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In this paper a super-twisting-like structure with adaptive gains is proposed. The structure is parameterized by
two scalar gains, both of which adapt, and by an additional time-varying term. The magnitudes of the adaptive
terms are allowed to both increase and decrease as appropriate so that they are as small as possible, in the
sense that they do not unnecessarily over-bound the uncertainty, and yet are large enough to sustain a sliding
motion. In the paper, a new time varying gain is incorporated into the traditional super-twisting architecture.
The proposed adaption law has a dual-layer structure which is formally analyzed using Lyapunov techniques.
The additional term has the effect of simplifying the stability analysis whilst guaranteeing the second order
sliding mode properties of the traditional super-twisting scheme.
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1 Introduction

Of all the second order sliding mode (2-SM) approaches in the literature, the super-twisting
algorithm (Levant 1998) has probably proved to be the most popular. It is usually employed in
two quite distinct situations: firstly as a way of enforcing a 2-SM in relative degree one systems
using a smooth control signal; and secondly as a dynamical system for robust exact differentia-
tion of bounded (smooth) signals. The super-twisting structure as originally presented in Levant
(1998) has two tunable scalar gains, which govern its transient performance. Traditionally these
have been fixed quantities and the stability proofs have relied on geometric bounding arguments.
However recently (Moreno and Osorio 2008) classes of Lyapunov functions have been discovered
which has led to renewed interest in this area – particularly in terms of developing adaptive
versions of these schemes. Early work in the area of adaptive super twisting control (prior to
the discovery of Lyapunov functions) appears in Kobayashi and Furuta (2007). The recent work
has been predominantly based around the Lyapunov functions proposed by Moreno and Osorio
(2008). The existing work on adaptive 2-SM schemes can be broadly split into two broad cat-
egories. The first of these categories, and by far the most extensively researched, involves de-
veloping adaptive laws to increase the gains of the super-twisting algorithm so that a 2-SM is
obtained. Once sliding is obtained, adaptation stops and the gains remain fixed. If sliding is then
subsequently broken – caused for example by the sudden occurrence of more aggressive distur-
bances – adaptation resumes and the gains once more increase. The gains are therefore subject
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to a ‘ratcheting’ process and are non-decreasing. For a wide range of examples of such struc-
tures see Plestan et al. (2010), Shtessel et al. (2012), Alwi and Edwards (2013), Bartolini et al.
(2013), Taleb et al. (2013). The second category of literature attempts to find the smallest gain
values which will maintain sliding: specifically ensuring there is no unnecessarily conservative
over-bounding of the uncertainty whilst still guaranteeing sliding will take place. This is con-
ceptually different and has some advantages over the ‘ratcheting’ methods – especially from a
chattering mitigation viewpoint. (Although the super-twisting algorithm yields a smooth control
signal, chattering is still possible– for example in the presence of unmodelled dynamics in the
feedback loop (Boiko and Fridman 2005).) In a differentiator problem setting, unnecessarily large
gains amplify the transmission of noise on the measurement signal and so are again detrimental
to performance. The volume of literature associated with the ‘gain minimization’ viewpoint is
considerably smaller – perhaps because researchers have found it a more elusive problem. Recent
references adopting this standpoint are Lee and Utkin (2007), Utkin and Poznyak (2013a,b). Of
specific relevance to this paper, the work described in Utkin and Poznyak (2013b) uses infor-
mation about the disturbance/uncertainty extracted from the equivalent control to adapt one
of the gains of the super-twisting structure. This paper further research along these lines, but
its main contribution is a small modification to the structure of the super-twisting algorithm
itself. This change is very beneficial and yields a significant simplification in terms the Lyapunov
analysis employed to guarantee a 2-SM. Compared to the work in Utkin and Poznyak (2013b),
Edwards and Shtessel (2016), the scheme proposed in this paper provides a mechanism for adapt-
ing both gains of the super-twisting structure and provides global convergence guarantees (which
Utkin and Poznyak (2013b), Edwards and Shtessel (2016) do not).
The structure of the paper is as follows: Section 2 describes the main results and in particular

describes the newly proposed modified super-twisting scheme. A result is proved which indi-
cates that the proposed scheme induces a 2-SM providing one of the gains in the structure is
always greater in magnitude than the uncertainty. The dual-layer adaptive concept proposed in
Edwards and Shtessel (2016) is then employed to create an adaptive law in conjunction with
the novel modified super-twisting scheme. The notation used in the paper is quite standard. In
particular ‖ · ‖ is used to represent the Euclidean norm for vectors and the induced spectral
norm for matrices. The symbol R is used to represent the set of real numbers and λmax(·) and
λmin(·) will be used to denote the maximum and minimum eigenvalues of a (symmetric) matrix.

