongs to the set
W = {(w1, . . . , wm) : λmin(B2WBT

2 ) > λo}, where λo

is a positive design scalar.

Remark 1. As l < m, it is possible that det(B2WBT
2 ) �=

0 even if up to m−l of the entries wi are zero in the matrix
W . This means that up to m− l actuators can be subjected
to total failure and yet det(B2WBT

2 ) �= 0. However, if
more than m − l entries become zero, then rank(W ) < l
and det(B2WBT

2 ) = 0. The set W consists of the faults
or failures which the scheme proposed in this paper can
cope with.

The dynamics associated with the sliding surface S
can be obtained by substituting the equivalent control
from (14) into (8), which yields

ẋa(t) = Aaxa(t)−Bwa(B2WBT
2 )

−1Fxa(t)

+Brr(t) +Daξ(t, x). (15)

Adding and subtracting the term BνaFxa(t) to (15) and
rearranging mean that (15) can also be written as

ẋa(t) = (Aa −BνaF )xa(t) +BmFxa(t)

+Brr(t) +Daξ(·),
(16)

where

Bm :=

[
B1aB

T
2 −B1aWBT

2 (B2WBT
2 )

−1

0

]
. (17)

Note that in Eqn. (16), since r(t) is a bounded
signal, the closed-loop stability of the sliding motion only
depends on the first two and the last terms, which can be
expressed in the form

ẋa(t) = (Aa −BνaF )︸ ︷︷ ︸
Ã

xa(t) + B̃a

ũ︷ ︸︸ ︷
Δaf (t)Faxa(t)︸ ︷︷ ︸

ỹ

,

(18)
where

B̃a =
[
B̃ Da

]
, B̃ :=

[
In
0

]

Δaf =

[
Δf 0

0 φ̃(t, x)

]
, Fa =

[
F
I

]
, (19)
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and
φ̃(t, x) =

[
0 φ(t, x)

]
.

The uncertainty fault/failure dependent term is

Δf (t) := B1aB
T
2 −B1aWBT

2 (B2WBT
2 )

−1. (20)

Note that since W is unknown, and φ̃(t, x) is
assumed to be bounded, the expression Δaf (t) above is
treated as an uncertainty. To facilitate the closed-loop
stability analysis, assume

‖Δaf(t)‖ < γ1, ∀W ∈ W , (21)

where γ1 is a positive scalar. Such a bound is guaranteed
to exist since ‖W‖ < 1 and ‖B2WBT

2 ‖ < 1/λo. Define

γ2 = ||G̃(s)||∞, (22)

where the transfer function matrix is

G̃(s) := Fa(sI − Ã)−1B̃a. (23)

Note that, by the design of F , the matrix Ã = Aa −BaF
is stable, and so the H∞-norm of γ2 is well defined and
finite.

Proposition 1. For any combination of faults or failures
belonging to the set W , the sliding motion in (18) will be
stable if

γ2γ1 < 1, (24)

where γ1 and γ2 are defined in (21) and (22), respectively.

Proof. The structure of differential equation (18) can
be considered the interconnection of the gain G̃(s) (in the
feedforward path) with the uncertain term Δaf (t) (in the
feedback loop) of a closed-loop system. Using Eqns. (21)
to (23), and from the small gain theorem (Khalil, 1992), if

‖G̃(s)‖∞‖Δaf (t)‖ < 1, (25)

then the closed-loop stability of (18) is ensured. The
condition in (25) is exactly the stability condition in the
statement of the proposition and the proof is complete.

�
In a sliding mode framework, the control law should

be designed to satisfy the so-called reachability condition
(Edwards and Spurgeon, 1998), which is a sufficient
condition to guarantee that sliding will be enforced and
maintained.

Proposition 2. The virtual control based on the integral
sliding mode control law

ν(t) = νl(t) + νn(t), (26)

where

νl(t) := −Fxa(t), (27)

νn(t) := −ρ(t)
σa(xa, t)

||σa(xa, t)|| for σa(xa, t) �= 0, (28)

will maintain sliding during faults or failures belonging to
the set W if the modulation gain ρ(t) in (28) is selected as

ρ(t) >
2‖νl(t)‖ + η

λo
, (29)

where η is a positive design scalar.

