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Abstract 

Signalling processes regulate various aspects of living cells via modulation of 

protein activity. The interactions between the signalling proteins can occur at 

single or multiple sites. Although single site protein interactions are relatively 

easy to understand, these rarely occur in living systems. It is therefore important 

to investigate multisite interactions. Despite the recent progress in experimental 

studies, the underlying molecular mechanisms and molecular functions of the 

multisite interactions are still not clear and therefore require systems 

approaches for deeper understanding, for example to understand how the 

system will react to perturbation of one of its components. The examples of the 

molecular functions that are studied in this thesis are: kinetics of multisite 

calcium binding to proteins such as calmodulin (CaM), multisite phosphorylation 

of interferon regulatory factor 5 (IRF-5) and signal transducers and activators of 

transcription (STATs). We also study the role of STATs in the overall immune 

response and in T cell phenotype switching as well as multisite phosphorylation 

of high osmolarity glycerol factor 1 (Hog1) in mitogen activated protein kinase 

(MAPK) cascade during the adaptation of Candida glabrata to osmotic stress. In 

this thesis, these examples are studied using the systems approach in the 

context of human diseases: cancer, candidiasis, immunity-related pathologies 

such as rheumatoid arthritis, inflammatory bowel disease and systemic lupus 

erythematosus. We discuss potential therapeutic implications of the proposed 

models in these diseases. The predictions of the models developed in this 

thesis are supported by the experimental data and propose possible 

mechanisms of the multisite interactions involved in the cellular regulation. 
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1 Introduction 

This thesis describes a study related to mathematical modelling of molecular 

interactions in biochemical circuits. The research area of this thesis can be 

classified as Systems Biology. Compared to Physics, Biology and Mathematics, 

it is a relatively new discipline, which is extensively developing nowadays. 

Systems Biology studies biological systems as a whole and aims to analyse 

them by using techniques developed in Engineering, Mathematics and Physics 

[1]. The developed Systems Biology models then can be used to suggest 

strategies to control the system under malfunctions caused by various factors, 

for example genetic factors, infection and ageing. In order to analyse biological 

systems both qualitatively and quantitatively, experimental data along with 

mathematical modelling are essential parts of Systems Biology, where insight 

gained in experiments informs the models and vice-versa [2]. The most basic 

mathematical models used in Systems Biology are reviewed in Appendix A of 

this thesis. 

 

In biochemical circuits, intracellular signal transduction is performed by 

molecular interactions such as phosphoryaltion, methylation, acetylation and 

ligand binding to proteins [3]. In this thesis, we apply a Systems Biology 

approach studying protein binding [4] and phosphorylation [5]. These molecular 

interactions can occur at one single or multiple sites of proteins. Single site 

interactions are relatively rare, and proteins frequently contain multiple 

interaction sites [6]. Protein functions that regulate cellular signal transduction 

depend on the state of sites of proteins (for example, occupied or non-occupied 

phosphorylated or non-phosphorylated). Thus, in comparison to single site 

interactions, multisite interactions allow more possibilities to control protein 

function [7,8], which we refer as multifunctionality. While single site interactions 

are relatively easy to understand, multisite interactions require systems 

approaches for deeper elucidation of multisite protein functions. For example it 

is important to understand how the system will react to perturbation of one of its 

components. 
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The steady-state of ligand binding to proteins was extensively studied in the 

previous modelling works [9-13] that became classical (briefly described in 

Appendix A). However, in these works only apo- and fully saturated protein 

conformations were studied as inactive and active protein conformations 

respectively, whereas there is experimental evidence that intermediate protein 

conformations also demonstrate activity [14,15]. In the modelling study [7] the 

steady-states of intermediate conformations were analysed. Nevertheless, 

intracellular concentrations of ligand are often subject to rapid change [16-18] 

so steady-state description is not always sufficient. An example of a relatively 

recent modelling study of ligand-receptor binding kinetics can be found in [19]. 

However in that work authors used a description of sequential calcium binding 

whereas calcium binding to EF-hand proteins is non-sequential [20]. Therefore 

the dynamics of ligand-dependent regulation of multisite proteins require further 

elucidation. In Chapter 2 of this thesis we will study the multisite ligand-receptor 

binding using calmodulin (CaM) as a data-rich example of a molecule with four 

binding sites for calcium [21,22]. We will investigate the dynamics of the 

multisite protein conformations with different number of occupied sites for 

different amount of available ligand. 

 

The second basic biochemical reaction involved in intracellular signal 

transduction that we study in this thesis is phosphorylation. Phosphorylation 

alters enzymatic properties of proteins and modulates protein activity in cells [5]. 

A number of mathematical studies attempted to build a model of protein 

phosphorylation. One of the most well-known models of 

phosphorylation/dephosphorylation cycle for a single site protein was proposed 

in [23]. It used Michaelis-Menten kinetics to describe these enzymatic reactions. 

In the model [23] it was assumed that the total concentration of protein 

significantly exceeds the concentrations of kinase and phosphatase and 

therefore the concentrations of the Michaelis complexes can be neglected. The 

approach proposed in [23] was used in a number of modelling studies [24-26] 

and extended to multisite phosphorylation [27,28]. However, in real biological 

systems the concentrations of kinases, phosphatases and substrates are not 

always comparable [29]. Therefore it is important to investigate the role of the 

concentrations of enzyme-substrate complexes in protein activity. In Chapter 3 
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we will build a model for single- and multisite phosphorylation including enzyme-

substrate complexes into the consideration. We will compare the predictions of 

the developed model with the previous model [23] studying activation of Signal 

Transducer and Activator of Transcription 3 (STAT3) and Interferon Regulatory 

Factor 5 (IRF-5) [30] as well as the regulation of erythrocyte aggregation and 

deformability [31]. 

 

Protein binding and phosphorylation studied in Chapters 2 and 3 are very 

common elements in intracellular signal chains of real biological systems. In the 

following Chapters 4 and 5 we will perform a higher-level analysis and study two 

examples of real biological signalling systems investigating such cell processes 

as T cell plasticity [32] and yeast adaptation to osmotic stress [33] respectively. 

These biological questions have been chosen due to the available experimental 

data and scientific interests of our research group. 

 

The first example of high-level analysis presented in this thesis is performed in 

Chapter 4. In contrast to Chapter 3, where we focus on one single STAT 

protein, in Chapter 4 we will analyse the system of interacting STAT proteins in 

T cell plasticity [32]. STATs are key molecular determinants of the T cell fate 

and effector function [34,35]. Several inflammatory autoimmune diseases such 

as rheumatoid arthritis (RA) [36], systemic lupus erythematosus (SLE) [37] and 

diabetes [38] are characterised by an altered balance of T cell phenotypes and 

cytokine secretion [39]. However, it is still not clear how the same STAT 

proteins regulate the development of T cell phenotypes and their plasticity 

during changes in extracellular conditions. In previous modelling works [40-43] 

only single STAT pathways were studied at a time. However in T cell phenotype 

development and plasticity more than one STAT pathway is involved [39,44]. 

Thus the systems integrated approach is required to study the role of STAT 

proteins in T cell plasticity. In Chapter 4, we will investigate the STAT-mediated 

regulation of T cell phenotype formation and plasticity using mathematical 

modelling and experimental data for intracellular STAT signalling proteins. 
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Another example of high-level analysis is demonstrated in Chapter 5. The 

multisite protein phosphorylation controls the biochemical processes involved in 

the regulation of yeast adaptation to osmotic stress [33]. This is a very good 

example to demonstrate the power of the developed framework since 

intracellular signalling and overall cellular behaviour have been extensively 

studied for the well-known model organism, Saccharomyces cerevisiae. In 

Chapter 5 we focus on the yeast adaptation to osmotic stress using an example 

of pathogenic Candida glabrata. These fungi are close genetic relatives to S. 

cerevisiae and are one of the less studied pathogenic yeast [45]. Understanding 

of C. glabrata adaptation to osmotic stress has a clinical significance [46]. The 

previous models of yeast adaptation to osmotic stress [47-57] as well as their 

comparison with the developed model will be discussed in more detail in 

Chapter 5. 

 

When studying the two examples of real biological signalling systems in 

Chapters 4 and 5, it is important to consider these objects using the systems 

approach due to their complexity. In Systems Biology cellular signalling systems 

can be represented in four various ways according to [1], as schematically 

illustrated in Figure 1.1. The top-level representation of the cellular signalling 

system may be done in terms of the core cellular processes such as the 

reproduction, survival, growth, reproduction, proliferation and differentiation, 

movement and sensitivity to external stresses and stimuli. These core 

processes define the cell behaviour. In order to understand and explain the cell 

behaviour it is important to understand the underlying molecular mechanisms of 

biological processes. In the approach proposed in [1], the mechanisms can be 

viewed as a complex of three components: functional, morphological and 

substrate (Figure 1.1). The functional representation allows considering the 

system as a complex of functional blocks. The morphological representation of 

the system considers the system as a complex of individual elements that have 

been identified by Molecular Biology, for example proteins, and links between 

them. The lowest level representation of the cellular system is substrate 

representation, which concerns individual elements of the morphological 

scheme and their properties. The link between these levels of representation of 

cellular signalling systems is provided by mathematical modelling. For example, 
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mathematical modelling of highly conserved MAPK cascade, which consists of 

multistep phosphorylation of MAPKKK, MAPKK and MAPK kinases, revealed 

such features of the cascade as signal amplification and noise attenuation 

[58,59]. It should be noted that these features arise only when considering the 

functional block consisting of these three kinase phosphorylation steps and not 

when considering phosphorylation of each kinase separately. 

 

 

Figure 1.1. Schematic diagram of possible representations of cellular systems. 

The structure of the scheme is adopted from [1]. The cellular systems can be 

considered from different levels, from the low to high: substrate, morphological, 

functional and process. The first three levels can be viewed as "mechanisms" 

and the top level defines the behaviour of the cell. Mathematical modelling 

allows one to link all these levels. In this thesis we consider two examples of 

substrate properties analysis of multisite protein interactions in Chapters 2 and 

3 as well as two examples of high-level analysis of cellular processes in 

Chapters 4 and 5. 

 

Referring to Figure 1.1, in this thesis we will start our analysis with the low-level 

consideration of substrate properties in Chapters 2 and 3, where we investigate 

multisite protein binding and phosphorylation respectively. Then we perform a 

higher level analysis of signalling systems in Chapters 4 and 5 investigating 
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such cell processes as T cell plasticity and yeast adaptation to osmotic stress 

respectively. In each chapter we will focus on the areas that have been 

unexplored yet (this will be discussed further in corresponding chapters) due to 

the lack of understanding of the underlying mechanisms (Figure 1.1). 

 

Aims and objectives of this thesis 

The main aims of this thesis are as follows: 

1. Study the properties of two examples of multisite interactions: 

 ligand binding to multisite proteins, 

 multisite phosphorylation. 

2. Propose potential mechanisms (in terms of Figure 1.1) of the two real 

examples of cellular processes in signalling systems: 

 T cell plasticity, 

 C. glabrata adaptation to osmotic stress. 

The specific aims are described in more detail in the corresponding chapters of 

this thesis. 

 

Methods 

In this thesis, we use the systems approach schematically illustrated in Figure 

1.1. The mathematical methods used in this thesis are described in Appendix A. 

Briefly, we use the law of mass-action [60,61], and more complicated 

descriptions resulting from it, such as Michaelis-Menten kinetics, to describe the 

rates of biochemical reactions, and Ordinary Differential Equations (ODEs) to 

predict the time course of biochemical reactions resulting from these laws. We 

study dynamics or steady state of the systems depending on the research 

problems and available experimental data. For simplification we use, where 

appropriate, the Quasi Steady State Assumption (QSSA) [62] to describe the 

rate of enzymatic reactions. We use available experimental data to validate our 

models of real systems proposed in Chapters 4 and 5. 
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2 Kinetic regulation of multi-ligand binding proteins 

2.1 Literature review 

2.1.1 Biological review 

A wide variety of intracellular events are initiated via temporal change in ligand 

concentrations. One of the most important ligands in many cells is calcium 

(Ca2+). Calcium interacts with and regulates the activities of a large number of 

calcium-binding proteins as well as numerous effectors, for example calmodulin 

(CaM), calcineurin (CaN) and troponin (TnC) [63,64]. The number of functional 

calcium binding sites within the calcium-binding proteins can range from one or 

two to ten or more [65-67]. The most common number of calcium binding sites 

is four: as observed in the most ubiquitous protein, calmodulin (CaM) as well as 

troponin C (TnC) and other EF-hand containing proteins [21,22]. Temporal 

elevation of intracellular free Ca2+ is the key regulatory factor of the Ca2+-

dependent protein activity [68-72]. The characteristics of the induced calcium 

signal (duration, frequency, magnitude), which control cellular responses, are 

not fully understood: it remains to be determined how a single ligand is able to 

govern numerous intracellular properties such as cell proliferation, 

differentiation, apoptosis, secretion, fertilization and transcription factor 

activation [73]. 

 

Whilst the multisite ligand binding is not limited to Ca2+ signalling, Ca2+ is 

probably one of the most versatile ions in living cells regulating the activities of a 

large number of the effector proteins [74,75]. Several Ca2+-binding proteins can 

be considered as examples of multisite ligand-protein interactions. Structural 

biology investigations of calcium binding proteins in complexes with target 

protein peptides suggested that the specificity in Ca2+-CaM binding protein-

dependent target activation arises from the diversity of interaction interfaces, 

that mediate these interactions [76], between the Ca2+-regulated protein and its 

target proteins [14,22,63,77-85]. The most ubiquitous protein, CaM, consists of 

two globular domains, each domain containing a pair of helix-loop-helix Ca2+-

binding motifs called EF-hands [22,65,67,81,82]. It was demonstrated in 

[7,20,86] studying steady-state conditions, that in addition to the diversity of 
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CaM-target interfaces, the CaM selectivity emerges from its target specific Ca2+-

affinity, the number of Ca2+ ions bound and the target specific cooperativity. 

 

Another major factor that contributes to the selectivity of seemingly 

simultaneous regulation of several multisite Ca2+ binding proteins and Ca2+-

mediated processes is the temporal alterations of Ca2+ [16-18]. The remarkable 

variety of Ca2+ signals in cells, ranging from infrequent spikes to sustained 

oscillations and plateaus, requires an understanding of how fast intracellular 

calcium changes regulate the kinetics of multiple multisite Ca2+ binding proteins. 

For example, mediator secretion in the synapse defines the delay of the signal 

[87], calcium kinetics defines the properties of muscle contraction [88]. It is 

important to know the limits of these systems in relation to calcium kinetics.  

 

In [78,89,90] protein-ligand binding was studied by the pressure-jump 

technique, more precisely, transient kinetics of proteins in response to rapid 

changes in pressure. However the dynamics of intermediate protein 

conformations, the mechanism (for example, sequential or independent) as well 

as the influence of cooperativity on the kinetics of multisite binding proteins still 

remains unclear. Therefore, mathematical modelling of Ca2+ jump-induced 

responses could be useful in the interpretation of transient kinetic experiments. 

 

2.1.2 Modelling review 

The review of previously published models of multisite protein binding for steady 

steates [9-13] is presented in Appendix A. In these works only fully saturated 

protein conformations were considered as active molecular forms, whereas 

intermdediate protein conformations can also activate a protein [7,14,15]. The 

quantitative determination of the dynamic properties of multisite cooperative 

binding can be found [19]. In this work the authors emphasized the significance 

of the cooperativity by studying the fast dynamics of Ca2+ binding to calretenin 

(CR), which has one independent and four cooperative binding sites. The 

investigation of cooperative effects of Ca2+ binding to CR was performed both 

experimentally and using mathematical modelling. The authors employed the 

simplified version of the Adair-Klotz model (Equations (7.17) and (7.19) in 

Appendix A) [91,92] to describe the dynamics of the interactions involved in 
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Ca2+ binding to CR. This approach was then extended to the binding of Ca2+ to 

CaM [93]. The models proposed in these studies [19,93] demonstrated 

excellent fitting results to the experimental data, in comparison with the 

previously published models. However, the described approach is rather limited, 

as it describes fitting instead of providing a mechanistic description. An 

alternative methodology offered by [19,93] is not directly applicable from the 

physical and chemical point of view because the Adair-Klotz model (Equations 

(7.17) and (7.19) in Appendix A) for sequential ligand binding was utilized 

[91,92], whereas binding of Ca2+ to EF-hand proteins [94-97] is non-sequential 

[20]. 

 

The majority of studies of the activation of multisite proteins consider only the 

ligand concentration-dependent profiles, for example [9-13]. The shape of 

distribution of multisite proteins in complex with variable numbers of bound 

ligand is known or can be experimentally elucidated in many cases [7,20-

22,81,86,98-100]. However, the role of temporal transitions caused by fast 

alteration of ligand concentration on multisite proteins and on multisite protein-

regulated target proteins remains unclear. One of the interesting questions 

about these multisite proteins is how rapid temporal alterations of ligand 

concentration (Figure 2.1) contribute to their function. 

 

 

 
Figure 2.1. The schematic diagram for the transient responses of ligand-

activated multisite proteins. 

The ligand concentration-dependent profiles are frequently investigated in the 

ligand-multisite protein interaction studies [9-13]. However, understanding the 

dynamics of protein activation in response to rapid change of ligand 

concentration allows more possible regulatory opportunities. 
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2.2 Aims and objectives of this chapter 

In this chapter we investigate multisite ligand-binding protein kinetics in 

response to rapid changes in ligand concentration. Mathematical models 

presented in this chapter aim to provide new insights into the conformational 

kinetics of multisite proteins in complex with variable number of bound ligands 

for the two distinct physiological situations that will be described: 

i) When the ligand concentration significantly exceeds protein concentration, 

ii) When the total amount of ligand is comparable with the protein concentration. 

 

In the first case, one can neglect the variations in the free ligand concentration, 

i.e. consider it approximately constant, whereas in the latter, the ligand-protein 

interactions have a significant impact on the amount of available ligand and the 

binding kinetics. In this chapter, for each of the above mentioned cases we aim 

to do the following: 

 build mathematical models to describe these cases, 

 study the dynamics of the concentrations of individual conformations with 

certain number of bound ligands as a function of the ligand 

concentration, the number of binding sites and the binding affinities, 

 investigate the impact of the number of binding sites, cooperativity, 

temporal effects on conformations, and regulation by multisite proteins of 

their effector proteins, 

 derive and analyse the characteristic times when the concentration of the 

intermediate protein conformations is maximal and the characteristic 

times required for the apo- and fully saturated forms to reach their half 

growth level. 

 

2.3 The model for abundant ligand concentration 

In this section we assume that the ligand concentration significantly exceeds the 

multisite protein concentration and that the ligand binding to each site of the 

protein is an independent event, which is consistent with [20]. 

 



27 
 

2.3.1 Multisite protein with independent ligand binding sites 

The kinetic scheme for such interaction can be represented as follows: 

0 1,  0,..., 1,
i

i

k

i i
k

L U L i n




    (2.1) 

where 0

iL  is the i-th binding site of the multisite protein in unbound state, U  is a 

ligand molecule, 1

iL  is the i-th binding site of the multisite protein being 

occupied, ik 
and ik 

are the association and dissociation rates respectively. 

 

There are two possible states of a binding site: occupied or not occupied. Since 

the number of sites in the molecule is n , there are 2n  possible molecular forms, 

i.e. the states characterised by combinations of bound and free sites. 

 

The probabilities for the i-th binding site to be not occupied or occupied as a 

function of ligand concentration U  are given by: 

0

1

( ) ,

( ) ,

i
i

i

i

i

K
p U

K U

U
p U

K U







 (2.2) 

where i
i

i

k
K

k




  [7,20]. 

 

The probability for a multisite protein with independent binding sites to be in a 

particular molecular form is given by multiplication of probabilities of ligand 

binding to each site: 

1
( )

0

( ) ( ),  0,...,2 1,i

n
c j n

j i

i

P U p U j




    (2.3) 

where 
1

0

2 ( )
n

i

i

i

j c j




  is the number of possible molecular forms, ( ) 0ic j   or 

( ) 1ic j   for free or occupied binding site, respectively. For example, Table 2.1 

shows possible molecular forms of a molecule with 4 binding sites (CaM). In 

total 
42 16  combinations are possible. Using Table 2.1 we can write Equation 

(2.3) for the 16 molecular forms shown in the table. As an example, consider 

the molecular forms 1,  5,  14j  : 
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  1 0 0 0

1 0 1 2 3P U p p p p , 

  1 0 1 0

5 0 1 2 3P U p p p p , 

  0 1 1 1

14 0 1 2 3P U p p p p . 

 

 

Table 2.1. Molecular forms of the molecule with 4 binding sites. 

\j i   3 2 1 0 

0 0 0 0 0 

1 0 0 0 1 

2 0 0 1 0 

3 0 0 1 1 

4 0 1 0 0 

5 0 1 0 1 

6 0 1 1 0 

7 0 1 1 1 

8 1 0 0 0 

9 1 0 0 1 

10 1 0 1 0 

11 1 0 1 1 

12 1 1 0 0 

13 1 1 0 1 

14 1 1 1 0 

15 1 1 1 1 

 

 

To investigate the kinetics of the multisite protein ligand interactions, the 

presented model extends Equations (2.2) and (2.3) to consider the ligand 

concentration as a function of time. In this case we assume that the ligand 

concentration changes only at a given time point ( 0t  ) in a step fashion from 

0U  to 1U  and remains constant otherwise. 

 

The time-dependence of the probability of a multisite protein being occupied by 

ligand molecules, as it was shown in Equation (2.3), can be reformulated as 

follows: 

1
( )

0

( , ) ( , ),  0,...,2 1.i

n
c j n

j i

i

P U t p U t j




    (2.4) 
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The probability 
( )

( , )ic j

ip U t  can be determined by considering the original set of 

ordinary differential equations for single site interaction of a protein with a ligand 

according to Equation (2.1) [7]: 

0
0 1

1

1
0 1

1

0 1

( , )
( , ) ( , ),

( , )
( , ) ( , ),

( , ) ( , ) ,

i
i i i i

i
i i i i

i i T

dL U t
k L U t U k L U t

dt

dL U t
k L U t U k L U t

dt

L U t L U t L

 

 

     

    

 

 (2.5) 

where 
0( , )iL U t  is the concentration of a free binding site, 

1( , )iL U t  is the 

concentration of bound ligand molecules and 
TL  is the total number of the 

protein molecules. 

 

Now we need to obtain the solutions for the individual sites to be in a particular 

state for those cases where ligands are subject to rapid changes between 

steady-states. We use steady-state solutions 0( ) i
i T

i

K
L U L

K U



 and 

1( )i T

i

U
L U L

K U



 as initial conditions for the ligand concentration jump from 0U  

to 1U . 

 

A particular solution for the system of differential Equations (2.5) in response to 

the ligand concentration shift from 0U  to 1U  is given by: 

0

1 1 0 1

1 1 1 0

1 1 0 1

( , ) exp ,
( )

( , ) exp .
( )

i i i
i T

i i i

i T

i i i

K K K t
L U t L

K U K U K U U

U U U t
L U t L

K U K U K U U





   
               

   
               

 (2.6) 

(please see Appendix B for the derivation) 

 

The normalisation of the solution (2.6) by the total protein concentration allows 

the definition of probability of the i-th binding site to be in an occupied 
1( , )ip U t  or 

unoccupied 
0( , )ip U t  state, respectively, at a given ligand concentration: 
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 0 0 0 0

1 1 0

1

1 1 1 1
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 (2.7) 

 

At any given time the total concentration of the protein, TL , is conserved and the 

sum of the probabilities (2.7) equals 1: 

0 1

0 1

( , ) ( , ) ,

( , ) ( , ) 1.

i i T

i i

L U t L U t L

p U t p U t

 

 
 (2.8) 

 

In the most general case, the concentration of the j-th molecular form, ( , )jM U t , 

of a molecule with n  different binding sites in response to a step in ligand 

concentration is given by the product of probabilities (2.7) according to Equation 

(2.4): 

1
( )

0

( , ) ( , ),  0,...,2 1i

n
с j n

j T i

i

M U t L p U t j




    , (2.9) 

where ( ) 0ic j   or ( ) 1ic j   for free or occupied i-th binding site respectively. 

 

The probabilities for individual molecular forms in steady-state can be obtained 

from Equation (2.9) by setting t  : 

1
( )

0

( ) ( ),  0,...,2 1i

n
c j n

j T i

i

M U L p U j




    , (2.10) 

 

In the case of multiple sites involved, knowledge of the state probability 

distribution for individual binding sites allows accurate estimation of the 

dynamics of the total concentration of bound ligand in response to a jump in 

free ligand concentration. The kinetics of the amount of ligand bound to a 

multisite protein with n  binding sites can be written as follows: 

2 1 1

0 0

( , ) ( , ) ( )

n n

j i

j i

S U t M U t c j
 

 

  , (2.11) 

where S  is the concentration of the bound ligand. 
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Equation (2.11) can be written in the following way: 

2 1
(1) (2) (3)

( , ) 1 ( , ) 2 ( , ) 3 ( , ) ... ( , ),nj j j

j J j J j J

S U t M U t M U t M U t nM U t


  

       . (2.12) 

where ( )J i  is the set of molecular forms with i  bound ligands ( 1,..., )i n . 

 

Equation (2.12) can be applied for Table 2.1: 

1 2 4 8 3 5 6 9 10 12

7 11 13 14 15

( , ) 1 ( ) 2 ( )

3 ( ) 4

S U t M M M M M M M M M M

M M M M M

            

      
. (2.13) 

 

Equation (2.13) can be written in the following way: 

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

( , ) 1 1 2 1 2 2 3 1

2 2 3 2 3 3 4

S U t M M M M M M M M

M M M M M M M

                

         
. (2.14) 

 

In order to gain more insights into the dependence of the intermediate protein 

conformations (complexes with variable number of bound ions) on the ligand 

concentrations and their evolution in time, we investigate the case of a multisite 

protein with identical binding sites. Further on, we refer to these dependencies 

as "distribution". While this case is a relatively rare occurrence in living cells, it 

enables insight into the role that the number of binding sites plays in cellular 

signalling. There are several examples of protein families that have variable 

number of ligand binding sites either due to their structural properties or by 

them forming large tertiary complexes. For example members of the Ca2+ family 

of binding proteins can differ in the number of ligand binding sites [101,102]. 

The most ubiquitous Ca2+-binding protein, calmodulin (CaM), contains four Ca2+ 

binding sites as does troponin (TnC) [63] and calcineurin phosphatase (CaN) 

[64]. However the number of functional Ca2+ binding sites can vary from two to 

ten as in the protease, calpain [65] or even more in other cases [66]. To 

investigate the role that the number of ligand binding sites plays in multisite 

kinetics, the ligand concentrations, at which the concentrations of intermediate 

conformations reach their maximum values, and the corresponding magnitudes 

for those concentrations of intermediate conformations will be estimated. 
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In previously published studies [7,20] the authors analysed the steady-state of 

the ligand-receptor binding and derived the equation for the steady-state 

concentration of one of the molecular forms of multisite protein, where m  out of 

n  identical sites are bound and equilibrium dissociation constant equal 
k

K
k




 , 

as a function of ligand concentration: 

( ) ,  0,1,..., .
( )

m n m

m T n

U K
N U L m n

K U


  


 (2.15) 

 

It was shown in [7,20] that the steady-state concentrations of the intermediate 

forms    1 1,..., nN U N U  as a function of ligand concentration represent bell 

shapes reaching maximums at a particular ligand concentration 
max

mU . Here we 

derive equations for these ligand concentrations 
max

mU  and the corresponding 

maximum protein concentrations 
max

mN . 

 

Differentiating Equation (2.15) with respect to U  and solving / 0dN dU   for U  

gives: 

,  1,2,..., 1.max

m

K m
U m n

n m


  


 (2.16) 

 

The magnitudes 
max

mN  of the intermediate conformations mN  corresponding to 

max

mU  values are: 

  ,  1,2,..., 1.
m

n mmax

m T n

m
N L n m m n

n


      (2.17) 

 

Figure 2.2 shows the maximum protein conformations in complex with one, two 

and three ligands as a function of the total number of binding sites. Figure 2.2 

demonstrates that the magnitude of individual intermediate conformations 

decreases as the number of binding sites increases. This in turn results in the 

regulation of the activity of the proteins with larger number of binding sites 

become subtler. As it will be shown later in Equation (2.28), the maximum 
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magnitudes of intermediate conformations 
max

mN , obtained in Equation (2.17) for 

steady-states, are similar to the ones obtained for the kinetics. 

 

 

 
 

Figure 2.2. The effect of the number of binding sites on maximum 

concentrations of intermediate conformations. 

The maximum magnitude of the concentrations of protein conformations in 

complex with one, two and three ligand molecules (y-axis) are shown as a 

function of the total number of binding sites (x-axis). The relative amount of 

ligand binding by conformations bound to a specific number of sites clearly 

diminishes as the number of sites grows. See Equation (2.17). 

 

 

According to Equation (2.15), the multisite protein conformations in the apo-, 

0N , and in the fully saturated states, nN , would reach their maximum that equal 

to the total multisite protein concentration TL  under conditions of very low and 

very high ligand concentrations, respectively: 

0
0

lim ( ) ,

lim ( ) .

n

T T
U

n

n T T
U

K
N U L L
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Equation (2.15) can be used to estimate the half maximal effective ligand 

concentration ( 50EC ), 
0.5

0U  and 
0.5

nU , for the apo- and saturated multisite protein 

conformations respectively, when the protein species equal 50% of the total 

concentration TL : 
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 (2.18) 

 

This solution shows that the ligand concentration for the half maximal protein 

activity, known as 
50EC , would be equal to the equilibrium dissociation constant 

K  50( )EC K  for proteins with one binding site only ( ). Equation (2.18) can 

be resolved with respect to the number of binding sites n  as a function of the 

0.5

nU  and K : 

1
0.5

0.5
0.693 ln n

n

K U
n

U



  
    

  
. (2.19) 

 

Figure 2.3A shows the dependence of 
0.5

0 /U K  and 
0.5 /nU K  on the number of 

binding sites. The model predicts that there is a significant change in the ligand 

concentration 
0.5 /nU K  for the fully bound conformation compared to 

0.5

0 /U K . 

 

In [7,20] the authors reported on the regulatory importance of the distribution of 

intermediate multisite protein conformations. It was suggested by the authors in 

these papers that the molecular forms with variable numbers of bound ligands 

(not only fully saturated forms) can selectively activate a protein. Here 

calculations are presented (Figure 2.3B) for the half-width between the half-

maximal effective ligand concentrations 0.5

0 /U K  and 0.5 /nU K  as a function of the 

ligand concentration for the intermediate conformations with one bound ligand 

for the molecules with different number of binding sites. Figure 2.3B shows that 

the relative magnitudes of the intermediate conformations with one bound 

ligand decrease for proteins with large number of binding sites. 

 

1n 
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Figure 2.3. Model predictions for the half-maximal effective ligand 

concentrations as a function of the number of binding sites and ligand 

concentration. 

A. The dependence of the half-maximal effective ligand concentration, 
0.5

0 /U K  

and 
0.5 /nU K , for the apo- and saturated multisite protein conformations 

respectively, on the number of binding sites. The effect of the increasing of the 

amount of binding sites is negligible for the fully bound conformation. See 

Equation (2.18). B. Calculations for the half-width between the half-maximal 

effective ligand concentrations as a function of the ligand concentration for 

proteins with two, three, four and five binding sites (Equation (2.15) for 1m   

and 2,3,4,5n  ). C. The difference between ligand concentrations for the 

saturated multisite protein conformations when the protein species equal to 

90% and 10% of the total concentration as a function of the ligand concentration 

for the proteins with one to six binding sites. (Equation (2.15) for m n  and 

1,2...,6n  ). D. The difference between ligand concentrations for the saturated 

multisite protein conformations when the protein species equal to 90% and 10% 

of the total concentration as a function of the number of binding sites up to six 

(Table 2.2). 

 

 

The difference nA  between ligand concentrations 0.9 /U K  and 0.1 /U K  for the 

saturated multisite protein conformations, when the protein species are equal to 

90% and 10% of the total concentration (Table 2.2), as a function of the ligand 
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concentration for proteins with different number of binding sites is shown in 

Figures 2.3C and 2.3D respectively. 

 

 

Table 2.2. The difference between ligand concentrations for the saturated 

multisite protein conformations when the protein species are equal to 90% and 

10% of the total concentration. 

n  1 2 3 4 5 6 

nA  1.908 1.602 1.509 1.465 1.439 1.422 

 

 

Equation (2.11) for the total amount of bound ligand, adapted for the case of 

multisite protein with identical binding sites, can be used to estimate the amount 

of bound ligand when the ligand concentration is equal to the equilibrium 

dissociation constant (U K ) as shown in Equation (2.25). Our model predicts 

that the ligand concentration for the half maximal protein activation, 50EC , is 

equal to the equilibrium dissociation constant K  for any number of bound sites 

for a multisite protein with identical binding sites. 

 

According to Equations (2.2), (2.7) and (2.9) when the amount of ligand U K  

we can write: 

0

1

1
( ) ,

2

1
( ) ,

2

1
( , ) .

2

n

j T

p U

p U

M K t L






   

 

 (2.20) 

 

And substitute it to Equation (2.11): 

2 1 1

0 0

( , ) ( ).
2

n n
T

in
j i

L
S K t c j

 

 

   (2.21) 

In Equation (2.21) 
2 1 1

1

0 0

1
( ) 2

2

n n
n

i

j i

c j n
 



 

    since the double sum is equal to the 

number of bound sites multiplied by the number of molecular forms with the 

same amount of bound sites, and all this multiplied by 1/2 because of the 
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symmetry between the two states (1 and 0) in combinations. Thus we can write 

Equation (2.21) in the following way: 

( , ) .
4

T

n
S k t L    (2.22) 

 

For the case when the ligand concentration is equal to the saturating ligand 

concentration (when all binding sites are occupied), 
satU U , we can write 

according to Equations (2.2), (2.7) and (2.9): 

0

1

( ) 0,

( ) 1,

( , ) .sat

j T

p U

p U

M U t L







  (2.23) 

 

Then substitute it to Equation (2.11): 

1

0

( , ) ( ) .
n

sat

T i T

i

S U t L c j L n




    (2.24) 

 

Comparing Equations (2.22) and (2.24) it can be written: 

   
1

, ,
4

satS K t S U t   (2.25) 

 

The dynamic alterations of intermediate conformation  ,mN U t  in response to 

ligand concentration jump from 0U  to 1U  according to Equations (2.6) and (2.7) 

are given by: 

1 0

0

1 1 0 1

1 1 1 0

1 1 0 1

1

1

( , ) ( ( , )) ( ( , )) ,

( , ) exp ,
( )

( , ) exp ,
( )

( ) .
( )

m n m

m TN U t L p U t p U t

K K K t
p U t

K U K U K U U

U U U t
p U t

K U K U K U U

K
U

k U K











  

  
      

    

  
      

    


 

 (2.26) 
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The probabilities for a binding site to be occupied in response to the fast ligand 

concentration change enables the characteristic time max

m , when the 

intermediate conformations reach their maximal values, to be determined. 

 

Differentiating Equation (2.26) with respect to t  and solving for / 0mdN dt   

yields the time 
max

m  when the multisite protein forms mN  with m  bound 

molecules of ligand reach their maximal values 
max

mN : 

   
1 0

1

0 1

( )
( ) ln ,  1,2,..., 1.

( )

max

m

n K U U
U m n

K U n m U m K
 

   
          

 (2.27) 

 

The substitution of 
max

m  into Equation (2.26) gives the maximal values of 

intermediate multisite protein conformations reached at 
max

m : 

  ,  1,2,..., 1
m

n mmax

m T n

m
N L n m m n

n


      (2.28) 

 

Comparison of Equations (2.17) and (2.28) suggests that the steady-state 

maximum values of intermediate multisite protein conformations are the same 

to those transiently reached during the dynamic response to the step in ligand 

concentration. 

 

According to Equation (2.26) ( , )mN U t  for the apo- and fully saturated forms 

when 0t  : 

0

0

0

0

( ,0) ,

( ,0) .

n

T

n

n T

K
N U L

K U

U
N U L

K U


  

 


  

 

 (2.29) 

 

According to Equation (2.15) steady state levels for the apo- and fully saturated 

forms when t  : 
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0

1

1

1

( , ) ,

( , ) .

n

T

n

n T

K
N U L

K U

U
N U L

K U


   

 


   

 

 (2.30) 

 

Equation (2.26) is further used to define the time, 0.5

0 , required for the apo- 

form, 0N , to reach half of the growth concentration 0 0( , ) ( ,0)

2

N U N U 
 and the 

time period, 0.5

n , required for the fully saturated protein species to gain half of 

the growth concentration 
( , ) ( ,0)

2

n nN U N U 
 (Figure 2.4): 

 

 

0.5 1 0
0 1 1

0 1

0 1

0.5 1 0
1 1

0 1
0 1 1

0 1

( ) ln ,

( ) 0.5

( ) ln

( ) 0.5

n n n

n

n n n

U U
U K

K K
K U K U K

K U K U

U U
U K

U U
K U U K U
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(2.31) 

 

Figure 2.4 represents the calculations for the temporal characteristics of the 

apo- and fully bound species. Figures 2.4A and 2.4B show that the temporal 

shapes of the apo- and fully bound conformations in response to a ligand 

change are similar to the steady-state dependence of the same conformations 

on ligand concentration, which corresponds to Figure 1B in [7] reproduced here 

as Figure 2.4C. 
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Figure 2.4. Temporal characteristics of the apo- and fully bound species in 

response to a ligand jump. 

The dynamics of the concentration of proteins is investigated for apo- (A) and 

fully bound (B) forms in response to the ligand concentration change from 

0 / 0.1U K   to 1/ 10U K  . The dotted lines indicate the time, 
0.5

0 , required for the 

apo- conformation, 0 / TN L , to reach half of the fall in concentration and the 

period of time, 
0.5

4 , that takes for the fully saturated protein species, 4 / TN L , to 

gain half of the growth in concentration. See Equations (2.26). The shapes of 

the temporal characteristics of the apo- and fully bound species in response to a 

ligand jump shown in (A) and (B) are similar to the corresponding shapes for the 

steady-state dependence obtained in [7] and reproduced here in (C). 