2 Problem Formulation

A well known 2-SM scheme, known as the ‘super-twisting’ structure (Levant 1998), can be
written in the form

ė1(t) = −ᾱ sign(e1(t))|e1(t)|1/2 + e2(t) (1)

ė2(t) = −β̄ sign(e1(t)) + f(t) (2)

where the states e1, e2 ∈ R. The gains ᾱ and β̄ represent (positive) design scalars, whilst f(t)
corresponds to unknown bounded uncertainty. Assume |f(t)| ≤ L̄ where L̄ is fixed and known.

If the two gains are selected as ᾱ = 1.5
√
L̄ and β̄ = 1.1L̄, then it can be shown that e1 =

ė1 = 0 in finite time (Levant 1998). The choice of the gains ᾱ and β̄ is not unique, but their
selection affects the transient performance of the system (Levant 1998, Shtessel et al. 2013). The
system structure in (1)-(2) can be arrived at from considering a nonlinear feedback controller
applied to a first order system; or as a mechanism for exact differentiation of a measured signal.
Other variations exist in which the uncertainty appears in (1) and its derivative is assumed
to be bounded. Through a simple change of variable associated with e2(t) it is easy to see
that both formulations are equivalent (Shtessel et al. 2013). Crucially a necessary condition is
that β̄ > |f(t)| which can be intuitively interpreted as the requirement that the switching
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term β̄ sign(e1(t)) in (2) dominates f(t). If a tight upper-bound on |f(t)| is known, then the
choice of ᾱ and β̄ above can be applied to achieve sliding. Although in a feedback control
framework the super-twisting structure in (1)-(2) results in a smooth control law, chattering
can still occur in the presence of unmodelled dynamics for example, and so conservative (large)
choices for the gains ᾱ and β̄ can be detrimental to closed-loop performance (Boiko and Fridman
2005). Furthermore in certain engineering circumstances, see for example Alwi and Edwards
(2013), the disturbance f(t) can have quite different characteristics at different periods of time,
requiring very different gain levels. This has motivated the development of adaptive (second-
order) sliding mode strategies (Plestan et al. 2010, Alwi and Edwards 2013, Shtessel et al. 2012,
Bartolini et al. 2013, Taleb et al. 2013). In certain situations it is very desirable to allow the gains
ᾱ and β̄ to be functions of time and to increase or decrease as appropriate. If tight time varying
bounds on the uncertainty are available and known, the approach in Gonzalez et al. (2012) can
be adopted. However if such bounds are not available or are conservative, adaptive approaches
such as those proposed in (Plestan et al. 2010, Alwi and Edwards 2013, Shtessel et al. 2012,
Bartolini et al. 2013, Taleb et al. 2013) must be employed. This problem is considered in this
paper and in the following sections.

3 Main Results

The main result proposed in this paper involves a new variation on the super-twisting structure
given by

ė1(t) = −α(t)sign(e1(t))|e1(t)|1/2 + e2(t) + φ(e1, L) (3)

ė2(t) = −β(t)sign(e1(t)) + f(t) (4)

where e1, e2 ∈ R, and f(t) is unknown but bounded so that |f(t)| < a0 where a0 is unknown. The
gains α(t) and β(t) are positive scalar functions of a time-varying scalar L(t) > l0 > 0 where l0
is a positive fixed design scalar. Compared to the traditional super-twisting structure in (1)-(2),
an additional term φ(·) is proposed in (3)-(4). In this paper it is suggested that the gains

α(t) =
√

L(t)α0 (5)

β(t) = L(t)β0 (6)

where α0 and β0 are fixed positive scalars and the new term

φ(e1, L) = − L̇(t)

L(t)
e1(t) (7)

Remark 1: Clearly in the special case when L(t) is fixed, then L̇ = 0 and φ(e1, L) = 0. Conse-
quently the newly proposed scheme in (3)-(4) reverts to the traditional (fixed) super-twisting
structure discussed in (1)-(2). Also note, during sliding, φ(e1, L) = 0 since e1 = 0.