Proof. From substituting Eqn. (26) into (12) and using
the fact GaBwa = B2WBT

2 and GaBνa = I , it follows
that

σ̇a(·) = (B2WBT
2 )(νl(t) + νn(t)) + Fxa(t)

= (B2WBT
2 )νn(t) + (B2WBT

2 )νl(t) + Fxa(t).
(30)

Consider a positive definite candidate Lyapunov function
V = 1

2σ
T
a σa. Taking the time derivative along the system

trajectories gives

V̇ = σT
a

(
(B2WBT

2 )νn(t) + (B2WBT
2 )νl(t) + Fxa(t)

)
≤ −λmin(B2WBT

2 )ρ‖σa‖+ ‖σa‖‖B2WBT
2 ‖‖νl‖

+ ‖σa‖‖Fxa(t)‖
≤ −λoρ‖σa‖+ ‖σa‖‖νl‖+ ‖σa‖‖νl‖ (31)

since ‖B2WBT
2 ‖ < 1.

By using a value of ρ(t) satisfying (29), the
inequality (31) can be written as

V̇ ≤ −η‖σa‖ = −
√
2 ηV

1
2 , (32)

which is a standard reachability condition (Edwards and
Spurgeon, 1998), and the proof is complete. �

Finally, substituting the integral sliding mode control
law given in (26)–(28) into (7) yields the physical control
law

u(t) = BT
2 (−Fxa(t)− ρ

σa(xa, t)

‖σa(xa, t)‖). (33)

It is clear that the physical control law u(t) in (33) has no
information about the actuator effectiveness matrixW and
will distribute the control effort amongst all the actuators.

3.1. Design of feedback gain F . The feedback
gain F associated with the physical control law u(t)
in (33) can be designed by using the LMI optimization
method proposed by Hamayun et al. (2012) (which is also
explained in this paper for completeness) such that the
small gain stability condition given in Proposition 1 is
satisfied. To have a finite value of γ2, the matrix Ã =
Aa−BaF in (23) should be stable. The feedback gainF is
designed to meet the nominal performance requirements
(when W = Im) whilst also satisfying the stability
condition in Proposition 1. For nominal performance
specification, an LQR formulation is adopted, which
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can be posed as an LMI optimization as follows (Boyd
et al., 1994): Minimize trace(X−1) subject to

[
AaX +XAT

a −BνaY − Y TBT
νa

Q̂X − R̂Y

(Q̂X − R̂Y )T

−I

]
< 0,

(34)

X > 0, (35)

where Y := FX and the symmetric matrix X ∈
R

(n+l)×(n+l). We have

Q̂ :=
[
Q1/2 0

]T
, R̂ :=

[
0 R1/2

]T
.

To encapsulate the small gain stability condition (24),
the bounded real lemma (Boyd et al., 1994) is used:
⎡
⎣AaX +XAT

a −BνaY − Y TBT
νa B̃a Y T

B̃T
a −γ2I 0
Y 0 −I

⎤
⎦ < 0,

(36)
where B̃a is defined in (19). The scalar gain γ may be
viewed as a tuning parameter.

The overall optimization process is as follows:
Minimize trace(Z) subject to

[ −Z In
In −X

]
< 0, (37)

together with (34), (35) and (36). The slack variable Z
satisfies Z > X−1, and therefore trace(Z) ≥ trace(X−1).
Finally, the feedback gain F can be recovered as F =
Y X−1.

4. Simulations

A high-fidelity non-linear benchmark model of a large
passenger aircraft based on the FTLAB747 v6.1/v6.5
software (Marcos and Balas, 2003) is used to test the
effectiveness of the proposed FTC scheme. This software
represents a “real world” model of the large body
B747-100/200 aircraft.