 

 

The kinetic parameters, 
0.5

0  and 
0.5

4  can be estimated as the time required to 

reach 50% of the total concentration (Figures 2.4A and 2.4B). These kinetic 

parameters are investigated as a function of the initial and final ligand 

concentrations (Figures 2.5A and 2.5B). Our analysis reveals an inhibition 

shape and a reduction of the time constant 
0.5

0  for the apo- conformation with 

the reduction of the initial ligand concentration 0 /U K  and the increase of the 

final ligand concentration 1/U K  (Figure 2.5). However, the dependence of the 
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characteristic time 
0.5

4  shows a non-trivial bell shape on the final ligand 

concentration compared to the simpler monotonic dependence for 
0.5

0  shown 

in Figure 2.5A. 

 

The bell shaped dependence of 
0.5

4  on final ligand concentration shown in 

Figure 2.5B appears to be related to the presence of intermediate 

conformations. When 1n  , that is in the absence of intermediate forms, 
0.5

4  

depends on 1/U K  monotonically, i.e. there is no bell shaped dependence, as is 

evident from Equation (2.31). In multisite proteins ( 1n  ), the activation of 

intermediate conformations takes extra time, which affects 
0.5

4 . This activation 

precedes the activation of the saturated form in time, and also as 1/U K  

increases, i.e. the intermediate conformations are more prevalent for smaller 

values of 1/U K , and the stationary distribution shifts towards the saturated form 

for larger 1/U K . As a result, an increase of 1/U K  leads to an increase of the 

contribution of the kinetics of the intermediate complexes to the overall 

dynamics, and hence to an increase of 
0.5

4 . Mathematically, the extra time 

associated with activation of intermediate forms is represented by the second 

factor in Equation (2.31). The dependence of the first factor,  1U , on 1/U K  is 

monotonically decreasing, which corresponds to the fact that all individual 

kinetic rates monotonically increase with 1/U K . Thus, in the dependence of 
0.5

4  

on 1/U K , there are two competing tendencies: the first factor is monotonically 

decreasing, and the second factor is monotonically increasing. As follows from 

the mathematical model, the dependence of this second factor on 1/U K  is with 

saturation. As a result, the role of intermediate conformations is more 

pronounced for smaller 1/U K , so 
0.5

4  increases, whereas for larger 1/U K , this 

role is less important and overall speed-up dominates, hence 
0.5

4  decreases. 

Thus the model predicts that there is an intermediate ligand concentration, at 

which the kinetics of the fully saturated form, represented by 
0.5

4 , is the 

slowest. Note that although Figures 2.4 and 2.5 show an example of four sites, 
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the results are more general than that, as Equations (2.26) and (2.31) are valid 

for arbitrary number n  of binding sites. 

 

 

 
 

Figure 2.5. The characteristic times for apo- and fully bound forms as a function 

of the final ligand concentrations. 

The time 
0.5

0 , required for the apo- conformation, 0 / TN L , to reach half of the 

fall in concentration (A) and the time, 
0.5

4 , that takes for the fully saturated 

protein species, 4 / TN L , to gain half of the growth in concentration (B), are 

subject to the investigation as a function of the initial and final ligand 

concentrations. The presented analysis clearly demonstrates the bell shaped 

dependence of 
0.5

4  on the final ligand concentration (B). See Equations (2.31). 

 

 

The proposed model will be employed to investigate the ligand jump-dependent 

kinetics of both saturated and non-saturated conformations. Initially, an 

idealized model of a multisite protein with identical binding sites will be used to 

investigate the impact of ligand concentrations on the multisite protein kinetics. 

However, in living cells there are very few proteins (if any) that have identical 

ligand binding sites. Therefore the model will be next extended to examine the 

implications of variations in binding site affinities on the predicted concentration-

response profiles. 

 

2.3.2 Multisite proteins with four identical ligand binding sites 

This model next considers the kinetic properties of a protein with four binding 

sites. This allows 42 16  molecular forms, each with potentially unique 

biochemical properties. There are four possible combinations of protein species 
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bound to one or to three ligands, and six possible distinct molecular forms with 

two sites occupied. In [7,20,86] the authors described the steady-state 

dependence of the individual multisite conformations on ligand concentration. 

Here we analyse the kinetic transition of the individual species concentrations in 

response to the step in ligand concentration. 

 

The dynamical alterations of intermediate conformation  ,mN U t  in response to 

a step in ligand concentration from 0U  to 1U  according to Equation (2.26) are 

given by: 

 

 

1 0 4

0

1

1 1 0

1 1 1 0
1

1 1 0

( , ) ( ( , )) ( ( , )) ,

1 1 1
( , ) exp ( 1) ,

1 1 1

( , ) exp ( 1) ,
1 1 1

m m

m TN u L p u p u

p u u
u u u

u u u
p u u

u u u

  

 

 

  


      

   


      

   

 (2.32) 

where: 0
0

U
u

K
 , 1

1

U
u

K
  are non dimensional ligand concentrations, and 

t k    is non dimensional time. The parameters k   and 
k

K
k




  are the 

dissociation and equilibrium dissociation constants for ligand binding, 

respectively. 

 

The maximum values of max

mN  are reached at the following ligand 

concentrations: 
1

3

max K
u  , 

2

maxu K , 
3 3maxu K , for the multisite protein species 

with one, two and three bound ions respectively, according to Equation (2.16) 

and equal 
1 0.105max

TN L , 
2 0.063max

TN L , 
3 0.105max

TN L  according to Equation 

(2.17). 

 

Differentiating Equation (2.32) with respect to   and solving / 0mdN d   for   

gives the non dimensional time max max

m m k    when the intermediate species 

reach their maximum: 
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 (2.33) 

 

Equations (2.33) suggest that 
1

max , 
2

max  and 
3

max  are undefined when 
1

1

3
u  , 

1 1u   and 1 3u  , respectively ( 1q , 2q  and 3q  asymptotes). Under these 

conditions, the intermediate species do not reach the maximum in response to 

ligand step, instead their relative number increase in a monotonous manner. 

 

Figure 2.6 shows the dependence of the time point max

m k   when the 

intermediate protein conformations reach the maximum as a function of 

magnitude of ligand jump. It can be seen from Equations (2.33) that 1

maxk 
, 

2

maxk 
 and 3

maxk 
 do not exist for 1

1
/

3
U K  , 1/ 1U K   and 1/ 3U K   

respectively. Under these special cases, the concentrations of the intermediate 

conformations do not reach their maximal values, instead, they monotonously 

grow to their respective steady-state levels. 
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Figure 2.6. Characteristic time required for intermediate conformations to reach 

their maximum levels as a function of the step change magnitude. 

The analysis shows that the time required for reaching the maximum level of the 

intermediate species is inversely proportional to the concentration of the applied 

ligand (Equations (2.33) for the initial ligand concentration 0 / 0.1U K  ). This 

effect is due to the growing abundance of the free ligand concentration available 

for faster interaction with the multisite protein. 

 

 

2.3.3 Multisite proteins with four different ligand binding sites 

In the previous subsection we analysed the ligand-binding kinetics of a protein 

with four identical binding sites. In this subsection we assume that these four 

sites are different and analyse the kinetic properties of the multisite protein. The 

steady-state analysis can be found in the previously published investigation 

[7,20]. 

 

We assume that all association 1k 
, 2k 

, 3k 
, 4k 

 and dissociation 1k 
, 2k 

, 3k 
, 

4k 
 rates are unique for each binding centre. Then, assuming for example that 

1 2 3 4k k k k       and 1 2 3 4k k k k      , the non dimensional concentration 
U

u
K

  

and non dimensional constants 1 1h  , 2
2

1

k
h

k




 , 3

3

1

k
h

k




 , 4

4

1

k
h

k




 , 

1 1h  , 

2
2

1

1
k

h
k





 

, 
3

3

1

1
k

h
k





 

, 
4

4

1

1
k

h
k





   can be introduced.

.
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The set of Equations (2.32) can then be employed to calculate the dynamics of 

the multisite protein conformations bound to a different number of ligand 

molecules. 

 

To investigate the impact of the dissociation constants of individual binding sites 

we employ the multisite protein model with marginally (Figure 2.7) and 

significantly different association constants (Figure 2.8). 

 

 
Figure 2.7. Kinetics predictions for multisite protein species with marginally 

different association constants. 

The kinetics of multisite protein species (Equations (2.32)) is investigated for the 

intermediate (A) as well as for apo- and fully bound conformations (B) in 

response to step change of ligand from 0 / 0.001U K   to 1/ 1.43U K   for slightly 

different association constants 1 2 3 41,  0.9,  0.8,  0.7h h h h     and equal 

dissociation constants 1 2 3 4 1h h h h       . Similar analysis is also performed 

when step change is 0 / 0.001U K  , 1/ 100U K   for the intermediate (C) as well 

as for apo- and fully bound forms (D). The calculations show that the final level 

of the multisite protein species is defined by the ligand concentration after the 

step change. It is clear that the fully bound species are not saturated and most 

of the ligand is distributed among species bound to fewer ligands. However, 

step change application of ligand with much higher concentration from 

0 / 0.001U K   to 1/ 100U K   for apo- (C) and fully bound (D) species 

demonstrate that the application of higher concentrations of ligand causes fully 

saturation of the protein. 
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In previous studies [7,20] the authors suggested that intermediate protein 

conformations can selectively activate a protein. In these works steady-state 

analysis of the concentration of the intermediate, apo- and fully- saturated forms 

was presented. It was shown in [7,20] that the distribution of the intermediate 

forms has the bell shape in steady-state. However it has been remained unclear 

whether the temporal distribution of the intermediate forms is also bell-shaped. 

In previously published modelling papers, where the kinetics of multi ligand-

receptor binding was studied [19,93], only fully saturated forms of multisite 

proteins were analysed. 

 

The main result that follows from the analysis of the intermediate conformation 

curves presented in this section is that the temporal distribution of the 

intermediate conformations of multisite proteins is bell-shaped and the affinities 

of the different binding sites mainly affect the magnitudes of corresponding 

protein conformation. For example, the conformation of a multisite protein 

corresponding to the one ligand bound state is present in lower concentration if 

the affinity of the binding centre is lower (Figures 2.7 and 2.8). However the 

overall shape of the concentration dependent profile is not changed. This 

property is similar to the case of steady-state dependence on the ligand 

concentration. The only difference is that the bell shape dependence on time 

during the kinetic response is partially skewed. 
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Figure 2.8. Kinetics of multisite protein species alterations for a protein with 

significantly different association constants. 

The kinetics of multisite protein species (Equations (2.32)) is investigated in 

response to step change of ligand from 0 / 0.001U K   to 1/ 8U K   and to 

1/ 400U K   for the intermediate (A), (C) as well as for apo- and fully bound 

conformations (B), (D), respectively, in the case of significantly different 

association 1 2 3 41,  0.6,  0.2,  0.1h h h h     and the same dissociation constants 

1 2 3 4 1h h h h       . The comparison with the kinetics of the protein with slightly 

different association constants suggest that in this case the species acquire a 

degree of asynchronous dynamics. 

 

 

2.3.4 The effects of cooperativity 

In order to investigate the influence of cooperativity, we chose a well-

characterised protein, CaM, as the model object. The CaM protein contains two 

independent EF-hand globular domains, with two binding sites [22,65,67,81,82]. 

The sites within each of the domains cooperatively influence each other. It was 

reported that cooperative binding occurs between two neighbouring sites within 

the N- and C- terminal domains of CaM [20,103,104]. 
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The molecule contains two independent domains A  and B , with two identical 

cooperative binding sites. The association/dissociation kinetics at the domain A  

is described as follows: 

1

1

1

1

1

1
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  (2.34) 

 

The ODEs for the scheme (2.34) are given by: 

00
1 00 1 10 1 01

10
1 00 1 10 1 10 1 11

01
1 00 1 01 1 01 1 11

11

( , )
2 ( , ) ( , ) ( , ),

( , )
( , ) ( , ) ( , ) ( , ),

( , )
( , ) ( , ) ( , ) ( , ),

(

dA U t
k A U t U k A U t k A U t

dt

dA U t
k A U t U k A U t kc A U t U kc A U t

dt

dA U t
k A U t U k A U t kc A U t U kc A U t

dt

dA

  

   

   

       

         

         

1 01 1 10 1 11

, )
( , ) ( , ) 2 ( , ),

U t
kc A U t U kc A U t U kc A U t

dt

         

 (2.35) 

 

The total number of species that follows from Equations (2.35) is given by: 

00 10 01 11( , ) ( , ) ( , ) ( , ) TA U t A U t A U t A U t A    . (2.36) 

 

The steady-state solutions of the system (2.35) are given by: 
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 (2.37) 

where 1
1

1

k
K

k




  and 1

1

1

c kc
K

kc




 . 

 

One can re-write Equations (2.37) as follows: 
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where 00
0

( )
( )

T

A U
a U

A
 , 10 01

1

( ) ( )
( )

T T

A U A U
a U

A A
  , 11

2

( )
( )

T

A U
a U

A
  are the 

probabilities for the domain to be in a particular conformation due to the bound 

ligand molecules. 

 

The probabilities for the other domain, which also contains a pair of cooperative 

binding sites, are given by: 
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 (2.39) 
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These probabilities were derived for the two domains of the molecule 

(Equations (2.38) and (2.39) respectively). The probabilities of the molecule to 

be in a certain conformation with 0, 1 or 2 bound ligands in each of the 

domains, are as follows: 

0,0 0 0

0,1 0 1

0,2 0 2

1,0 1 0

1,1 1 1

1,2 1 2

2,0 2 0

2,1 2 1

2,2 2 2

( ) ( ) ( ),

( ) ( ) 2 ( ),

( ) ( ) ( ),

( ) 2 ( ) ( ),

( ) 2 ( ) 2 ( ),

( ) 2 ( ) ( ),

( ) ( ) ( ),

( ) ( ) 2 ( ),

( ) ( ) ( ),

p U a U b U

p U a U b U

p U a U b U

p U a U b U

p U a U b U

p U a U b U

p U a U b U

p U a U b U

p U a U b U

 

 

 

 

 

 

 

 

 

 (2.40) 

where 
, ( )i jp U  is the probability of the protein conformation with i  bound sites in 

one domain and j  bound sites in the other. We use the sum of probabilities for 

the case of one bound site in a domain since we assume that in either domain, 

all its sites are identical. 

 

The concentrations of the molecular forms of the protein with certain number of 

bound sites are given by: 

0 0,0

1 0,1 1,0

2 0,2 1,1 2,0

3 1,2 2,1

4 2,2

( ) ( ),

( ) ( ( ) ( )),

( ) ( ( ) ( ) ( )),
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T

T

T

T

N U L p U

N U L p U p U
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 (2.41) 

 

One can rewrite Equation (2.41) as follows: 
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Next we find the kinetic solution of system (2.35) for 1U U : 

00
1 00 1 1 10 1 01

10
1 00 1 1 10 1 10 1 1 11

01
1 00 1 1 01 1 01 1 1 11

( , )
2 ( , ) ( , ) ( , ),

( , )
( , ) ( , ) ( , ) ( , ),

( , )
( , ) ( , ) ( , ) ( , ),

dA U t
k A U t U k A U t k A U t

dt

dA U t
k A U t U k A U t kc A U t U kc A U t

dt
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11
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( , )
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 (2.43) 

 

Figure 2.9 shows the model predictions for CaM, where we assume that the 

molecule has two independent domains, with two identical cooperative sites. In 

the first domain the affinity of one site changes from 1 0.9 μMK   to 
1 0.2 μMcK   

if the other site is occupied and in the second domain the affinity changes from 

2 0.8 μMK   to 
2 0.1 μMcK   according to Equation (2.35) and [20]. Figures 2.9A 

and 2.9B show the influence of cooperativity on the steady-state concentrations 

of CaM with certain number of bound sites. The presence of cooperativity shifts 

the dose-response characteristics along the ligand concentration axis and 

changes the magnitude of intermediate conformations allowing more developed 

selective regulation of the activity of CaM. The investigation of the dynamic 

properties of cooperativity in CaM (Figures 2.9C and 2.9D) for intermediate, 

apo- and saturated species revealed that the cooperativity influences the 
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magnitudes of time-dependent characteristics. The proposed model predicts 

that the cooperative binding leads to higher differences between the initial and 

steady-state levels for the apo- and saturated forms as shown in Figure 2.9. 

 

 

 
 

Figure 2.9. Comparative analysis of cooperative versus non-cooperative Ca2+ 

binding to CaM. 

Two mathematical models for Ca2+-CaM interactions are compared under the 

assumptions for the presence and absence of cooperative binding. The 

comparison between the two scenarios is performed under steady state 

conditions (A), (B) and in response to a step change in Ca2+ concentration from 

0 / 0.001U K   to 1/ 1U K   (C), (D). The model predicts that the cooperativity 

influences the magnitudes the concentrations of the maximums for the 

intermediate forms. However, the differences observed in the distribution of the 

conformation species in the presence and absence of the cooperative binding 

are quantitative while the overall shape of the distributions remain unchanged. 

Due to this finding the following model analysis will be performed without 

cooperative binding assumptions. Equations (2.42) are used in (A), (B) and 

Equations (2.43) are used in (C), (D). 

 

 

The results of the present analysis suggest that cooperativity plays an important 

role in the regulation of the activity of multisite proteins by allowing wider 
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possibilities for selectivity. However, the presence of cooperativity leads to 

quantitative rather than qualitative changes in the system. Here by qualitative 

changes we mean the shapes of the distribution of concentrations of 

corresponding protein conformations. The introduction of cooperative binding is 

crucial for the experimental data fitting but at the same time brings further 

complexity to the system, which does not necessarily lead to a better 

understanding of the underlying mechanisms. As a result of this, further 

analysis will be carried out without considering this effect. 

 

2.4 The model for comparable ligand and protein 
concentrations 

In the previous section we considered the physiological case, where the ligand 

concentration is above saturation level meaning that the ligand-multisite protein 

interactions do not affect the availability of the ligand. Here we assume that the 

amount of ligand is limited. This can occur in cases where the ligand 

concentration level is comparable to the multisite protein concentration. We also 

assume that ligand binding to each site of the protein are independent events. 

 

Under these assumptions the system of differential equations for ligand binding 

to a molecule with single binding site (2.5) needs to be complemented by the 

equation of ligand conservation: 

0
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 (2.44) 

where 0L  is the concentration of the free site, 1L  is the concentration of the 

occupied site, TU  and TL  are the total concentrations of ligand and protein 

molecules, respectively. 

 

The steady-state solutions (please see Appendix B for the derivation) of the 

system (2.44) are: 
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where 
k

K
k




  and  
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. 

 

We use the steady-state solutions (2.45) as initial conditions to find the 

particular solution. The solution of the system (2.44) in response to the ligand 

concentration jump from 
0TU  to 

1TU  is given by: 
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 (2.46) 

(please see Appendix B for the derivation) 

 

The normalisation of the solution (2.46) by the total protein concentration allows 

the definition of probability of the binding site to be in an occupied 
1( , )Tp U t  or 

unoccupied 
0( , )Tp U t  state, respectively, at a given total ligand concentration: 
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where t k   . 



56 
 

 

The concentration of the j-th molecular form, ( , )j TM U t , of a protein with n  

independent binding sites in response to a step change in ligand concentration 

is given by the product of probabilities according to Equation (2.9): 

1
( )

0

( , ) ( , ),  0,...,2 1i

n
с j n

j T T T

i

M U t L p U t j




     (2.48) 

where ( )ic j  equals 0 or 1 for free and occupied sites, respectively and 

1

0

2 ( )
n

i

i

i

j c j




 . 

 

The kinetics of the amount of ligand bound to a multisite protein with n  

independent binding sites can be written as follows: 

2 1 1

0 0

( , ) ( , ) ( )

n n

T j T i

j i

S U t M U t c j
 

 

  . (2.49) 

 

The concentration of free ligand can be written as the difference between the 

total ligand concentration and the bound ligand concentration (2.49): 

1( ) ( , ).T TU t U S U t   (2.50) 

 

The probabilities of the i-th site to be free or occupied respectively for the 

molecule with n  independent binding sites in this case: 
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The dynamic alterations of the molecular forms with m  bound out of n  

independent identical binding sites  ,m TN U t  in response to the total ligand 

concentration jump from 
0TU  to 

1TU  according to Equations (2.26) and (2.51) 

are given by: 

1 0( , ) ( ( , )) ( ( , )) .m n m

m T T T TN U t L p U t p U t     (2.52) 

 

The concentration of multisite protein conformations, mN , bound to m  ligand 

molecules as a function of ligand concentration in steady-state is given by: 
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The ligand concentrations, 
max

mU , for the maximal values of intermediate protein 

conformations, ( )max

m mN U , can be found by differentiating Equation (2.53) with 

respect to TU and solving / 0m TdN dU   for 
TU : 

max

m T

K
U m L

n m


   

 
 (2.54) 

 

The corresponding maximal magnitudes for the intermediate conformations are 

given by: 

( ) ( )
m

max n m

m m T n

m
N U L n m

n

     (2.55) 
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The half maximal effective ligand concentration, 
0.5

0U  and 
0.5

nU , when the protein 

species equal half of the total concentration 
TL , for the apo- and saturated 

multisite protein conformations respectively, in this case are given by: 

 0.5

0

0.5

1 0.5 ,
0.5

0.5 .
1 0.5

n
T n

n
n T n

K
U n L

K
U n L


     

 


    

 

 (2.56) 

 

Next, the responses of a multisite protein with four identical binding sites to 

ligand concentration step change for two different protein concentrations, 

/ 2TL K   and / 50TL K  , are studied. Instead of considering absolute free 

ligand concentrations, we consider ratios of the ligand concentration to the 

affinities of the binding sites. Figure 2.10 shows that the free ligand 

concentration is barely affected by the interaction for / 2TL K  , while the free 

ligand is nearly exhausted as a result of the binding to the multisite protein for 

/ 50TL K  . Figure 2.10 is important due to the fact that it shows the 

concentration of free ligand as a function of time, which could not be 

reproduced in Section 2.3, where the ligand concentration was abundant. 
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Figure 2.10. The kinetics of free ligand concentration for high and low protein 

concentrations. 

The comparison of free ligand concentration dynamics (Equations (2.47)) after 

step change in ligand concentration from 
0 / 0.01TU K   to 

1/ 200TU K  . The 

amount of available ligand is barely altered for / 2TL K  , and exhausted when 

the ratio of total protein concentration to the binding constant is / 50TL K  . 

 

 

Figures 2.11A and 2.11B illustrate the model predictions for the intermediate 

and apo- as well as the fully saturated forms, respectively, in the borderline 

case, where the free ligand concentration is barely affected ( / 2TL K  ). Figures 

2.11C and 2.11D show the model predictions for the multisite protein in the 

case, where the free ligand is nearly exhausted. Figure 2.11 shows that while 

the shape of the individual apo-, intermediate and fully saturated forms is the 

same as in the case of the abundant ligand concentration (Figures 2.7 and 2.8), 

the strongest effect on the ligand availability, when the free ligand is limited, can 

be observed for the multisite protein conformations with three and four (fully 

saturated) bound ligands. A possible explanation for this phenomenon may be 

that the multisite protein conformations, which form complexes with smaller 

number of ligand molecules by definition, do not require significant amount of 

ligand and as a result are not strongly affected under conditions when the free 

ligand is limited. Whereas the multisite protein interactions with the larger 

number of ions occur after the significant amount of ligand is “used up” to form 

the intermediate conformations, however is still required for conformations with 

larger number of ions. As a result the final levels of the conformations with three 

and four ions are affected. It can also be seen from Figure 2.11 that the shapes 

of the intermediate conformations time dependencies are skewed. 
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Figure 2.11. The comparison between the cases where the free ligand 

concentration is barely affected by interactions and exhausted as a result of 

binding. 

The kinetics of multisite protein species alterations in response to step change 

in ligand concentration from 
0 / 0.01TU K   to 

1/ 200TU K   for two different ratios 

of the protein concentration to the affinities of the binding sites / 2TL K   (A for 

the intermediate species, B for the apo- and fully bound species) and / 50TL K   

(C for the intermediate species, D for the apo- and fully bound species). See 

Equation (2.52). The model predicts that due to the lack of available ligand and 

binding to the multisite protein in the case of limited amount of ligand, the 

multisite protein is unable to become fully saturated after the step change in 

ligand, and the majority of the ligand becomes distributed among the 

intermediate species. 

 

 

Differentiating Equation (2.52) with respect to t  and solving for / 0mdN dt   

yields (please see Appendix B for the derivation) the time 
max

m  when the 

concentration of multisite protein conformations, mN , bound to m  ligand 

molecules is maximal: 

( ( )),max

m H V m    (2.57) 
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Figure 2.12 shows the model predictions for the characteristic time required for 

intermediate protein conformations with one, two and three bound ligands to 

reach their highest concentrations in response to a step change in ligand 

concentration from 0 / 0.1TU K   to 1/TU K  and protein concentration / 3TL K  . 

The shapes of the curves in Figure 2.12 are similar to the ones that were 

observed for the case of abundant ligand concentration (Figure 2.6). However, 

the location of vertical asymptotes is different. In Figure 2.12 the curves are 

steeper, the asymptotes are shifted to the range of higher ligand step 

magnitudes 1/TU K  and located closer to each other compared to the 

concentrations of corresponding conformations shown in Figure 2.6. This result 

indicates that when the amount of ligand is limited and the protein concentration 

is / 3TL K  , more time is required to reach the maximum of intermediate protein 

concentrations. At the same time, when the amount of ligand is limited, there is 

less difference in time required to reach the maximums between intermediate 

conformations with one, two and three bound sites. 
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Figure 2.12. Model predictions for the time required for multisite protein 

conformations to reach their maximal concentrations. 

The characteristic times 
max

m k 
 (Equation (2.57)) for intermediate multisite 

protein conformations are shown as a function of the step change ligand 

concentration from 0 / 0.1TU K   to 1/TU K  and protein concentration / 3TL K  . 

 

 

Equation (2.52) is further used to define (please see Appendix B for the 

derivation) the time 0.5

0  required for the apo- form 0N  to reach half of the 

growth concentration and the time period 0.5

n  required for the fully saturated 

protein species to gain half of the growth concentration: 

0.5

0 ( ),H W    (2.59) 

0.5 ( ),n H Y    (2.60) 
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Figure 2.13A shows that the characteristic time 
0.5

0 , required for the apo- form 

to reach its half growth level, monotonically decreases with the increase of the 

total ligand concentration, which corresponds to the case when ligand 

concentration was abundant (Figure 2.5A). At the same time the model predicts 

(Figure 2.13A) that the curve is shifted to the range of higher 1/TU K  and the 

magnitude of the time 
0.5

0  for / 3TL K   is lower comparing to Figure 2.5A. Our 
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model predicts that less time is required for the apo- form to reach its half 

growth level in the case of limited ligand concentration. 

 

The characteristic time constant 
0.5

4 , which represents the time required for the 

saturated conformation to reach its half growth level, reveals a distorted bell 

shaped dependence on ligand concentration (Figure 2.13B). This bell-like 

shape, however with higher magnitude, was also observed in the case when 

ligand concentration was abundant (Figure 2.5B). The disturbance in bell-shape 

shown in Figure 2.13B is due to the ligand consumption. The model, therefore, 

predicts possible transient differences in multisite protein signal transduction in 

response to fast transient kinetics of multisite proteins. 

 

 
 

Figure 2.13. Model predictions for the time required for multisite protein 

conformations to reach their maximal and half growth concentrations. 

The characteristic times 
max

m k 
, 

0.5

0 k 
 and 

0.5

4 k 
 for intermediate (A) and apo- 

and fully bound (B) multisite protein conformations are shown as a function of 

the step change ligand concentration from 0 / 0.1TU K   to 1/TU K . See Equation 

(2.59) in (A) and Equation (2.60) in (B). 

 

2.5 Conclusions 

In this chapter we analysed multisite ligand-binding protein kinetics in response 

to rapid changes in ligand concentrations. Although in this chapter we 

considered the particular example of CaM, the results can be extended to other 

multisite proteins with the same number of binding sites, provided that ligand 

binds to each site independently, for example calcineurin (CaN) and troponin 

(TnC) [63,64]. 
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The model for multisite protein kinetics for variable number of bound ligands 

was developed for two physiological cases: i) when the concentration of ligand 

is much higher [105,106] and ii) when it is comparable with the concentration of 

the multisite protein [107]. Our model shows, for the first time to our knowledge, 

that under these two physiological cases the concentration of intermediate 

conformations as a function of time represents skewed bell shapes (Figures 2.7, 

2.8 and 2.11). This result is important as it was suggested in [7], using an 

example of CaM steady-state analysis, that the intermediate protein 

conformations can selectively activate a target protein. At the same time, our 

model predicts that the dependence of the apo- and fully saturated forms 

represents inhibitory and activatory monotonic shapes, respectively, for the two 

considered scenarios (Figures 2.4 and 2.11), which was also observed by 

[19,93]. 

 

In the second physiological case (denoted by "ii" above), we found that as the 

protein concentration rises (Figure 2.10), free ligand concentration becomes 

exhausted [14], which is opposed to the first case (denoted by "i" above), where 

the concentration of ligand is abundant. The results obtained by this model 

increase our understanding of differential activation of protein phosphatase 2B 

(PP2B) [108,109] and calcium/calmodulin-dependent protein kinase (CaMKII) 

kinetics [110,111]. PP2B binding increases the affinity of CaM for its targets 

[108] and, therefore, is likely be activated by low amounts of calcium. 

 

The analysis of the effects of cooperativity performed for the case of abundant 

ligand concentration (denoted by "i" above) showed that the shapes of the 

temporal dependences for corresponding protein conformations with 0, 1, 2, 3 

and 4 bound ligands of a molecule with four binding sites (for example, CaM) 

are the same for the two cases, where there is no cooperativity, and where the 

cooperativity is presented (Figure 2.9). However, the predictions for the case, 

where there is no cooperativity, and where the cooperativity is presented, differ 

quantitatively as shown in Figure 2.9. 

 

In this chapter, we also derived and analysed for the two physiological cases ("i" 

and "ii") the characteristic time 
max

m , when the concentration of the intermediate 
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protein conformations is maximal, and the characteristic times 
0.5

0  and 
0.5

4 , 

required for the apo- and fully saturated forms to reach their half growth level. 

Our analysis demonstrated that the dependences of 
max

m  on the final ligand 

concentration for the two considered cases have the same shape with 

asymptotes, however the predictions for 
max

m  differ quantitatively as shown in 

Figures 2.6 and 2.12 respectively. The dependences of 
0.5

0  and 
0.5

4  on the final 

ligand concentration represent monotonically decreasing inhibitory shape and 

bell shape respectively (Figures 2.5 and 2.13). 

 

The models developed in this chapter may have applications to analyse the 

results of kinetic experiments. One possible sort of experiment can include 

techniques to study chemical kinetics using the pressure jump technique 

[78,89,112]. According to our model, the effects induced by rapid change in 

pressure leading to the change in protein-ligand interactions [78,89,112], can be 

interpreted and explained by the alteration in the affinities of the binding 

constants of multisite proteins. The time dynamics of the individual multisite 

protein species may offer new insights into the biophysical mechanism of 

ligand-protein interactions in response to fast change in ligand concentration in 

transient kinetics experiments performed by the flash photolysis and stopped-

flow techniques [113-115]. 

 

In this chapter we developed physiologically more plausible model in 

comparison to the previously published model [93]. Due to the structure of CaM 

molecule we assumed that calcium binding to CaM is non-sequential 

(consistent with [20]), which is opposed to [93]. Therefore, the results obtained 

by the model proposed in this chapter, may allow for a more accurate 

interpretation of the experimental data for the concentration of multisite proteins 

such as CaM, TnC, CaN and other Ca2+-dependent secondary messengers 

regulated by Ca2+ ions. The model predictions presented in this chapter suggest 

that the highly versatile intracellular multifunctionality of multisite proteins is 

achieved not only by the order of ligand-protein interactions and the number of 

bound ligands, which was demonstrated in [7], but also by temporal regulation. 
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3 A systems model of phosphorylation for 
inflammatory signalling events 

3.1  Literature review 

3.1.1 Biological review 

Phosphorylation of proteins 

Phosphorylation is the enzymatic reaction, by which a phosphate group is 

added to a protein. It leads to either activation or deactivation of proteins, which 

form phosphorylation networks [5]. The addition of a phosphate group can occur 

either on a single site or on several sites of the protein molecule, the latter is 

known as the multisite phosphorylation [116]. Multisite phosphorylation plays a 

key role in a number of processes, for example, in Protein Kinase A (PKA) 

activation of the smooth muscle ATP-sensitive K+ channel involved in the 

function of vasodilators [117], in the activation of Hog1 kinase that controls 

osmo-adaptation properties in yeast [51], in the activation of the epidermal 

growth factor receptor (EGFR) that is targeted in anti-cancer therapies 

[118,119]. Multisite phosphorylation is also important in T- and B- cells 

activation. Aberrations in the phosphorylation mechanism of immunoreceptor 

tyrosine activation motifs (ITAMs) of the T-cell receptor (TCR), which lead to 

abnormal T-cell activation, are reported to give rise to autoimmune diseases 

[120,121]. 

 

Phosphorylation plays a critical role in the regulation of the immune system 

[122]. However, there is a clear gap in the mechanistic understanding of the role 

of multisite phosphorylation in this process. Phosphorylation governs protein 

signalling via Signal Transducers and Activators of Transcription (STAT) 

proteins [123-125]. 

 

The phosphorylation of STAT proteins is critical for many fundamental cellular 

processes such as proliferation, differentiation, cell growth and survival [126]. It 

operates in the ubiquitous JAK/STAT pathway. A considerable amount of 

experimental evidence shows that dysfunction in the JAK/STAT signalling 

mechanisms leads to inflammatory diseases [127-132]. In the next chapter 

STAT-STAT interactions will be described in more detail. 

 



67 
 

The multisite phosphorylation regulates the activity of Interferon Regulatory 

Factor 5 (IRF-5). This is a latent transcription factor involved in autoimmunity 

[133]. IRF-5 is known to contain six phosphorylation sites: Thr10, Ser158, 

Ser309, Ser317, Ser451 and Ser462 [134,135]. 

 

IRF-5 and STAT3 are involved in the regulation of T cell differentiation 

[136,137]. The T cells differentiate in the thymus and are involved in cell 

mediated immunity. They circulate in the lymphoid organs and the blood in the 

form of naive T cells, which have not been in contact with antigens yet. After an 

interaction with the antigen, the naive CD4+ T cells are activated and can 

differentiate into the specific T cell phenotypes, namely T helper 1 (Th1), Th17 

and regulatory T cells (Tregs). Each of these phenotypes has its own function in 

the regulation of the immune response and a specific cytokine signature. Th1 

and Th17 cells play a critical role in the regulation of the activity of the immune 

response and inflammation. Tregs are known for their anti-inflammatory 

properties and for maintaining the immune tolerance. Th1 cells are defined by 

expressing cytokine IFN-γ, Th17 cells express cytokine IL-17 and Tregs 

express cytokine IL-10 [138,139]. The specific phenotype is induced by the 

expression of the specific cytokines. For example Th1 is induced by IL-12, Th17 

by IL-6 and Tregs by TGF-β. These cytokines activate specific transcription 

factors, involved in the differentiation of the T cell subsets [140]. Thus, the 

differentiation of T cells is a complicated process involving a complex scheme of 

regulation by cytokines and transcription factors. 

 

Protein phosphorylation also controls such properties of erythrocytes as 

aggregation and deformability. Erythrocytes maintain the concentration of 

oxygen and carbon dioxide in tissues in a given range of values, in accordance 

with the needs of metabolism. This is mainly provided by the intensity of 

ventilation, the regulation of the heart, pre-capillary sphincters, and sphincters 

of arterio arteriovenous anastomoses. It was shown that the following 

parameters of erythrocytes can change: the ability to form rouleaux known as 

aggregation and the ability to change their shape under action of external forces 

known as deformability [141-145]. The aggregation and deformability of 

erythrocytes are important for the physiological functioning of the cell and gas 

transmission function [31]. 
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The process of erythrocyte aggregation is sophisticated and multifactorial. It has 

a significant impact on the main oxygen transport function of the blood. 

Aggregation facilitates the axial drift of the red blood cells and the formation of 

plasma sheet boundary level [146,147]. The increased axial accumulation level 

of red blood cells reduces the local viscosity in the wall zone of the vessel 

[148,149] and thereby modulates the activity of the vascular regulatory 

mechanisms [150] and reduces oxygen release to the vessel walls [151]. For 

capillaries the efficiency of bloodstream depends on aggregation and 

deformability [141-145], and it increases for increasing deformability and 

diminishing aggregation. 

 

3.1.2 Modelling review 

Phosphorylation models 

Numerous studies designed to understand phosphorylation-mediated regulatory 

mechanisms. Early models employed Michaelis-Menten kinetics of the simplest 

phosphorylation reaction [23]. This model was expanded to include multiple 

phosphorylation reactions and demonstrated how these could enhance the 

sensitivity of biochemical systems [152]. It was also reported that this system 

represents a switch when the total concentration of the substrate protein 

significantly exceeds the concentration of the enzyme [29]. 

 

The classical models [23,152] assume that it is possible to ignore the 

concentrations of the Michaelis complexes in those cases where the total 

concentration of protein significantly exceeds the concentrations of the kinase 

and the phosphatase. This approach was used as a basis in many models of 

biochemical networks with phosphorylation-dephosphorylation reactions [24-26] 

and was later extended to multisite phosphorylation [27,28]. However, in real 

biological systems the concentrations of intermediate phosphorylation 

complexes cannot always be neglected because the concentrations of kinases, 

phosphatases and proteins can be comparable [29]. 

 

The proportion of maximally phosphorylated protein as a function of the kinase 

and phosphatase activities was recently determined to show that steeper 
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switch-like regulation is due to increasing of number of phosphorylation sites 

[153]. Moreover, the presence of multiple phosphorylation sites enhances the 

probability of bistable behaviour of the system when the multisite molecule is 

tethered with scaffold proteins [154]. The multisite phosphorylation can be 

distributive, when the sites are phosphorylated in a random order, or 

processive, where the sites are phosphorylated sequentially [155]. The 

properties of a bistable switch have been investigated to conclude that the 

mechanism must include independent, i.e. non-sequential phosphorylation, to 

generate multiple steady states and that bistability is more likely with a large 

number of phosphorylation sites [156]. It was also reported that increasing 

number of phosphorylation sites improves the ultrasensitivity of a dose 

response [157]. 