In this paper the objective is to derive an adaptive rule for creating a non-overestimated value
of L(t) without knowledge of the bound a0, whilst at the same time ensuring a 2-SM takes place
forcing e1 = ė1 = 0 to zero in finite time, despite the presence of the uncertainty in (3)-(4).
For the newly proposed structure in (3)-(4), first a stability analysis is undertaken, assuming a
scheme has already been devised for updating L(t) so that L(t) is differentiable, bounded and
satisfies L(t) > max{|f(t)|, l0} for all time.
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Define three matrices as

A0 =

[−1
2α0

1
2−β0 0

]
B0 =

[
0
1

]
C0 =

[
1 0

]
(8)

and also a (symmetric positive definite) matrix

P =

[
p1 p2
p2 p3

]
(9)

where the scalars p1, p3 > 0 and p22 < p1p3.

Proposition 1: Suppose L(t) is bounded and chosen so as to enforce L(t) ≥ max{|f(t)|, l0}, then
a 2-SM occurs making ė1 = e1 = 0 in finite time if the gains α0 and β0 are chosen so that there
exists a P of the form in (9) such that

PA0 +AT
0 P + ε0P + PB0B

T
0 P + CT

0 C0 < 0 (10)

where the design scalar ε0 > 0.

Proof: Consider a candidate Lyapunov function for the system in (3)-(4) of the form

V (t, e1, e2) = p1L(t)|e1|+ 2p2L(t)
1/2e2sign(e1)|e1|1/2 + p3e

2
2 (11)

where p1, p2, p3 relate to (9). Employing the notation

x = col(x1, x2) := col(L1/2sign(e1)|e1|1/2, e2) (12)

similar to that used in Gonzalez et al. (2012), the Lyapunov function V (t, e1, e2) in (11) can be
written as V = xTPx where the s.p.d matrix P is defined in (9). Since by assumption L(t) is
bounded and L(t) > l0 > 0, then exploiting the positivity of P implies V (t, e1, e2) is positive
definite with respect to (e1, e2), continuous and radially unbounded. The expression for the time
derivative V̇ will now be obtained in terms of (x1, x2), which therefore requires expressions for
ẋ1 and ẋ2. From (3), for e1 �= 0, x1 from (12) satisfies

ẋ1 =

√
L(t)

2|e1|1/2
(
− α(t)sign(e1)|e1|1/2 + e2 + φ

)
+

L̇(t)

2
√
L(t)

sign(e1)|e1|1/2

= − α(t)

2|e1|1/2
x1 +

√
L(t)

2|e1|1/2
e2 +

√
L(t)

2|e1|1/2
φ+

L̇(t)

2
√
L(t)

sign(e1)|e1|1/2

= − α(t)

2|e1|1/2
x1 +

√
L(t)

2|e1|1/2
x2 (13)

since

√
L(t)

2|e1|1/2
φ(e1, L) +

L̇(t)

2
√
L(t)

sign(e1)|e1|1/2 = 0 (14)

from the definition φ(e1, L) in (7). Furthermore when e1 �= 0, x2 from (12) satisfies

ẋ2 =
1

|e1|1/2
(
− β(t)sign(e1)|e1|1/2 + |e1|1/2f

)
=

√
L

|e1|1/2
(
− β(t)

L
x1 + f̃

)
(15)
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where the (re-defined) uncertainty in (15) is given by

f̃(t) =
|e1(t)|1/2√

L(t)
f(t) (16)

Since |x1| =
√
L|e1|1/2 it follows from (16) that the re-defined uncertainty satisfies

|f̃(t)| ≤ |f(t)|
L(t)

|x1| (17)

Since by assumption |f(t)| < L(t), it follows that |f̃(t)| ≤ |x1| i.e the uncertainty f̃(t) lies in the
sector [−1 1 ] (see Khalil (1992)). Using the definitions of α(t) and β(t) in (5)-(6) it follows that
(13) and (15) can be written in concise form as

ẋ(t) =

√
L(t)

|e1(t)|
(
A0x(t) +B0f̃(t)

)
, e1 �= 0 (18)

where A0 and B0 are defined in (8). Therefore along any solution of (3)-(4), when e1 �= 0

V̇ =

√
L

|e1|
(
xT (PA0 +AT

0 P0)x+ 2xTP0B0f̃
)

(19)

where x is defined in (12). Applying Young’s inequality to (19) yields

V̇ ≤
√
L

|e1|
(
xT (PA0 +AT

0 P0 + P0B0B
T
0 P )x+ |f̃ |2

)
(20)