The feedback gain F was designed based on a
linearization of the model around an operating condition
of a straight and level flight at 263,000 kg, 92.6 m/s
true airspeed, and an altitude of 600 m based on 25.6%
of maximum thrust, and at a 20 deg flap position. In
the simulations, an up-and-away flight manoeuvre is
considered. For longitudinal control only the states x =
[θ, α, Vtas, q]

T are examined, where θ is the pitch angle
(rad), α is the angle of attack (rad), Vtas is the true airspeed
(m/sec), and q is the pitch rate (rad/sec). The available
longitudinal control surfaces are δlong = [δe, δs, δepr]

T and
represent aggregated elevator deflection (rad), horizontal
stabilizer deflection (rad), and aggregated longitudinal
EPR (i.e., the four engine pressure ratios (EPRs) are

aggregated to produce one control input). The state space
model obtained at the operating condition of a straight and
level flight is

A =

⎡
⎢⎢⎣

0 0 0 1
0 −0.6284 −0.0021 1.0064

−9.8046 1.7171 −0.0166 0
0 −0.5831 0.0004 −0.5137

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎢⎢⎣

0 0 0
−0.0352 −0.0819 −0.0084

0 −0.1756 5.7072
−0.6228 −1.3578 0.0600

⎤
⎥⎥⎥⎥⎦ ,

where the input matrix B is partitioned according to (2).
For the up-and-away manoeuvre it is required to

track the flight path angle (FPA) γ (where γ = θ − α)
and Vtas. Therefore, the controlled output matrix is

C =

[
1 −1 0 0
0 0 1 0

]
,

To design the state feedback gain F , the LMI approach
given in Section 3.1 was used, in which the design
matrices were Q = diag(0.95, 0.004, 0.01, 2, 0.1, 5) and
R = diag(4, 8). With the choice of γ = 7 in (36), the
feedback gain F obtained is

F =

[−0.1714 −0.0296 −0.7450 −0.8077
−0.3226 0.0079 2.0833 1.2277

0.9828 −0.2921
−0.1549 1.8162

]
.

In this example the elevator is the primary control surface
for FPA tracking while the horizontal stabilizer is used as
a redundant control surface. However, for Vtas tracking,
aggregated EPR is the only available actuator (and has no
redundancy). Based on the assumption that the engines
are fault free, we used a search parameter value of λ0 =
0.0826 and a suitable upper bound in Eqn. (21) was set
as γ1 = 0.01. With the feedback gain F given above, it
can be verified that γ2 = 75.3013 in (22), which fulfils
the stability requirement of Proposition 1.

5. Nonlinear simulation results

In the simulations, a series of 3 deg FPA pulses, together
with a change in Vtas of 10 m/sec, are used to increase the
altitude and the speed of the aircraft. In the simulations the
discontinuity associated with the nonlinear controller term
in (28) was smoothed by the sigmoidal approximation
σa/(‖σa‖+ δ) (Edwards and Spurgeon, 1998), where
δ is chosen small (here δ = 0.05). (In so doing, a
pseudo-sliding motion takes place in which the system
trajectories move in the vicinity of the sliding surface.)
To enforce sliding during faults/failures belonging to the
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Fig. 2. Nominal fault free performance: system states based on
a direct control allocation scheme.

Fig. 3. Nominal fault free performance: actuator deflections
based on a direct control allocation scheme.

set W , the design scalars in (29) are chosen as η = 1
and λ0 = 0.0826, which satisfies the requirements of
Proposition 2.

The scheme proposed in this paper is also compared
in simulations with the recent FTC scheme by Hamayun
et al. (2012). Note that those authors tested the online
control allocation FTC scheme on a linear model of the
lateral dynamics of a passenger aircraft; however, in this
paper, the efficacy of both schemes will be compared
based on the longitudinal dynamics of a high-fidelity
nonlinear aircraft model.

Details of the longitudinal controller design based
on the approach of Hamayun et al. (2012) are given
by Hamayun (2013, Chapter 5). All the simulations in
this paper are obtained in the presence of wind and gust

Fig. 4. Elevator with a partial to complete failure: system states
based on an on-line control allocation scheme.