 

Several models for STAT3 and IRF-5 phosphorylation as part of larger models 

have been published recently. A classical approach for the phosphorylation of 

STAT3 by JAK was employed in [158]. Another report proposed sigmoid Hill 

functions (Equation (7.16) in Appendix A) for phosphorylation of STAT3 [159]. 

An explicit mathematical model for IRF-5 phosphorylation is not currently 

available, but the phosphorylation of IRF-3 as part of the TLR4 pathway was 

considered [160]. 

 

Erythrocytes have also been a subject of mathematical models in a number of 

systems biology studies due to their relative simplicity. Early studies captured 

only the glycolytic pathway [161]. Then the model was expanded to include the 

pentose phosphate pathway [162]. The first sophisticated model included the 

sodium–potassium pump and the membrane transport [163]. These 

mathematical models are good examples of attempts to model human 

erythrocyte metabolism, but they do not include such properties of erythrocytes, 

as aggregation and deformability. 

 

3.2 Aims and objectives of this chapter 

In the previous chapter we considered the kinetics of multisite ligand binding to 

proteins. In the current chapter we study steady-state of multisite 

phosphorylation of proteins. The aims of this chapter are:  
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 build new models for single- and multisite phosphorylation taking into 

account the concentrations of enzyme-substrate complexes, 

 compare the proposed models with previously reported models 

[27,28,153,154,157] in the context of intracellular signalling of the 

inflammatory circuits [164,165], 

 specifically, apply the proposed models to investigate the regulation of 

STAT3 and IRF-5 signalling pathways as well as the aggregation and 

deformability in erythrocytes, 

 employ the developed models to investigate the parametric sensitivity of 

the inflammatory circuits in response to various inflammatory co-stimuli. 

 

The models proposed in this chapter were published in papers [30] and [31], but 

in this chapter, only my contribution is described. 

 

3.3 A new model for phosphorylation 

In this section a model for phosphorylation in the inflammatory signalling events 

is presented. The new model is based on and extends the previously published 

model for phosphorylation [23]. Therefore, the results in this chapter will be 

compared with the results obtained by employing the model in [23].  

 

It was shown that IRF-5 contributes to the polarization and plasticity of 

macrophages [164]. Pathogens such as bacteria and viruses cause the 

activation of the Toll-Like Receptors (TLRs). This signalling leads to the 

activation of IRF-5 [166] and the production of pro-inflammatory interleukins IL-

6, IL-12 and IL-23 [164,167]. These cytokines are able to activate STAT3 and 

result in the Th17 differentiation [165,168]. Treg cells then can switch to Th17 

cells [169] which in turn then can switch to Th1 subpopulation [170]. In this 

section we introduce an assumption based on the reported experimental data 

that different types of signals result in different types of immune response.  

 

Figure 3.1 schematically represents the experimental data [164-170] based 

assumptions for the role of IRF-5 and STAT3 in T cell fate determination. Due to 

the highly competitive nature of the pathways in the scheme any disturbances in 
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the mechanism, for example STAT3 overexpression [171] or overexpression of 

interleukin receptors [172], may lead to the enhancement of the role of other 

cytokines and possibly to pathological states. Such possible disturbances are 

schematically represented by red arrows while the normal regulation is 

highlighted by green arrows (Figure 3.1). The arrows with the names of 

cytokines represent the cytokines that are produced by the activation of 

upstream proteins and activate downstream proteins. The unlabelled arrows 

indicate activation of proteins caused directly by activation of upstream 

elements. Since the classical approach [23] offers limited power for the 

regulation of the phosphorylated protein magnitude as it will be shown later in 

Figures 3.3, 3.5 and 3.9, it might potentially lead to incorrect description of 

protein phosphorylation level. 

 

Our model assumes that the perturbations can occur at the level of STAT3 or 

IRF-5 proteins. Later in this chapter we will study the influence of the parameter 

changes corresponding to these perturbations on the activity of STAT3 and IRF-

5 comparing it with the previously published model [23] and discuss their impact 

on the T cell phenotype formation and plasticity. As it will be shown later, the 

proposed model may offer physiologically more accurate description of the role 

of multisite phosphorylation regulation of the T cell differentiation due to the fact 

that we consider the concentrations of enzyme-substrate complexes, which 

were neglected in [23]. 
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Figure 3.1. A schematic diagram for the dependence of T cell differentiation on 

intracellular phosphorylation signalling. 

A vast amount of experimental evidence suggests that T cell phenotypes 

depend on the intracellular phosphorylation signalling mechanisms [164-170]. 

Environmental factors, genetic mutations, cellular and intracellular factors 

influence the underlying phosphorylation mechanics. The cartoon summarises 

possible differential responses of TLR downstream phosphorylation signalling 

events to pathogens leading to the distinct polarization of naive T cells into 

three distinct phenotypes Th17, Th1 and Treg. According to this model 

activation or interplay of phosphorylation pathways is responsible for selective 

differentiation. The model suggests that the cell plasticity observed under 

pathological conditions can be due to altered intracellular phosphorylation 

patterns, which are, in turn, dependent on the extracellular cytokine 

environment. The arrows with cytokine names represent the cytokines that are 

produced by the activation of upstream proteins and activate downstream 

proteins. The unlabelled arrows indicate activation of proteins caused directly by 

activation of upstream elements. Malfunctions are schematically represented by 

red arrows while the normal regulation is highlighted by green arrows. 

 

 

In the following subsections we will provide a mathematical description of the 

developed model for protein phosphorylation. To do this, we will use the law of 
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mass action [173] and consider the phosphorylation-dephosphorylation cycle. 

Since a single phosphorylation event is simpler than a multisite phosphorylation 

event, we will start our description with the single site phosphorylation. When 

considering the multisite protein phosphorylation, we assume that the multisite 

protein has identical phosphorylation sites. Therefore, the phosphorylation of 

each site can be considered as an independent event as it will be shown later in 

the following subsections. 

 

3.3.1 Single site phosphorylation 

Here we consider a general mechanism of phosphorylation of protein A  by the 

kinase K  and dephosphorylation by phosphatase P . 

The reactions can be represented as follows: 

1
2

1

3
4

3

P

P P

K A KA K A

P A PA P A

k
k

k

k k

k





  

  

  (3.1) 

 

We introduce the following notation:  A ,  PA  – the concentrations of the non-

phosphorylated and phosphorylated protein respectively, TK , TP , TA  – the total 

concentrations of the proteins in an active form,  K ,  P – the concentrations of 

free proteins,  KA ,  PPA  – the concentrations of kinase-protein and 

phosphatase-protein complexes, respectively. The kinetic equations of this 

molecular system are given by: 
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The conservation equations for the elements involved in the above reactions 

are as follows: 
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  (3.3) 

 

The steady-state solutions of  KA  and  PPA  can be written as follows: 
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  (3.4) 

where 2 1

1

P

k k
K

k


  and 4 3

3

F

k k
K

k


  are the Michaelis constants for the 

phosphorylation-dephosphorylation reactions. 

 

The rate of change of  PA  can be written as a function of  KA  and  PPA : 

 
   2 4 .P

P

d A
k KA k PA

dt
    (3.5) 

 

From Equations (3.3), (3.4) and (3.5) it can be written: 
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  (3.6) 

 

The non-dimensional form of the Equations (3.5) and (3.6) can be written as 

follows: 

3 ,
pda

h x y
d

     (3.7) 
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where 
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According to the above notation, Equations (3.4) in non-dimensional form are 

given by: 

4 5
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   (3.9) 

 

We can therefore rewrite the law of mass conservation for  A  as follows: 

1 .pa a x y      (3.10) 

 

In [23], the steady state solution of 
pa  was found for 1, 1x y  . The 

sufficient condition to satisfy 1, 1x y   is ,T T T TK A P A  , which means 

4 5
, 1h h  . This implies that the concentrations of these complexes are 

negligible comparing to 
pa  and the solution can be written as follows: 

 
(3.11)

 

 

In general, conditions 1, 1x y   are not satisfied. We find an accurate 

solution of Equation (3.8). From Equations (3.9) we obtain: 

1
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   (3.12) 
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where 
3y h x  according to the steady state of Equation (3.7) when 0

pda

d
 . 

 

Substituting Equations (3.12) into Equation (3.8) for steady state, we obtain: 

 2 31

3

4 5 5 3

1 1.
h h xh x

x h
h h x h h x

   
 

  (3.13) 

The range of x  is limited and determined from the conservation equations: 

5
4 5

3

0 min , .
h

x h h
h


  

 
 

 

It can be shown that Equation (3.13) has one real root and two complex 

conjugate roots. Equation (3.13) can be written as follows: 

   2 31

3

4 5 5 3

1 1 .
h h xh x

x h f x
h h x h h x

    
 

  (3.14) 

 

For any real positive values of the parameter  1 5ih i  , ( )f x  is a 

monotonically increasing function (it is continuous on the domain 

5
4 5

3

0 min ,
h

x h h
h


  

 
 and its derivative is positive for any value of 

ih ), it has one 

intersection point with the horizontal axis, where ( ) 0f x  , which means that 

there is only one real root of Equation (3.14).  

 

We find the real root of Equation (3.14). Equation (3.13) can be transformed to 

the following equation: 

3 2

5

4 5

3
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x bx cx d

h
h h x x
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  (3.15) 

where 
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  (3.16) 

Since the domain is 5
4 5

3

0 min ,
h

x h h
h


  

 
, the roots of the numerator in Equation 

(3.15) are equal to the roots of Equation (3.15), thus the latter can be simplified 

as: 

3 2 .x bx cx d      (3.17) 

 

To find the roots of Equation (3.17) we use Cardano’s method. Based on the 

fact that this equation has one real root 
1x  and two complex conjugate roots 

r ip  and r ip , it can be written as follows: 

     3 2

1 .x bx cx d x x x r ip x r ip                 (3.18) 

 

Thus there is a system of equations for 
1x , r  and p : 

 

1

2 2

1

2 2

1

2 ,

2 ,

.

x r b

x r r p c

x r p d

 

  

 

  (3.19) 

 

To simplify the above system of equations, we use the following parameters:  

  

(3.20)

 

 

Solving the system described by Equation (3.19), the real solution of Equation 

(3.14) can be obtained: 



78 
 

2

1

1

1 132 .
3 2

c b

x b DD
DD


 

   
 

  (3.21) 

 

Figure 3.2 shows the solutions for 1x  as a function of 4h  for the different total 

protein to kinase concentration ratios (Figure 3.2A) and for the different 

phosphorylation to dephosphorylation ratios (Figure 3.2B). This figure clearly 

demonstrates that the solution (3.21) is within the domain 5
4 5

3

0 min ,
h

x h h
h


  

 
, 

thus there is only one real positive root of Equation (3.17). 

 

 

 
 

Figure 3.2. Check of the feasibility of the solutions for the kinase-protein 

complexes concentrations. 

Equation (3.17) has one real positive root in the domain  1 4 5 5 30 min , /x h h h h  . 

Here we verify that the value of 
1x  provided by (3.21) shown in y-axis is within 

this domain for different 5h  (A) and different 3h  (B) as a function of 
4h  (x-axis). 

Solid lines represent the solutions (3.21) while dashed lines represent the upper 

bound of the domain, 4 5 5 3min( , / )h h h h . The parameters are 1 1h  , 2 1h  , 3 1h   in 

(A) and 1 1h  , 2 1h  , 5 1h   in (B). 

 

 

Thus, a steady-state solution for pa  in a general form is: 

  
(3.22)

 

where 
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From Equations (3.12), parameters 
1h  and 

2h  can be obtained: 
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  (3.23) 

 

Since TK , TP , TA  are known and  A ,  PA ,  KA ,  PPA  can be measured 

experimentally, we can find the Michaelis constants PK , FK : 
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  (3.24) 

 

3.3.2 Multisite phosphorylation 

In this subsection we consider a system with m  independent phosphorylation 

sites. The ODEs and the equations describing the final formula for the 

concentration of the protein phosphorylated at one single site are the same as 

in the previous subsection, but the conservation equation for the total amount of 

protein differs from Equations (3.3). Instead of TA , the total amount of protein is 

TmA  as the molecule has m  phosphorylation sites: 

       .T P PmA A A KA PA      (3.25) 

 

In this case, the normalised parameters are written as follows: 
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When q  out of m  sites are phosphorylated it can be assumed that these 

events are independent and the sites are identical. Thus, the multisite 

phosphorylation is a combinatorial problem and can be considered in terms of 

the probabilities of the protein to be phosphorylated at distinct sites. Hence, the 

concentration of the protein phosphorylated at q  out of m  phosphorylation 

sites is proportional to the sum of all molecule combinations: 

,q q m q

m p

m
s a a

q

 
  
 

  (3.26) 

where 
pa  is the probability of the protein to be phosphorylated at a single site, 

a  is the probability of the protein to be non-phosphorylated at a single site and 

m

q

 
 
 

 is a binomial coefficient. 

 

Equation (3.26) can be written in detail as follows: 

 
!

! !
.q q m q

m p

m
s a a

q m q




  (3.27) 

 

3.4 Applications of the developed models (Equations 3.11, 3.22 

and 3.27) to the regulation of the proteins activity  

3.4.1 STAT3 phosphorylation 

STAT3 can form a dimer and be activated when it is phosphorylated at one site 

by JAK and dephosphorylated by SHP-1. Thus, Equations (3.11) and (3.22) can 

be used to denote the STAT3 concentration. The following notation is used in 

our model: 
3 4 5

1
,  , 

1 3

P T T

D T T

k JAK SHP
h h h

k SHP STAT
   . 

 

Figure 3.3 shows the model predictions for the normalised steady-state 

activities of the phosphorylated STAT3 proteins denoted by STAT3p (Figure 

3.3A) and highlights the differences of the predictions for the phosphorylated 

STATs between the newly developed model (3.22) and previous simple model 
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(3.11) described in [23]. The model proposed in this chapter is consistent with 

the experimental observations of the phosphorylation events [164-168,170] 

summarised in Figure 3.1 and predicts the mechanisms for the role of SHP-1 in 

modulation of the signal transduction via STATs [44, 45]. At the same time, 

some of the predictions of the presented and earlier models partially coincide 

for those cases when the JAKT kinase and the SHP-1T phosphatase 

concentrations are significantly smaller than the total concentrations of STAT 

proteins (STAT3T). However the model predictions differ when the 

corresponding concentrations are similar. 
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Figure 3.3. Model predictions for the concentration of STAT3p phosphorylated 

by JAK and dephosphorylated by SHP-1. 

Investigation of the dependence of STAT3 phosphorylation on the relative 

activities of JAK and SHP. A. Cartoon diagram of STAT3 phosphorylation and 

dephosphorylation by JAK and SHP-1, respectively. B. A comparative analysis 

of the dependencies (Equations (3.11) and (3.22) with 1 1h  , 2 1h  , 3 1h  , 

4 / -1T Th JAK SHP ) produced by the proposed model and the previously 

published models for STAT3 phosphorylation (y-axis). Ratios of JAK and SHP-1 

(x-axis) are found to be critical for STAT3 phosphorylation response and the 

differences between the model predictions. The red line shows the predictions 

by [23] whereas the black line offers predictions from the presented model. The 

STAT3 phosphorylation predictions coincide when STAT3 significantly exceeds 

SHP-1 concentration. C. The effects of phosphorylation and dephosphorylation 

rates are studied on the proposed (black line) and previously reported (red line) 

models [23]. See Equations (3.11) and (3.22) with 1 1h  , 2 1h  , 4 1h  , 

4 / -1T Th JAK SHP . We found that our model predicts the modulation of 

phosphorylated STAT3 as opposed to the prediction of STAT3 phosphorylation 

rate offered by [23]. D. The difference s d

p pr a a  , where s

p pa a  from Equation 

(3.11) and d

p pa a  from Equation (3.22), between the simple model [23] and the 

model developed in this chapter is shown as a function of 

phosphorylation/dephosphorylation rates for various ratios of JAK and SHP-1. 

The parameters are 1 1h  , 2 1h  , 3 /P Dh k k , 5 1h  . This analysis clearly 

demonstrates the differences in STAT3 phosphorylation predictions due to the 

underlying assumptions employed in the simple model. 
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The figures show that the system may operate in a switch-like manner with an 

increasing concentration of JAKT kinase, which leads to the ultrasensitivity that 

is characterised by the concentrations of STAT3p being more sensitive to 

change in stimulus than would be expected from a Michaelis-Menten response 

[23]. This all-or-none characteristic of the response is observable not only in this 

particular system but in other cell systems such as Xenopus Oocyte extracts 

[53,174], the glycogen cascade system [175], and ligand-receptor complexes 

[176]. 

 

Figure 3.3B shows the normalised concentration of phosphorylated STAT3 as a 

function of the kinase to phosphatase ratio (total amounts of JAK and SHP-1, 

respectively). The model predicts that the degree of STAT3p activity depends on 

the ratio of the total STAT3 and SHP-1 concentrations. This prediction differs 

from the previous study [23], where the derived formula for phosphorylation 

could not reproduce this effect under certain physiological conditions, for 

example when the total concentration of protein (STAT3) is comparable or lower 

than the total concentration of phosphatase (SHP-1) [29]. This is due to the fact 

that the concentrations of kinase-protein and phosphatase-protein complexes 

were neglected in previous work [23]. At the same time, the model predictions 

virtually coincide with the predictions from [23] if the concentration of SHP-1T is 

significantly (100 times) smaller than STAT3T. However, our model offers 

different predictions for comparable or higher phosphatase concentrations than 

STATs, consistent with the T cell phenotype dependence on intracellular 

phosphorylation signalling summarised on Figure 3.1 [164-168,170]. The 

proposed results are significant, as the relative ratio of STAT3 and SHP-1 was 

shown to be critical in T cell breast lymphoma and Hepatocellular Carcinoma 

pathologies [177,178]. The significance of the results can be seen from the 

following observations. The activation of STAT3 leads to the formation of 

inflammatory Th17 cells (Figure 3.1). Therefore, in order to reduce inflammation 

the magnitude of phosphorylated STAT3 should be lowered. Figure 3.3B shows 

that this can be achieved by increasing the ratio between the total SHP-1 and 

STAT3 concentrations in the developed model, which was not predicted by the 

previously published model [23]. 
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Our calculations suggest that if the STAT3T and SHP-1T concentrations are 

comparable, the phosphorylated STAT3 species (STAT3p) increase as a 

function of the ratio of the forward phosphorylation reaction rate, 
Pk , to the 

forward dephosphorylation rate, Dk  (Figure 3.3C). The introduction of the 

kinase-protein and/or phosphatase-protein complexes enables additional 

regulatory capacity of the STAT signalling events. While the simplified model 

predicts earlier or later STAT activation on the relative kinase/phosphatase 

activity scale, the new model suggests additional regulatory steps taking place 

via modulation of the total amplitude. This result is critical from the 

immunological point of view, as it might potentially explain the molecular basis 

of the functional plasticity of T cell phenotypes. According to our model, T cell 

populations may undergo different transcriptional activation events in response 

to the same stimuli due to different kinase and phosphatase activity levels. 

Furthermore, since the kinase and phosphatase activities are subject to short 

and long term modulation, this gives rise to possible phenotype switching. It is 

critical to highlight that the plasticity effects can be described using the 

proposed detailed phosphorylation reaction model only. The range of the tested 

parameters suggests that the difference r  between the previously published 

model, Equation (3.11), and the proposed model, Equation (3.22), is due to the 

structure of the models (Figure 3.3D). 

 

Our analysis suggests that the STAT3 phosphorylation system with switch-like 

characteristics depends on the parameters of the model. The approach 

proposed by Goldbeter and Koshland [23] is only applicable for limited 

physiological conditions when the concentration of JAKT and SHP-1T are 

significantly smaller than that of STAT3T. While these situations can occur in 

nature, most living cells exhibit comparable concentrations of enzymes and their 

substrates. Therefore, the physiological range of applications considered in [23] 

is rather limited and all other phosphorylation events require the extended 

analysis described in this chapter. 

 

3.4.2 IRF-5 phosphorylation 

We next investigate multisite phosphorylation reactions in other inflammatory 

signalling pathways and studied the activation of IRF-5 as an example. IRF-5 is 
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phosphorylated by the TBK-1 kinase and dephosphorylated by Alkaline 

Phosphatase (AP) (Figure 3.4A) [134,135,179]. Our model assumes that the 

molecule contains 6 independent phosphorylation sites. In this case we use 

Equation (3.27), assuming 3 4 5

1
,  , 

5

P T T

D T T

k TBK AP
h h h

k AP IRF
   . 

 

Figure 3.4B shows the model predictions for the distribution of the 

phosphorylated IRF-5 species. It can be seen from Figure 3.4B that the shape 

of the fully-phosphorylated (blue line) protein species qualitatively coincides with 

the case of the single site phosphorylation reaction (Figures 3.3B and 3.3C). 

However, Figure 3.4C shows that the steepness of the phosphorylation 

response is higher in the multisite phosphorylation reaction (blue line) compared 

to the single site phosphorylation case (red line). Figure 3.4B shows the bell-

shaped dependence for the intermediate species and provides a clear 

explanation as to how receptor-mediated activatory events can be followed by 

inhibition in response to the same signal. The model predictions for the bell 

shapes of the intermediate phosphorylated protein species in the multisite 

phosphorylation reactions obtained in this chapter are consistent with previously 

reported results (Figure 1 in [156]) and qualitatively consistent with the 

experimental data [134,135]. 
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Figure 3.4. Multisite phosphorylation enables switching between multiple T cell 

phenotypes. 

A. Schematic diagram of IRF-5 phosphorylation and dephosphorylation by TBK-

1 and AP, respectively, represents one of many intracellular 

multiphosphorylation examples observed in the immune system. Experimental 

evidence suggests that proteins phosphorylated at different phosphorylation 

sites may have selective activity [135,180] and give rise to distinct T cell 

populations [181]. B. Model predictions for distribution of IRF-5 phosphorylated 

species (Equation (3.27) with 1 1/6h  , 2 1/6h  , 3 1h  , 4 /T Th TBK AP , 5 1/6h  , 

6m  , 0,1,...,6q  ). Extracellular environment, which is modelled as the ratio of 

total TBK-1 to AP concentration, is hypothesized to cause the distribution of 

IRF-5 phosphorylated species: one site phosphorylated (black), two (magenta), 

three (yellow), four (cyan), five (grey) and six (blue). According to the proposed 

model extracellular environment can actively change the ratio of IRF-5 

phosphorylated species and thereby contribute to the mechanism of T cell 

plasticity by modulating the numbers of T cell phenotypes. By the ratio of IRF-5 

phosphorylated species we mean the concentration of phosphorylated IRF-5 

species with corresponding number of phosphorylated sites. C. The dose-

response curve for fully phosphorylated IRF-5 (blue line), which has 6 

phosphorylation sites, is steeper comparing to the single-site protein (red line). 

Equation (3.27) is used with 1 1/6h  , 2 1/6h  , 3 1h  , 4 /T Th TBK AP , 5 1/6h  , 

6q m   (blue line) and 1q m   (red line). 
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We compare our model predictions for the concentration of phosphorylated 

IRF-5, Equation (3.27), with the model predictions of previously reported 

method of Goldbeter and Koshland [23]. There are two key biochemical factors 

that may significantly vary in living cells and thereby affect the signalling 

properties: the ratio of total protein to kinase and phosphatase concentrations 

and the rates of phosphorylation, Pk , and dephosphorylation, Dk , reactions. Due 

to the fact that in experiments, concentration of phosphatases can often be 

varied while the kinases concentration is not always possible to vary, we do not 

vary the phosphatase concentration and change the kinase activity only, since it 

is more interesting. 

 

Our analysis shows that alterations of phosphorylation rates and total IRF-5 to 

AP ratios do not have any impact on the model in [23]. Figure 3.5 shows the 

range of the model prediction for the described variation of parameters. It can 

be seen from the Figure 3.5 that for comparable phosphorylation to 

dephosphorylation rates, the non-phosphorylated form of IRF-5 appears to be 

dominant (Figure 3.5A). At the same time, the predictions from this model 

coincide with the predictions from [23] shown in Figure 3.4B, both when the 

phosphorylation and dephosphorylation rates are of the same order (Figure 

3.5B) or different (Figure 3.5F), but only when the total amount of the IRF-5 

concentration exceeds AP. We next decrease the phosphorylation rate (Figure 

3.5C and Figure 3.5D) and investigate the case of comparable IRF-5 and AP 

concentrations (Figure 3.5C) compared with the case where the total 

concentration of IRF-5 is much larger (Figure 3.5D). The model predicts that 

most of the potential multisite protein species would remain unphosphorylated 

in the former case (Figure 3.5C), and would have a distribution very similar to 

the case of comparable phosphorylation rates and concentration shown in 

Figure 3.5A (Figure 3.5D). Our model predicts that the overall amount of all the 

phosphorylated protein species decreases significantly when the total TBK-1 

concentration is comparable with the total IRF-5 concentration (Figure 3.5E). 

Thus, the model predictions shown in Figures 3.5A, 3.5C, 3.5D and 3.5E differ 

from the model predictions obtained by [23] and shown in Figure 3.4B. 
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Figure 3.5. Theoretical investigation of the regulation of IRF-5 multisite 

phosphorylation. 

The distribution of IRF-5 species is investigated as a function of kinase to 

phosphatase (TBK-1 to AP) ratio for comparable IRF-5 and AP concentrations 

(A), IRF-5 significantly exceeds AP (B). Similar analysis is also performed when 

the phosphorylation rate was significantly lower than dephosphorylation rate 

and comparable IRF-5 and AP concentrations (C), IRF-5 significantly exceeds 

AP (D). The effects of changes in the phosphorylation to dephosphorylation 

ratio on the IRF-5 species were also investigated with comparable IRF-5 and 

AP concentrations (E), IRF-5 significantly exceeds AP (F). The presented 

analyses clearly show that the phosphorylation/dephosphorylation parameters, 

modulated via extracellular cytokines have prominent impact on the distribution 

of phosphorylated species. Therefore, physiological or pathological alterations 

of these parameters represent the multisite phosphorylation-mediated 

mechanism of T cell plasticity. Here we use Equation (3.27) with 1 1/6h  , 

2 1/6h  , 4 /T Th TBK AP , in (A), (B), (C) and (D), 1 1/6h  , 2 1/6h  , 3 /P Dh k k  in 

(E) and (F). 
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Our results suggest that the selective activity of the multisite phosphoprotein-

mediated response is regulated by the ratio of the total amounts of the protein 

to phosphatase and by the relative rates of the phosphorylation-

dephosphorylation reactions. These effects were not observed in previously 

reported mathematical models of phosphorylation [23,26,29,116,182]. The 

comparison of our analysis with experimental data [164-168,170] summarised in 

Figure 3.1 allows us to conclude that the multisite phosphorylation reactions 

enable diverse cellular activatory profiles in response to slight variations in the 

extracellular signal. 

 

3.4.3 Phosphorylation in the control of aggregation and deformability of 
erythrocytes 

Human erythrocytes are highly specialised enucleate cells that are involved in 

providing efficient gas transport. Erythrocytes have been extensively studied 

both experimentally and by mathematical modelling in recent years. However, 

understanding of how aggregation and deformability are regulated is limited. 

These properties of the erythrocyte are essential for the physiological 

functioning of the cell. 

 

The model proposed in this subsection for the phosphorylation of EF1 and EF2 

proteins that control aggregation and deformability of erythrocytes, was 

employed by the authors in [31]. The authors proposed a novel mathematical 

model of the molecular system that controls the aggregation and deformability 

of the erythrocyte and suggested fundamentally new mechanisms that regulate 

the aggregation and deformability in a latch-like manner. The results of this 

work could be used as a possible explanation of how the erythrocytes regulate 

their aggregation and deformability, which are essential in understanding 

erythrocyte disorders and aging. In this subsection the module that includes 

phosphorylation of EF1 and EF2 proteins is described. 
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Figure 3.6. Phosphorylation of EF1 and EF2 proteins controls the aggregation 

and deformability of erythrocytes. 

Calcium regulates the activity of cAMP- and cGMP- dependent protein kinases 

(PKA and PKG respectively), which in turn phosphorylate EF1 and EF2 proteins 

involved in the regulation of the aggregation and deformability of erythrocytes. 

Dephosphorylation of EF1/EF2 proteins is performed by PP2A phosphatase. 

 

 

Figure 3.6 schematically represents the structure of the model developed in this 

subsection. Calcium ions (Ca2+) bind Ca2+ dependent protein calmodulin (CaM) 

at four binding sites and activate it. CaM controls the shape of erythrocytes 

[183] and the activation of cyclic adenosine monophosphate (cAMP) and cyclic 

guanidine monophosphate (cGMP). Changes in the concentration of cyclic 

monophosphates modulate the activity of cAMP-dependent protein kinase 

(PKA) and cGMP-dependent protein kinase (PKG). These kinases and 

phosphatase PP2A define the phosphorylation level of the membrane proteins 

EF1 and cytoskeleton EF2. Phosphorylation of certain proteins affects the 

rheological properties of blood due to changes in aggregation and deformability 

[184]. PKA and PKG kinases phosphorylate EF1 and EF2 proteins, which are 

responsible for the aggregation and deformability of erythrocytes, while PP2A 

dephosphorylates them (Figure 3.6). 

 

The activity of cAMP dependent kinase PKA is determined by the concentration 

of cAMP. There are four cAMP binding sites of PKA. When the complex of PKA 

with cAMP is formed, kinase PKA dissociates into four fragments, two of which 

have the enzyme activity [185]. According to Equation (2.15) for 4n  , it can be 

written for the concentration of PKA as a function of calcium: 
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4

[ ( )]
[ ( )] 2 ,

[ ( )]
T PKA

cAMP

cAMP ca
PKA ca PKA

K cAMP ca


   

 
  (3.28) 

where TPKA  is the total concentration of PKA, PKA

cAMPK  is the Michaelis constant 

for the reaction of complex formation of cAMP with PKA, ca  is non-dimensional 

concentration of Ca2+, [ ( )]cAMP ca  is the concentration of cAMP. 

 

Equation (3.28) can be written in non-dimensional form as follows: 

4

( )
( ) 2 ,

( )PKA

cAMP

camp ca
pka ca

camp ca


  

 
  (3.29) 

where 
[ ( )]

( )
T

PKA ca
pka ca

PKA
 , 

PKA
PKA cAMP
cAMP AC

ATP

K

K
  , 

[ ( )]
( )

AC

ATP

cAMP ca
camp ca

K
 , AC

ATPK  is the 

Michaelis constant for the reaction of complex formation of ATP with adenylate 

cyclase AC. 

 

According to Equation (2.15) for 1n   the concentration of cGMP dependent 

kinase as a function of cGMP concentration can be written as follows: 

[ ( )]
[ ( )] ,

[ ( )]
T PKG

cGMP

cGMP ca
PKG ca PKG

K cGMP ca


  

 
  (3.30) 

where TPKG  is the total concentration of PKG, PKG

cGMPK  is the Michaelis constant 

for the reaction of complex formation of cGMP with PKG, [ ( )]cGMP ca  is the 

concentration of cGMP. 

 

Equation (3.30) can be written in non-dimensional form as follows: 

( )
( ) ,

( )PKG

cGMP

cgmp ca
pkg ca

cgmp ca


 

 
  (3.31) 

where 
[ ( )]

( )
T

PKG ca
pkg ca

PKG
 , 

PKG
PKA cAMP
cAMP GC

GTP

K

K
  , 

[ ( )]
( )

GC

GTP

cGMP ca
cgmp ca

K
 , GC

GTPK  is the 

Michaelis constant for the reaction of complex formation of GTP with guanylate 

cyclase GC. 

 

As it was mentioned above, cAMP- and cGMP-dependent kinases 
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phosphorylate, and PP2A phosphatase dephosphorylates EF1 and EF2 

proteins. The latter two define the level of aggregation and deformability. We 

consider the phosphorylation level of these proteins as a function of the activity 

of the PKA  and PKG  kinases and Ph  phosphatase. Here we assume for 

simplicity that phosphorylation of all sites of EF1 and EF2 proteins leads to their 

activation, which implies that the multisite phosphorylation can be simplified by 

considering single site phosphorylation (Figure 3.4C). 

 

We use TA  to denote the total concentration of the protein (either EF1 or EF2); 

TPh  is the total concentration of phosphatase PP2A; [ ( )]APA ca  and [ ( )]APG ca  

are the total concentrations of the kinases in their active forms; [ ( )]PA ca  and 

[ ( )]PG ca  are the concentrations of free kinases; [ ( ) ]PA ca A , [ ( ) ]PG ca A  and 

[ ]PPhA  are the concentrations of enzyme–substrate complexes. The 

phosphorylation-dephosphorylation reactions can be written as follows: 

11 21

11

12 22

12

3 4

3

P

P

P P

PA(ca) A PA(ca)A PA(ca) A

PG(ca) A PG(ca)A PG(ca) A

Ph A PhA Ph A

k

k

k

k

k

k

k

k

k



















 

 

  



  (3.32) 

 

The following ODEs can be written for the above biochemical Equations (3.32): 

11 21 11

12 22 12

3 4 3

21 22 3 3

[ ( ) ]
[ ( )] [ ] ( ) [ ( ) ],

[ ( ) ]
[ ( )] [ ] ( ) [ ( ) ],

[ ]
[ ] [ ] ( ) [ ],

[ ]
[ ( ) ] [ ( ) ] [ ] [ ] [ ]

P
P P

P
P P

d PA ca A
k PA ca A k k PA ca A

dt

d PG ca A
k PG ca A k k PG ca A

dt

d PhA
k Ph A k k PhA

dt

d A
k PA ca A k PG ca A k Ph A k PhA

dt









     

     

     

        

4 11 12

11 12

,

[ ]
[ ( ) ] [ ( )] [ ] [ ( )] [ ]

[ ( ) ] [ ( ) ].

P

d A
k Ph ca A k PA ca A k PG ca A

dt

k PA ca A k PG ca A 

        

   

  (3.33) 
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The conservation equations for the total concentrations are given by: 

[ ] [ ] [ ( ) ] [ ( ) ] [ ] ,

[ ( )] [ ( ) ] [ ( )],

[ ( )] [ ( ) ] [ ( )],

[ ] [ ] .

P P T

A

A

P T

A A PA ca A PG ca A PhA A

PA ca PA ca A PA ca

PG ca PG ca A PG ca

Ph PhA Ph

    

 

 

 

  (3.34) 

 

Using the QSSA [57,186], according to which 
[ ( ) ]

0
d PA ca A

dt
 , 

[ ( ) ]
0

d PG ca A

dt
  

and 
[ ]

0Pd PhA

dt
 , we find the concentrations of the enzyme-substrate 

complexes: 

1

2

[ ( )] [ ]
[ ( ) ] ,

[ ]

[ ( )] [ ]
[ ( ) ] ,

[ ]

[ ]
[ ( ) ] .

[ ]

A

P

A

P

T P
P

F P

PA ca A
PA ca A

K A

PG ca A
PG ca A

K A

Ph A
Ph ca A

K A
















  (3.35) 

 

We can write the rate of the protein phosphorylation as follows: 

21 22 4

[ ]
[ ( ) ] [ ( ) ] [ ]P

P

d A
k PA ca A k PG ca A k PhA

dt
        (3.36) 

 

It can be written from the first conservation equation in Equations (3.34): 

[ ] [ ] [ ( ) ] [ ( ) ] [ ]T P PA A A PA ca A PG ca A PhA       (3.37) 

 

Thus: 

21

1

22 4

2

[ ] [ ( )] ( [ ] [ ( ) ] [ ( ) ] [ ])

[ ] [ ( ) ] [ ( ) ] [ ]

[ ( )] ( [ ] [ ( ) ] [ ( ) ] [ ]) [ ]

[ ] [ ( ) ] [ ( ) ] [ ]

P A T P P

P T P P

A T P P T P

P T P P F

d A PA ca A A PA ca A PG ca A PhA
k

dt K A A PA ca A PG ca A PhA

PG ca A A PA ca A PG ca A PhA Ph A
k k

K A A PA ca A PG ca A PhA K

    
  

    

     
   

    
,

[ ]PA

  (3.38) 

where 21 11
1

11

P

k k
K

k


 , 22 12

2

12

P

k k
K

k


  and 4 3

3

F

k k
K

k


 . 
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We assume that EF1 and EF2 are activated by PKA and PKG by the same 

mechanism, which implies that 
21 22 2k k k  , 1 2P P PK K K   and we also 

assume that the total amounts of PKA and PKG are similar T T TPKA PKG PK  . 

We can write in this case: 

 
2

4

[ ( )] [ ( )] ( [ ] [ ( ) ] [ ( ) ] [ ])[ ]

[ ] [ ( ) ] [ ( ) ] [ ]

[ ]
,

[ ]

A A T P PP

P T P P

T P

F P

PA ca PG ca A A PA ca A PG ca A PhAd A
k

dt K A A PA ca A PG ca A PhA

Ph A
k

K A

     
  

    


 



  (3.39) 

 

Assuming that the total concentrations of the kinases in their active forms are 

[ ( )] [ ( )]APA ca PKA ca  and [ ( )] [ ( )]APG ca PKG ca  in Equations (3.28) and (3.29) 

respectively, we can rewrite Equation (3.39) in non-dimensional form as follows: 

3 4
5

1 2

( ) (1 1 2 )
,

1 1 2

P P P

P P

da h h ca a p a p a phap a
h

d h a p a p a phap h a

      
   

      
  (3.40) 

where 
 P

P

T

A
a

A
 , 

 
1

T

PA ca A
p a

A

   , 
 

2
T

PG ca A
p a

A

   , 
 P

T

PhA
phap

A
 , 4t k   , 

1
P

T

K
h

A
 , 2

F

T

K
h

A
 , 2

3

4

k
h

k
 ,       4

T

T

PK
h ca pka ca pkg ca

Ph
   , 5

T

T

Ph
h

A
 . 

 

Equation (3.40) corresponds to Equation (3.8) but here we have 4h  as a 

function of Ca2+. To find a steady-state solution of Equation (3.40) we assume 

that the concentrations of all complexes are negligible since 5
T

T

Ph
h

A
  is a small 

value due the fact that EF1 and EF2 are abundant proteins [187,188]. Thus we 

can rewrite Equation (3.40) in the following way: 

      
5

1 21
,

1 PP P

P P

pka ca pkg ca ada a
h

h a h ad

     
  

    
  (3.41) 

where 2

4

T

T

k PK

k Ph
   . 