Using the definition of C0 from (8) it follows the state component x1 = C0x. Since |f̃ | ≤ |x1|, it
follows from (20) that

V̇ ≤
√
L

|e1|
(
xT (PA0 +AT

0 P0 + P0B0B
T
0 P )x+ |x1|2

)

=

√
L

|e1|x
T
(
PA0 +AT

0 P0 + P0B0B
T
0 P + CT

0 C0

)
x

≤ −ε0

√
L

|e1|V (from (10)) (21)

It follows from Rayleigh’s inequality that V > λmin(P )‖x‖2 > λmin(P )|x1|2 and therefore

√
V >

√
λmin(P )|x1|

Since by definition L(t) > l0 where l0 is a positive scalar, from (21)

V̇ ≤ −ε0
L(t)

|x1| V ≤ −ε0l0V

|x1| ≤ −η
√
V (22)

where the positive scalar η = ε0l0
√

λmin(P ). It follows from the arguments above that along

the solution of (3)-(4), whenever e1 �= 0, V̇ ≤ −η
√
V . The function V (t) defined in (11) is

continuous and differentiable except on the set S = {(e1, e2) : e1 = 0}. The trajectories of (3)-
(4) cannot stay on S/{0} since any point in this set takes the form (0, e2) where e2 �= 0, and
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from (3), ė1 = e2 �= 0. Consequently V (t) is a continuously decreasing function and therefore
from the ‘Lyapunov’ result for differential inclusions (Proposition 14.1 in Deimling (1992)), the
equilibrium point (e1, e2) = (0, 0) is reached in finite time. Substituting for e1 = e2 = 0 in (3) it
follows that ė1 = 0 in finite time. QED

Remark 2: Using the Bounded Real Lemma (Boyd et al. 1994) inequality (10) is equivalent to
the frequency domain constraint ‖G0(s)‖∞ < 1 where the transfer function

G0(s) := C0(sI −A0)
−1B0 =

1

(2s2 + α0s+ β0)

The constant positive scalars α0 and β0 can always be chosen to ensure ‖G0(s)‖∞ < 1. A
necessary condition is that β0 > 1 (because the dc gain of G0(s) = 1/β0). Furthermore it is
easy to verify that choosing the gain α0 = 2

√
2β0 guarantees ‖G0(s)‖∞ < 1 and results in G0(s)

having repeated real poles at −
√

β/2.

Note: the fact that β0 > 1 will be exploited in the subsequent analysis.

Remark 3: The expression in (19) for the derivative of V (t, e1, e2) from (11) is only valid when
e1 �= 0. Consequently “standard” Lyapunov arguments are not valid here because V̇ does not
exist everywhere, and the approach adopted in the proof of Proposition 1 follows the one em-
ployed in Gonzalez et al. (2012), based on the differential inclusion results in Deimling (1992),
which only require continuity of V (t, e1, e2).

From the arguments above the problem thus becomes one of selecting L(t) so that L(t) > |f(t)|.
In this paper this constraint will be ensured by using a variation of the dual-layer adaptive
structure proposed in Edwards and Shtessel (2016).

The dual-layer approach in Edwards and Shtessel (2016) relies on the concept of equivalent
control (Utkin 1992) and permits the gain L(t) to be increased and decreased. To analyze the
role it plays, it is convenient to consider the system representation in (3)-(4). In system (3)-(4),
during sliding, the discontinuous term β(t)sign(e1(t)) in (4) must compensate for the uncertainty
f(t): formally

β(t)sign(e1(t))|eq = f(t) (23)

where β(t)sign(e1(t))|eq is the equivalent control which represents the average value the signal
β(t)sign(e1(t)) must take to maintain sliding (Utkin 1992). The concept of equivalent control as
proposed by Utkin (1992) is a theoretical abstraction and usually used to analyze the reduced
order dynamics associated with the sliding motion (Utkin 1992). However this quantity can be
approximated in real-time by low pass filtering of the switched signal i.e.