Fig. 5. Elevator with a partial to complete failure: actuator de-
flections based on an on-line control allocation scheme.

models and sensor noise. The wind model generates wind
velocities (uwind = −11, vwind = −12 and wwind =
0) along the positive axis of the earth reference frame,
whereas the Dryden spectra are used in the gust model
(Marcos and Balas, 2003). Both the models are embedded
in the FTLAB747 v6.1/v6.5 software. The sensor noise
which appears in the measured states (θ, α, Vtas, q)

T and
is based on a Gaussian distribution of zero mean and
variance (3e−8, 1e−2, 3e−6, 3e−8).

In Figs. 2 and 3, the nominal fault free performance
using the approach proposed in this paper is shown.
The control signals u(t) are also plotted, together with
the actual actuator deflections for comparison with the
online CA scheme proposed by Hamayun et al. (2012).
The tracking performance of the commands γ and
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Fig. 6. Elevator with a partial to complete failure: system states
based on a direct control allocation scheme.

Fig. 7. Elevator with a partial to complete failure: actuator de-
flections based on a direct control allocation scheme.

Vtas is promising. In Figs. 5 and 7 a fault scenario
is demonstrated whereby the elevator’s effectiveness
decreases from 100% to 40% during 250–550 s; after that,
the elevator completely fails. It is clear from Figs. 4 and
6 that good tracking performance (close to nominal) is
still achieved with both the scheme proposed by Hamayun
et al. (2012) and the one given in this paper.

For on-line CA, it is clear from Fig. 5 that the scheme
of Hamayun et al. (2012) stops sending control signals
to the elevator after it failed completely at 550 s due to
the availability of information about the fault (W matrix)
to the controller. The scheme proposed in this paper
distributes control effort amongst all the actuators (Fig. 7)
despite a fault/failure to the elevator as fault information
is not available to the controller.

Figures 9 and 11 present the case when the elevator

Fig. 8. Elevator jam: system states based on an on-line control
allocation scheme.

Fig. 9. Elevator jam: actuator deflections based on an on-line
control allocation scheme.

jams at some offset position for both the online and direct
CA schemes. However, due to the availability of the
redundant control surface (the horizontal stabilizer), both
the schemes can cope with this failure and still maintain
the sliding motion as seen in Figs. 8 and 10. No apparent
degradation in performance shows the effectiveness of
both the schemes despite the severe failure condition.
Based on the comparison between direct CA with on-line
CA, it can be seen that, despite the absence of FDI
information (matrixW ), the results for the proposed direct
CA scheme are comparable to the online CA scheme
of Hamayun et al. (2012). The only limitation of not
knowing the actuator effectiveness level (matrix W ) as
compared to Hamayun et al. (2012) is that a slightly more
limited set of faults/failures given in Assumption 1 must
be assumed.
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Fig. 10. Elevator jam: system states based on a direct control
allocation scheme.

Fig. 11. Elevator jam: actuator deflections based on a direct
control allocation scheme.

6. Conclusion

In this paper, a new passive FTC scheme was proposed
which has the potential to provide fault tolerance
against actuator faults/failures without requiring any
information from an FDI scheme. The inclusion of
direct control allocation allows the single controller to
deal with a range of actuator faults/failures without
any fault information. The direct control allocation
structure maintains an acceptable level of closed-loop
performance both nominally and in fault/failure situations
by distributing the control effort computed by a virtual
control law amongst the actuators.

A rigorous closed-loop stability analysis has been
carried out in the presence of unmatched uncertainty
and demonstrate the class of faults/failures which can
be dealt with using the proposed scheme, without any

performance degradation. A range of actuator fault/failure
scenarios were considered in simulations, in the presence
of wind, gusts and sensor noise, for validation purposes,
on a high fidelity nonlinear aircraft model, and the results
obtained show the effectiveness of the proposed scheme.
The controller is also compared with an existing scheme,
which does require fault information, and comparable
results were obtained.
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