 

According to Equation (3.11) a steady-state solution of Equation (3.41) can be 

written as follows: 
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2

1 2 1 2 21 1 1 1 4 1
,

2 1
p

h ca h h ca h h ca ca
a ca

ca

   



            



  (3.42) 

where       3 4( )caca h h pka ca pkg ca     . 

 

Due to the fact that EF1 and EF2 proteins are more abundant than PKA and 

PKG kinases [187,188], in Equation (3.37) we can neglect the concentrations of 

the enzyme-substrate complexes, which is consistent with [23]. Thus according 

to Equation (3.37) the concentration of the unphosphorylated protein in non-

dimensional form can be written as follows: 

   1 ,Pa ca a ca    (3.43) 

 

Next we test how this assumption affects the overall behaviour. In our model we 

set small 5 0.01h   due to the above mentioned assumption. We assume that 

the concentration of the kinases is similar to the concentration of the 

phosphatase 1T

T

PK

Ph
 . Since    ,  1pka ca pkg ca   then 4( ) (0,2)h ca  . We check 

the two approaches using the simplified Equations (3.11), (3.42) and the "full" 

model in Equation (3.22) for the following set of parameters: 1.8PKA

cAMP  , 

8PKG

cGMP  ,  0.6  , 1 0.02h  , 2 1.8h  . Since we assume that 1,  T

T

PK

Ph
  0.6   in 

fact means that 2
3

4

0.6
k

h
k

  . Figure 3.7 shows the solutions for the two 

approaches for the above parameters. It can be clearly seen from the figure that 

there is almost no difference between the simplified and the "full" approach and 

thus the assumption introduced above, where we neglected the concentrations 

of the enzyme-substrate complexes, does not affect the overall behaviour. Due 

to this fact the analysis is performed using the simplified version of the model. 
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Figure 3.7. Check of the feasibility of the model assumptions, where the 

concentrations of enzyme-substrate complexes are neglected. 

Red line represents the solutions obtained in Equations (3.11) and (3.42). 

Dotted black line represents the solutions obtained in Equation (3.22). The 

parameters are 1 0.02h  , 2 1.8h  , 3 0.6h  , 4( ) ( ) ( )h ca pka ca pkg ca   and 

5 0.01h  . 

 

 

In paper [31] Equations (3.42) and (3.43) were used to describe the levels of 

phosphorylation of the proteins, which determine erythrocyte deformability and 

aggregation (proportionally to the levels of non-phosphorylated proteins EF1) as 

a function of calcium concentration. 

 

3.5 Sequential multisite phosphorylation 

Now we consider sequential phosphorylation of protein A  by kinase K  and 

dephosphorylation by phosphatase P . Multisite proteins are sequentially 

phosphorylated when phosphorylation of the site is possible only when the 

previous phosphorylation site is phosphorylated. The sequential 

phosphorylation reactions for a molecule with six sites can be represented as 

follows: 
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  (3.44) 

where iA  is a protein with i  phosphorylated sites. 

 

The ODEs for this system are: 
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1 0 1 1 0 3 1 3 3 1

5 2 5 5 2 7 3 7 7 3

9 4 9 9 4 11 5 11 11 5

2 1 2 2 1 4 2 4 4 2

6 3 6 6 3 8 4 4 4 4

10 5 10 10 5 12 6 12 1

,

d K
f K A r c KA f K A r c KA

dt

f K A r c KA f K A r c KA

f K A r c KA f K A r c KA

d P
f P A r c PA f P A r c PA

dt

f P A r c PA f P A r c PA

f P A r c PA f P A r c

       

      

     

       

      

       

 
      

 
     

 
             

 
     

 
     

 
             

 
    

2 6

0
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0
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1
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1
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1
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2
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,

,
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,

PA

d A
f K A r KA c PA

dt

d KA
f K A r c KA
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d A
c KA f P A r PA f K A r KA c PA

dt

d PA
f P A r c PA

dt

d KA
f K A r c KA

dt

d A
c KA f P A r PA f K A r KA c PA

dt

d PA
f P A r c PA
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d KA
f K A r c KA

dt

d A
c KA f P A r PA f K A r KA c PA

dt

d PA
f P A r c PA

dt

d KA
f K A r c KA

dt

d A
c KA f P A r PA f K A r KA c PA

dt

d PA
f P A r c PA

dt

d KA
f K A r c KA
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9 4 10 5 10 5 11 5 11 5 12 6

5

10 5 10 10 5

5

11 5 11 11 5
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,

,

c KA f P A r PA f K A r KA c PA
dt

d PA
f P A r c PA

dt

d KA
f K A r c KA
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  (3.45) 
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6

11 5 12 6 12 6

6

12 6 12 12 6

,

.

d A
c KA f P A r PA

dt

d PA
f P A r c PA

dt

  

  

 

 

The conservation equations for  K  and  P  that follow from Equations (3.45) 

respectively: 

             

             
0 1 2 3 4 5

1 2 3 4 5 6

,

.

T

T

K K KA KA KA KA KA KA

P P PA PA PA PA PA PA

      

      
  (3.46) 

 

We use the QSSA [57,186], according to which 
 0 0

d KA

dt
 , 

 1 0
d PA

dt
 , 

 1 0
d KA

dt
 , 

 2 0
d PA

dt
 , 

 2 0
d KA

dt
 , 

 3 0
d PA

dt
 , 

 3 0
d KA

dt
 , 

 4 0
d PA

dt
 , 

 4 0
d KA

dt
 , 

 5 0
d PA

dt
 , 

 5 0
d KA

dt
 , 

 6 0
d PA

dt
 . 

 

We can rewrite Equations (3.45) only for phosphorylated molecules with 1 to 6 

sites phosphorylated as follows: 
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T

T T

T

T

T

q K A A A A A A Ad A

dt M A A

q P A A
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          (3.47) 
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The system of ODEs (3.47) can be solved numerically since there are six 

equations and six unknowns. 

 

In a more general case, where a molecule has n  sites and the mechanism of 

phosphorylation is sequential, we can write equations for the concentrations of 

kinase-protein and phosphatase-protein complexes respectively: 
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j
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j
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KA K i n

M A

A
PA P i n

M A







  

   

 

   





  (3.48) 

 

We can rewrite Equations (3.47) for intermediate forms: 

         1 1

1 21

1 2

0 1

,  1... 1.i i i i i

T Tn n

j j

j j

d A A A A A
q K q P i n
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M A M A

 



 

 
   

  
  (3.49) 

 

We can also rewrite Equations (3.47) for apo- and saturated forms respectively: 
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  (3.50) 

 

Equations (3.48), (3.49) and (3.50) are similar to the equations in the previously 

published papers [8,13,155,156]. 

 

We can write Equations (3.47) in non-dimensional form as following: 
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We found the steady-state solutions of Equations (3.51) numerically. Figure 3.8 

shows the dose-response curves for proteins with 0 to 6 phosphorylated sites 

as a function of total kinase to phosphatase ratio. Our analysis (figures not 

shown) reveals that alterations of the ratio of the total TBK-1 and AP to IRF-5 

do not affect the shapes shown in Figure 3.8 due to the fact that the 

concentrations of the enzyme-substrate complexes are neglected [23]. Figure 

3.8 shows that in the case of sequential phosphorylation the maximums of 

concentrations for intermediate phosphorylated IRF-5 species are distributed 

closer to each other compared to the case with independent multisite 

phosphorylation shown in Figure 3.4B. 
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Figure 3.8. Model predictions for the sequential phosphorylation of IRF-5. 

The concentration of IRF-5 phosphorylated at one (black), two (magenta), three 

(yellow), four (cyan), five (grey) and six (blue) sites is shown as a function of 

total TBK-1 to AP ratio (Equations (3.51) with 
1 1h  , 

2 1h  , 
3 1h  , 

4 /T Th TBK AP , 5 1h  ). Here we consider the first physiological scenario where 

we assume that the total concentration of protein exceeds the total 

concentrations of kinase and phosphatase and therefore we neglect the 

concentrations of enzyme-substrate complexes as it was shown in [23].  

 

 

We next analyse the alterations of the parameters corresponding to the 

phosphorylation to dephosphorylation reaction rates as well as IRF-5 to TBK-1 

and AP ratios in order to compare the model predictions for the sequential 

multisite phosphorylation events with the predictions for independent 

phosphorylation shown in Figure 3.5. Figure 3.9 shows the influence of variation 

of these parameters on our model. The shapes of the model predictions for the 

concentrations of individual conformations for sequential phosphorylation 

events shown in Figure 3.9 are similar to the shapes for the model predictions in 

the case of independent phosphorylation illustrated in Figure 3.5. However, the 

difference between the previously published models [23] and the models that 

are developed in this chapter is less significant for the case of sequential 

phosphorylation (Figure 3.9). For example, Figure 3.5A shows that the non-

dimensional magnitude of IRF-5 phosphorylated at 6 phosphorylation sites is 

0.1 whereas it is 0.6 in Figure 3.9A for the case when the total concentration of 

IRF-5 is equal to the total concentration of AP and for the same phosphorylation 

and dephosphorylation rate constants. Figure 3.5C illustrates the model 

predictions, according to which the concentration of apo form for the low total 

TBK-1 to AP ratio is 0.4 while Figure 3.9C shows that this value is 0.87 when 

dephosphorylation reaction constant is 100 times higher than the 
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phosphorylation constant (
3 0.01h  ). In the case when the total concentrations 

of IRF-5, AP and TBK-1 are the same, the magnitudes of concentrations of 

individual conformations are lower when the protein is phosphorylated 

independently (Figure 3.5E) compared to the sequential phosphorylation 

(Figure 3.9E), 0.32 and 0.75, respectively. 

 

 

Figure 3.9. Theoretical investigation of the sequential IRF-5 phosphorylation. 

Dose-response curves for phosphorylated IRF-5 as a function of TBK-1 to AP 

ratio for comparable total TBK-1, AP and IRF-5 concentrations (A) and when 

IRF-5 significantly exceeds total TBK-1 and AP. Similar analysis is performed 

for the case where another important parameter, the ratio between 

phosphorylation and dephosphorylation reactions, is low (C, D). The amount of 

phosphorylated IRF-5 species as a function of the ratio of phosphorylation to 

dephosphorylation reaction rates for comparable IRF-5, TBK-1 and AP 

concentrations (E) as well as when AP is much lower than IRF-5 (F). See 

Equations (3.51), with 1 1h  , 2 1h  , 4 /T Th TBK AP  in (A), (B), (C), (D) and 1 1h  , 

2 1h  , 3 /P Dh k k  in (E), (F). 
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3.6 Conclusions 

In this chapter we proposed a new model for multisite phosphorylation with 

applications to intracellular signalling in the immune system and erythrocyte 

regulation of aggregation and deformability. This model is another example of 

the low-level substrate properties analysis in terms of Figure 1.1 and will be 

used in the following Chapters 4 and 5 as an element of a higher level analysis. 

 

The proposed model extends previous models for activation of proteins by 

single- [23-26,29,152] and multisite phosphorylation [27,153,154,156,189]. The 

model offers more detailed predictions for phosphorylation-mediated regulation. 

This finding is obtained by the comparison with previously published models 

and experimental information for intracellular inflammatory circuits. The detailed 

predictions include the modulation of the magnitude of the phosphorylated 

proteins as opposed to the previously published model [23]. This modulation by 

variation of the parameters was shown in Figures 3.3, 3.5, 3.9 and is only 

possible when considering the concentrations of the corresponding enzyme-

substrate complexes. Despite the increased accuracy, there are, however, 

certain limits of this approach. In this chapter we considered an example of 

multisite proteins with identical phosphorylation sites, which is not the case in 

real proteins. 

 

The proposed model was applied to the STAT3 signalling circuit and compared 

with one of the previously published models [23]. Our analysis suggests that the 

Goldbeter and Koshland model [23] can be used only in the case when the total 

concentrations of JAK and SHP-1 are much lower in comparison with the total 

concentration of STAT3. However, in real systems the concentrations of 

kinases and their substrates are comparable [29], which means that the 

concentrations of intermediate phosphorylation complexes cannot be ignored. 

We will use the latter finding in the next chapter, where we will take into 

consideration enzyme-substrate complexes in STAT phosphorylation. 

Therefore, our model may offer more accurate predictions for STAT3 

phosphorylation. Since similar stimuli may lead to different transcriptional 

activation events and T cell phenotype switching, the results obtained in this 

chapter allow us to demonstrate that the lack of an accurate phosphorylation 
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magnitude predictions may lead to misleading interpretation of the STAT-

mediated T cell fate determination. 

 

We showed here that IRF-5 is activated in a switch-like manner (Figure 3.4 and 

Figure 3.5), which leads to the production of inflammatory cytokines such as IL-

12 and IL-23 [164]. Our model suggests that this switch is highly dependent on 

the parameters of the system, particularly on the ratio of the total AP to IRF-5 

concentrations and phosphorylation/ dephosphorylation reaction rates. Several 

autoimmune inflammatory diseases including Systemic Lupus Erythematosus 

(SLE) are due to the aberrations in the mechanism of IRF-5 activation [190]. A 

more detailed description of the regulatory role of IRF-5, which includes the 

wider possibility for the regulation of IRF-5 phosphorylation level by the 

parameter variation (Figures 3.3, 3.5, 3.9), may give a new insight into the 

inflammatory diseases including Systemic Lupus Erythematosus caused by the 

malfunctions in the mechanism of IRF-5 phosphorylation. 

 

The model proposed in this chapter for protein phosphorylation was applied to 

describe EF1 and EF2 proteins phosphorylation in the regulation of erythrocyte 

aggregation and deformability. The developed model was used by a team of 

researchers, including the author of this thesis, in [31], where new mechanisms 

for the regulation of aggregation and deformability of the erythrocyte were 

proposed. In that work, the authors demonstrated the conditions and 

parameters values, under which the erythrocyte switches its aggregation and 

deformability from one steady state to another, in a latch-like manner with 

approximately the same thresholds (  0.18,  0.21A   for 4dT   as shown in 

Figure 8 in [31]). The proposed mathematical model might be useful in 

understanding the mechanisms of erythrocyte diseases and aging. 

 

In summary, this chapter introduces possible mechanisms for single- and 

multisite phosphorylation and proposes potentially more accurate model for 

phosphorylation-mediated regulation. The limit of this work includes the 

consideration of multisite proteins with identical phosphorylation sites. The 

analysis reveals the physiological conditions, under which the model coincides 

and differs from the classical models. This approach can have applications in a 

variety of molecular systems where the information is transmitted through a 
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phosphorylation mechanism. The predictions of the model applied to the 

phosphorylation of EF1 and EF2 as well as STAT3 and IRF-5 regulatory circuits 

may increase our understanding of the regulatory mechanisms of erythrocyte 

aggregation and deformability as well as inflammatory diseases. 
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4 The competitive nature of STAT complex formation 
drives phenotype switching of T cells 

4.1 Literature review 

4.1.1 Biological review 

Signal Transducers and Activators of Transcription (STATs) regulate cell 

differentiation, growth, apoptosis and proliferation by transducing signals from 

the cell membrane to the nucleus. There are seven members of STAT family in 

mammalian cells: STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b and 

STAT6 [34,35]. 

 

STAT proteins are activated by binding of a cytokine to its receptor followed by 

the receptor dimerisation and phosphorylation of their C-terminal transactivation 

domain (CTD) by Janus Kinases (JAKs). For example, phosphorylation of 

STAT1 occurs at Tyr701 in response to type II interferons [191] and 

phosphorylation of STAT3 occurs at Tyr705 in response to Interleukin 6 (IL-6) or 

Interleukin 10 (IL-10) [192,193]. Phosphorylation at Tyr705 leads to the 

dimerisation [194] and regulates the activation of STAT3 [195-197].  

 

STATs can form homo- or hetero- dimers only with their dimerisation partners 

[198]. STAT dimers translocate to the nucleus and activate gene expression. 

Nuclear phosphatases can dephosphorylate STATs in the nucleus and initiate 

STATs return to the cytosol [199-202]. 

 

In the nucleus, activated STAT dimers induce cytokine production. Aberrations 

in the mechanism of cytokines production may give rise to various immunity-

related pathologies including autoimmune diseases such as rheumatoid arthritis 

(RA) [203,204], systemic lupus erythematosus (SLE) [205-207], diabetes 

[208,209] and cancer [210,211]. These aberrations include inappropriate 

activation of Th1 cells, which are characterised by increased inflammatory IFN-γ 

production. It was reported in [39] that RA patients lack the so called IFN-γ to 

IL-10 switching – the transition of the inflammatory IFN-γ only state (Th1 cells) 

into a state characterised by a significant decrease of IFN-γ production and gain 

of the regulatory IL-10 expression (Tr1 cells). 
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Several STATs, for example STAT3 and STAT5 [212,213], lead to the 

production of IFN-γ and IL-10. The molecular mechanism of IFN-γ and IL-10 

production via STAT3 and STAT5 is as follows. Extracellular IL-2, IL-6 and 

IL-21 bind to their complementary receptors. The receptors remain in complex 

with JAKs. Binding of the interleukins to their receptors induces the 

autophosphorylation of the receptors and the bound JAKs [214]. The 

phosphorylated receptor-JAK complexes can be dephosphorylated by SHP-1 

[215]. Phosphorylation of STAT3 and STAT5 is performed by JAK in IL-2R:JAK, 

IL-6R:JAK and IL-2R:JAK, IL-21R:JAK complexes respectively [216-218] (here 

and everywhere else in this chapter "R" denotes receptor and ":" stands for the 

complex with JAK). STAT3 and STAT5 are dephosphorylated by SHP-1 and 

SHP-2 phosphatases respectively [219,220]. The phosphorylated STAT3 and 

STAT5 then can form either homo- or hetero- dimers [216,217]. The 

homodimers translocate into the cell nucleus and promote transcription of 

genes responsible for IFN-γ and IL-10 production. Both IFN-γ and IL-10 are 

degraded by metalloproteases [221], denoted in our model by Mp1 and Mp2, 

respectively. 

 

There is an additional, STAT-independent, mechanism of the regulation of IL-10 

production. It was shown that pathogens activate c3-c3b complement system, 

which leads to the activation of CD46. For high IL-2 concentrations CD46 

activates SPAK/ERK pathway leading to the activation of SP1 kinase [39,222]. 

SP1 transcription factor induces proliferation of genes responsible for IL-10 

production [223]. 

 

It should be mentioned that there are also other STAT pathways (other than 

STAT3 and STAT5) that lead to the induction of IFN-γ and IL-10 production. It 

was experimentally established that the production of IFN-γ is induced by the 

following interleukins: IL-12, IL-21, IL-2 and IL-35 [224-227]. Interleukins IL-12 

and IL-35 activate STAT4 through the JAK-STAT pathway [217] while IL-21 and 

IL-2 activate STAT5 [228,229]. It was also shown that STAT4 [224,225,230] and 

STAT5 [212,231,232] induce the production of IFN-γ. However these facts 

regarding the role of STAT5 in IFN-γ production argue with the results offered in 

[233]. The production of anti-inflammatory IL-10 is up-regulated by STAT1, 

STAT3 and STAT6 [213,234,235]. In particular, STAT1 is activated by IL-6 and 
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IL-35; STAT3 by IL-2 and IL-6; STAT6 by IL-3 and IL-4 [217,218,230,236]. 

However, the fact that STAT4 activates IFN-γ production contradicts with the 

data in [237] as it was shown that STAT4 induces the production of IL-10. This 

conflicting evidence about STAT signalling cannot be explained with the 

currently used approaches. 

 

4.1.2 Modelling review 

Several studies offered insights into STAT signalling on systems level. A 

mathematical model of JAK-STAT signalling pathway leading to the activation of 

STAT1 in liver cells was proposed in [40]. In that work the dynamical properties 

of this system were investigated. The model showed that nuclear phosphatase 

is one of the most important regulators in this JAK-STAT pathway. Another 

attempt to model STAT1 activation was made in [41] studying JAK-STAT 

signalling in pancreatic stellate cells (PSC). By using ODEs to describe the 

rates of the biochemical reactions in the JAK-STAT pathway, the model 

developed in that study could explain the temporal profiles of STAT1 activation.  

 

In [42], a mathematical model for JAK2-STAT5 pathway was proposed. The 

quantitative behaviour of STAT5 phosphorylation was determined. The 

parameters for nuclear import and export were identified as most sensitive in 

that work. In [43] the authors investigated IL-6 mediated JAK1-STAT3 pathway 

activation and the dynamics of JAK1 and STAT3 phosphorylation. They 

proposed a new approach to analyse JAK-STAT pathways by using Petri nets 

that describe the biomolecular mechanism of reactions and functional 

interactions with other components. 

 

Thus there are several examples [40-43], where STAT signalling was 

investigated using mathematical modelling. However, in these works only one 

JAK-STAT pathway was studied at a time. In phenotype development and 

plasticity in response to environmental changes in T-cells, more than one JAK-

STAT pathways are involved [39,44], Due to this fact, these models of STAT 

signalling [40-43] cannot be used to explain the underlying molecular 

mechanisms (Figure 1.1) of these processes. The molecular mechanisms of T 

cell phenotype development and plasticity are crucial for an efficient T-cell 
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response, which could prevent the disease states such as autoimmune states 

and allergic reactions [32,39]. 

 

4.2 Aims and objectives of this chapter 

In the previous chapter we studied phosphorylation of one STAT protein at a 

time. In this chapter we consider an example of high-level analysis (Figure 1.1) 

investigating the role of STAT proteins in T cell plasticity. To improve our 

understanding of the molecular mechanisms underlying STAT signalling in T 

cell phenotype plasticity and in the IFN-γ to IL-10 switching [39], in this chapter 

we aim to do the following: 

 develop a new, integrative approach to study STAT signalling, 

 divide the integrated scheme into simpler parts, 

 build a mathematical model for the simpler parts and analyse them, 

 validate the developed model using experimental data, 

 use the model to investigate how the JAK-STAT pathways interact with 

each other, 

 suggest the role of the STAT heterodimers, 

 elucidate potential mechanism of the IFN-γ to IL-10 switching, 

 using the parameter sensitivity analysis identify the parameter conditions 

for the conclusions to hold, 

 find the most sensitive parameters and test their influence on the model, 

 combine the smaller parts and analyse the combined scheme. 

 

The developed model is based on previously published experimental results 

[216-218,224-226,228-230,236,238-244] and also in line with our informal 

discussions with Dr Claudia Kemper from Kings College London. 

 

4.3 Model assumptions 

In order to fulfil the objectives of this chapter, in this section we introduce a 

novel approach to integrate multiple pieces of experimental data related to 

STAT signalling in T cells. In most works [40-43], described in Modelling review 

section in this chapter, only one signalling pathway is studied at a time, but this 
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cannot fully predict cellular behaviour in response to the interplay of STAT 

signalling pathways, which include cell fate determination, polarisation and 

associate plasticity. Here we will attempt to build a systems biology model that 

integrates STAT signalling pathways to analyse the possible interplay. 

 

Figure 4.1A summarises previously published experimental results [216-

218,224-226,228-230,236,238-243] and schematically represents the 

interdependent events in STAT signalling. In order to design the diagram in 

Figure 4.1A the information regarding the cytokines that activate the JAK-STAT 

pathways has been gathered from a number of studies [216-218,224-226,228-

230,236,238-243]. The diagram shows which cytokines activate the known 

STAT proteins and illustrates the fact that the STAT proteins form homodimers 

as well as heterodimers only with their dimerisation partners [198]. In our model 

we assume that STAT1 interacts with STAT2, STAT3 and STAT4 only 

[216,239,240]. Heterodimerisation partners for STAT3 are STAT4 and STAT5. 

STAT4 forms a heterodimer with STAT3 and STAT5 whereas the only partner 

for STAT6 is STAT2 [241-243]. Despite the fact that STAT interactions have 

been studied extensively in recent years, the necessity of heterodimer complex 

formation and functional implications of the complexes still remain unclear [217]. 

 

In the scheme shown in Figure 4.1A, it is essential to study the mechanism of 

cross-talk as it influences the signalling of the participants and the outcome of 

the overall cellular response, which contributes to the T cell plasticity. Our 

model will predict that interdependent effects take place in the cytokine 

signalling system. 
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Figure 4.1. The map of interleukins involved in induction of IFN-γ and IL-10 

production via the STAT-activating mechanisms. 

A. The map of interactions between the cytokines and the STATs based on 

experimental studies [216-218,224-226,228-230,236,238-243]. According to the 

map, STAT proteins are activated in response to extracellular cytokines. STATs 

can form dimer complexes only with certain dimerisation partners. STAT dimers 

induce IFN-γ and IL-10 gene expression. B. STAT3-STAT5 subsystem 

extracted from the full map shown in (A). This subsystem activates IFN-γ and 

IL-10 production in response to IL-2, IL-6 and IL-21. In this model IL-2 activates 

both STAT3 and STAT5 while the concentration of other cytokines is 

maintained constant. C. STAT3-STAT4 subsystem extracted from the full map 

(A). This subsystem induces the expression of IFN-γ and IL-10 in response to 

IL-2, IL-6, IL-12 and IL-35. In this case the varied IL-2 activates STAT3 only. 

 

 

The fact that the STATs can form heterodimer complexes only with their 

dimerisation partners [198,241-243] allows us to propose the map of cross-talk 

interactions illustrated in Figure 4.1A. We assume here that the STAT 

homodimers are more effective in mediating gene induction and therefore have 

a greater contribution to cytokine production compared to the heterodimers, 

which is consistent with [245]. This leads to the next assumption that the ratio 
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between the STAT homodimers defines the type of produced cytokine and, 

thereby, the T cell phenotype. Our model assumes that there is a natural 

balance of the STAT hetero- and homo- dimers. When there is no signal to 

switch, the ratio between the homodimers is balanced. After the T cell received 

the signal to switch, the balance is disrupted and then restored again, however 

for some new ratio between the competing STATs. This newly balanced ratio 

between the STAT homo- and hetero- dimers leads to the new type of produced 

cytokine and to T cell phenotype switching. 

 

Here for the first time to our knowledge we suggest the underlying competition 

mechanism between the STAT dimers. We assume that this competition is 

modulated by the extracellular cytokines and reveals the role of STAT 

heterodimers in the produced cytokines switching, that has been remained 

unclear [217]. We further assume that the role of STAT heterodimers is to 

provide a "buffer", which can be defined as an intermediate state of species 

between two STAT homodimers that allows the STAT species to transfer from 

one state to another (for example, from STAT3 to STAT5). The scheme in 

Figure 4.1A illustrates cytokine-mediated influence of the STAT dimers on each 

other. The understanding of the resulting cytokine switching is crucial as it 

includes cytokine-mediated STAT-STAT interactions and potentially captures 

not only T cell phenotypes (IFN-γ-secreting Th1 and IL-10-secreting T 

regulatory type 1 - Tr1) but also the plasticity of other cells as well as the overall 

activity of the immune system. 
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Figure 4.2. Schematic diagram for IFN-γ and IL-10 production in Th1/Tr1 

switching. 

The switching of the type of the produced cytokine from IFN-γ to IL-10 leads to 

the switching of the T cell phenotype from Th1 toTr1 respectively [39]. 

 

 

The model proposed in this chapter will be applied to investigate previously 

reported plasticity effects between Th1 and Tr1 cell populations. One of the 

expressed cytokines, IFN-γ, is widely associated with the inflammatory Th1 

phase while the other, IL-10, is dominant during the regulatory Tr1 phase [39]. 

Figure 4.2 schematically represents the fact that IFN-γ to IL-10 switching leads 

to the switching of T cell phenotype from Th1 to Tr1. The structure of the 

proposed model shown in Figure 4.1A allows for assumptions that the 

competition between the STAT proteins defines the expression levels of IFN-γ 

and IL-10. The direct result of the described experimental data integration 

followed by systems biology analysis is the proposition that cytokine-dependent 

STAT interactions lead to the switching of the tightly regulated system from the 

inflammatory IFN-γ only Th1 state into the regulatory Tr1 state characterised by 

increased IL-10 and decreased IFN-γ production levels [39]. 

 

4.3.1 The model for coupled STAT3-STAT5 signal transduction 

Next we build a mathematical description of the model. Due to the relative 

complexity of Figure 4.1A we divide the full diagram into separate functional 

circuits (Figures 4.1B and 4.1C) based on the cytokine-cytokine interactions. In 

our model, IFN-γ inducing STATs include STAT4 [224,225,230] and STAT5 

[212,231,232] while IL-10 production is supported by STAT1, STAT3 and 

STAT6 [213,234,235]. To investigate the role of each of the STAT pairs, the 
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scheme is divided into subsystems in such a way that one STAT in the pairing 

induces the expression of IFN-γ while the other induces the expression of IL-10. 

Here we only focus on the STAT pairs that produce the opposite (inflammatory 

and regulatory) immune responses, therefore STAT1-STAT3 combination is not 

considered since both STAT1 and STAT3 lead to the expression of the 

regulatory IL-10. 

 

Figure 4.1B shows that IL-2 is the only "input" cytokine in our model that can 

activate both STAT3 and STAT5, IL-10 and IFN-γ inducing STATs, respectively. 

At the same time, each IL-6 and IL-21 can activate only one STAT at a time, 

STAT3 or STAT5, respectively. The other IL-2-activated STAT combination, 

which induces the production of both IFN-γ and IL-10, is STAT3-STAT4 (Figure 

4.1C). However, in contrast to the STAT3 and STAT5 pair, in the STAT3-STAT4 

pairing IL-2 activates only STAT3 and not STAT4. Due to this role of IL-2 in 

STAT3, STAT4 and STAT5 activation, we study the effects of varied IL-2 

concentration assuming the continuous presence of other input cytokines (IL-6 

and IL-21) by fixing their concentrations at constant levels. Therefore, we will 

not consider STAT1-STAT4 model since IL-2 does not activate any of the 

STATs involved in this pairing. 

 

The STAT3-STAT5 subsystem shown in Figure 4.1B can be considered 

separately if we assume that the amount of STAT3 is mainly consumed on 

STAT3:STAT3 and STAT3:STAT5 and not on other dimers. Similarly, the 

STAT3-STAT4 subsystem shown in Figure 4.1C can be considered separately 

if we assume that the amount of STAT3 is mainly consumed on STAT3:STAT3 

and STAT3:STAT4 dimers. These assumptions are made in the absence of 

experimental data but can be tested when the experimental data for the amount 

of STAT3 in the corresponding dimers become available. Despite these 

limitations the consideration of two STATs shown in Figures 4.1B and 4.1C is a 

step forward compared to previous modelling works [40-43], where only one 

STAT signalling pathway is studied at a time. As a result the complicated 

scheme depicted in Figure 4.1A is divided into the two functionally similar but 

architecturally different submodules shown in Figures 4.1B and 4.1C that can 

now be described mathematically. We start our analysis with the STAT3-STAT5 

system illustrated in Figure 4.1B. Later in Subsection 4.5.3 we will also analyse 
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the STAT3-STAT4 system (Figure 4.1C) and the combined 

STAT3-STAT4-STAT5 system.  

 

In order to model the STAT3-STAT5 molecular system (Figure 4.1B), we 

include more biological details into the molecular mechanism. Figure 4.3 shows 

the detailed version of the circuit represented in Figure 4.1B. The elements of 

morphological scheme in Figure 4.3 are combined into functional blocks, the 

functions of which can be "informally" described as follows. Block 1 (cytokine-

receptor interactions) receives and performs preliminary processing of the 

signal, which is the concentration of IL-6, IL-2 and IL-21. The function of Block 2 

(STAT phosphorylation/dimerisation and SP1 activation) is signal processing, 

including comparison (competition) of different signals. The function of Block 3 

is implementation (cytokine production), which results in T cell differentiation 

and expression of IL-10 and IFN-γ. The consideration of functional component 

of this scheme is consistent with the definition of mechanism presented in [1] 

and schematically illustrated in Figure 1.1. The detailed description of the 

governed reactions and equations can be found in Appendix C. 
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Figure 4.3. Schematic diagram for IFN-γ and IL-10 production in response to 

IL-6, IL-2 and IL-21 as input signals, via signal processing by STAT3 and 

STAT5. 

The detailed scheme of experimentally established interactions [39,221-223] 

involved in IFN-γ and IL-10 production by T cells. Phosphorylation of the 

members of these signalling pathways leads to the signal transduction and 

activation of the cytokines production. The dashed boxes identify three 

functional blocks (1, 2, 3), corresponding to three different stages in signal 

processing. More explanations in the text. 

 

 

We assume here that the rates of the biochemical reactions differ significantly. 

Specifically, the complex formation is assumed to be much faster than 

phosphorylation/dephosphorylation reactions and thus the concentration of 

complexes reaches its steady-state while the concentration of phosphorylated 

proteins still changing, according to the quasi-steady-state assumption (QSSA) 

and [24,57,186]. In this chapter, we will study the steady state solutions of the 

phosphorylated proteins (STATs) and produced cytokines. The QSSA 

discussed above is therefore unnecessary for the results presented in this 
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chapter, but may become essential if and when this theory is extended to 

dynamic processes. 

 

Cytokine-receptor interactions 

Concentrations of phosphorylated Receptor-JAK complexes activated by IL-2, 

IL-6 and IL-21, respectively, as functions of the corresponding cytokine 

concentration can be written as follows: 
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subscripts t and T denote the total amount of protein in non-dimensional and 

dimensional forms, respectively, small p  represents phosphorylated state), 1M , 
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2M , 
3M , 

4M , 
5M  and 

6M  are non-dimensional Michaelis constants, 
1n , 

2n  and 

3n  denote the ratio of receptor phosphorylation/dephosphorylation rates. 

Equations (4.1) follow from the stationary conditions of the phosphorylation and 

dephosphorylation of the receptors mentioned previously. The detailed 

derivation of Equations (4.1) can be found in Appendix C, Equations (7.58)-

(7.69). 

 

STAT phosphorylation and dimerisation 

STAT proteins are phosphorylated by the activated interleukin-receptor-JAK 

complexes IL2Rp:JAK , IL6Rp:JAK  and IL21Rp:JAK  (Figure 4.1B). The 

reactions involved in STAT activation are given by: 
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The corresponding Ordinary Differential Equations (ODEs) for Reactions (4.2) 

can be written as follows: 
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Conservation equations of the total proteins concentrations are given by: 
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Conservation Equations (4.4) can be written in non-dimensional form: 
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where we introduced the non-dimensional concentrations of the proteins 

normalised by 3TSTAT :  
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Here we use one of the findings of Chapter 3, according to which we take into 

consideration the concentrations of all enzyme-substrate complexes. In order to 

find the steady-state solutions of Equations (4.3) we need to solve the following 

system of algebraic equations: 
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 . Equation (4.6) is in line with one of the conclusions of Chapter 3, 

according to which we do not neglect the concentrations of enzyme-substrate 
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complexes. System (4.6) is solved numerically to obtain steady-state 

concentrations of STAT proteins as a function of IL-2. 

 

SP1 activation 

Experimental data on the molecular mechanism of how CD46 enhances IL-10 

production are not available at present. However it was established that CD46 

can facilitate the secretion of IL-10 through the SPAK-ERK pathway and SP1 

transcription factor only in the presence of high environmental IL-2 [39]. This 

dependence is described by hypothetical enzymatic reactions shown in 

Equations (7.89). Thus, it can be written for the concentration of the active SP1 

in non-dimensional form: 
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Michaelis constants. 

 

Cytokine production 

We assume that the production of IFN-γ and IL-10 is induced by the STAT 

dimer interactions with the genes responsible for production of IFN-γ and IL-10 

[217]. The produced cytokine can be degraded by metalloprotease Mp [221]. 

The concentration of the produced IFN-γ in non-dimensional form can be written 

as follows: 
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 , 18M  and 19M  are 

Michaelis constants, 8n  is the ratio of IFN-γ production to degradation rates. In 

order to achieve the steady-state, IFN-γ production rate should be less than its 

maximal degradation rate, which implies 8 1n  . 
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Both STAT3:STAT3 homodimer and CD46 (through SPAK-ERK pathway) can 

activate the same IL-10 gene but they bind different binding regions, as shown 

in [246]. IL-10 is produced after binding of either of the transcription factors to 

the gene, which corresponds to [247]. Thus it can be written for IL-10 

concentration: 
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 , 9 1n  , 20M , 

21M  and 22M  are Michaelis constants, 9n  is the ratio of IL-10 production to 

degradation rates, 9 1n  . Equations (4.8) and (4.9) are then applied to describe 

the concentration of produced IFN-γ and IL-10 as a function of IL-2. 

Equations (4.7) (4.8) and (4.9) are derived in Appendix C (Equations (7.98), 

(7.110) and (7.111), respectively). 
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4.4 Model parameters 

 

 

Figure 4.4. The regulation of IL-2-dependent IFN-γ and IL-10 production in 

Th1/Tr1 switching. 

A. Normalised experimental data from [244] show that the concentration of 

produced IFN-γ and IL-10 depends on IL-2 concentration. With an increase of 

IL-2, the production of IFN-γ initially increases compared to the production of IL-

10 under the same IL-2 concentration. Further increase of IL-2 leads to the 

decrease of IFN-γ and increase of IL-10 concentration. B. Model predictions 

(solid lines) compared to the experimental data for IFN-γ and IL-10 production 

as a function of IL-2 concentration (red circles and blue crosses respectively). 

We assume that low IL-10 and high IFN-γ correspond to Th1 cell, the medium 

IFN-γ and IL-10 concentrations correspond to the IL-10-producing Th1 cells and 

high IL-10 and low IFN-γ correspond to Tr1 cells, which is in line with the 

experimentally observed fact that the switching occurs for high amounts of IL-2 

and that the activation of IFN-γ always precedes IL-10 [39]. For the medium IL-2 

concentrations Th1 cell produces both IFN-γ and IL-10, which corresponds to 

IL-10 producing Th1 cell. C. Cross-correlation between produced IFN-γ and 

IL-10 demonstrates inhibition of IFN-γ production by IL-10 for higher IL-2 

concentrations. See Equations (4.1), (4.6), (4.7), (4.8) and (4.9) with parameters 

taken from set "O3" in Table 7.2. 