˙̄ueq(t) =
1

τ
(β(t) sign(e1(t))− ūeq(t)) (24)

where τ is a (small) positive constant. Furthermore, at least in principle, during sliding the
difference between ūeq(t) and the true value of the equivalent control ueq(t) can be made arbitrary
small by making τ small (Shtessel et al. 2013). Consequently, during the sliding motion, by
filtering the discontinuous injection signal β(t) sign(σ(t)), a good estimate of f(t) can be obtained
in real-time. This information will be subsequently exploited to adapt L(t) to make it as small as
possible, whilst still guaranteeing that L(t) > |f(t)|. Prior to sliding taking place, ūeq(t) does not
represent the equivalent control, but nonetheless is an available signal which will be employed
in the adaptive scheme. The notation ūeq(t) will be used throughout to represent the output of
the filter in (24), but from the context, it will be clear under which circumstances it represents
(an approximation) of the true equivalent control ueq(t).
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Define a new scalar variable δ as

δ(t) = L(t)− 1

aβ0
|ūeq(t)| − ε (25)

In (25), as in Edwards and Shtessel (2016), the scalar a is chosen to satisfy 0 < a < 1/β0 < 1
and ε is a small positive scalar chosen to ensure

1

aβ0
|ūeq(t)|+ ε/2 > |ueq(t)| (26)

This definition of δ is a variation on the corresponding one in Edwards and Shtessel (2016) and
is necessary to accommodate the different formulation in this paper. The design scalars a and ε
represent ‘safety margins’ (at the expense of introducing conservatism). The proposed adaptive
control element L(t) on which the gains α(t) and β(t) depend is given by

L(t) = l0 + l(t) (27)

where l0 is a (small) positive design constant and the time varying term l(t) satisfies

l̇(t) = −ρ(t)sign(δ(t)) (28)

The time varying scalar in (28) is by definition

ρ(t) = r0 + r(t) (29)

where r0 is a fixed positive design scalar and the time varying component r(t) satisfies

ṙ(t) = γ|δ(t)| (30)

where γ is a fixed positive scalar design constant.

Proposition 2. Consider the system in (3)-(4) subject to uncertainty f(t) which satisfies the two
constraints |f(t)| < a0, |ḟ(t)| < a1 where the positive scalars a0 and a1 are finite but unknown.
Then the dual-layer adaption scheme in (28) – (30) ensures L(t) > |f(t)| in finite time.
Proof: Define a new variable

e(t) = qa1/(aβ0)− r(t) (31)

where q > 1 and represents a safety margin to guarantee | ddt |(ūeq)|| < qa1. From the definition
of e(t) and the expression for ṙ(t) from (30), it follows that

ė(t) = −ṙ(t) = −γ|δ(t)| (32)

Arguing as in Utkin and Poznyak (2013b) the variable δ(t) evolves according to

δ̇(t) = l̇(t)− 1

aβ0

d

dt
|ūeq(t)| (33)

Consequently

δ̇(t) = − (r0 + qa1/(aβ0)− e(t))︸ ︷︷ ︸
ρ(t)

sign(δ(t)) − 1/(aβ0)φ(t) (34)



pril 20, 2016 19:56 International Journal of Control yuri-ijc˙rev3

8 Adaptive Dual Layer Super-Twisting Control and Observation

where φ(t) = d
dt |ūeq(t)| and |φ(t)| < qa1 where q > 1. The dynamical system formed from

the variables δ(t) and e(t), evolving according to (32) and (34), will now be analyzed using the
Lyapunov function candidate

V (δ, e) =
1

2
δ2 +

1

2γ
e2 (35)

From (34) it follows that

δδ̇ ≤ δ(t)l̇(t) + |δ(t)| qa1
aβ0

= −r0|δ(t)| − r(t)|δ(t)| + |δ(t)| qa1
aβ0

= −r0|δ(t)| + e(t)|δ(t)| (36)

from the definition of e(t) in (31). Therefore the derivative of (35) along the trajectories of δ(t)
and e(t) satisfies

V̇ ≤ −r0|δ(t)| + |δ(t)|e(t) − 1
γ eṙ(t)

= −r0|δ(t)| + |δ(t)|e(t) − |δ(t)|e(t)
= −r0|δ(t)| (37)

Since V̇ ≤ 0, and V (δ, e) is radially unbounded, it follows that both e(t) and δ(t) remain
bounded. Consequently since r(t) = qa1/(aβ0)− e(t) it follows that r(t) remains bounded since
e(t) is bounded. Likewise since |L(t)| ≤ |δ(t)|+ qa1/(aβ0) + ε and δ(t) is bounded, the gain L(t)
remains bounded. Since e(t) and δ(t) remain bounded, from (34), the derivative δ̇(t) remains
bounded and therefore δ(t) is absolutely continuous. It follows from (37) that

r0

∫ t

0
|δ(t)|dt ≤ V (0)

where |δ(t)| is absolutely continuous. Therefore from Barbalat’s Lemma (Khalil (1992)), δ(t) → 0
as t → ∞. Consequently there exists a finite time t0 such that |δ(t)| ≤ ε/2 for all time t > t0
(where ε is from the definition of δ in (25)). From the definition of δ(t) in (25) it follows

|δ(t)| = |L(t)− 1

aβ0
|ūeq(t)| − ε| < ε/2

and thus

L(t)− 1

aβ0
|ūeq(t)| − ε > −ε/2

Since by definition aβ0 < 1, it follows using (26) the gain L(t) satisfies

L(t) >
1

aβ0
|ūeq(t)|+ ε

2
> |ueq(t)| = |f(t)| (38)

From (38) it follows that the claim in the proposition statement is proved.
QED

Remark 4: Propositions 1 and 2 together provide the main results of this paper and demonstrate
that using the dual-layer adaptive scheme from (25)-(30) which means choosing L(t) = l(t) + l0
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where

l̇(t) = −ρ(t)sign(δ(t)) (39)

ρ̇(t) = γ|δ(t)| (40)

where δ(t) is defined in (25), guarantees a 2-SM will take place in the system (3)-(4) and will
force e1 = ė1 = 0 in finite time despite the uncertainty f(t). Furthermore since the adaptive
scheme forces δ(t) to become ‘small’, L(t) ‘tracks’ the magnitude of the uncertainty |f(t)| so
that in situations when f(t) is small, L(t) will be small.

Remark 5: From equality (38)

L(t) > |ūeq(t)|+ 1−aβ0

aβ0

|ūeq(t)|+ ε

2︸ ︷︷ ︸
safety margin

(41)

This establishes a cone around the equivalent control |ueq(t)| involving both a multiplicative gain
(1−aβ0)

aβ0

and a fixed gain ε
2 . These introduce a safety margin and robustness into the adaptive

scheme at the cost of introducing conservatism. This is crucial since the value of |ueq(t)| can
only be estimated by ūeq(t) through the low-pass filtering process in (24). The level of safety
(and hence conservatism) is a function of the parameters a and ε which are to be selected by the
designer (subject to aβ0 < 1 and ε > 0). In this way a higher level of “safety” can be introduced
by making a smaller and ε bigger – although this must be traded-off against how much larger
L(t) becomes with respect to |f(t)|.
Remark 6: At the start of the simulation/implementation, during the time interval [0, t2], or
indeed, later during a more general time interval [t1, t2] during which time sliding is not taking
place, then |sign(e1)(t)| = 1 for almost all t ∈ [t1, t2]. It follows from (24) that ūeq(t) is a high
bandwidth low-pass filtered version of β(t) and it follows there exists a time interval [t̄1, t2] ⊂
[t1, t2] such that

|ūeq(t)| ≥ aβ(t) (42)

for almost all t ∈ [t̄1, t2] since 0 < a < 1. Consequently, from (42) and the definition of β(t) in
(6), it follows that

|ūeq(t)| ≥ aβ(t) = aβ0L(t) (43)

and then utilizing (43) in (25) yields

δ(t) = L(t)− 1

aβ0
|ūeq(t)| − ε ≤ −ε < 0 (44)

Therefore from (44), for almost all t ∈ [t̄1, t2], sign(δ(t)) = −1, and from (39) it follows

L̇(t) = l̇(t) = ρ(t) = r(t) + r0 > 0

and so the gain L(t) monotonically increases at a rate greater than a positive lower bound r0.
Over any interval of time of length a0/r0 the gain L(t) will increase to a magnitude above a0,
after which a 2-SM will take place in finite time since by assumption a0 > |f(t)|. The scheme in
(39)-(40) is therefore still a valid adaptive mechanism prior to the establishment of a 2-SM in
finite time (Utkin and Poznyak (2013b)). During the interval [t̄1, t2] the output of the low-pass
filter, ūeq(t), no longer has the formal interpretation of ‘equivalent control’, and in fact in this



pril 20, 2016 19:56 International Journal of Control yuri-ijc˙rev3

10 Adaptive Dual Layer Super-Twisting Control and Observation

situation, as argued above, turns the adaptive scheme into one which produces monotonically
increasing gains. This is precisely what is required: namely (monotonically) increasing the gains
α(t) and β(t) to induce sliding. Such behaviour is clearly seen in the example which follows in
the next section.