 

 

Next we obtain a set of parameters that would make the developed model to 

demonstrate the expected behaviour. We fit our model predictions to the 

experimental data for IL-2 dependent IFN-γ and IL-10 production in Th1/Tr1 

switching [244] shown in Figure 4.4A. It was reported that Th1 cells are 

characterised by high levels of pro-inflammatory IFN-γ expression, whereas Tr1 

cells induce high amounts of regulatory IL-10 [39]. Figure 4.4A illustrates the 

normalised IFN-γ and IL-10 concentrations as a function of IL-2. For the 

parameter fitting, we use the Genetic Algorithm (GA) tool integrated to 

MATLAB. As the criterion for fitting we choose the squared error, which can be 
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described as  
2

1

N

i i

i

SM E M


  , where 
iE  is experimental data for cytokine 

concentration (IFN-γ or IL-10) corresponding to the i-th value of IL-2 

concentration, M  is the model predictions for cytokine concentration 

corresponding to the same IL-2 concentration, i  is the number of experimental 

data point, 4N   is the total number of experimental data points. The GA tool 

allows to minimize the squared error using the integrated algorithms for the 

optima search.  

 

We select a "nominal" set of parameters "by hand", which qualitatively 

demonstrates the switching between IFN-γ and IL-10. This set of parameters is 

represented as "Nom" in Table 7.2 in Appendix C. The sets of the optimised 

parameters and corresponding squared errors are shown in Table 7.2. We 

perform 15 optimisation tests setting the allowable ranges for the parameters 

ten-fold either side of the nominal values of parameters and choose the best 

fitting (set "O3" in Table 7.2) with the smallest squared error 77.34 10SM   . 

Figure 7.2 in Appendix C shows the distribution of five parameter sets with the 

closest minimum squared errors SM , namely sets "O2", "O3", "O9", "O10" and 

"O12". 

 

Figure 4.4B illustrates the model predictions for the optimised set of 

parameters, compared to the experimental data from [244] and also shown in 

Figure 4.4A. Figure 4.4B visually demonstrates a good fitness supported by the 

small squared error 77.34 10SM    and shows that with the increase of IL-2, the 

concentration of IFN-γ initially increases reaching a peak and then decreases 

while the concentration of IL-10 keeps increasing. In our model, the phenotype 

switching is due to the change in the type of produced cytokine that depends on 

IL-2 concentration. 

 

The developed model predictions (Figure 4.4B) clearly show the switching 

between the two populations of Th1 and Tr1 cells. At the same time there is 

evidence that there is a population that produces both IFN-γ and IL-10, the 

origin of which has not yet been established [39]. Figure 4.4C shows the 

correlation between the production of IFN-γ and IL-10. This figure clearly 
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demonstrates initial co-expression of IFN-γ and IL-10 as well as the inhibitory 

effects of IFN-γ and IL-10 on each other with the increasing IL-2 concentration. 

 

4.5 Model predictions 

4.5.1 STAT switching 

 

 

Figure 4.5. Model predictions for STAT3 and STAT5 activation in response to 

IL-2. 

A. Dose-response dependencies of STAT3p and STAT5p monomers on IL-2 

concentration. The model suggests that STAT3 is activated whereas STAT5 is 

inhibited for high IL-2 concentrations. B. The activation profiles of STAT 

heterodimers demonstrate the switching from STAT5:STAT5 to STAT3:STAT3 

species for high IL-2 concentrations. The model predictions illustrate the 

competition between STAT3 and STAT5. See Equations (4.1) and (4.6) with 

parameters taken from set "O3" in Table 7.2. 

 

 

The mathematical model proposed in this chapter captures several circuits 

involved in IFN-γ and IL-10 production. We start the systems analysis with the 

circuit shown in Figure 4.1B. The diagram in Figure 4.1 schematically illustrates 

the experimentally observed facts, according to which STAT3 induces IL-10 

production by forming STAT3:STAT3 homodimer [245,248] and STAT5 induces 

IFN-γ production by forming STAT5:STAT5 complex [212,232]. We hypothesize 

here that the experimentally established IFN-γ to IL-10 switching (Figure 4.4) is 

due to the STAT competition and caused by the STAT switching. In order to test 

our hypothesis, in this section we study the model predictions for both STAT 

monomers and homodimers. 
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First, we consider the range of medium IL-2 concentrations (from -5.5 to -1 in 

logarithmic scale normalised to the total STAT3 concentration as shown in 

Figure 4.4). This range corresponds to the state where T cells already 

developed into Th1 and are switching to Tr1 cells. Figure 4.5 illustrates 

quantitative model predictions for STAT proteins phosphorylation as a function 

of IL-2 concentration. It can be seen from Figure 4.5 that STAT3 

phosphorylation represents a dose-response activation curve whereas STAT5 

phosphorylation demonstrates the reverse, inhibitory shape (Figure 4.5A). For 

low IL-2 concentrations the level of STAT3 phosphorylation is also low while the 

phosphorylation level of STAT5 is high. However the results of the simulation 

show that for high IL-2 concentrations phosphorylated STAT3 dominates over 

phosphorylated STAT5. The switching occurs for modest IL-2 concentrations. In 

this chapter, we refer to the decrease of the phosphorylated STAT5 and 

increase of the phosphorylated STAT3 as well as their homodimers, with the 

increasing IL-2 concentration, as STAT redistribution. 

 

Figure 4.5B illustrates the dependences of the STAT3:STAT3 and 

STAT5:STAT5 dimers, normalised by the total STAT3, on IL-2 concentration. 

The shapes of the curves for the dimers are similar to the shapes of their 

monomers due to the high dependence of the dimer concentrations on their 

monomers. However the curves for the dimers are steeper, which can be 

explained by the fact that two molecules of monomers are required to form a 

dimer. Figure 4.5 shows that for low IL-2 concentrations STAT5 is more 

phosphorylated than STAT3, whereas for higher IL-2 concentrations 

phosphorylated STAT3 prevails over STAT5. 

 



128 
 

 

 

Figure 4.6. Model predictions demonstrate cross-interaction effects between 

STAT3 and STAT5 signalling pathways. 

Correlation between phosphorylated STAT5 and STAT3 monomers reveals 

STAT5 inhibition and STAT3 activation for increasing IL-2 (A). STAT3 and 

STAT5 can form either homo- or hetero- dimers. Our model predictions 

demonstrate that STAT3:STAT3 inhibits the formation of STAT5:STAT5 

homodimer (B). Due to the fact that dimers require two molecules for binding, 

the dependence of STAT5:STAT5 on STAT3:STAT3 concentration is steeper 

than the dependence for their monomers. Phosphorylated STAT3 and STAT5 

can activate their homodimers and inhibit STAT5:STAT5 and STAT3:STAT3 

homodimers, respectively (C and D). See Equations (4.1) and (4.6) with 

parameters taken from set "O3" in Table 7.2. 
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Mutual inhibition of the competing STAT proteins 

In order to illustrate the competition between the STAT species, in this 

subsection we study the STAT monomers and dimers interdependence effects 

on each other (Figure 4.6). It can be seen from Figure 4.6A that the competing 

STAT proteins inhibit each other for high IL-2 concentrations via the correlation 

between them (indirect inhibition). With the increasing of IL-2, STAT3 becomes 

more phosphorylated than STAT5. The effect of STAT redistribution is also 

predicted by our model for the STAT5:STAT5 dependence on STAT3:STAT3 

with higher degree of steepness (Figure 4.6B). Figures 4.6C and 4.6D show 

that phosphorylated STAT monomers not only activate their corresponding 

dimers but at the same time inhibit the competing dimers for higher IL-2 

concentrations. 

 

The experimental procedures offer various techniques to study both STAT 

monomer and dimer subunits. One of the widely used techniques of measuring 

the rate constants for homodimer subunit exchange is double electron-electron 

resonance (DEER) or nuclear magnetic resonance spectroscopy based 

paramagnetic relaxation enhancement (PRE) [249]. Here and anywhere else in 

this chapter by the homodimer subunit exchange we mean the increase of one 

STAT homodimer concentration that used to be initially low and decrease of the 

other due to the STAT redistribution. These experiments could be performed to 

obtain more experimental information about STAT protein dimerisation. In 

particular, the experimental information that needs to be obtained includes the 

concentrations of STAT3 and STAT5 dimers for different concentrations of IL-2 

in order to verify our model predictions shown in Figure 4.6. 

 

The results obtained in this subsection demonstrate STAT proteins 

redistribution. The proposed model predicts that STAT3 and STAT5 compete 

with each other and for high IL-2 concentrations STAT3 inhibits STAT5. This 

effect is amplified for the STAT dimers. 

 

 

 

 

 



130 
 

IL-2-dependent selective regulation of the STAT competition 
 

 

Figure 4.7. Model predictions for low IL-2 reveal selectivity of the immune 

response. 

A. Selective concentration-dependent STAT5 activation profile emerging from 

consideration of low IL-2. B. STAT5:STAT5 homodimers also demonstrate 

selectivity for IL-2 due to the high dependence on STAT5p. See Equations (4.1) 

and (4.6) with parameters taken from set "O3" in Table 7.2. 

 

 

Experiments published in [244] established the bell shaped IFN-γ dependence 

on low IL-2 concentrations (Figure 4.4B). In order to test whether the bell-shape 

is also present in STAT activation dependence on IL-2, in this subsection our 

model is tested in the range of very low IL-2 concentrations compared to IL-2 

concentrations tested in the previous subsections (less than 
810
 according to 

Figure 4.4B, which corresponds to less than 0.5 U/ml  in [244]). Figure 4.7A 

reveals the bell-shaped dependence for phosphorylated STAT5 on IL-2 as well 

as for STAT5:STAT5 homodimer on IL-2 that is illustrated in Figure 4.7B. 

 

The predicted bell-shaped relationship may offer new insights into the dual role 

of STAT-mediated cytokine production. Experimental evidence suggests that 

significant amount of STAT5p is present in Th1 cells characterised by IFN-γ 

production (Figure 4.4A, [39]). Applying the systems approach (Figure 4.1A) we 

suggest that STAT5 induces IFN-γ production. These results are consistent with 

the experiments in [212,231,232]. However it was also shown in [233] that 

STAT5 can induce IL-10 production. 
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Our model predicts that the same amount of phosphorylated STAT5 may lead 

to both low and high IL-10 production levels, depending on the extracellular 

concentration of IL-2. The established possibility for the STAT-mediated bell-

shaped dependence between IFN-γ and IL-10 cytokines production offers a 

potential explanation for their co-expression in childhood celiac disease [250]. 

 

The model predictions presented in this section support our hypothesis that the 

switching between IFN-γ producing Th1 cells and IL-10 producing Tr1 cells is 

due to the switching between the competing STAT proteins. Therefore we 

suggest that the cells, that produce IFN-γ and IL-10 simultaneously 

(IFN-γ+IL-10+ cells), develop from IFN-γ producing Th1 cells that have received 

IL-2-dependent signal to switch, rather than represent a specific T cell 

population. The model predictions support the idea that the same T cell can 

express both regulatory and effector cytokines in response to the same antigen. 

This result is essential for understanding the mechanism of cytokine switching 

[39,244]. Additionally, the model predicts the initial increase of both STATs 

phosphorylation that leads to the initial IFN-γ and IL-10 co-expression. 

 

4.5.2 Parameter sensitivity analysis 

In the previous subsections we showed that our model predicts that IFN-γ to 

IL-10 switching (Figure 4.4) is due to the competition between STAT3 and 

STAT5 proteins (Figures 4.5 and 4.7). These model predictions are not obvious 

from the model assumptions due to the following. The structure of our model 

presented in Figure 4.1 is symmetrical in relation to the varied IL-2, i.e. IL-2 

activates both STAT3 and STAT5. The model predictions for the 

phosphorylated states of STAT3, STAT5 and their homodimers could be 

swapped in Figures 4.5 and 4.7 if the parameters for STAT3 and STAT5 are 

swapped (Figures 7.1A and 7.1B in Appendix C). However in this case there 

would be no cytokine switching (Figure 7.1C). Thus the model predictions 

depend on the assumed structure of our model as well as on the chosen set of 

parameters. In this subsection we perform the parameter sensitivity analysis 

(SA) [251,252] to identify the parameter conditions for the conclusions to hold. 
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First, we test if the IFN-γ to IL-10 and STAT5 to STAT3 switching are still 

present if we vary the parameters compared to their optimal values (set "O3" in 

Table 7.2). Quantitatively, we define the switching of either IFN-γ to IL-10 or 

STAT5 to STAT3 as follows. We assume that the switching occurs when the 2-

fold changes take place, which is typically considered as significant change in 

Biology (gene expression) [253,254]. Thus the changes should include at least 

2-fold increase in IL-10 and STAT3 as well as decrease of the peak of IFN-γ 

and STAT5 concentrations within the range of the tested IL-2concentration. 

 

We vary the parameters up to 10-fold either side of their values in the optimised 

set. We use the Latin Hypercube Sampling (LHS), which is considered as one 

of the most effective strategies for sampling the parameters [252,255]. We 

perform the LHS sampling and check the assumed condition for switching for 

1000 samples of the optimised parameters. Figure 4.8 illustrates the probability 

of the cases, in percent, where the switching of both cytokine and STAT 

(C+S+), cytokine and not STAT (C+S-), not cytokine and STAT (C-S+), neither 

cytokine not STAT (C-S-) occurs for 1-10 fold change of the optimised 

parameters. The obvious result that follows from Figure 4.8 that when the 

parameters are not perturbed, which corresponds to the 1-fold change, the 

probability of the presence of both cytokine and STAT switching is 100%. 

However, with an increase of the fold change up to ten, the probability for 

switching of both cytokine and STAT decreases down to 2.1% (data shown in 

Table 7.3 in Appendix C). The probability of either of the cases (cytokine or 

STAT switching) is almost equal with the increase of the fold change as it can 

be seen from Figure 4.8. Thus, we can conclude that the model with the 

optimised parameters demonstrates both IFN-γ to IL-10 and STAT5 to STAT3 

switching with higher probability (more than 50%) when the parameters are 

perturbed within 2-fold, with modest probability (between 10% and 50%) when 

the parameters are perturbed within 3-6-fold and with low probability (less than 

10%) when the parameters are perturbed within 7-fold and higher. 
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Figure 4.8. The probability of cases when the switching occurs. 

The percentage of cases when the switching of both cytokine and STAT 

(C+S+), cytokine and not STAT (C+S-), not cytokine and STAT (C-S+), neither 

cytokine not STAT (C-S-) occurs for 1-10 fold change of the optimised 

parameters. 

 

Next we identify the most sensitive parameters that have the greatest effect on 

the steady-state concentrations of IFN-γ, IL-10, STAT5 and STAT3 for the three 

concentrations of IL-2: 
1010

, 
610
 and 

110
, which correspond to the three 

assumed T cell phenotypes shown in Figure 4.4B: Th1, Th1/Tr1 and Tr1 

respectively. We perform the SA using the eFast method [256], because it was 

reported as one of the most reliable methods of parameter sensitivity analysis 

[255]. As a tool for the eFast sensitivity analysis, we use the SBToolbox 

software [257], which is similar to a related study [258]. We perform the SA over 

one order of magnitude of perturbation for 10000 simulations. 

 

Figures 4.9-4.11 illustrate the results of the sensitivity analysis for IFN-γ, IL-10, 

STAT5 and STAT3 by the SBToolbox under the non-dimensional IL-2 

concentrations   102 10i   (Figure 4.9),   62 10i   (Figure 4.10) and   12 10i   

(Figure 4.11). The bars indicate the sensitivity indices for each of the 

parameters of our model. Here we classify the parameters as sensitive if the 

corresponding sensitivity index is more than 0.5 . 
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It can be seen from Figures 4.9A, 4.10A and 4.11A that IFN-γ is the most 

sensitive to the following parameters: 
18M , 

tgg , 
8n , 

19M , 1tmp  and 5ts , which 

demonstrate high sensitivity indices (more than 0.5 ) under the all three IL-2 

concentrations. The parameters 
1n , 2tr , 

6n  and 
2M  are sensitive under 

  102 10i   (Figure 4.9A) and   62 10i   (Figure 4.10A). The parameter 
14M  is 

sensitive only under   62 10i   (Figure 4.10A) and   12 10i   (Figure 4.11A). 

The result that the concentration of IFN-γ is sensitive to 
18M , tgg , 

8n , 
19M  and 

1tmp  is not surprising because these parameters are included into Equation 

(4.8) of IFN-γ production. The other group of IFN-γ-sensitive parameters that 

includes 5ts  and 
6n  is involved in the STAT5 pathway activation, which leads to 

the production of IFN-γ as shown in Figure 4.3 and Equations (4.6). Therefore, 

this is also an obvious result. There is also the third group of IFN-γ-sensitive 

parameters consisting of 1n , 2tr , 
2M  that are involved in the upstream 

activation of IL-2 receptor described by Equation (4.1). Finally, IFN-γ is sensitive 

to the Michaelis constant of heterodimerisation 14M . 
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Figure 4.9. Parameter sensitivity analysis performed by eFAST. 

Sensitivity indicators for the developed model for IFN-γ (A), IL-10 (B), STAT3 

(C) and STAT5 (D) under IL-2 concentration   102 10i  . 
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The parameter sensitivity analysis reveals that the concentration of IL-10 is the 

most sensitive to 10tg  and 
9n  under   102 10i   (Figure 4.9B),   62 10i   (Figure 

4.10B) and   12 10i   (Figure 4.11B). This result is obvious as both 10tg  and 
9n  

are involved in the production of IL-10 as shown in Equation (4.9). 

 

The parameter 
9M  is the most sensitive for the phosphorylated STAT3 under 

all three IL-2 concentrations as it is shown in Figure 4.9C, Figure 4.10C and 

Figure 4.11C. Two parameters, namely, 
5n  and 

6Q , show high sensitivity only 

under   102 10i   (Figure 4.9C) and   62 10i   (Figure 4.10C). These results are 

predictable since 9M , 
5n  and 6Q  are involved in the STAT3 pathway activation 

as indicated in Figure 4.3 and Equation (4.6). 

 

The concentration of phosphorylated STAT5 is the most sensitive to the total 

amount of STAT5, 5ts , under all three tested IL-2 concentrations as it is shown 

in Figure 4.9D, Figure 4.10D and Figure 4.11D respectively. This is an expected 

result. The parameter 
6n  demonstrates high sensitivity indices for STAT5p 

under   102 10i   (Figure 4.9D) and   62 10i   (Figure 4.10D). This parameter is 

involved in the activation of STAT5 pathway as shown in Figure 4.3 and 

Equation (4.6). The concentration of STAT5p is sensitive to the Michaelis 

constant of heterodimerisation 14M  under   62 10i   (Figure 4.10D) and 

  12 10i   (Figure 4.11D). Three parameters, 1n , 2tr  and 
2M , are sensitive 

under   102 10i   (Figure 4.9D) and   62 10i   (Figure 4.10D), involved in the 

activation of the IL-2 receptor described by Equation (4.1). 

 

Thus, in this subsection we identified the parameters that mostly affect the 

model predictions. In the next subsection we will test our model for the 

perturbations of some of the identified parameters looking for the potential 

causes of the inflammatory diseases theoretically. 
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Figure 4.10. Parameter sensitivity analysis performed by eFAST. 

Sensitivity indicators for the developed model for IFN-γ (A), IL-10 (B), STAT3 

(C) and STAT5 (D) under IL-2 concentration   62 10i  . 
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Figure 4.11. Parameter sensitivity analysis performed by eFAST. 

Sensitivity indicators for the developed model for IFN-γ (A), IL-10 (B), STAT3 

(C) and STAT5 (D) under IL-2 concentration   12 10i  . 
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Investigation of possible mechanisms of JAK-STAT mediated 

inflammatory pathologies 

 

 

Figure 4.12. Systems model predictions for the produced IFN-γ and IL-10 

dependence on the change in intracellular regulation. 

The aberrations in both activating or competing JAK-STAT pathways regulate 

the amounts of produced IL-10 (A) and IFN-γ (B). The profile of IFN-γ 

production can be shifted along IL-2 axis by changes in IL-2R signalling (C). 

The mutations in STAT5 phosphorylation may lead to IFN-γ profile shift along 

IL-2 axis with the reduction of its magnitude at the same time (D). Thin lines 

represent the model predictions for the optimised set of parameters shown in 

Appendix C, while bold lines show the model predictions for the perturbed 

parameters shown in Table 4.1. Equations (4.1), (4.6), (4.7), (4.8) and (4.9). 

Parameters taken from set "O3" in Table 7.2, with changes according to Table 

4.1. 

 

 

Now we apply our newly developed model to investigate potential deviations in 

the immune system caused by the changes in the parameters starting with the 

highest sensitivity indices. It was reported that IFN-γ and IL-10 play crucial role 
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in autoimmune pathologies [259,260]. Figure 4.12 illustrates the influence of the 

changes in STAT pathways on IFN-γ and IL-10 production. The model shows 

that the production of IL-10 can be increased by attenuating the degradation of 

IL-10 by metalloproteases (increase of 
9n  and 

20M ) or, alternatively, by an 

increase of 10tg , as shown in Figure 4.12A and consistent with [261]. The 

changes in Figure 4.12A are illustrated for 15% parameter perturbation of 
9n . 

Our model also suggests that the level of produced IFN-γ can be controlled by 

various intracellular mechanisms (Figure 4.12B). For example, our model 

predicts that the magnitude of pro-inflammatory IFN-γ can be reduced by the 

attenuation of the STAT5 pathway signalling (decrease of 5ts ) [231] or by 

enhancement of metalloprotease-induced degradation of the produced IFN-γ 

(decrease of 18M  and 
8n ). This prediction may sound obvious as it follows from 

the structure of the model shown in Figure 4.3. However another prediction of 

the model is that changes in the STAT3 pathway can also reduce the level of 

the produced IFN-γ, which is not obvious from Figure 4.3. This effect could be 

achieved by enhancing the formation of STAT3:STAT5 heterodimer complex 

(decrease of 
14M ) or alternatively by attenuation of STAT3 dephosphorylation 

(increase of 9M ). Figure 4.12B shows the effects of perturbations of these 

model parameters for the 1.5-fold change of 
9M . 

 

As a result of the parametric alterations the shape of IFN-γ dependence shifts 

along IL-2 axis (Figure 4.12C). According to our model, the alterations of the 

parameters, that cause the IFN-γ dependence shown in Figure 4.12C to shift to 

higher IL-2 concentrations, represent the changes in IL-2 receptor activation. 

These changes include the decrease of the total amount of IL-2R (decrease of 

2tr ) or enhancement of the dephosphorylation of phosphorylated IL-2R by 

SHP-1 (decrease of 
1n ). It is notable that the peak shifts along IL-2 axis, 

however the magnitude does not change during this transformation. These 

results might be important since it was shown that IL-2R signalling controls 

tolerance and immunity and that IL-2R deficiencies give rise to various 

pathologies including Inflammatory Bowel Disease (IBD) [39,262]. Figure 4.12C 

shows the effects of 1n  perturbation of one order of its magnitude. 
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The proposed model suggests new potential strategies for the control of IFN-γ 

selectivity. According to the model predictions, the IFN-γ peak shift along IL-2 

axis can be also achieved by the alterations in competing STAT3 signalling 

pathway [263], namely by IL-2 mediated STAT3 phosphorylation (parameter 

7M ) as shown in Figure 7.3A. This effect is a result of indirect interactions due 

to the redistribution of the STAT complexes as STAT3 does not directly regulate 

IFN-γ production. Our model predicts that due to the competition effects 

between STATs, STAT3 indirectly inhibits STAT5, which induces the production 

of IFN-γ.  

 

The developed model also suggests that attenuation of IL-2-induced 

phosphorylation of STAT5 (increase of 10M ) reduces IFN-γ magnitude and 

shifts the peak to the range of higher IL-2 concentrations [212,264,265] (Figure 

4.12D). Our model predicts that the peak disappears when we apply the 

opposite changes (decrease of 
10M ). 

 

 

Table 4.1. The effects of the parametric changes on the concentration of 

produced IFN-γ and IL-10 shown in Figure 4.12. 

Figure 

4.12 
Parameters 

Perturbation 

 

thin line 

(optimised)  

A 

9n  4163 10  
4191 10  

4220 10  

20M  4119 10  
4149 10  

4179 10  

10tg  
6.136  7.218  8.301 

B 

5ts  4198 10  
4247 10  

4297 10  

18M  
7.93  9.913  11.896  

8n  481 10  
4101 10  

4121 10  

14M  
0.068  0.1  0.145  

9M  
69.185  47.714  32.445  

C 
2tr  42.7 10  

427 10  
4268 10  

1n  
11.842  118.42  1184.2  

D 10M  
470  447 10  

947 10  
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Our model predictions demonstrate possible scenarios of alterations in 

JAK-STAT pathways that influence IFN-γ and IL-10 production. The scenarios 

include the change of IL-10 (Figure 4.12A) and IFN-γ (Figures 4.12B and 

4.12C) as well as the selective regulation of IFN-γ by IL-2 (Figure 4.12D). The 

effects of the parametric changes on the concentrations of produced IFN-γ and 

IL-10 are summarised in Table 4.1. The colour of the arrows in Table 4.1 

corresponds to the colour of the arrows that represent changes shown in Figure 

4.12. The results illustrated in Figure 4.12 show how the production of IFN-γ 

and IL-10 is regulated by their activating STAT pathways. Moreover, our model 

suggests alternative approaches for the regulation of IFN-γ and IL-10 

production by employing their competing STAT pathways, STAT3 and STAT5 

respectively. 

 

 

 

Figure 4.13. The effects of change in extracellular IL-6 concentration. 

A. The model predictions show that increased IL-6 (modelled by parameter 6Q ) 

leads to the lack of STAT redistribution (dotted lines) while reduced amount of 

IL-6 may lead to the more pronounced STAT redistribution. B. The lack of STAT 

redistribution observed for increased IL-6 leads to significantly lower level of 

IFN-γ production. Thus, our model predicts that the level of IFN-γ production 

can be reduced by the IL-6-dependent changes in the competing STAT3 

pathway. Thin lines represent the model predictions for the optimised set of 

parameters shown in Appendix C, while bold lines show the model predictions 

for the perturbed parameters. See Equations (4.1), (4.6), (4.7), (4.8) and (4.9) 

with parameters taken from set "O3" in Table 7.2. The parametric changes are: 
4

6 1 10Q    (purple arrow), 4

6 14 10Q    (thin line), 4

6 209 10Q    (red arrow). 
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In our model, in addition to the control function of IL-2, which includes the 

control of Th1/Tr1 switching [39], other functional cytokines also play an 

important role in T cell polarization. In the chosen example (Figure 4.1B) the 

production of anti-inflammatory IL-10 is up-regulated by IL-6 via the STAT3 

signalling pathway [266]. Next, we employ our model to study the interplay 

between IL-2 and IL-6 through the STAT signalling pathways and their role in T 

cell polarization. 

 

The developed model predicts how IL-6 variations impact the STAT switching 

ability (Figure 4.13A). In our model, the concentration of IL-6 is described by 
6Q  

parameter as shown in Equations (4.6). Figure 4.13A illustrates that IL-6 

decrease ( 6Q ) leads to more pronounced STAT5 to STAT3 switching, whereas 

an increase in IL-6 concentration (
6Q ) causes less significant changes in both 

STAT3 and STAT5 phosphorylation levels as a function of IL-2 and thereby the 

lack of switching. It can be seen from Figure 4.13A that IL-6 activates STAT3 

but at the same time inhibits STAT5 due to the STAT redistribution, consistent 

with observations in [267]. As a result of IL-6 impact on the STAT redistribution, 

the structure of our model suggests that IL-6 also affects the STAT-mediated 

production of IFN-γ and IL-10 (Figure 4.13B). In particular, our model predicts 

that due to the redistribution between STAT3 and STAT5, increased IL-6 leads 

to the reduced level of pro-inflammatory IFN-γ production. This result might be 

clinically important since it may offer novel strategies for reducing IFN-γ, which 

is essential in abnormal production of this pro-inflammatory cytokine during 

inflammation [39]. 

 

In this subsection we analysed the effect of parametric alterations in JAK-STAT 

pathways on the concentration of produced IFN-γ and IL-10. However, there is 

another pathway that regulates the production of IL-10, which is STAT 

independent, but IL-2 dependent. This is so called CD46-SP1 pathway, it is 

illustrated in Figure 4.3. The effect of the CD46-SP1 pathway is characterised 

by parameter 1tsp  (Equation (4.7)), the total amount of the transcription factor 

SP1, which enacts this pathway. Figure 7.3B shows the effects of perturbations 

of 1tsp  within 10-fold of either side of its optimised value. An increase of 1tsp  

leads to IL-10 shift to lower IL-2 concentrations, while a decrease of 1tsp  results 
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in IL-10 shift to higher IL-2 concentrations accompanied by a slight decrease of 

IL-10 magnitude (Figure 7.3B). If 1 0tsp  , which can be interpreted as the 

absence of CD46-SP1 signalling, the magnitude of IL-10 decreases significantly 

(two times) compared to the optimised value. Thus blocking CD46-SP1 

signalling leads to the lack of regulatory phase that is observed in patients with 

RA, which is consistent with [39,244]. Figure 7.3B shows that for the perturbed 

1tsp  switching from IFN-γ to IL-10 nevertheless takes place. This finding allows 

us to suggest that in our model, with the chosen set of parameters, switching is 

due to the STAT competition whereas CD46-SP1 signalling only plays a role in 

additional regulation of switching. 

 

4.5.3 Comparative analysis of STAT3-STAT4 versus STAT3-STAT5 
machinery 

In this subsection we combine the STAT3-STAT4 and STAT3-STAT5 modules, 

one of which (Figure 4.1B) was thoroughly investigated in the previous 

subsections, to understand integral properties emerging from the STAT-STAT 

circuit couplings. To this end, we first highlight the structural differences 

between the STAT3-STAT4 (Figure 4.1C) and STAT3-STAT5 (Figure 4.1B) 

circuits. The most crucial difference between the two circuits is in the role of 

IL-2. In STAT3-STAT5 subsystem IL-2 activates both STAT3 and STAT5 while 

in STAT3-STAT4 subsystem IL-2 activates only STAT3 and not STAT4. The 

other cytokines, that activate STAT4, include IL-12 and IL-35 (Figure 4.1C). We 

assume here that during the experiment the concentrations of IL-12, IL-35 and 

STAT3-activating IL-6 are maintained constant while IL-2 is varied. This implies 

that only the amount of phosphorylated STAT3 in the pairing can be directly 

changed by varied IL-2 concentration. To study the nature of the STAT 

redistribution and cytokines interdependence we next investigate the 

STAT3-STAT4 circuit for various IL-2 concentrations. The detailed description 

of the model for STAT3-STAT4 subsystem can be found in Appendix C. 
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Figure 4.14. The model predictions for STAT3-STAT4 circuit. 

Schematic diagram for the intracellular signalling that leads to IFN-γ and IL-10 

production through the STAT3-STAT4 mechanism (A). Redistribution between 

STAT3 and STAT4 monomers (B) as well as STAT3:STAT3 and STAT5:STAT5 

homodimers (C) leads to the IFN-γ to IL-10 switching for higher IL-2 

concentrations shown in (D). Our model predicts that there is a significant basal 

level of STAT4p and thereby STAT4:STAT4 homodimer for low IL-2. This is due 

to the fact that in our model IL-12 and IL-35 are maintained constant while 

varied IL-2 activates only STAT3 and not STAT4 in this pairing. The basal 

STAT4:STAT4 homodimer leads to the background level of IFN-γ production 

and the lack of initial co-expression between produced IFN-γ and IL-10 (D). See 

Equations (7.113), (7.124), (7.125), (7.126) and (7.127) with parameters taken 

from Table 7.4. 

 

 

In absence of experimental data for STAT4 signalling, we assume that the 

parameters in the STAT3-STAT4 subsystem are similar to the parameters in the 

STAT3-STAT5 subsystem (Table 7.4). Figures 4.14B-4.14D represent the 

model predictions for the STAT3-STAT4 subsystem (Figure 4.14A). The figures 
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include STAT3, STAT4 monomers (Figure 4.14B), STAT3:STAT3, 

STAT4:STAT4 homodimers (Figure 4.14C) as well as IFN-γ and IL-10 

dependences on IL-2 concentration (Figure 4.14D). It can be seen from Figure 

4.14 that the STAT3-STAT4 subsystem demonstrates dependence on IL-2 

similar to that of STAT3-STAT5 shown in Figure 4.5. Despite the fact that IL-2 

does not affect phosphorylation of STAT4 in STAT3-STAT4 circuit, the 

switching is nonetheless present in this submodule. 

 

The model suggests that the STAT and subsequent phenotype switching is due 

to the competition between STAT3 and STAT4 species rather than competition 

for the source of IL-2. This suggestion is supported by the structure of our 

model (Figure 4.1C) where IL-2 activates STAT3 and not STAT4 in the pairing 

and therefore there is no competition for the source. Mechanistically, the 

competition between STAT3 and STAT4 includes redistribution between these 

species that is implemented by the formation of STAT3:STAT4 heterodimer. 

 

Despite the fact that the switching is present in both STAT3-STAT5 and 

STAT3-STAT4 circuits, the model predictions significantly differ between these 

two circuits for the low IL-2 concentrations. STAT3-STAT5 circuit demonstrates 

the bell shaped characteristics with the low IFN-γ production for the low 

amounts of IL-2 (Figure 4.4B) whereas STAT3-STAT4 circuit reveals the 

significant background level of IFN-γ (Figure 4.14D). Figure 4.14B shows that 

for low IL-2 concentrations there is also a basal phosphorylation level of STAT4. 

Our model suggests that these background levels of STAT4p (Figure 4.14B) 

and subsequent IFN-γ production (Figure 4.14D) are due to the STAT4 

activation by the maintained concentrations of IL-12 and IL-35 [217]. 
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Figure 4.15. The model predictions for the combined STAT3-STAT4-STAT5 

circuit. 

A. Schematic diagram for the combined STAT3-STAT4-STAT5 model. B-D. The 

dose-response profiles show that for significantly dephosphorylated STAT4, the 

STAT3-STAT5 like responses prevail and the selective production of IFN-γ 

arises. E-G. The model predictions for dephosphorylated STAT5 reveal 

STAT3-STAT4 like responses with no selectivity for IFN-γ production observed. 

See Equations (7.129), (7.140), (7.141), (7.142) and (7.143). Parameters are 

taken from set "O3" in Table 7.2 and Table 7.4 except 4 236.96tp   in (A-C) and 

5 23.7tp   in (D-F). 
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After the establishment of the individual properties of STAT pathways, we next 

combine these two circuits (Figure 4.15A). Previously we studied individual 

contribution of each of them to the overall response of the system. The detailed 

description of the model for STAT3-STAT4-STAT5 subsystem is shown in 

Appendix C. The parameters are taken from Tables 7.2 and 7.4. 

 

Figures 4.15B-4.15G illustrate the model predictions for the combined 

STAT3-STAT4-STAT5 circuit. Our model shows that the IFN-γ to IL-10 

switching is still present in the combined model (Figures 4.15D and 4.15G). One 

of the major differences between the full circuit and the smaller submodules is 

that in the full circuit STAT3 competes with STAT4 and STAT5 at the same time 

(Figures 4.15B and 4.15E) while in the smaller submodules it competes only 

with either at a time. 

 

Previously we showed that the two subsystems have similar dose-response 

characteristics for medium and high IL-2, whereas the dose-response curves for 

low IL-2 are different (Figures 4.7 and 4.14). In the range of low IL-2 

concentrations our model demonstrates two possible scenarios for IFN-γ and 

IL-10 production depending on which of the two submodules, STAT3-STAT4 or 

STAT3-STAT5, prevails. Figures 4.15B-4.15D show that the combined model 

predictions qualitatively coincide with the predictions for STAT3-STAT5 

subsystem (Figures 4.4B and 4.7) when the amount of phosphorylated STAT4 

is significantly reduced in comparison to phosphorylated STAT5. In our model 

the reduction of STAT4p is performed by an increase of the total PTP 

phosphatase concentration ( 4 236.96tp  ). The case shown in Figures 

4.15E-4.15G, where STAT5p is strongly dephosphorylated by increased SHP-2 

( 5 23.7tp  ), suggests that the response of the combined model is similar to that 

of STAT3-STAT4 circuit considered previously (Figure 4.14). For this system we 

observe a significant (compared to phosphorylated STAT5) basal level of 

STAT4 phosphorylation (Figure 4.15E) as well as the background IFN-γ 

production (Figure 4.15G). Our model predicts that for the low IL-2 the 

phosphorylation level of STAT4 and STAT5 controls the balance between the 

competing STAT3-STAT4 and STAT3-STAT5 modules. 
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4.5.4 The role of individual cytokines in STAT dimer redistribution 

 

 

Figure 4.16. The competition between STAT3-STAT4 and STAT3-STAT5 

modules in the combined model depends on IL-21 concentration. 

The systems model predicts that low IL-21 can alter the balance between the 

competing circuits to the STAT3-STAT5 like responses (A-C). In this case the 

amount of STAT5:STAT5 homodimers is selectively regulated by IL-2 (B). The 

background level of IFN-γ production (C) is due to the basal phosphorylation 

level of STAT4 (A) and STAT4:STAT4 homodimer (B). At the same time, when 

IL-21 is significantly increased, STAT3-STAT4 like responses prevail as shown 

in (D-F) with no observed selectivity for STAT5 (D and E) and IFN-γ production 

(F). See Equations (7.129), (7.140), (7.141), (7.142) and (7.143). Parameters 

are taken from set "O3" in Table 7.2 and Table 7.4. The parametric changes are 
11

21 3.42 10Q    in (A-C) and 3

21 3.42 10Q    in (D-F). 

 

 

Our model suggests that the STAT dimer redistribution is also driven by the 

cytokines other than IL-2. We demonstrated earlier in this chapter the influence 

of STAT3-activating cytokine, IL-6, on the switching. Next, we investigate the 

role of STAT5-activating IL-21 in the competition between the STAT3-STAT4 

and STAT3-STAT5 circuits and its influence to the overall response (Figure 

4.16). The concentration of IL-21 is modelled by parameter 21Q  defined in 

Equations (4.6). 
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The developed model predicts that IL-21 controls the STAT dimer redistribution 

in the following way. In our model IL-21 phosphorylates STAT5 (Figure 4.1B). 