Remark 7: For practical implementation the adaptive scheme in (39)-(40) can be replaced by

l̇(t) = −ρ(t)sign(δ(t)) (45)

ρ̇(t) =

{
γ|δ(t)| if |δ(t)| > δ0
0 otherwise

(46)

where δ0 is a (small) positive design scalar. The structure in (46) introduces a dead-zone in which
no integration takes place, and counteracts the effects of practical implementation limitations
involving noise and imperfections in the numerical integration schemes. Whilst the introduction
of the deadzone creates limits on the choice of δ0, it does not impact on the performance of the
adaptive scheme proposed in this paper since in the proof of Proposition 2, δ(t) is only required
to be ‘practically stable’ i.e. guaranteed to satisfy |δ(t)| < ε/2 in finite time, and is not required
to converge to zero.

4 Simulation study

A simple example will now be used to demonstrate the theory. The system in (3)-(4) has been
considered with the disturbance term f(t) = sin(t+0.57)+0.5 sin 3t. This choice is for simulation
purposes only, and is unknown to the controller. In all the simulations which follow the coefficients
α0 and β0 in equations (5) and (6) have been selected to satisfy the conditions β0 > 1 and
α0 = 2

√
2β0. Specifically here, β0 = 1.1 and α0 = 2.97. The small time constant τ in equation

(24) is taken as τ =0.001. The coefficients γ in equation (40), aβ0, l0, r0, and ε have been taken
as: γ = 8, aβ0 = 0.95, l0 = 0.1, r0 = 0.1, ε = 0.01. The system was simulated using the Euler
integration algorithm with a fixed step size equal to 10−3sec. The results are presented in Figures
1-4 shown below.

Figure 1.: Time history of the variables e1 and e2

It is clear from Figure 1 that e1 and e2 are driven to zero in finite time. The time histories of α(t)
and β(t) shown in Figure 2 demonstrate that the adaptive gain β(t) closely follows the profile of
|f(t)|, and the gain α(t) is adapted accordingly. The evolution of the new term φ(e1, L) introduced
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Figure 2.: Time histories of the gains α(t), β(t) and the absolute value of the disturbance f(t)

Figure 3.: Time history of the term φ(e1, L) = − L̇(t)
L(t)e1(t)

Figure 4.: Time histories of the adaptive parameters ρ(t) and L(t)
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in this paper is presented in Figure 3. It is shown to be continuous and clearly once sliding occurs
φ = 0 and the traditional super-twisting structure, albeit with adaptive gains, is recovered. The
time history of the other adaptive parameters ρ(t) and L(t) can be observed in Figure 4. It is
clear during the time interval [0, 1.75], prior to the establishment of a sliding motion, that L(t)
is strictly increasing. During this period ūeq(t) does not represent the equivalent control and is
simple the output signal of a filter. After this point in time, once sliding has been established,
ūeq(t) does take on the connotation of ‘equivalent control’, and the dual layer scheme forces L(t)
to ‘track’ an upper bound on the magnitude of the disturbance. An additional benefit of the
proposed adaptive dual-layer second order sliding mode control algorithm is that it can be used
as an adaptive disturbance observer. From equation (24) it is clear ūeq accurately estimates f(t)
as soon as e1 and e2 converge to zero. This property is illustrated in Figure 5.

Figure 5.: The estimation of the disturbance f(t)

5 Conclusions

This paper has proposed a modification to the usual fixed gain super-twisting control structure
to include a new time-varying term. This structural modification together with the use of a dual-
layer adaptive scheme to update the two gains usually present in the super twisting structure
has created a scheme which tries to minimize the degree of over-estimation of the bounds on
the uncertainty, and yet still ensures a 2-SM will take place. The dual-layer adaptive scheme
exploits knowledge of the equivalent control which contains information about the uncertainty.
When there is no adaption and the gains become constant, the traditional super-twisting scheme
is ‘recovered’. Compared to earlier work the revised formulation allows both gains to adapt.
Furthermore the inclusion of the new time-varying term simplifies the formal Lyapunov based
proofs.
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