Figure 4.16 shows that the influence of IL-21 is especially significant for low IL-2 

concentrations. Our combined model suggests that low IL-21 ( 11

21 3.42 10Q   ) 

leads to the low initial STAT5p, which demonstrates the bell-shape for 

increasing IL-2 (Figure 4.16A), whereas increased IL-21 ( 3

21 3.42 10Q   ) leads 

to higher STAT5p with no bell-shape (Figure 4.16D). When phosphorylated, 

STAT5p forms STAT5:STAT5 homodimer structure. Thus, IL-21-driven STAT5 

phosphorylation defines the amount of STAT5:STAT5 homodimer for low IL-2 

(Figures 4.16B and 4.16E). The STAT5:STAT5 homodimer, in turn, up-

regulates IFN-γ production. Our model predicts that IL-21 also controls the 

balance between the competing STAT3-STAT4 and STAT3-STAT5 circuits in 

IFN-γ production. Figure 4.16 shows that for low IL-2 the bell-shaped 

STAT3-STAT5 (Figure 4.16C) and monotonic STAT3-STAT4 (Figure 4.16F) 

production of IFN-γ is due to the low and increased IL-21, respectively. 

However in contrast to the STAT3-STAT5 like responses when STAT4p was 

dephosphorylated (Figures 4.15B-4.15D), here we observe the background 

IFN-γ production for low IL-2 (Figure 4.16C), which is due to the basal level of 

STAT4:STAT4 homodimer (Figure 4.16B). 

 

In this subsection we analysed the influence of cytokines other than IL-2 on the 

STAT redistribution and produced cytokine switching using the example of 

IL-21. The combined model shows that the increased IL-21 concentration up-

regulates STAT5 under the low IL-2 concentration and therefore leads to the 

STAT3-STAT4 like production of IFN-γ without the bell-shaped dependence 

(Figures 4.16D-F). At the same time the model predicts that the lower IL-21 

concentration leads to the STAT3-STAT5 like responses in relation to IFN-γ 

production for low IL-2 (Figures 4.16A-C). These results can be explained by 

the fact that IL-21 increases the amount of STAT5:STAT5 homodimers and 

thereby leads to basal IFN-γ production observed for STAT3-STAT4 circuit 

separately [225,232]. 
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4.6  Conclusions 

In this chapter we extended the model for single STAT phosphorylation 

proposed in previous chapter to the system of interacting STATs and developed 

a new integrative modelling approach to study STAT signalling. The approach 

encompasses the network representation of the interactions between cytokines 

and JAK-STAT pathways. Based on the proposed approach, we built a 

mathematical model for STAT signalling in T cells. The proposed model was 

employed to explain the T cell phenotype plasticity effects using the example of 

Th1 to Tr1 switching [39]. While it is widely accepted that JAK-STAT pathways 

regulate the phenotype switching, the underlying mechanism and possible 

interdependence effects between the JAK-STAT pathways need further 

clarification. In order to propose potential mechanisms we considered the 

immune response from the systems perspective. The model developed in this 

chapter for the first time takes into account the interdependence effects 

between the JAK-STAT pathways and predicts the conditions, under which the 

phenotype switching occurs. The proposed model explains how the same 

cytokines can activate different STATs and induce the production of other 

cytokines with opposite immune function. The model predictions are consistent 

with the experimental data for IFN-γ and IL-10 production [244]. 

 

The molecular mechanisms underlying T cell plasticity have been a subject of 

extensive systems biology research in recent years. Our model extends 

previously published mathematical models that analyse JAK-STAT signalling 

[40-43]. While the previous models studied cytokine production considering 

single JAK-STAT activation pathways only, our model introduces cross-

regulation effects and STAT-related modulation of signals. The developed 

model establishes relationship between cytokines, STAT proteins and the 

overall immune response. Our model predicts that the Th1 to Tr1 phenotype 

switching is due to the competition and switching between the STAT proteins. 

The parameter sensitivity analysis presented in this chapter (Figure 4.8) 

demonstrates that this conclusion is valid with the probabilities of 78% within the 

2-fold, 45% within the 3-fold and 28% within the 4-fold parametric changes. 

 

The analysis of our model showed that depending on extracellular cytokine 

concentrations the competing STAT species can inhibit each other. Another 
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finding of this chapter offers an insight into the role of STAT heterodimer 

complexes that has been remained unclear [217]. We suggested here that 

STAT homodimers rather than heterodimers induce the cytokines production, 

which is consistent with [245], and that the heterodimers can serve as a "buffer" 

between the various STAT homodimer complexes. The presence of 

heterodimers allows the redistribution of STAT homodimers and therefore 

causes the switching of produced cytokines and T cell phenotype. The 

suggested regulatory role of STAT heterodimers could be studied 

experimentally by proteomic identification of nuclear STAT heterodimers. This 

would allow one to check our model predictions regarding the STAT 

homodimers correlation shown in Figure 4.6. 

 

The proposed model was applied to study interdependent interactions in the 

pathways that lead to the production of IFN-γ and IL-10 (Figure 4.6). The model 

predictions show the cross-inhibition effects between the production of IFN-γ 

and IL-10 as well as the produced cytokines dependence on STAT monomers 

and dimers. These results demonstrate how the same STAT proteins induce the 

production of certain cytokines and inhibit the production of the others. Our 

model shows how such extracellular stimuli as IL-2 control the threshold of the 

switching between IL-10 and IFN-γ inducing STAT dimers, STAT3:STAT3 and 

STAT5:STAT5 respectively. The proposed model suggests that mutual 

inhibition of competing STATs is the basis of the inhibition effects in IFN-γ and 

IL-10 production. 

 

Our model suggests new explanations for JAK-STAT signalling regulation 

involved in the T cell phenotype switching. A number of external and internal 

factors can alter the model parameters and biomolecular interactions in 

JAK-STAT signalling pathways and as a result influence the levels of produced 

cytokines as well as the T cell phenotype. We investigated how these 

alterations (possibly caused by genetic mutations) can lead to various 

pathological states without changing the structure of the model. Our model 

predicts that inappropriate regulation of IL-2 receptor system leads to the 

dysfunctions or lack of the IFN-γ to IL-10 switching, which in turn may mediate 

the autoimmune and IBD states [262]. 
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Immunity-related pathologies caused by Leishmania major or Epstein-virus are 

associated with an inappropriate balance between the pro-inflammatory and 

anti-inflammatory cytokines [268,269]. The proposed model suggests strategies 

for regulation of IFN-γ and IL-10 production during the diseases. We showed 

that the IFN-γ to IL-10 switching can be controlled biochemically by enhancing 

or reducing signalling through certain JAK-STAT pathways. Our model predicts 

that the reduction of the uncontrolled inflammation could be achieved by 

reducing the role of STAT5 pathway or by enhancing the IL-6-induced STAT3 

phosphorylation, which up-regulates anti-inflammatory IL-10 production. 

Alternatively, the enhancement of STAT3 phosphorylation can be performed via 

lowering the SHP-1-mediated dephosphorylation of phosphorylated STAT3. The 

predictions of our model might have clinical applications in drug discovery and 

could be tested experimentally. 

 

The model proposed in this chapter shows that the alterations in intracellular 

signalling may lead not only to the change in the levels of the produced 

cytokines but also to the lack of T cell phenotype switching, which is associated 

with the immunity-related pathologies. Figure 4.13 shows that the increased 

IL-6 leads to the lack of switching in phosphorylated STAT proteins, whereas 

the switching is stronger for the reduced IL-6. Due to the high dependence of 

cytokine production on the STAT balance, the lack of switching in STATs leads 

to the lack of switching in IFN-γ and IL-10 production. 

 

A number of pharmacological and clinical studies observed aberrant STATs 

activation in human tumour diseases. The inhibition of certain STATs and 

induced cytokine production might have clinical applications in immunity-related 

pathologies including cancer [210,211,270] and uncontrolled inflammation [271]. 

It was reported that STAT3 is a promising target for anti-cancer treatment 

[210,211,270]. Experimental studies investigating STAT3 inhibition have been 

grown in recent years [272-275]. However there is still a limited understanding 

of the underlying mechanisms of the inhibition. Our model proposes new 

interdependent strategies for STAT3 inhibition, which include the activation of 

competing STAT pathways. The results of the proposed model suggest that the 

inhibitor selectivity to specific STAT proteins might enhance the anti-cancer 

effect. 
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Systems modelling can offer new insights into the interpretation of experimental 

data. The fact that our model considers multiple JAK-STAT pathways at a time 

might potentially explain the conflicting experimental results [212,231-233,250] 

supported by the wrong data interpretation. For example it was shown in 

[212,231,232] that the activated STAT5 leads to the production of IFN-γ while in 

[233] it was demonstrated that IL-10 production is also enhanced through 

STAT5 activation. The proposed model can explain the duality in experimental 

data by introducing the selective effects in JAK-STAT pathways depending on 

IL-2 concentration (Figures 4.4 and 4.7). Thus the experimental data cannot be 

interpreted in the way that certain input cytokine can activate other cytokine 

production but the concentration of other input extracellular cytokines should 

also be considered. 

 

The model predictions may contribute to better understanding of the molecular 

basis of autoimmune states [39]. Using the example of IL-6 can explain how 

some cytokines have a dual role in inducing both pro- and anti-inflammatory 

cytokine production [266]. We suggested here the mechanism how the STAT 

signalling and subsequent cytokine production depend on the combination of 

extracellular cytokines using the examples of STAT3, STAT4, STAT5, IL-2, IL-6, 

IL-21, IL-12, IL-35 in IFN-γ and IL-10 production. Our model is in line with the 

observations that the cytokine milieu rather than a single cytokine defines the 

overall immune response [276]. Thus, systems approach offers broader 

understanding of the mechanisms involved in JAK-STAT signalling. 

 

Here we used the systems biology approach, according to which all 

sophisticated systems of biomolecular interactions can be divided into 

subsystems if it is physiologically meaningful. Using this method we extracted 

from the scheme shown in Figure 4.1A the STAT3-STAT5 and STAT3-STAT4 

subsystems and then combined them together. The analysis revealed that all 

three subsystems can reproduce the phenotype switching for certain amounts 

of IL-2 however the model predictions differ for low IL-2 concentrations. The 

model predictions for low IL-2 concentrations showed selective activation of 

IFN-γ production for STAT3-STAT5 subsystem (Figure 4.4B) whereas 

STAT3-STAT4 subsystem demonstrated no selective activation caused by 
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basal, relatively significant level of IFN-γ production (Figure 4.14D). The 

combined model suggests that extracellular cytokines can switch the overall 

response of the system to selective or non-selective responses for low 

concentrations of IL-2. Thus our model reveals that there is a competition not 

only between the STATs but also between the subsystems. Using the example 

of IL-21 we showed how the change in this extracellular cytokine concentration 

can shift the balance between the competing subsystems (Figure 4.16). 

 

T cells can be divided into the phenotypes that produce pro-inflammatory and 

anti-inflammatory cytokines. One of such examples was investigated in this 

chapter in the context of Th1/Tr1 phenotype switching. We focused on pro-

inflammatory IFN-γ and regulatory IL-10 production in the Th1/Tr1 phenotype 

switching via STAT proteins. However it should be noted that the considered 

STATs, shown in Figure 4.1A, can also induce the production of cytokines other 

than IFN-γ and IL-10. We suggested here that the proposed model can be 

applied to describe the plasticity effects and the switching not only between Th1 

and Tr1, but also the other T cell phenotypes. Our model might potentially have 

clinical applications in the Th1/Th2 [277], Treg/Th17 or Th17/Th2 [278] 

phenotype switching. For example, the proposed model for pro-inflammatory 

IFN-γ producing Th1 and anti-inflammatory IL-10 producing Tr1 cells can be 

extended to pro-inflammatory IL-17 producing Th17 and anti-inflammatory IL-4 

producing Th2 as well as anti-inflammatory IL-10 producing Treg cells, which is 

one of directions for future research. 
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5 The interplay between MAPK signalling and 
biophysical regulation in Candida glabrata 
adaptation to osmotic stress 

5.1 Literature review 

5.1.1 Biological review 

Candida glabrata is a pathogenic yeast, which is especially prevalent in patients 

with immunodeficiency [279]. It is one of the most common cause of candidiasis 

[280]. C. glabrata lives on human mucosal surfaces as a biofilm and rarely 

penetrates tissue [45]. Due to the fact that for many years C. glabrata was 

thought to be a non-pathogenic organism, it is now one of the less studied 

Candida species [281]. However, further studies revealed that this fungi are 

opportunistic pathogens in the group of people who have the lack in immune 

response, which includes HIV positive people, the elderly and people who 

received immunosuppressive therapies or antibiotic treatment [45,282,283]. 

Moreover, the mortality rate associated with C. glabrata is one of the highest 

(40-70%) compared to other non-C. albicans Candida species (20-40%) 

[284,285]. 

 

Evolutionary, among all the non-C. albicans Candida species, C. glabrata is the 

most closely related to Saccharomyces cerevisiae baker yeast [45]. S. 

cerevisiae is one of the best studied model organisms due to their easy 

culturing, short generation time and gene transformation. They naturally inhabit 

on surface of decomposing fruits and widely used in bakery, brewing and 

winemaking [286,287]. 

 

To maintain their normal functioning, both C. glabrata and S. cerevisiae have to 

adapt to a range of external stimuli and stresses such as pheromone, starvation 

and osmolarity. These stimuli are detected by receptors and transmitted to the 

effector molecules leading to signal transduction pathways. The information is 

transmitted through the conformational changes of molecules, such as 

phosphorylation [30,288]. Due to the fact that C. glabrata has to survive in more 

extreme changes in external conditions, evolutionary it has developed better 

adaptation mechanisms. It was reported that comparing to S. cerevisiae, C. 

glabrata is more tolerant to osmotic stress [45]. 
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The cell senses changes in osmotic pressure by its transmembrane 

mechanoreceptors. In yeast the receptors are presented by Sho1 and Sln1 

sensors [289]. They are located on the cell membrane. The receptors activate 

intracellular signalling pathways by phosphorylation of MAP kinases (MAPK). 

The MAPK form important modules, each of them consists of three kinases: a 

MAPK kinase kinase (MAPKKK), a MAPK kinase (MAPKK), and a MAPK. The 

mechanism of their activation is based on sequential phosphorylation of each 

level in the MAPK cascade [290]. This multilevel structure of the MAPK cascade 

leads to amplification of signal and attenuation of noise [58,59]. In S. cerevisiae 

and C. glabrata Ste11 serves as MAPKKK, Ste7 and Pbs2 as MAPKK and 

Fus3, Kss1, Hog1 as MAPK [291]. 

 

The osmo-adaptation pathway contains two branches: Sho1 and Sln1. Both 

branches split at the shared MAPKK, Pbs2. In the Sln1 branch a trans-

membrane (TM) Sln1 kinase serves as an osmosensor. The signal is 

transmitted through Sln1, Ypd1, Ssk1 by a multistep phosphorelay mechanism, 

which implies the direct transfer of a phosphate group and inhibition of 

Ssk2/Ssk22 [292]. It was shown that Ssk2 is presented in both S. cerevisiae 

and C. glabrata species whereas Ssk22 only in S. cerevisiae [293]. Under the 

hyper-osmotic stress Sln1 is inhibited and this leads to the activation of Ssk2 

and Hog1 activation [289]. In Sho1 branch another TM protein named Sho1 

initiates the signalling through the MAPK module, which includes Ste11, Pbs2 

and Hog1 [289]. Hog1 is phosphorylated on two sites, Thr-174 and Tyr-176, and 

regulates osmo-adaptation genes in the nucleus [51,294]. It was shown that the 

mechanism of multisite phosphorylation of Pbs2 and Hog1 is sequential 

[53,295]. Dephosphorylation of these sites is necessary for Hog1 inactivation. 

There are several phosphatases known as negative regulators of the Hog1 

pathway: Ptc2, Ptp2 and Ptp3 [296,297]. 

 

In the nucleus the activated MAPKs start the transcriptional programme 

required for the completion of the stress response by associating via specific 

transcription factors and stimulating gene expression [298]. To adapt to high 

osmotic stress, the downstream component Hot1 targets Hog1 to specific 
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osmostress-responsive promoters and regulates Hog1 responsive genes. 

Anchoring of active Hog1 to promoters by Hot1 is crucial for RNA Polymerase 

(Pol) II activation [299]. The completed Hog1 pathway response to osmotic 

stress includes the production of osmotically active glycerol, which 

compensates the difference in osmotic pressures [33]. 

 

Glycerol is one of the main osmolytes in the cell [300]. The cell regulates the 

concentration of glycerol not only by its production under the hyper-osmotic 

stress but also by its efflux under the hypo-osmotic stress in order to rapidly 

decrease the concentration of osmotically active compounds inside the cell and 

prevent the cell from bursting [301]. The transport of glycerol is performed by 

glycerol Fps1 channels. These membrane channels are open when Fps1 and 

Hog1 are non-phosphorylated [302]. 

 

Glycerol is produced from the glucose [303,304]. Intracellular glucose can be 

increased due to the glucose uptake from extracellular media across the cell 

membrane [305,306] and also by a conversion from osmotically inactive 

glycogen [307]. Glucose and glycerol serve as an intracellular resource to adapt 

to hyper-osmotic stress. The transformation from glycogen is performed by the 

phosphorylated glycogen phosphorylase (Gph) while the reverse transformation 

from glucose to glycogen is supported by non-phosphorylated glycogen 

synthase (Gsy) [308,309]. The phosphorylation of Gsy and Gph is performed by 

protein kinase A (PKA) [310,311]. 

 

Now consider the above explained biological details using functional 

representation (Figure 1.1). Figure 5.1 illustrates the functional diagram of the 

yeast adaptation to osmotic stress, which can be "informally" described as 

follows. The yeast cell receives the stress signal and processes it. Depending 

on the type of the signal, namely hyper- or hypo- osmotic stress, the cell 

performs a certain functional programme to adapt to it. In case of hyper-osmotic 

stress the cell increases the concentration of intracellular osmotically active 

compounds using its resource (intracellular glycerol, glucose), which was 

accumulated when the cell was in the resting, free-from-stress state. In contrast, 

when the cell is exposed to hypo-osmotic stress, it tends to decrease the 
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concentration of intracellular osmotically active compounds. The regulation of 

the concentration of osmotically active compounds inside the cell allows 

compensation the difference in osmotic pressures and, as a result, adaptation 

to osmotic stress. Once the adaptation is completed the cell sends the signal to 

the Reception functional block that cancels the adaptation program. 

 

 

 

Figure 5.1. Functional diagram for the yeast adaptation to osmotic stress.  

This diagram shows the functions that the yeast cell tends to complete in order 

to adapt to osmotic stress. 

 

 

Current C. glabrata treatment includes the use of boric acid, nystatin (NYST), 

Amphotericin B (AMB) and azoles including fluconazole (FLU) and itraconazole 

(ITRA) [281]. However it was established that C Glabrata is resistant to azole 

drugs and AMB [312,313]. Another problem associated with the currently used 

therapies is their adverse side effects. It was reported that boric acid is 

potentially toxic [281] and AMB may lead to renal dysfunction [314]. Therefore, 

there is a real need for an alternative, more effective therapies against C. 

glabrata. Mathematical modelling of the yeast adaptation to osmotic stress may 

reveal conditions, under which the pathogen yeast become more vulnerable 

and thus help the treatment. 
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5.1.2 Modelling review 

The adaptation properties of S. cerevisiae to osmotic stress have been 

extensively studied using both computational modelling and experimental data 

in recent years [47-57]. Some early works were focused only on MAPK cascade 

and its properties because it was not clear how the osmotic stress activates the 

MAPK cascade. The studied properties included ultrasensitivity, multistability 

and oscillations [53-57]. Other studies extended this approach by adding 

possible feedback mechanisms and included the receptor systems that lead to 

the activation of Hog1 through the MAPK cascade [51,52]. However 

consideration of the ubiquitous MAPK cascade alone and with the receptor 

systems cannot fully explain the mechanism of adaptation due to the fact that it 

does not include such important physical parameters as the cell volume, turgor 

pressure and osmolytes concentration. These parameters are vital for the yeast 

cell survival under the osmotic stress conditions [33,315]. 

 

To extend the knowledge of osmo-adaptation mechanisms in S. cerevisiae, 

mathematical models were developed for investigation of the Hog1 response to 

fluctuating osmotic stress [49,50]. However, these models used simplified 

description of Hog1 pathway activation, i.e. not all of the proteins were 

presented, for example Sho1 pathway was absent. This makes it impossible to 

test the models under various mutations in the pathways (for instance, Ssk2 

knock-down). 

 

In order to understand deeper the underlying molecular mechanisms of Hog1 

signalling pathway activation and downregulation in adaptation of the yeast to 

osmotic stress, next studies included both biochemical and biophysical 

regulation. One of the most detailed mathematical models of osmo-regulation in 

S. cerevisiae was presented in [48]. This model contains 70 parameters and 35 

ordinary differential equations (ODEs) plus 2 algebraic equations to provide a 

plausible description of the mechanisms underlying the adaptation of yeast to 

hyper-osmotic stress. Despite the detailed description and good fitting to the 

experimental data this detailed model is rather difficult to analyse due to a high 

number of parameters. Moreover, the results from [48] seem to be not 
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reproducible, see http://www.lancs.ac.uk/~winterh/biologyCS.pdf, which is also 

consistent with our own attempts. To overcome the issues related to the 

complexity of the model published in [48], Gennemark in [47] offered a 

simplified version of the model [48] that demonstrates the essential biochemical 

and biophysical properties. This model consists of only 10 parameters, 4 ODEs 

and 3 algebraic equations. Thus, in this chapter we chose the Gennemark 

model [47] as the basis for our new model. The Gennemark model will be 

described in more detail in the next section. We stress here that our 

development of [47] concerns completely different aspects than the 

simplification of [47] compared to [48]. 

 

Mathematical modelling of S. cerevisiae adaptation to osmotic stress has 

contributed to a better understanding of the underlying molecular mechanisms 

and architecture of the yeast. The models developed in [47-57] demonstrated a 

good fit to the experimental observations. However, despite the close relation 

between S. cerevisiae and C. glabrata, these models have limitations in 

application to C. glabrata adaptation to osmotic stress. The current models can 

only describe the adaptation of the yeast to hyper-osmotic stress, however it is 

also important to understand how S. cerevisiae and C. glabrata adapt to hypo-

osmotic stress conditions. Previously published models [47-57] lack the detailed 

biochemical description of the MAPK pathway activation and glycerol 

metabolism, which limits the investigation of the yeast viability under the 

osmotic stress conditions. The simplified description of MAPK pathways 

activation also does not allow to test them in the case of mutations in the 

pathways. 

 



162 
 

5.2 Gennemark model 

 

 

 

Figure 5.2. Schematic diagram for the model developed by Gennemark.  

This model includes simplified biochemical and biophysical regulation. 

 

Figure 5.2 schematically shows the structure of the model developed by 

Gennemark in [47]. It consists of biophysical and biochemical parts. The 

biophysical part describes the volume of the cell and turgor pressure. The 

biochemical parts describes Hog1 activation and glycerol metabolism modules. 

The model proposed by Gennemark is relatively simple and easy to understand 

but it lacks the following structural details. First, the interactions between the 

components of the model were described by proportional control functions 

rather than by molecular reactions. This makes the model simpler but at the 

same time less physiologically meaningful. Second, the lack of the detailed 

MAPK cascade in [47] makes it impossible to test the model for various 

mutations in the pathways. Third, the lack of glucose and other components 

(glycogen, glycogen synthase, glycogen phosphorylase) in the glycerol 

metabolism module limits the testing of the model for different external glucose 

concentrations. Later in this chapter, we will show why these details are 

important for the yeast adaptation to osmotic stress. 
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The cell membrane is permeable to water and glycerol. In the normal 

conditions, in equilibrium, the concentration of osmotically active elements 

inside the cell is higher than the concentration of NaCl outside the cell. This 

difference is compensated by the turgor pressure, which represents a 

mechanical pressure based on membrane's mechanical properties. Under 

osmotic stress, the cell tends to maintain both the volume and the turgor 

pressure that are characteristic of the equilibrium [47,48]. 

 

In [47], the change of the volume V  of the cell due to the water efflux and influx 

was described as follows: 

 1 ,i e t

p

dV
Q k

dt
         (5.1) 

where 1pk  is the hydraulic water permeability constant, 
i  is the intracellular, 

e  is the extracellular and 
t  is the turgor osmotic pressures. 

 

The following equation can be obtained from Equation (5.1) in equilibrium: 

0 0 0 ,i e t       (5.2) 

where 0

i  is the intracellular, 0

e  is the extracellular and 0

t  is the turgor 

osmotic pressures in equilibrium. 

 

The intracellular osmotic pressure was calculated as: 

,i

b

n gly

v v


 


   (5.3) 

where gly  is the concentration of glycerol, n  is the concentration of other 

osmotically active elements in the cell, which was assumed constant, and bv  is 

the non-osmotic volume of the cell. 
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The turgor pressure was described as follows: 

0

0

,  

0,  otherwise,

pt

pt
p

v v
v v

v v


  

  



  (5.4) 

where 0

t  is the turgor pressure in equilibrium and pv  is the volume of the cell 

when 0t  . 

 

The difference between the equilibrium turgor pressure and the current turgor 

pressure was written as: 

0 .t tu       (5.5) 

 

The activation of Hog1 was described in [47] by the following ODE: 

 
1

,
hog

hog hog

d

dUp
U Up

dt t
     (5.6) 

where dt  is the time delay, hog hogU k u  , hogk  is the proportional control 

constant. 

 

The concentration of the intracellular glycerol was described as follows: 

,hog diff

dgly
Up U

dt
    (5.7) 

where 1
e

diff fps

b e

gly gly
U U

v v v v

 
   

  
, egly  is the concentration of extracellular 

glycerol, ev  is the extracellular volume, 0
1 2

0

t

fps p t

u
U k

 
 


 when 0u   or 

1 2fps pU k  when 0u   and 2pk  is the glycerol permeability coefficient. 
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The concentration of the external glycerol can be described as follows: 

.e
diff

dgly
U

dt
    (5.8) 

 

Next we analyse the Gennemark model predictions in response to hyper-

osmotic stress signal shown in Figure 5.3. We test the model predictions under 

NaCl concentration of 1M, which corresponds to 2 Osme  , applied at time 0 

and maintained during the experiment. Before the time point 0mint   the cell 

was assumed to be in equilibrium. The parameter values are taken from the 

paper published by Gennemark et al [47]: -1

1 1 Osmpk  , 0 0.636 Osmi  , 

0 0.24 Osme  , 0.368bv  , 0 0.0002gly  , 0.99pv  , 2 0.316pk  , 4790ev  , 

-10.416 Osmhogk  , 8.61 mindt  . Here and anywhere further, the parameters 

without a dimension are values of the parameters after a certain non-

dimensionalisation, the details of which can be found in [47]. 

 

 

 

Figure 5.3. Hyper-osmotic NaCl signal as a function of time. 

The Gennemark model is tested under 1M of NaCl. The concentration of 1.5M 

is applied after 0t   min and maintained during the experiment. 

 

 

Figure 5.4 schematically shows the Gennemark model [47] predictions for yeast 

cell under hyper- and hypo-osmotic stress. The quantitative predictions are 
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shown in Appendix D (Figures 7.4-7.6). The analysis of the Gennemark model 

allowed us to suggest that there are two possible types of the hyper-osmotic 

stress: strong and mild. 

 

When 0

e i   , which corresponds to the strong hyper-osmotic stress (Figure 

5.4), the first reaction of the system is a decrease in turgor pressure down to 

zero (Figure 7.4D in Appendix D). Water starts to come out of the cell through 

the aquaporin channels since there is a gradient in concentrations, which leads 

to the cell shrinking (Figure 7.4A). At the same time, since 0u  , Hog1 

becomes phosphorylated and thereby activated (Figure 7.4B). As Fps1 

channels are closed in this case, glycerol is being accumulated in the cell and 

increases the total concentration of osmotic active elements inside the cell. 

These processes continue until 
i  exceeds 

e . It leads to the effect that the 

water flow changes its direction from efflux to influx and this continues until the 

cell restores its initial volume. Then the water channels close and glycerol 

channels remain to be closed but the glycerol keeps accumulating (Figure 7.4C) 

since u  is still positive. The glycerol accumulation should stop when the cell 

restores its initial volume and turgor pressure. The restore of the initial volume 

and turgor pressure is vital for the cell adaptation to osmotic stress [47,48]. 

However in the Gennemark model the turgor pressure does not return to its 

equilibrium level (Figure 7.4D). Moreover in this model Hog1 phosphorylation 

increases in response to the osmotic stress but does not come down to its 

equilibrium level (Figure 7.4B), which contradicts experimental observations 

[316]. 

 

When 0 0

e e i     , which corresponds to the mild hyper-osmotic stress 

(Figure 5.4), the system works to decrease the turgor pressure to its equilibrium 

level 0

t . The volume of the cell remains at the same level (Figure 7.5A). Then, 

since 0u   in this case, phosphorylated Hog1 activates glycerol production 

(Figure 7.5C). This is supported by the closing of Fps1 glycerol channels, and 

glycerol starts to accumulate inside the cell. Again, in this case the turgor 

pressure (Figure 7.5D) and phosphorylated Hog1 (Figure 7.5B) do not return to 
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their equilibrium level. 

 

When the cell is exposed to hypo-osmotic stress (for instance, the rain in 

nature), which implies that the concentration of NaCl outside the cell and 

thereby e  become less than it was initially (Figure 5.4), the system reacts by 

an increase in the turgor pressure since the concentration of osmotically active 

elements inside the cell cannot be changed instantaneously (Figure 7.6D). In 

this case the difference in the turgor pressure, compared to the equilibrium, is 

negative: 0u  . This should serve as a signal for opening Fps1 glycerol 

channels and glycerol efflux out of the cell. However in Gennemark model the 

glycerol efflux is not observed (Figure 7.6C) and therefore the turgor pressure 

does not return to its equilibrium level. The lack of the glycerol efflux contradicts 

the experiments from [317]. 

 

Thus the model developed by Gennemark in [47] lacks the structural details 

mentioned above and gives the model predictions that contradict the 

experiments for Hog1 phosphorylation and turgor pressure [48,316] as well as 

the glycerol efflux under the hypo-osmotic stress [317]. Considering these facts, 

next we will modify the model by Gennemark [47] to overcome the above 

mentioned issues. 
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Figure 5.4. Schematic representation of the yeast cell adaptation to osmotic 

stress by the Gennemark model. 

According to the model developed by Gennemark in [47], the cell demonstrates 

different types of behaviour in response to different types of osmotic shock: 

strong hyper- ( 0

e i   ), mild hyper- ( 0 0

e e i     ) and hypo- osmotic (

0

e e   ) shock. See Equations (5.1)-(5.8) with parameters -1

1 1 Osmpk  , 

0 0.636 Osmi  , 0 0.24 Osme  , 0.368bv  , 0 0.0002gly  , 0.99pv  , 

2 0.316,pk   4790ev  , -10.416 Osmhogk  , 8.61 mindt   taken from [47]. 

 

5.3 Aims and objectives of this chapter 

In this chapter we consider the second (after Chapter 4) example of high-level 

analysis (in terms of Figure 1.1) investigating the yeast adaptation to osmotic 

stress. The main aim of this chapter is to build a new model for C. glabrata 

adaptation to both hyper- and hypo- osmotic stress starting from the model 

developed by Gennemark [47]. The new model should: 

 describe the biochemical reactions involved in the osmotic regulation, 
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 include the detailed Hog1 activation and glycerol metabolism modules, 

 demonstrate the consistency with the previously published experiments, 

 describe the adaptation under mutations in the pathways (Ssk2 knock-

down), 

 fit the experimental observations provided by Professor Ken Haynes' 

group, 

 make predictions with a potentially clinical use. 

 

It should be mentioned that in this chapter, where referred to experiments, all 

experimental data were collected by Emily Cook from Professor Ken Haynes' 

group in Biosciences, University of Exeter. The permission to use the 

experimental data in this thesis is attached in Appendix E. The experimental 

data will be used to validate our model. 

 

5.4 A new systems model for C. glabrata adaptation to osmotic 
stress 

In this section we describe the details of our proposed model for the molecular 

interactions that regulate adaptation of C. glabrata to osmotic stress. We will 

improve the model proposed by Gennemark in [47] and introduce the newly 

added assumptions one by one, identifying the effects of each of the newly 

added assumptions. We will refer these newly added assumptions as 

modification to the Gennemark model. It should be noted that in this section we 

focus on qualitative rather than quantitative results. The quantitative analysis of 

the developed model will be performed in the next Section 5.5. 

 

5.4.1 Modification 1 of the biophysical part 

In this subsection we will introduce modification of the biophysical part of the 

Gennemark model [47] and see the effects of this modification to the results 

produced by the model. 
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The volume V  of the cell changes due to the water efflux and influx through 

aquaporin channels (AQPs). The rate of the volume change is a flow of water 

Q  through the membrane, which can be represented as follows: 

  ,i e tdV
Q A L

dt
          (5.9) 

where A  is a surface of the cell in 2m , L  is hydraulic water permeability of the 

cell in 
-1 -1m s Pa  , 

i  is the internal osmotic pressure, 
e  is the external 

osmotic pressure and 
t  is the turgor pressure, in Pa  [48]. 

 

According to the Boyle-Van’t Hoff relation [318] the osmotic pressure can be 

written as follows: 

,
W

RT
V

     (5.10) 

where R  is the universal gas constant, T  is temperature, W  is the number of 

moles of osmotically active compounds inside the cell and V  is the cell volume. 

We can rewrite Equation (5.9) using Equation (5.10) in the following way: 

     ,tRT O
d

sm NaC
V

t
lA L

d
     (5.11) 

where  Osm  and  NaCl  are the molar concentrations of the osmotic active 

elements inside and salt outside the cell, respectively, in M . 

 

The concentration of the osmotic active elements inside the cell is given by: 

   ,
b

N
Osm Gly

V V
 


  (5.12) 

where N  is the number of moles of osmotically active elements except glycerol, 

 Gly  is the concentration of intracellular glycerol, bV  is the volume of 

osmotically inactive elements. We assume that N  and bV  are constant, which is 

consistent with [47,48]. 

 

There is no water flow through the membrane in equilibrium, therefore it can be 

written for the equilibrium turgor pressure: 

    0 0 0 0 0 ,t i e RT Osm NaCl       (5.13) 
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where 
0

i , 
0

e  and 
0

t  are internal, external osmotic and turgor pressures in 

equilibrium, respectively.  0Osm  and  0NaCl  are molar concentrations of the 

osmotic active elements inside and salt outside the cell in equilibrium, 

respectively. 

 

The cell wall is elastic and the volumetric elastic modulus [319] is given by: 

td
V

dV



 .  (5.14) 

 

It is assumed that   is a constant. Thus the turgor pressure is given by: 

0

0

t t V
ln

V



     

 
.  (5.15) 

 

We assume here that the turgor pressure cannot be negative and is equal to 

zero under plasmolysis, which is also consistent with [47]: 

0

0

max 0,t t V
ln

V


 
       

  
.  (5.16) 

 

Instead of Equation (5.5) we use the following equation for the difference 

between the initial and current turgor pressures: 

0
0 0min , .t t t V

u ln
V




     


 
 




  (5.17) 

 

We also denote by    0
0 0min ,t V

ln H VH VH u
V


  

   
  


   

 
 the Heaviside 

function  
1, 0

0, 0

if u
H u

if u


 


. Due to the fact that under the hyper-osmotic stress 

the volume decreases, we will further use      ,U V u u V H u  . 

 

Therefore, the rate of the volume change can be written as follows: 
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    0

0

max 0,
b

tN
RT Gly NaCl

dV V
A L ln

Vt Vd V


   
          

 

 
 

   



.  (5.18) 

 

Equation (5.18) can be written in non-dimensional form as follows: 

    16 0max 0,
b

tn
RT gly Km NaCl v

v

dv
K ln

dt v


  
    

 

 
     

 







  (5.19) 

where 
16Km  will be introduced later in Equation (5.25), 

0

V
v

V
 , 

0

b
b

V
v

V
 , 

0

A L
K

V


  

and 
0 16

N
n

V Km



. 

 

It should be noted that the other equations and parameters for the biochemical 

part, including Hog1 phosphorylation and glycerol, for now remain the same as 

in the Gennemark model (Equations (5.6), (5.7) and (5.8) respectively). 

However, in order to keep the same dimension in Equation (5.6) for Hog1 

phosphorylation, we need to write 2hog hog

u
U k

RT
   instead of hog hogU k u   since 

u  now, as shown in Equations (5.17) and (5.9), has a dimension of Pa  and not 

Osm . 
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Figure 5.5. Functional link between the biophysical and biochemical parts of the 

proposed model. 

External NaCl concentration and the intracellular concentration of osmotically 

active compounds (denoted by Osm ) serve as input signals for the biophysical 

module that produces its output signal u , which is the difference between the 

initial and current turgor pressures. The u , in turn, serves as an input for the 

biochemical module. In equilibrium there are no changes in both biophysical 

and biochemical modules. When the concentration of salt changes, the system 

starts the adaptation mechanism and returns to a new equilibrium. 

 

 

The structure of our new biophysical part suggests the functional link between 

the biophysical and biochemical parts and how they interact. This link is 

schematically represented in Figure 5.5. The NaCl concentration serves as an 

input signal to the biophysical module along with the concentration of 

osmotically active elements inside the cell that serves as an output of the 

biochemical part. The output of the biophysical module is u  that serves as an 

input for the biochemical module. The concentration of NaCl in equilibrium 

makes no change to the biophysical module. In equilibrium there is no change 

in turgor pressure and therefore the difference between the initial and current 

turgor pressures is 0u  , which serves as a zero-signal to the biochemical 

module. This allows calculating the equilibrium state of the biochemical module 

and obtaining the equilibrium concentration of phosphorylated Hog1 and 

osmotically active elements inside the cell. Under osmotic stress the biophysical 
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module returns 0u  . This u  causes the activation of the biochemical module, 

which in turns leads to either production of osmotically active elements under 

hyper-osmotic stress or glycerol efflux through the glycerol channels under the 

hypo-osmotic stress. The changes in biochemical part lead to the changes in 

biophysical part and thereby in u . After some time the system returns to a new 

equilibrium characterised by 0u  . Thus the system should now adapt to the 

change in NaCl concentration and return to the equilibrium state. 

 

We test the effect of the newly added assumptions using the following 

parameter values: 
1 18.31 kPa M KR     , 300 KT  , 

3 1 186 10 min kPaA L       , 

14

0 6.5 10  LV    are taken from [48], 
51 10    from [320], 

16 0.6 MKm  , 

 0 0.175 MNaCl   are the parameters values selected "by hand" in order to 

obtain the expected qualitative behaviour. 

 

Figure 5.6 schematically illustrates the model predictions for the newly added 

assumptions. The quantitative results can be found in Appendix D (Figures 7.7-

7.9). With the chosen parameters, there is no qualitative difference between the 

model predictions compared to the Gennemark model illustrated in Figure 5.4. 

The difference between this version of the model and the Gennemark model is 

that the modified model now describes separately the concentrations of NaCl 

and osmotically active elements inside the cell, rather than simply the internal 

and external osmotic pressures. The turgor pressure is now described by Pa  

and reflects the fact that it is a mechanical pressure. However, as it was in the 

Gennemark model, the cell does not restore its equilibrium Hog1 

phosphorylation level (Figures 7.7B and 7.8B) and turgor pressure (Figures 

7.7D and 7.8D) under hyper-osmotic stress. Moreover, under the hypo-osmotic 

conditions, there is still no glycerol efflux (Figure 7.9C) and the turgor pressure 

does not restore (Figure 7.9D). Due to these drawbacks and to the lack of 

details in the glycerol metabolism module, we will next make changes to the 

glycerol metabolism module. 
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Figure 5.6. Schematic representation of the yeast cell adaptation to osmotic 

stress after the introduction of modified biophysical part of the Gennemark 

model. 

While the model still demonstrates the volume recovery and glycerol 

accumulation, it now shows the restore of the turgor pressure and Hog1 

phosphorylation level under the hyper-osmotic stress. However, there is still a 

lack of glycerol efflux and the restore of the turgor pressure under the hypo-

osmotic stress. See Equations (5.6)-(5.19) with parameters 
1 18.31 kPa M KR     , 300 KT  , 

3 1 186 10 min kPaA L       , 14

0 6.5 10  LV   , 

51 10   , 16 0.6 MKm  ,  0 0.175 MNaCl  , 0.368bv  , 0 0.0002gly  , 2 0.316pk  , 

4790ev  , -10.416 Osmhogk  , 8.61 mindt  . 
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5.4.2 Modification 2 of the glycerol metabolism module 

In this subsection we will introduce modified glycerol metabolism module in 

order to overcome the issues raised in the previous subsection. Figure 5.7 

schematically shows the modified glycerol metabolism module in the structure 

of the model. We assume here that osmotic stress causes the activation of PKA 

through a mechanoreceptor MchR2. Dephosphorylation of phosphorylated Gsy 

and Gph is performed by PP-1 phosphatase [321,322]. 

 

 

 

Figure 5.7. The structure of the new model after the introduction of the modified 

glycerol metabolism module. 

In yeast adaptation properties are regulated by the intracellular production of 

osmotically active glycerol. Glycerol is activated through the signalling pathways 

that are activated in response to the change in salt concentration and thereby, 

turgor pressure. The glycerol efflux from the cell is regulated by the glycerol 

Fps1 channels. 
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Due to the fact that concentration depends on the volume and that the cell 

volume changes under the plasmolysis [48], we now introduce the following 

term: 

 
1

b

dV
D V

V V dt
 


.  (5.20) 

 

We assume that the phosphorylation and dephosphorylation of glycogen 

synthase (Gsy) as well as glycogen phosphorylase (Gph) are performed by 

hypothetical kinases Ks , Kp  and phosphatases Ps , Pp  respectively. For 

simplicity, we also assume that the formation of enzyme-substrate complexes is 

much faster than the phosphorylation reactions and therefore we can use the 

QSSA, which is in line with [57,186]. Using Equations (3.48) from Chapter 3, the 

rates of phosphorylation of Gsy and Gph can be written as follows: 

 
  

 
 

 
 

   

 
  

 
 

 
 

   

1 1 2

11 12
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13 14

,

,

,

,

T T
s r s

b b

T T
p r p

b b

d Gsyp Gsy GsypKs Ps
k k U V u L k

dt V V Km Gsy V V Km Gsyp

Gsyp

d Gphp Gph GphpKp Pp
k k U V u L k

dt V V Km Gph V V Km Gphp

Gp

D V

Vp Dh

         
   



        




  



  (5.21) 

where 11Km , 12Km , 13Km , 14Km  are Michaelis constants, TKs , TKp , are the total 

amounts of kinases that phosphorylate and TPs , TPp  are total amounts of 

phosphatases that dephosphorylate Gsy and Gph, respectively. 2L  and 3L  

represent the basal phosphorylation levels of Gsy and Gph.  Gsy  and  Gph  

can be found from the conservation equations for the total concentrations 

below: 

   

   

,

.

T

b

T

b

Gsy
Gsy Gsyp

V V

Gph
Gph Gphp

V V

 


 


  (5.22) 

 

Equations (5.22) can be written in non-dimensional form as follows: 
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1
,

1
,

p

b

p

b

gsy gsy
v v

gph gph
v v

 


 


  (5.23) 

where 
 

0

T

Gsy
gsy V

Gsy
  , 

 
0p

T

Gsyp
gsy V

Gsy
  , 

 
0

T

Gph
gph V

Gph
   and 

 
0p

T

Gphp
gph V

Gph
  . 

 

Equations (5.21) can be represented in non-dimensional form: 
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  (5.24) 

where 1 1
T

s

T

Ks
k k

Gsy
  , 2 2

T
s

T

Ps
k k

Gsy
  , 3 3

T
p

T

Kp
k k

Gph
  , 4 4

T
p

T

Pp
k k

Gph
  , 11

11 0

T

Km
m V

Gsy
 , 

12
12 0

T

Km
m V

Gsy
  , 13

13 0

T

Km
m V

Gph
  , 14

14 0

T

Km
m V

Gph
  . 

 

The change in intracellular glucose can be described as follows: 
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  (5.25) 

where extGlu  is the extracellular glucose [305,306], 15Km , 16Km , 17Km , 18Km  are 

Michaelis constants. 

 

Equation (5.25) can be represented in non-dimensional form: 
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  (5.26) 
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where 
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The rate of glycogen change is given by: 

 
 

 
 

 
 

 
   6 7

16 17

g g

Gln Glu Gln
k Gsy k Gphp Gln

Km

d

Glu Km Gln
D V

dt
      

 
. (5.27) 

 

Equation (5.27) can be written in non-dimensional form as follows: 

 6 7

17

,
1

p

glu gln
gln k gsy k gph gln

glu

d
D v

t m lnd g
      

 
   (5.28) 

 

Glycerol is exported from the cell under the hypo-osmotic stress in order to 

decrease turgor pressure and prevent the cell from bursting. The glycerol export 

is controlled by the Fps1 channels regulated by phosphorylation of Fps1 and 

Hog1 proteins [302,323]. We assume that Fps1p is phosphorylated by Hog1 

and dephosphorylated by a hypothetical phosphatase Pf . The Fps1 protein 

phosphorylation can be described by the following ODE: 

 
 

 
 

 
 

   

9 10

19 20

1 1 1
2

1 1

1 ,

T
f f

b

d Fps p Fps Fps pPf
k Z pp k

dt Km Fps V V Km Fps p

D VFps p

      



  



 (5.29) 

where 19Km , 20Km  are Michaelis constants and TPf  is a hypothetical 

phosphatase that dephosphorylates Fps1,  2Z pp  is the concentration of the 

phosphorylated Hog1. The concentration  1Fps  can be found from the 

conservation equation for the total concentration of Fps1: 

   
1

1 1 .T

b

Fps
Fps Fps p

V V
 


  (5.30) 

 

We can rewrite Equation (5.30) in non-dimensional form as follows: 

1
1 1 ,p

b

fps fps
v v

 


  (5.31) 
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where 
 

0

1
1

1T

Fps
fps V

Fps
   and 

 
0

1
1
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p

T

Fps p
fps V

Fps
  . 

 

Equation (5.29) in non-dimensional form is given by: 
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19 20

1 11
2 1 ,
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where 9 9

2

1

T
f

T

Z
k k

Fps
  , 10 10

1

T
f

T

Pf
k k

Fps
  , 19

19 0
1T
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m V

Fps
  , 20

20 0
1T

Km
m V

Fps
  . 

 

The phosphorylated Hog1 translocates to the nucleus and initiates the gene 

transcription, which in turn leads to the activation of the gene responsible for 

glycerol production from glucose [303,304]. In our model we assume that the 

produced glycerol is proportional to the phosphorylated Hog1, which is 

consistent with [47]. It can be written for the rate of intracellular glycerol change: 

 
 

 
 

         8 11

18

2 , 1 ,g g
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Km Gldt u
    


   (5.33) 

where 
11gk  is the permeability of glycerol channels and      ,U V u u V H u     

represents the fact that the Fps1 channels are open under hypo-osmotic stress 

and closed under hyper-osmotic stress [302,323]. 

 

Equation (5.33) can be represented in non-dimensional form as follows: 

   8 11

18

12 , ,pp

d
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   (5.34) 
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The change in extracellular glucose concentration can be described as follows: 
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  (5.35) 

where 12k  is the constant for the increase of extGlu . 
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Equation (5.25) can be represented in non-dimensional form: 
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  (5.36) 

 

Next we test the newly introduced assumptions using the following parameter 

values: 

1 1

1 0.005 kPa mink    , 1

2 0.1 mink  , 1 1

3 0.2 kPa mink    , 1

4 0.02 mink  , 

1

5 0.03 mink  , 1

6 0.003 mink  , 1

7 15 mink  , 1

8 1 mink  , 1

9 0.74 mink  , 

1

10 0.005 mink  , 1 1

11 0.006 kPa mink    , 
0 0.05pgsy  , 

0 0.7pgph  , 0 3.3extglu   are 

the concentrations of Gsy, Gph and external glucose in equilibrium respectively, 

11 0.6m  , 12 3.4m  , 13 1m  , 14 1m  , 
15 0.1m  , 

17 0.1m  , 18 0.2m  , 19 0.2m  , 

20 60m  . 

These parameter values are selected "by hand" in order to obtain the expected 

qualitative behaviour. In Section 5.5 we will perform the quantitative analysis of 

the parameter set. The following parameters are found analytically from 

equilibrium conditions of the corresponding ODEs: 
1L  and 

2L  from Equations 

(5.24), equilibrium concentration of intracellular glucose 
0glu  from Equation 

(5.26), equilibrium concentration of glycogen 
0gln  from Equation (5.28), 

equilibrium Fps1p concentration 01pfps  from Equation (5.32), equilibrium 

concentration of glycerol 
0gly  from Equation (5.34), 

12k  from Equation (5.36). 
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Figure 5.8. Schematic representation of the yeast cell adaptation to osmotic 

stress after the introduction of the modified glycerol metabolism module. 

While the model still demonstrates the volume restore and glycerol 

accumulation, it now shows the restore of the turgor pressure and Hog1 

phosphorylation level under the hyper-osmotic stress. However, there is still a 

lack of glycerol efflux and the restore of the turgor pressure under the hypo-

osmotic stress. See Equations (5.6), (5.9)-(5.36) with 
1 18.31 kPa M KR     , 

300 KT  , 
3 1 186 10 min kPaA L       , 14

0 6.5 10  LV   , 
51 10   , 16 0.6 MKm  , 

 0 0.175 MNaCl  , 0.368bv  , -10.416 Osmhogk  , 8.61 mindt  , 

1 1

1 0.005 kPa mink    , 1

2 0.1 mink  , 1 1

3 0.2 kPa mink    , 1

4 0.02 mink  , 

1

5 0.03 mink  , 1

6 0.003 mink  , 1

7 15 mink  , 1

8 1 mink  , 1

9 0.74 mink  , 

1

10 0.005 mink  , 1 1

11 0.006 kPa mink    , 
0 0.05pgsy  , 

0 0.7,pgph   0 3.3extglu  , 

11 0.6m  , 12 3.4m  , 13 1m  , 14 1m  , 15 0.1m  , 17 0.1m  , 18 0.2m  , 19 0.2m  , 

20 60m  . 
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Figure 5.8 schematically illustrates the model predictions for the newly added 

assumptions. Quantitative results produced by the model are shown in 

Appendix D (Figures 7.10-7.12). Now, after the introduction of the modification 

of the glycerol metabolism module, one can compare the new results with the 

previous case of the modification in the biophysical module only (Figure 5.6). 

While still demonstrating the volume recovery under the strong hyper-osmotic 

stress (Figure 7.10A), which corresponds to    0NaCl Osm , the cell now 

restores its equilibrium Hog1 phosphorylation level (Figures 7.10B and 7.11B) 

and turgor pressure (Figures 7.10D and 7.11D). 

 

Another quantitative advantage of the new version of the model is that it is now 

possible to test the effects of various mutations in the glycerol metabolism 

module and for different external glucose concentration. However, the model 

still lacks the glycerol efflux (Figure 7.12C) and the restore of the turgor 

pressure (Figure 7.12D) under the hypo-osmotic stress. It also lacks the 

detailed Hog1 activation module and therefore this version of the model cannot 

be used to describe effects of various mutations in the MAPK pathways. In the 

next subsection we seek to address these drawbacks by introducing the 

detailed Hog1 activation module. 

 

5.4.3 Modification 3 of the Hog1 activation module 

In this subsection we will introduce modified module of Hog1 activation 

described in the Gennemark model by Equation (5.6). Figure 5.9 illustrates the 

new structure of our model including these modifications based on the 

established [51,289,291-293,296,297,324] signal transduction pathways 

involved in the regulation of yeast adaptation to osmotic stress. The structure of 

the model still includes the biophysical part, which incorporates the volume of 

the cell and turgor pressure as well as the biochemical part, which includes the 

glycerol metabolism module and now also detailed MAPK signalling. 
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Figure 5.9. The structure of the new model after the introduction of the modified 

Hog1 activation module.  

This model includes MAPK cascade pathways, leading to the activation of 

Hog1, with more detail compared to the Gennemark model [47]. The activation 

of Hog1 is performed by the two branches, Sho1 and Sln1. 

 

 

We introduce the following notation for the elements in MAPK pathways: 

X1= SLN1, X2 = YPD1, X3= SSK1, X4 = SSK2 , Y1= SHO1/CDC42/STE20, 

Y2 = STE50/STE11, Z1= PBS2 , Z2 = HOG1, AP = P1, MP2C = P2 , PTP2 = P3 , 

PTC/PTP = P4, T TL =SLN1 , T TH =SHO1 . 

 

The biochemical reactions of the MAPK cascade, that were previously 

described in [53] and [48], are given by: 
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 (5.37) 

 

Based on the fact that under hyper-osmotic stress, when u  is increased, Sln1 is 

inhibited [289], we assume in Equations (5.37) that the reaction rate 1b  depends 

on u  as follows:  1 1

pb b u H u   , where 1

pb  is a constant and  
1, 0

0, 0

if u
H u

if u


 


. 
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Based on the fact that under hyper-osmotic stress, when u  is increased, Sho1 

is activated [292], we also assume that the reaction rate 
1ff  depends on u  in 

the following way:  1 1

pff ff u H u   , where 1

pff  is a constant. 

 

Ordinary Differential Equations that describe the rates of the chemical reactions 

(5.37) are given by: 
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The total concentration of the proteins involved in the reactions remains 

constant: 
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  (5.39) 

 

For simplicity, we assume that the formation of complexes is much faster than 

the phosphorylation reactions and therefore we can use the QSSA, which is in 

line with [57,186]. We also assume that the formation of complexes is much 

faster than the volume change and therefore the term ( )D V  is small and can be 

neglected. In the QSSA the concentrations of complexes are given by: 
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 2 1 0
d

Y pZ p
dt
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 . 

 

We can rewrite Equations (5.39) in the following way: 

   

   

   

   

   

   

     

     

   

   

   

   

1 1 ,

2
2 2 ,

3
3 3 ,

4
4 4 ,

1 1 ,

2
2 2 ,

1
1 1 1 ,

2
2 2 2 ,

3 ,

1
1 4 1 ,

2
2 2 2 ,

3
3 1 3

T
r

b

T

b

T

b

T

b

T
r

b

T

b

T

b

T

b

T

b

T

b

T

b

T

b

L
k X X p

V V

X
X X p

V V

X
X X p

V V

X
X X p

V V

H
k Y Y p

V V

Y
Y Y p

V V

Z
Z Z p Z pp

V V

Z
Z Z p Z pp

V V

P
P X pP

V V

P
P X pP

V V

P
P Y pP

V V

P
P Z pP Z

V V

  


 


 


 


  


 


  


  


 


 


 


  


 

     

1 3 ,

4
4 2 4 2 4 .T

b

ppP

P
P Z pP Z ppP

V V
  



  (5.40) 

 

Next, using Equations (3.48) from Chapter 3, the concentrations of the 

complexes can be found: 
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  (5.41) 

 

Using Equations (5.41) we can rewrite Equations (5.38) as follows: 
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        101 2 2 4 .2Z ppZ p h Z pp Z ppP D V   

  (5.42) 

 

We can write Equations (5.40) in non-dimensional form by normalizing the 

concentrations to the total amount of Hog1 denoted by 2TZ  and the cell volume 

in equilibrium 0V : 
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We can write Equations (5.41) in non-dimensional form as follows: 



193 
 

1

2

3

4

5

6

7

8

6

3
3 ,

3

4
3 4 3 ,

4

41
4 1 ,

4

2
1 2 1 ,

2

22
2 2 ,

2

1
4 1 4 ,

1 1

1
2 1 2 ,

1 1

13
1 3 ,

1 1

1
4 1 4

1 1

pt
p

b p

pt
p

b p

p p

pt
p

b p

p p

p

p p

p

pt
p

b p pp

p

p p p

p

xp
x p

v v m x

x
x x x

m x

xp
x p

v v m x

y
y y y

m y

yp
y p

v v m y

z
x z x

m z z

z
y z y

m z z

zp
z p

v v m z z

z
x z x

m z z

 
 

 


 
 

 


 
 

 
 

 
 

 
  

 
 

7

8

9

10

9

10

,

1
2 1 2 ,

1 1

13
1 3 ,

1 1

2
1 2 1 ,

2 2

24
2 4 ,

2 2

2
1 2 1 ,

2 2

24
2 4 .

2 2

p

p p p

p

ppt
pp

b p pp

pp pp

p

pt
p

b p pp

p

pp p pp

p

ppt
pp

b p pp

z
y z y

m z z

zp
z p

v v m z z

z
z z z

m z z

zp
z p

v v m z z

z
z z z

m z z

zp
z p

v v m z z

 
 

 
  

 
 

 
  

 
 

 
  

  (5.44) 

 

Equations (5.42) can be represented in non-dimensional form as follows: 
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. 

 

For simplicity, we assume that the two phosphorylation sites in each Hog1 and 

Pbs2 are identical. Therefore, Equations (5.45) can be rewritten as follows: 
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   (5.46) 

where 1 1 4hh h h  , 2 2 5hh h h  , 3 3 6hh h h  , 4 7 9hh h h   and 5 8 10hh h h  . 

 

Due to the close genetic proximity of C. glabrata to S. cerevisiae [45] and to the 

fact that C. glabrata is a less studied organism, we assume here that the total 

number of moles of the kinases in the MAPK cascades is the same in these two 

species. Table 5.1 shows the values for the total amount of moles in Equation 

(5.39) taken from the online Yeast GFP Fusion Localization Database 

(http://yeastgfp.yeastgenome.org/), which is also consistent with [48]. 

 

 

Table 5.1. The total number of moles of the kinases in MAPK pathways. 

Kinase 
TL  2TX  3TX  4TX  TH  2TY  1TZ  2TZ  

23mol 10  108.934 1051.146 199.269 36.034 43.009 122.218 358.685 1125.872 

 

 

The model by Gennemark [47] is the model for S. cerevisiae. After the 

introduction of the modified biophysical and biochemical parts we now seek to 
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model C. glabrata. We are going to do this by assuming that C. glabrata is more 

tolerant to osmotic shock compared to S. cerevisiae, which is also consistent 

with [45]. In particular, we assume that 1.5M of NaCl that used to be a strong 

hyper-osmotic stress in the Gennemark model and in the previous changes, 

now becomes a mild hyper-osmotic stress. Therefore, in this subsection we test 

our model under 2.5M hyper-osmotic concentration of salt. 

 

We test the effects of the assumptions introduced in this subsection for the 

following set of parameters: 0.097tl  , 2 0.934tx  , 3 0.177tx  , 4 0.032tx  , 

0.038th  , 2 0.108ty  , 1 0.319tz  , 2 1tz   from Table 5.1, 0.02tp  , 1 0.005tp  , 

2 0.01tp  , 3 0.021tp  , 4 0.1tp  , 
1 2m  , 

2 2m  , 
3 2m  , 

4 1m  , 
5 1m  , 

6 1m  , 

7 2m  , 
8 2m  , 

9 2m  , 10 1m  , 1

1 5 minf  , 1

2 12 minpf  , 1

3 17 minpf  , 

1

1 0.005 minff  , 1

1 0.003 minb  , 1

2 2.3 minpb  , 1

1 3.2 minbb  , 1

4 5 mind  , 

1

5 4.6 mind  , 1

6 5.4 mind  , 1

2 4.3 mindd  , 1

3 1.7 mindd  , 1

1 5.4 minhh  , 

1

2 1.5 minhh  , 1

3 5 minhh  , 1

4 5 minhh  , 1

5 5 minhh   are the parameters 

chosen "by hand". 
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Figure 5.10. Schematic representation of the yeast cell adaptation to osmotic 

stress after the introduction of the modified Hog1 activation module. 

The newly added assumptions to the module of Hog1 activation now allow to 

answer the research questions we set to investigate. The new model now 

shows the glycerol efflux and the restore of turgor pressure as well as makes it 

possible to model effects of various mutations in the MAPK pathways. See 
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 0 0.175 MNaCl  , 0.368bv  , 1 1

1 0.005 kPa mink    , 1

2 0.1 mink  , 

1 1

3 0.2 kPa mink    , 1

4 0.02 mink  , 1

5 0.03 mink  , 1

6 0.003 mink  , 

1

7 15 mink  , 1

8 1 mink  , 1

9 0.74 mink  , 1

10 0.005 mink  , 

1 1

11 0.006 kPa mink    , 
0 0.05pgsy  , 

0 0.7pgph  , 0 3.3extglu  , 11 0.6m  , 12 3.4m  , 

13 1m  , 14 1m  , 15 0.1m  , 17 0.1m  , 18 0.2m  , 19 0.2m  , 20 60m  , 0.097tl  , 

2 0.934tx  , 3 0.177tx  , 4 0.032tx  , 0.038th  , 2 0.108ty  , 1 0.319tz  , 2 1tz  , 

0.02tp  , 1 0.005tp  , 2 0.01tp  , 3 0.021tp  , 4 0.1tp  , 1 2m  , 2 2m  , 3 2m  , 

4 1m  , 5 1m  , 6 1m  , 7 2m  , 8 2m  , 9 2m  , 10 1m  , 1

1 5 minf  , 1

2 12 minpf 

, 1

3 17 minpf  , 1

1 0.005 minff  , 1

1 0.003 minb  , 1

2 2.3 minpb  , 1

1 3.2 minbb  , 

1

4 5 mind  , 1

5 4.6 mind  , 1

6 5.4 mind  , 1

2 4.3 mindd  , 1

3 1.7 mindd  , 

1

1 5.4 minhh  , 1

2 1.5 minhh  , 1

3 5 minhh  , 1

4 5 minhh  , 1

5 5 minhh  . 
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Figure 5.10 schematically illustrates the model results for the yeast adaptation 

to the osmotic stress after the introduction of the detailed Hog1 activation 

module. The quantitative results can be found in Appendix D (Figures 7.13-

7.15). Now, after the introduction of the detailed Hog1 activation module, the 

cell demonstrates the glycerol efflux under the hypo-osmotic stress (Figure 

7.15C) as well as to restore its equilibrium turgor pressure (Figure 7.15D) while 

demonstrating the same results for the adaptation of other components to the 

previously added assumption such as restore of the volume and the turgor 

pressure under the hyper-osmotic conditions (Figures 7.13-7.14). Here we 

assume that the volume fluctuation within 10% from the equilibrium level is not 

significant and therefore we will further refer to this fluctuation as if it was no 

change in the volume. Moreover, after the introduction of the detailed glycerol 

metabolism and Hog1 activation modules, we can now perform the analysis of 

the effects of mutations in Hog1 pathway as well as test the model under the 

conditions where the external glucose is consumed. 

 

Figure 5.11 shows the comparison between the two biological strains of C. 

glabrata, BG2 (Figure 5.11A) and 2001 (Figure 5.11C). C. glabrata 2001 strain 

differs from BG2 strain by the truncated Ssk2 gene [293]. Therefore, in 2001 

strain the signal is transmitted through the Sho1 branch only. Figure 5.11B 

shows the new model predictions for Hog1 phosphorylation time course in BG2 

strain under the three levels of the hyper-osmotic stress: 0.4M, 0.8M and 1.5M. 

The assumptions, introduced in this subsection for the signalling in the yeast 

Hog1 pathway, allow to model the 2001 strain by deletion of Ssk2 protein in the 

Sln1 signalling pathway. Figure 5.11D illustrates the model predictions for Hog1 

phosphorylation in 2001 strain under the three NaCl concentrations tested in 

BG2 strain. It can be seen from the comparison of Figures 5.11B and 5.11D that 

there is no qualitative difference between these two strains. The variation of the 

model parameters also makes no difference to this qualitative result (data not 

shown). This is not what has been expected because it contradicts unpublished 

information we received from Professor Ken Haynes' experimental group 

(University of Exeter), that in 2001 strain under high NaCl concentration (1.5M) 
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there is a decrease in magnitude, which is not observed in BG2 strain. In the 

next subsection we will propose a hypothetical mechanism of this effect. 

 

Figure 5.11. The comparison of the model predictions for Hog1 phosphorylation 

in C. glabrata BG2 and 2001 strains response to the different hyper-osmotic 

NaCl concentrations. 

A. The schematic representation of the pathways that lead to the activation of 

Hog1 in C. glabrata BG2 strain. B. The phosphorylation of Hog1 in response to 

0.4M, 0.8M and 1.5M of NaCl in C. glabrata BG2 strain. C. The schematic 

representation of the pathways that lead to the activation of Hog1 in C. glabrata 

2001 strain. D. The phosphorylation of Hog1 in response to 0.4M, 0.8M and 

1.5M of NaCl in C. glabrata 2001 strain. See Equations (5.9)-(5.36), (5.38)-

(5.46) with 
1 18.31 kPa M KR     , 300 KT  , 

3 1 186 10 min kPaA L       , 
14

0 6.5 10  LV   , 
51 10   , 16 0.6 MKm  ,  0 0.175 MNaCl  , 0.368bv  , 

1 1

1 0.005 kPa mink    , 1

2 0.1 mink  , 1 1

3 0.2 kPa mink    , 1

4 0.02 mink  , 

1

5 0.03 mink  , 1

6 0.003 mink  , 1

7 15 mink  , 1

8 1 mink  , 1

9 0.74 mink  , 

1

10 0.005 mink  , 1 1

11 0.006 kPa mink    , 
0 0.05pgsy  , 

0 0.7pgph  , 0 3.3extglu  , 

11 0.6m  , 12 3.4m  , 13 1m  , 14 1m  , 
15 0.1m  , 

17 0.1m  , 18 0.2m  , 19 0.2m  , 

20 60m  , 0.097tl  , 2 0.934tx  , 3 0.177tx  , 4 0.032tx   in (B) and 4 0tx   in 

(D), 0.038th  , 2 0.108ty  , 1 0.319tz  , 2 1tz  , 0.02tp  , 1 0.005tp  , 

2 0.01tp  , 3 0.021tp  , 4 0.1tp  , 1 2m  , 2 2m  , 3 2m  , 4 1m  , 5 1m  , 6 1m  , 

7 2m  , 8 2m  , 9 2m  , 10 1m  , 1

1 5 minf  , 1

2 12 minpf  , 1

3 17 minpf  , 

1

1 0.005 minff  , 1

1 0.003 minb  , 1

2 2.3 minpb  , 1

1 3.2 minbb  , 1

4 5 mind  , 

1

5 4.6 mind  , 1

6 5.4 mind  , 1

2 4.3 mindd  , 1

3 1.7 mindd  , 1

1 5.4 minhh  , 

1

2 1.5 minhh  , 1

3 5 minhh  , 1

4 5 minhh  , 1

5 5 minhh  . 
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5.4.4 Modification 4 of receptor activation 

Under the plasmolysis, when the cell shrinks due to the water efflux through the 

AQP channels, the membrane is deformed [301]. Due to the fact that both Sho1 

and Sln1 are located on the cell membrane, in this subsection we introduce a 

new experimentally testable hypothesis that activity of the mechanoreceptors 

depends on the mechanical properties of the cell membrane and therefore that 

under the plasmolysis part of the membrane receptors lose their functionality. 

We propose that the part of the active membrane receptors rk  can be 

described as follows: 

  *1
,r

r r

r

dk
k k t

dt t
    (5.47) 
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.  

We assume that the time required for the increase in number of receptors is 

much greater than the time required for their decrease: 2 1

r rt t . We also 

assume 8m  since it seems to be sufficient to describe the rapid decrease in 

number of receptors when the volume is decreasing. 

 

We now test the effect of the new assumption on our model for the following 

assumed parameters: *

min 0.1rk  , 2 61 10 minrt   , 1 31 10 minrt
  . It can be seen 

from Figures 7.16-7.18 in Appendix D that there is no qualitative difference to 

the model predictions for BG2 strain after the introduction of the new 

assumption, compared to Figures 7.13-7.15. The cell behaviour remains the 

same to the previous case shown in Figure 5.10. 

 

Next we check if the new model produces any qualitative difference to the 
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behaviour shown in Figure 5.11. Figure 5.12 shows the model predictions for 

BG2 (Figure 5.11A) and 2001 (Figure 5.11B) strains under 0.4M, 0.8M and 

1.5M of NaCl after the introduction of the changes to the receptors activation. In 

contrast to Figure 5.11, the developed model now demonstrates a decrease in 

magnitude of Hog1 phosphorylation observed only for 2001 strains under high 

salt concentrations (Figure 5.12E) while BG2 lacks the decrease in magnitude 

of Hog1 phosphorylation for 1.5M of NaCl (Figure 5.12B). This is in line with the 

observations reported by Professor Ken Haynes' experimental group. Moreover, 

the developed model predicts that there is a time delay in C. glabrata Hog1 

phosphorylation under higher concentrations of NaCl (Figures 5.12B and 

5.12E). This delay, but not the decrease of phosphorylated Hog1 for higher 

NaCl concentrations, was also experimentally established for S. cerevisiae in 

[316]. 

 

It can be seen from the figure that our model predicts the volume loss due the 

water efflux only for 2001 but not for BG2 strains under 1.5M of NaCl (Figure 

5.12D). According to the assumptions of our model, the amount of the active 

mechanoreceptors depends on the cell volume. Figure 5.12F shows that the 

number of the active receptors significantly decreases (down to 10%) under the 

plasmolysis, which occurs only for 2001 strains under 1.5M of NaCl. In contrast, 

the model predictions for BG2 strains demonstrate no volume loss (Figure 

5.12A) and as a consequence of this, most (about 80%) mechanoreceptors on 

the cell membrane remained in their active state (Figure 5.12C). 
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Figure 5.12. The comparison of the model predictions for C. glabrata 2001 and 

BG2 strains response to the hyper-osmotic stress. 

The model results for C. glabrata BG2 (A-C) and 2001 (D-F) species. While the 

cell volume remains constant in BG2 strain (A), it changes only in 2001 strain 

under 1.5M of NaCl (D). The model suggests experimentally testable prediction 

for the delay of Hog1 phosphorylation in both BG2 (B) and 2001 (E) species 

accompanied with a decrease in phosphorylation level of Hog1 in 2001 strain 

under 1.5M of NaCl (E), which is not observed in BG2 strains (B). The structure 

of our model suggests that this Hog1 phosphorylation magnitude decrease for 

2001 strains under 1.5M of NaCl is due to a significant (by 90%) decrease in the 

number of active receptors (F) caused by the volume loss shown in (D). In 

contrast, the number of active membrane receptors shows less decrease in 

BG2 strain (C). See Equations (5.9)-(5.36), (5.38)-(5.47) with 
1 18.31 kPa M KR     , 300 KT  , 

3 1 186 10 min kPaA L       , 14

0 6.5 10  LV   , 

51 10   , 16 0.6 MKm  ,  0 0.175 MNaCl  , 0.368bv  , 1 1

1 0.005 kPa mink    , 

1

2 0.1 mink  , 1 1

3 0.2 kPa mink    , 1

4 0.02 mink  , 1

5 0.03 mink  , 

1

6 0.003 mink  , 1

7 15 mink  , 1

8 1 mink  , 1

9 0.74 mink  , 1

10 0.005 mink  , 

1 1

11 0.006 kPa mink    , 
0 0.05pgsy  , 

0 0.7pgph  , 0 3.3extglu  , 11 0.6m  , 12 3.4m  , 

13 1m  , 14 1m  , 
15 0.1m  , 

17 0.1m  , 18 0.2m  , 19 0.2m  , 20 60m  , 0.097tl  , 

2 0.934tx  , 3 0.177tx  , 4 0.032tx   in (A), (B), (C) and 4 0tx   in (D), (E), (F), 

0.038th  , 2 0.108ty  , 1 0.319tz  , 2 1tz  , 0.02tp  , 1 0.005tp  , 2 0.01tp  , 

3 0.021tp  , 4 0.1tp  , 1 2m  , 2 2m  , 3 2m  , 4 1m  , 5 1m  , 6 1m  , 7 2m  , 

8 2m  , 9 2m  , 10 1m  , 1

1 5 minf  , 1

2 12 minpf  , 1

3 17 minpf  , 

1

1 0.005 minff  , 1

1 0.003 minb  , 1

2 2.3 minpb  , 1

1 3.2 minbb  , 1

4 5 mind  , 

1

5 4.6 mind  , 1

6 5.4 mind  , 1

2 4.3 mindd  , 1

3 1.7 mindd  , 1

1 5.4 minhh  , 

1

2 1.5 minhh  , 1

3 5 minhh  , 1

4 5 minhh  , 1

5 5 minhh  , *

min 0.1rk  , 

2 61 10 minrt   , 1 31 10 minrt
  . 
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The structure of our model suggests an explanation for the effect of 

phosphorylated Hog1 magnitude decrease under 1.5M of NaCl. Due to the fact 

that in 2001 strains only the Sho1 branch is present, the biochemical part 

returns lower (comparing to BG2 strains) phosphorylation level of Hog1 in 

equilibrium (Figure 5.5). This in turn leads to the lower level of glycerol 

production and lower threshold concentration of osmotically active elements 

inside the cell in equilibrium  0Osm . In this case 1.5M of NaCl becomes larger 

than the  0Osm , which makes the yeast cell more sensitive to osmotic shock. 

Our model suggests that when    0NaCl Osm , the cell is subject to a strong 

hyper-osmotic stress (Figure 5.10) and decreases its volume (Figure 5.12D). 

According to the assumptions of our model, the loss of the cell volume leads to 

the significant decrease in the number of the active mechanoreceptors (Figure 

5.12F) and therefore to the decrease in Hog1 phosphorylation level (Figure 

5.12E). Thus, according to our model, C. glabrata 2001 strain is more sensitive 

to hyper-osmotic stress compared to BG2 strain. 

 

Now, after the introduction of all modifications made to the Gennemark model 

[47] and identifying the effects of each of the newly added assumptions in this 

section, we will perform the quantitative analysis of the developed model in the 

next section. 

 

5.5 Quantitative analysis of the developed model 

In the previous section we proposed a new model for the yeast adaptation to 

the osmotic stress using the previously published model by Gennemark [47] 

and performed its qualitative analysis. In this section we will perform 

quantitative analysis of the newly developed model. 

 

First, we summarise the final system of equations that will be used in this 

section. Using Equations (5.19), (5.24), (5.26), (5.28), (5.32), (5.34), (5.36), 

(5.46) and (5.47) we can write the system of ODEs: 
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  *1
,r

r r

r

dk
k k t

dt t
   

where the algebraic Equations (5.23), (5.31), (5.43) and (5.44) are also used. 

 

The parameter values are taken from the previous section where they have 

been chosen "by hand". We will further refer to this chosen parameter set as 

"nominal". Now we need to find the set of parameters that demonstrates a 

reasonable fitting to the experimental data provided by Professor Ken Haynes' 

group. 

 

5.5.1 Obtaining the set of parameters 

In simulations described in Section 5.4, we have been using parameter sets 

selected "by hand", for the sake of illustration of qualitative features afforded by 

the newly introduced parts of the model. In this subsection, in order to set our 

new model on a more quantitative footing, we select the parameters based on 

some experimental data. The experimental data available to us are seven time-

dependent experimental measurements of Hog1 phosphorylation level in C. 

glabrata BG2 strain for 1.5M of NaCl obtained by the western blot experiments 

and kindly provided to us by Emily Cook (University of Exeter). The data can be 

seen in Figure 5.14 (red crosses). In order to perform the parameter fitting to 

the experimental data, we employ the Genetic Algorithm (GA) for optimisation 

integrated to MATLAB (http://uk.mathworks.com/discovery/genetic-

algorithm.html). We use this algorithm to minimise the sum of the absolute 

squared errors between the experimental data and the model predictions for 

each point:  
2

1

N

i i

i

SM E M


  , where E  is the experimental data, M  is the 

model predictions and 7N   is the number of experimental measurements.  

 

5.5.2 Identifiability of the parameters 

We performed 15 optimisation procedures using the GA within 2-fold range of 

the nominal parameter set. The results of these experiments along with the 

nominal parameters are shown in Table 7.5 in Appendix D. Figure 5.13 

illustrates the box plots for the distribution of the tested parameters after 15 

optimisations. The deviation is presented in normalised form, i.e. each of the 
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parameters after 15 optimisations is divided by the corresponding value of the 

nominal parameter. Therefore, the deviation can be compared to 1 for each of 

the parameters. It can be seen from this figure that the deviated parameters are 

located within the tested range, which is expected and used to check the 

accuracy. Figure 5.13 shows that the deviation of the optimised parameters is 

relatively insignificant except the two parameters, namely 
2hh  and 

4hh , have 

quite high divergence compared to the others. 

 

 

Figure 5.13. Distribution of the optimised parameters. 

The optimised model parameters are compared to the nominal set of 

parameters. 

 

 

Unfortunately, even with the help of GA, a fully automatic choice of parameters 

appears to be impractical, as some of the essential constraints are hard to 

formalize in the form acceptable by the Matlab implementation of GA. So, 

despite the good fitting of the parameter sets presented in Table 7.5, some of 

these sets of parameters demonstrate unrealistic value for the concentration of 

osmotically active elements or "wrong" qualitative behaviour. For example, only 

2 sets out of 15, namely sets "O13" and "O15", demonstrate the Hog1 

phosphorylation decrease for 1.5M of NaCl shown in Figure 7.19 in Appendix D. 

However, despite this fact and the small squared error 0.015SM  , set "O13" 

gives unrealistically high  0 116 M.6 Osm  . 
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Therefore we choose the parameter set "O15" that also shows a reasonable 

fitting 0.02SM   with  0 1.96 MOsm   while still demonstrating the Hog1 

phosphorylation decrease for 1.5M of NaCl (Figure 7.19 in Appendix D). This 

set of parameters will be further used for the quantitative analysis and 

demonstration of the developed model predictions for BG2 and 2001 C. 

glabrata strains. Figure 5.14 shows the comparison of the experimental data for 

Hog1 phosphorylation time-course with the model predictions obtained by using 

the chosen set of the optimised parameters. 

 

Limited however the presented evidence is, it suggests that within the selected 

ranges, there appears to be just one parameter set, up to relatively small 

variations, which satisfies all the qualitative constraints and reasonably 

conforms with the available experimental data. 

 

 

 

Figure 5.14. The comparison of the model predictions with the experimental 

data. 

In order to validate the model we compare the experimental data (red crosses) 

with the model predictions (solid line, Equations (5.48), parameter set "O15" in 

Table 7.5.). The chosen set of the optimised parameters demonstrates a 

reasonable fitting with the squared error 0.02SM  . 

 

5.5.3 Parameter sensitivity analysis 

Now after we found the set of the optimised parameters that fits the 

experimental data we can perform the parameter sensitivity analysis in order to 

identify the most sensitive parameters for Hog1 phosphorylation time-course. 

We use the extended Fourier Amplitude Sensitivity Testing (eFAST) method 
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described in [256] and implemented in the SBToolbox [257]. Figure 5.15 shows 

the parameter sensitivity indices found for the phosphorylated Hog1. 

 

Figure 5.15 shows that the most sensitive parameters for Hog1 phosphorylation 

are the total concentration of phosphatase 3tp  that dephosphorylates Pbs2 and 

the forward reaction constant of Pbs2 dephosphorylation 
3hh . The 

phosphorylated Hog1 also demonstrates sensitivity to 4tp , total concentration 

of phosphatase that dephosphorylates Hog1, and the forward reaction constant 

of Hog1 dephosphorylation 
5hh . 

 

 

Figure 5.15. Sensitivity indices for Hog1 phosphorylation obtained by eFAST. 

Global sensitivity analysis of the developed model for the overall model 

predictions reveal the most sensitive (A) and the least sensitive (B) model 

parameters. The parameters are perturbed by 2-fold for 10000 simulations in 

eFAST. 

 

Figure 5.16 illustrates the effects of perturbations of the most sensitive 

parameters on the model predictions for Hog1 phosphorylation (Figure 5.14). 

The most sensitive parameters 3tp , 3hh , 5hh  and 4tp  are perturbed within 
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2-fold range of their optimised values shown in parameter set "O15" in Table 

7.5. It can be seen from Figure 5.16 that within this range of perturbation the 

overall shape of Hog1 phosphorylation time-course remains the same however 

the magnitude of Hog1p is different for the shown parametric changes. The 

perturbations of both 3tp  and 
3hh  lead to the same effect on Hog1p as shown 

in Figure 5.16A. The perturbations of both 
5hh  and 4tp  also lead to the same 

effect on Hog1p (Figure 5.16B). Increase of 3tp , 
3hh , 

5hh  and 4tp  leads to 

decrease of Hog1p magnitude. This is expected result as with an increase of 

phosphatase or enhancement of dephosphorylation, the concentration of 

phosphorylated Pbs2 and Hog1 should decrease. 

 

 

 

Figure 5.16. The effects of the perturbations of the most sensitive parameters 

on Hog1 phosphorylation. 

The parameters 3tp , 3hh , 5hh  and 4tp  are perturbed within 2-fold range (bold 

lines) compared to their optimised values (thin line). Increase of 3tp , 3hh , 5hh  

and 4tp  results in decrease of the phosphorylated Hog1. See Equations (5.48) 

with parameter set "O15" in Table 7.5. 

 

 

5.6 Model predictions 

After obtaining the parameters with a reasonable fitting and their analysis, in 

this section we show the model predictions using this set of parameters. Figure 

5.17 shows the developed model time-course predictions under the strong 

hyper-osmotic stress 2.5M for the cell volume change (Figure 5.17A), 

phosphorylation level of Hog1 (Figure 5.17B), turgor pressure (Figure 5.17C) 



210 
 

and number of the active receptors (Figure 5.17D). We assume that under the 

plasmolysis (Figure 5.17A) some part of the membrane mechanoreceptors, that 

sense the changes in turgor pressure (Figure 5.17C), becomes less sensitive 

due to the cell volume loss and thereby change in the mechanical properties of 

the membrane. Therefore, the average number of the receptors decreases 

rapidly (Figure 5.17D). 

 

 

 

Figure 5.17. The model predictions for biophysical changes and Hog1 

phosphorylation in BG2 strains adaptation to hyper-osmotic stress. 

A. The volume of the cell decreases immediately after the appliance of the 

hyper-osmotic stress and further restored. B. The model predictions for Hog1 

phosphorylation level as a function of time. C. Turgor pressure falls down to 

zero due to the volume loss and restores after 150 minutes. D. Our model 

hypothesizes that under the plasmolysis some part of the membrane receptors 

lose their sensitivity. See Equations (5.48) with Parameter set "O15" in Table 

7.5. 

 

 

Figure 5.18 illustrates our model predictions for the change in the 

concentrations of the glycerol metabolism module elements under the strong 

hyper-osmotic shock of 2.5M. It can be seen from the figure that the cell tends 

to adapt to extreme changes in osmolarity by increasing the production of 
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intracellular glycerol (Figure 5.18A). During the adaptation, intracellular glucose 

decreases due to its consumption for the glycerol production as shown in Figure 

5.18B. Figure 5.18C illustrates the model predictions, according to which the 

amount of glycogen is decreased under the hyper-osmotic shock. This is due to 

the fact that glycogen is used as intracellular glucose storage and can be 

converted to glucose [307]. Glycerol contributes to the overall concentration of 

the osmotically active compounds inside the cell (Figure 5.18D). Our model 

suggests that the initial rapid increase in concentration of the osmotically active 

compounds in the cell is due to the initial volume loss under the plasmolysis, 

however then it maintains at the same level for the time corresponding to the 

volume increase (Figure 5.17A) and finally reaches the new equilibrium in order 

to compensate the change in NaCl. 

 

 

Figure 5.18. The model predictions for the change in concentrations of the 

osmotically active compounds inside the cell in BG2 strains under hyper-

osmotic stress. 

The effects of change in extracellular NaCl concentration on the concentrations 

of intracellular glycerol (A), glucose (B), glycogen (C) and the concentration of 

all osmotic compounds inside the cell (D). Our model predicts that an increase 

in the intracellular osmotic concentration is supported by the consumption of the 

intracellular glycogen, which serves as the intracellular storage of glucose. See 

Equations (5.48) with parameter set "O15" in Table 7.5. 
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As a next step, we test our model under the mild hyper-osmotic stress (1M of 

NaCl) and the hypo-osmotic stress (0.05M of NaCl) conditions, which was 

schematically shown in Figure 5.10. According to the model predictions, Hog1 is 

phosphorylated and thereby activated in the case of the mild hyper-osmotic 

stress (Figure 5.19A). Hog1 phosphorylation leads to an increase in the 

production of glycerol (Figure 5.19B). Our model predicts that under the hypo-

osmotic stress Hog1 is not phosphorylated (Figure 5.19C). Figure 5.19D 

illustrates the model predictions for the glycerol change under the hypo-osmotic 

stress. This figure shows that the intracellular glycerol is rapidly exported from 

the cell through the glycerol channels in order to prevent the cell from bursting 

[325]. 

 

 

Figure 5.19. Theoretical investigation of the adaptation of C. glabrata BG2 

strains to the modest hyper- and the hypo-osmotic stress conditions. 

A comparative analysis of the model predictions for the adaptation properties of 

C. glabrata BG2 strains to the mild hyper- (A, B) and hypo- (C, D) osmotic 

stress revealed the main differences in the underlying molecular mechanisms of 

adaptation. Hog1 is phosphorylated only in the case of hyper-osmotic stress (A) 

and not hypo-osmotic stress (C). The phosphorylated Hog1 leads to the 

production of glycerol in order to compensate the changes in turgor pressure 

(B). Under the hypo-osmotic stress glycerol channels open and glycerol is 

released from the cell to prevent the cell from bursting (D). See Equations 

(5.48) with parameter set "O15" in Table 7.5. 
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5.6.1 The model predictions for Sho1 deletion and overexpression 

The proposed model is then applied to study the role of Sho1 receptors in C. 

glabrata adaptation to osmotic stress. First, we investigate the adaptation 

properties of BG2 Sho1 deletion strains (Figure 5.20A). In this species, the 

signal is transmitted through the Sln1 branch only [293]. Figure 5.20B shows 

the developed model predictions for the phosphorylated Hog1 dependence on 

time. Our model predicts that in the BG2 Sho1 deletion species the adaptation 

to hyper-osmotic stress takes longer time as indicated by the time required for 

phosphorylation of Hog1 (Figure 5.20B). Moreover, this figure shows a 

significant decrease (100 times) in magnitude of Hog1 phosphorylation 

compared to the BG2 and 2001 strains (Figure 7.19 in Appendix D). The time-

course dependence for the magnitude of Hog1 phosphorylation (Figure 5.20B) 

suggests that the Sho1 branch has a significant contribution to the activation of 

Hog1 and thereby glycerol production under the hyper-osmotic stress. 
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Figure 5.20. The model predictions for C. glabrata Sho1 deletion and 

overexpression. 

A. Schematic representation of the signal transduction pathway involved in the 

activation of glycerol production in Sho1 deleted mutants. B. The model for the 

Sho1 deletion mutant predicts that the phosphorylation of Hog1 takes longer 

time compared to the BG2 strains and characterised by lower magnitude of 

phosphorylated Hog1 species. C. We test our model in the case of Sho1 

overexpression in 2001 strain. The model predicts that the level of 

phosphorylated Hog1 increases noticeably. See Equations (5.48) with 

parameter set "O15" in Table 7.5, where 0th   in (B) and 0.38th  , 4 0tx   in 

(C). 

 

Next, we test our model for the overexpression of Sho1 receptors (ten times) in 

C. glabrata 2001 species. Our model assumption regarding the decrease in the 

number of the active receptors during plasmolysis led us to the model 

predictions for the delay and magnitude decrease of Hog1 phosphorylation in 

2001 species obtained in one of the previous sections (Figure 7.19B). The 

model predictions for Hog1 phosphorylation levels with Sho1 overexpression in 

2001 strain are illustrated in Figure 5.20C. This figure shows the experimentally 

testable predictions of our model, according to which Hog1 phosphorylation 
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level is increased in contrast to the case without Sho1 overexpression (Figure 

5.12B). Our model predicts that in the case of overexpressed Sho1, 

phosphorylation levels of Hog1 under 0.4M, 0.8M and 1.5M of NaCl are 

distributed closer to each other. 

 

According to our model assumptions, the level of Hog1 phosphorylation 

depends on the number of the active receptors. The model predictions for Hog1 

phosphorylation in the case of overexpressed Sho1 receptors presented in this 

subsection would allow to test this assumption experimentally. If the assumption 

is correct, the overexpression of Sho1 in 2001 strain should lead to the 

phosphorylated Hog1 dependencies shown in Figure 5.20C and not in Figure 

7.20. 

 

5.6.2 Potential therapeutical application of the model 

We proposed and analysed a new mathematical model for the yeast adaptation 

to osmotic stress in the previous sections. Admittedly, the model structure and 

the parameter values are based on limited experimental data, and may have to 

be adjusted if and when more data become available. However, if we assume 

that this model is anywhere close to the reality, it may have some potential 

therapeutical applications. 

 

C. glabrata is a human pathogenic yeast. It was shown that C. glabrata species 

are drug resistant and more tolerant to various extracellular stresses comparing 

to other yeast [45]. This fact impedes the effective treatment of the pathogens. 

Current C. glabrata treatment includes the use of drugs that have adverse side 

effects and it was reported that in some cases they are not effective [281,312-

314]. In this subsection we make an attempt to suggest potential clinical 

applications of the developed model. 

 

Previously we showed that the cell is able to adapt to the hyper-osmotic stress 

signal shown in Figure 5.3. According to the functional diagram shown in Figure 

5.1, the yeast cell may decrease its ability to adapt to osmotic stress if the 

intracellular resource for adaptation (glycerol, glucose) is used up. In this 

subsection we test the developed model aiming to reach this case. We can do 
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this by applying the repetitive NaCl signal shown in Figure 5.21, which shows 

that this signal contains three parts. The first part (0-180 min) is the strong 

hyper-osmotic stress of 2.5M. The second part (180-370 min) is the hypo-

osmotic stress of 0.05M. The last, third part is again the strong hyper-osmotic 

stress of 2.5M maintained until the end of the assumed experiment (600 min). 

 

 

Figure 5.21. Double hyper-and-hypo-osmotic NaCl signal as a function of time. 

The developed model is tested under 2.5M and 0.05M of NaCl for 600 minutes. 

The concentration of 2.5M is applied after 0t   min and maintained during 180 

min. In the range 180-370 min the cell is exposed to hypo-osmotic stress of 

0.05M and then 2.5M of NaCl is applied again. 

 

 

Figure 5.22 shows the model predictions for C. glabrata BG2 strain in response 

to the double hyper-and-hypo-osmotic stress (Figure 5.21). It can be seen from 

Figure 5.22 that under the first hyper-osmotic stress the intracellular resource 

such as glucose is accumulated (Figure 5.22A), glycerol is produced (Figure 

5.22B), and Hog1 is phosphorylated (Figure 5.22C). The volume of the cell 

initially decreases but then restores (Figure 5.22D). The following hypo-osmotic 

stress leads to the glycerol efflux. Then, under the second hyper-osmotic stress, 

the glucose cannot accumulate (Figure 5.22A) due to the exhausted 

extracellular glucose (Figure 7.21A in Appendix D) and therefore glycerol 

cannot be increased significantly (Figure 5.22B) even in the presence of high 

Hog1 phosphorylation (Figure 5.22C). This affects the ability of the cell to 

restore its volume (Figure 5.22D) and turgor pressure after the second osmotic 

shock (Figure 7.21B). 
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Figure 5.22. The model predictions for the double hyper-and-hypo-osmotic 

stress. 

Under the first hyper-osmotic stress, the intracellular glucose (A), glycerol (B) 

are produced, Hog1 is phosphorylated (C) and the volume of the cell is 

restored. The following hypo-osmotic stress leads to the glucose and glycerol 

exhaustion (A and B). This results in the inability to produce the osmotically 

active glycerol (B) and restore the cell volume (D) after the second hyper-

osmotic shock even in the presence of highly phosphorylated Hog1 (C). See 

Equations (5.48) with parameter set "O15" in Table 7.5. 

 

 

We suggest here that when the yeast cell shrinks, it loses its viability, which is 

consistent with [326]. The model developed in this chapter predicts that the 

combination of the hyper-, hypo- and then hyper- osmotic stresses increases 

the vulnerability of C. glabrata pathogens. 

 

Next we describe the effect of the non-dimensional concentration of 

extracellular glucose in equilibrium, denoted by parameter 0

extglu , that defines 

the resource (glucose and glycerol) on the successful adaptation to hyper-

osmotic stress. First, we test the model when the equilibrium glucose 
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concentration is increased from 0 3.337extglu   to 0 10extglu  . Figure 7.22 shows 

that the model predicts that C. glabrata is not vulnerable in this case. The 

glucose is accumulated (Figure 7.22A), glycerol is produced (Figure 7.22B), 

Hog1 phosphorylation returns to its equilibrium level (Figure 7.22C) and the 

volume of the cell restores (Figure 7.22D) after the second hyper-osmotic 

shock. Second, we test our model for the decreased 0 0.3337extglu  . Figure 7.23 

shows the model predictions under single hyper-osmotic stress, which is 

applied at 0t   and maintained for 600min . Our model predicts that in this 

case, the decreased concentration of intracellular glucose in equilibrium leads 

to the increased vulnerability of the cell even under the single hyper-osmotic 

shock. Intracellular glucose cannot be accumulated (Figure 7.23A), glycerol 

production is not enough (Figure 7.23B) to restore the volume of the cell (Figure 

7.23D) despite the presence of phosphorylated Hog1 (Figure 7.23C). These 

results suggest the important role of the equilibrium concentration of external 

glucose in C. glabrata cell vulnerability. 

 

5.7 Conclusions 

In this chapter we demonstrated the second example of high-level analysis of 

cellular signalling system in terms of Figure 1.1. We developed a model of the 

response of C. glabrata to osmotic stress based on the Gennemark model for S. 

cerevisiae [47] and using Equations (3.48) from Chapter 3. Our model links the 

intracellular multisite phosphorylation of Hog1 and glycerol metabolism with the 

biophysical adaptation of cell to osmotic stress. Due to the close genetic relation 

between C. glabrata and S. cerevisiae, the proposed model for C. glabrata 

adaptation to osmotic stress can be compared with the previously published 

modelling studies for S. cerevisiae [47-57]. 

 

The model developed in this chapter has the following advantages compared to 

the previously published models. First, our model includes the biophysical part 

that describes the volume and turgor pressure regulation. This part was absent 

in the group of previously published models [51-57]. Second, our model 

includes more detailed Hog1 activation module (Figure 5.9) compared to 

[47,48]. It is important to have the detailed Hog1 activation module because it 
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allows to test the model under various mutations in the MAPK pathways. Third, 

in our model we introduced the biochemical reactions rather than control 

functions that were used in the Gennemark model [47]. This seems to be more 

physiologically plausible. Fourth, the model developed in this chapter correctly 

describes the behaviour of the cell under the hypo-osmotic stress (Figure 5.10), 

where the cell should rapidly export glycerol in order to prevent the cell from 

bursting, which is in line with [317]. The model also demonstrates the recovery 

of both Hog1 phosphorylation level and the turgor pressure to their equilibrium 

level (Figure 5.10), which was not observed in the Gennemark model [47]. 

 

The detailed part of the model that includes the detailed MAPK signalling and 

multisite phosphorylation-regulated Hog1 activation allowed us to test the 

developed model and make the predictions of C. glabrata adaptation to osmotic 

stress for BG2 and 2001 strains. The predictions of our model for Hog1 

phosphorylation in the C. glabrata BG2 strain are consistent with the 

experimental data obtained by Professor Ken Haynes' group (Figure 5.14). 

 

The proposed model was applied to study the difference in the mechanisms of 

C. glabrata 2001 and BG2 strains adaptation to osmotic stress. Our model 

predicts the experimentally testable delay in C. glabrata Hog1 phosphorylation 

in both strains under the higher concentrations of NaCl, which was 

experimentally established in S. cerevisiae [316], as well as a decrease in the 

magnitude of phosphorylated Hog1 for 2001 strains under 1.5M of NaCl (Figure 

5.12E). The developed model suggests a new mechanism of the yeast 

adaptation to osmotic stress that can explain this decrease in magnitude. 

According to the introduced assumption, the decrease in Hog1 magnitude 

phosphorylation is due to the loss of some transmembrane receptors activity 

under the plasmolysis (Figure 5.12F). The role of Sho1 mechanoreceptors in 

the adaptation to osmotic stress was also studied in this chapter by employing 

the developed model. Our model predicts that Sho1 has a significant role in the 

adaptation of C. glabrata to osmotic stress (Figure 5.20B), and that 

overexpression of Sho1 leads to an increase of phosphorylated Hog1 

magnitude (Figure 5.20C). 
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Using the predictive power of the developed model we tested the model under 

the double hyper-and-hypo-osmotic stress signal shown in Figure 5.21. Our 

model predicts that, if the strong hyper-osmotic is followed by the hypo-osmotic 

and then the strong hyper-osmotic shock again, the cell uses up its resource 

such as glucose (Figure 5.22A) and glycerol (Figure 5.22B) for the successful 

adaptation to the final, maintained hyper-osmotic stress. The lack of these 

resource in turn leads to the inability of C. glabrata to restore its volume (Figure 

5.22D) and therefore the turgor pressure. This in turn leads to the conclusion 

that C. glabrata cells become more vulnerable for this type of the osmotic 

signal. We also showed that when the external glucose concentration in 

equilibrium is decreased, the cells become more vulnerable for the hyper-

osmotic shock. Due to the fact that pathogenic C. glabrata are more tolerant to 

osmotic shock [45], these findings may have a clinical significance. 

  



221 
 

6 Conclusions and further work 

6.1 Conclusions 

In this thesis we applied a Systems Biology approach to study cellular signal 

transduction. In Chapters 2 and 3 we investigated two basic multisite 

interactions, namely protein binding and phosphorylation. In Chapters 4 and 5 

we performed a higher level analysis (in terms of Figure 1.1) studying STAT-

STAT interactions in T cell plasticity and C. glabrata adaptation to osmotic 

stress. In this chapter the main findings of this thesis are summarised. 

 

We studied ligand-dependent regulation of the activity of multisite binding 

proteins using an example of calcium-dependent protein calmodulin (CaM) in 

response to rapid change in calcium concentration in Chapter 2 of this thesis. 

Two physiological cases were investigated: i) when the ligand concentration 

significantly exceeded protein concentration [105,106] and ii) when the total 

amount of ligand is comparable with the protein concentration [107]. For these 

two cases, we built mathematical models and studied the dynamics of the 

concentrations of individual conformations with variable number of bound 

ligands. We identified that in both cases the concentration of intermediate 

conformations as a function of time demonstrates bell shapes (Figures 2.7, 2.8 

and 2.11), whereas the concentrations of the apo- and fully saturated forms 

represent inhibitory and activatory monotonic shapes respectively (Figures 2.4 

and 2.11). The difference in model predictions for the above mentioned cases is 

that in "ii" as the protein concentration rises, free ligand concentration becomes 

exhausted (Figure 2.10) in contrast to "i", where the ligand concentration is 

abundant. The analysis of cooperativity performed for "i" using CaM as an 

example of molecule with four binding sites, revealed that the model time-

dependent predictions for the cases with cooperativity and without cooperativity 

differ quantitatively rather than qualitatively as shown in Figure 2.9. 

 

We derived the characteristic times and the dynamics for the kinetic responses 

elicited by a ligand concentration change as a function of ligand concentration 

and the number of ligand binding sites. The concentration of effector proteins 

regulated by multisite ligand binding was shown to depend on ligand 

concentration in a highly nonlinear fashion. The model developed in Chapter 2 
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shows that not only the number of bound ligands but also the ligand temporal 

regulation can lead to the intracellular multifunctionality of multisite proteins. 

 

Due to the structure of CaM molecule, for the first time to our knowledge, we 

considered the independent binding to CaM (consistent with [20]), which is 

different from the previously published model [93], where the sequential binding 

of CaM was considered. Therefore our description of calcium binding might be 

physiologically more meaningful compared to the previously published model 

[93] and can be used to model other calcium-dependent effector proteins such 

as TnC and CaN. 

 

The model proposed in Chapter 2 may have applications in understanding the 

results of experiments studying the dependence of kinetics of ligand binding 

reactions on hydrostatic pressure [78,89,112]. In these experiments pressure is 

changed rapidly, which results in the rapid change of reaction constants and 

transition of the system from initial steady-state to a new steady-state. The 

equilibrium constants then are calculated by biologists using the obtained 

experimental data for the kinetic transition processes. However, this approach 

requires physiologically plausible description of the molecular interactions and 

equations for the reaction constants. For example, in previous studies [19,93] 

the equations for the sequential multisite calcium binding were applied to EF-

hand proteins [94-97], whereas binding of calcium to the EF-hand proteins is 

non-sequential [20]. This may result in the incorrect interpretation of the 

experimental data. Therefore, the developed model may allow for a novel and 

more accurate interpretation of concentration and pressure jump-dependent 

kinetic experiments [78,89,112]. 

 

Phosphorylation of proteins was studied in Chapter 3. In this chapter we 

developed a model for single- and multisite phosphorylation. The model offers 

new features as opposed to the previously published models for single- [23-

26,29,152] and multisite phosphorylation [27,153,154,156,189]. For example, it 

shows the modulation of magnitude of phosphorylated proteins by variation of 

the parameters (Figures 3.3, 3.5, 3.9). This was achieved by including into 

consideration the concentration of enzyme-substrate complexes that were 

neglected in [23]. The proposed model for phosphorylation was applied to 
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intracellular signalling in the immune system using the examples of STAT3 and 

IRF-5 as well as erythrocyte regulation of aggregation and deformability. This 

model is limited to the assumptions used in the model that included 

consideration of multisite proteins with identical phosphorylation sites, which is 

not the case in many real proteins. 

 

The comparison of the proposed model predictions for STAT3 with the 

Goldbeter and Koshland model [23] revealed that the model [23] can be used 

only in the case when the total concentrations of JAK and SHP-1 are much 

lower than the total concentration of STAT3. The concentrations of intermediate 

phosphorylation complexes cannot always be ignored in real biological systems 

due to the fact that in this case the concentrations of kinases and their 

substrates may be comparable [29]. Thus, Chapter 3 might offer more accurate 

model of phosphorylation reaction. 

 

The model for multisite phosphorylation described in Chapter 3 predicts that 

IRF-5 phosphorylated at different phosphorylation sites has selective activity 

(Figures 3.4 and 3.5). The distribution of phosphorylated IRF-5 species was 

investigated for various parametric changes. Our model predicts that this 

distribution is highly dependent on the parameters of the system, particularly on 

the ratio of the total AP to IRF-5 concentrations and 

phosphorylation/dephosphorylation reaction rates. The results obtained in this 

chapter may be useful for understanding the regulatory role of IRF-5 in the 

inflammatory diseases including Systemic Lupus Erythematosus potentially 

caused by the malfunctions in the mechanism of IRF-5 phosphorylation [190]. 

 

The model for phosphorylation of EF1 and EF2 proteins proposed in Chapter 3 

was used by a team of researchers, including the author of this thesis, in [31] to 

study the molecular system that controls the aggregation and deformability of 

the erythrocyte. This model and findings in [31] may have a practical application 

in understanding erythrocyte disorders and aging. 

 

In Chapters 2 and 3, we used two particular examples of multisite proteins, 

namely CaM and IRF-5 respectively. However, the results are more general 

than that. The models proposed in these chapters can be applied to other 
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multisite proteins if the following conditions are satisfied. First, the protein 

should have n  sites for binding or phosphorylation. Second, it should have the 

corresponding type of binding or phosphorylation, for example sequential or 

independent. In these chapters we derived equations for the independent 

interactions. Third, we need to know whether the cooperativity is present or not. 

Fourth, the reaction constants of binding or phosphorylation for individual sites 

differ within the range of proteins. However, these constants can be obtained if 

the appropriate equations are applied to describe the experimental data for 

protein binding or phosphorylation. 

 

In Chapter 4 we extended the model for STAT phosphorylation proposed in 

Chapter 3 and studied an example of T cell phenotype plasticity in Th1 to Tr1 

switching [39] by investigating the mechanisms of intracellular STAT signalling. 

While in previously published models [40-43] only one JAK-STAT pathway was 

studied at a time, in Chapter 4 we developed an integrative model that 

considers the interactions between different JAK-STAT pathways (Figure 4.1). 

The analysis of the developed model revealed the competitive nature of STAT 

proteins as well as the cross-regulation in JAK-STAT pathways and showed 

their impact on the produced cytokines and T cell phenotype switching. In 

Chapter 4 we proposed a potential mechanism (in terms of Figure 1.1) for the 

Th1 to Tr1 switching [39]. According to the proposed mechanism, the T cell 

phenotype switching is due to the relative redistribution of STAT dimer 

complexes caused by the cytokine-dependent STAT competition. The 

developed model predicts that the balance between the intracellular STAT 

species defines the amount of the produced cytokines and thereby T cell 

phenotypes. 

 

We validated our model using experimental data (Figure 4.4) for IFN-γ to IL-10 

switching that regulates human Th1/Tr1 responses [244]. The parameters were 

found by using the MATLAB-integrated genetic algorithm for optimisation. 

Parameter sensitivity analysis revealed that within 2-fold change both the 

cytokine and STAT switching are observed in 78% cases (Figure 4.8). 

Therefore, we can assume that our model predictions are reasonably robust 

within this diapason of parameters. Next, we investigated how various 

malfunctions, which are modelled by parameter alterations, may lead to 
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pathological states. For example, we showed that inappropriate regulation of 

IL-2 receptor system may result in the disturbed IFN-γ to IL-10 switching (Figure 

4.12C), which may mediate autoimmune and IBD states, consistent with [262]. 

The analysis of our model in the context of possible immune pathologies may 

offer new strategies for their clinical treatment. In particular, the proposed model 

predicts that the reduction of the uncontrolled inflammation could be achieved 

by enhancing the role of competing STAT3 pathway. Our model also shows that 

the increased IL-6 leads to the lack of switching in phosphorylated STAT 

proteins and produced cytokines, whereas the switching is stronger for the 

reduced IL-6 (Figure 4.13). 

 

Using the systems approach described in Introduction of this thesis we 

analysed the system of interacting STATs (Figure 4.1). This analysis predicts 

that there is also a competition between the modules formed by the competing 

STATs, namely STAT3-STAT5 and STAT3-STAT4 in our example. This 

competition is controlled by other cytokines, for example IL-21 in our system 

(Figure 4.16). 

 

The proposed model, with necessary adjustments such as parameter variations, 

can be applicable to a number of various STAT signalling circuits, for example, 

to the Th1/Th2 [277], Treg/Th17 or Th17/Th2 [278] phenotype switching in the 

following way. The model for pro-inflammatory IFN-γ producing Th1 and anti-

inflammatory IL-10 producing Tr1 cells can be extended to pro-inflammatory 

IL-17 producing Th17 and anti-inflammatory IL-4 producing Th2 as well as anti-

inflammatory IL-10 producing Treg cells. 

 

In Chapter 5 of this thesis we introduced a new model for C. glabrata adaptation 

to osmotic shock [33]. The model links the cellular adaptation to osmotic stress 

with intracellular molecular interactions such as multisite phosphorylation of 

Hog1 in MAPK pathway, phosphorelay system and glycerol metabolism (Figure 

5.9). Previously published models for Hog1 activation in yeast adaptation to 

osmotic stress lack the systems description as it is shown in Figure 1.1. For 

example, in [51-57] the biophysical part is absent, in [47,48] the model of Hog1 

activation pathway is not detailed and all the above mentioned models did not 

describe adaptation to hypo-osmotic stress. 
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The detailed Hog1 pathway description in our model allowed testing the model 

for the adaptation of BG2 and 2001 strains of C. glabrata to both hypo- and 

hyper-osmotic stress conditions and demonstrating the differences in these two 

strains adaptation to osmotic stress. Our model demonstrates the time delay 

accompanied by a decrease in magnitude of Hog1 phosphorylation in 2001 

strains under 1.5M concentration of NaCl (Figure 5.12E). Description of this 

effect was possible when we introduced an experimentally testable assumption 

that when the cell shrinks under hyper-osmotic stress, some transmembrane 

receptors lose their activity and this leads to the decrease in Hog1 magnitude 

phosphorylation (Figure 5.12F). Our model predicts that the overexpression of 

Sho1 leads to an increase of phosphorylated Hog1 magnitude in 2001 strain 

(Figure 5.20C). 

 

The understanding of the possible mechanism of yeast adaptation to osmotic 

stress allowed us to propose potentially useful clinical applications of the model 

developed in Chapter 5. The model predicts that in case of the strong hyper-

osmotic followed by the hypo-osmotic and then the strong hyper-osmotic shock 

again (Figure 5.21), the cell uses up its resource for adaptation such as 

intracellular glucose and glycerol and is not able to restore its volume and turgor 

pressure and therefore adapt to the hyper-osmotic stress (Figure 5.22). The 

lack of adaptation in turn leads to the increased vulnerability of C. glabrata. This 

effect can be amplified if hyper-osmotic stress is combined with the decreased 

external glucose (Figure 7.23). 

 

6.2 Further work 

The mathematical framework proposed in this thesis has certain limitations that 

could be addressed in further work. We consider these limitations in application 

to each chapter of this thesis. 

 

In Chapters 2 and 3 we considered multisite protein interactions assuming that 

the cooperativity is absent. We made this assumption due to the findings in 

Chapter 2 that the cooperativity has quantitative rather than qualitative effect on 

the model predictions for the concentration of individual multisite protein 
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conformations (Figure 2.9). In order to provide more realistic description of 

multisite binding and phosphorylation, in further work the cooperativity will be 

included into consideration. 

 

One of the limitations of the model proposed in Chapter 4 for STAT-STAT 

interactions in T cells differentiation and plasticity is that we studied only STAT 

transcription factors. However the other transcription factors including NFAT, 

NF-kB, T-bet and GATA3 may also play an important role in T cell phenotype 

plasticity [327]. Since the focus of this chapter was on STAT signalling effects, 

we simplified interleukin-receptor interactions by neglecting receptor 

autophosphorylation and dimerisation. This simplification should not affect the 

interaction between STAT proteins however the consideration of full receptor 

system may lead to new effects in the overall system response. In order to 

study the phenotype switching we considered only cytokine pairings that 

activate STAT proteins, however it could be more than just two activating 

cytokines. In Chapter 4 we did not analyse the dynamics of the system. 

Possible time-course model predictions could add more details to the 

phenotype switching in the disease development. 

 

Our Systems Biology analysis of STAT proteins in immunity can be further 

developed to explore new promising therapeutic opportunities for various 

inflammatory conditions. Other STATs can be included into the model, to 

understand the mechanism of the other STAT-STAT interactions in the immune 

system. It would be beneficial to establish the logics of T cell fate determination 

and plasticity in the immune system depending on environmental conditions 

(extracellular cytokines). 

 

The model for the yeast adaptation to osmotic stress proposed in Chapter 5 

was applied to investigate the adaptation to osmotic stress only. However, our 

model predictions for the hyper-osmotic stress combined with the glucose 

starvation (Figure 7.23) showed that the yeast may become more vulnerable in 

this case. Therefore, the yeast adaptation to the combination of external stress 

conditions including osmolarity, starvation, pheromone and temperature shock 

can be investigated in further work. Due to the fact that each of these stresses 

activates certain transcription factors by preventing the cross-talk between the 



228 
 

pathways [288] and due to the complicated structure of the pathways, the model 

for the yeast adaptation to various osmotic stress conditions can be developed 

in terms of "compound control" logics proposed in [328] and explicitly analysed 

in [329]. 
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7 Appendix 

7.1 Appendix A 

7.1.1 Biochemical kinetics 

In biological objects the signals are transmitted through different mechanisms, 

for example molecular ligand binding, changes in proteins structure and protein 

conformational dynamics [330]. These changes occur as a result of biochemical 

reactions where the substances transform from one state to another. Due to the 

fact that the reactions are time-dependent processes and therefore can be fast 

or slow, all reactions are characterised by the time required for their completion. 

Now consider the following biochemical reaction: 

A B,k    (7.1) 

where A  is substrate and B  is product of the reaction. The rate of this reaction 

is given by the change in concentration of B  in time: 

 
d

v B
dt

    (7.2) 

where  B  is the concentration of the product. 

 

Reactions can be reversible and irreversible. Equation (7.1) is irreversible, 

which means that the substrate A  can transform to the product B  and the 

reverse transition is not possible. However in some cases the reverse reaction 

can also occur. An example of the reversible (both direction) reaction is given 

by: 

A B
k

k





 .   (7.3) 

 

Chemical kinetics [60,61] have been studied by mathematical modelling to 

describe the reaction rates. There are several mathematical approaches to 

deliver this. One of the mathematical models for the kinetics of biochemical 

reactions is the law of mass action. It assumes that the volume and the 

temperature, under which the reactions occur, are constant during the time of 

the reaction. To complete the biochemical reaction, the reacting particles should 

collide and have sufficient energy to interact. The law of mass action suggests 



230 
 

that the rate of the reaction is proportional to the concentrations of the reagents 

and the reaction constants. For the following biochemical reaction 

1

A B
n

k

i i

i

c


    (7.4) 

the law of mass action gives the following equation for the reaction rate: 

 
 

1

= ,i

n
c

i

i

d B
v k A

dt 

    (7.5) 

where 
1

n

i

i

c


  is the order of the reaction, k  is the rate constant, which represents 

the probability of the molecules collision. 

 

Now consider the following biochemical equation: 

1 1

A A ,
n n

k

i i i i

i i

c b
 

    (7.6) 

where ,  1...i ic b i n   and 0ib  . 

 

The reaction rate is given by: 

 
1

= ,i

n
c

i

i

v k A


    (7.7) 

however, in contrast to Equation (7.4), Ai  do not disappear in the reaction (7.6) 

as they are presented in both left and right parts of the equation by different 

numbers of molecules. The rate of change in concentrations of Ai  is given by: 

 
 

1

( ) = ( ) .i

n
ci

i i i i i

i

d A
b c v b c k A

dt 

        (7.8) 

 

Equation (7.8) shows that when i ib c  then Ai  is produced, while when i ib c , 

Ai  is consumed in the reaction. The difference i ib c  is called the 

stoichiometric coefficient. 

 

In the case when the reaction rate is zero, there is a chemical equilibrium. This 

implies that the formation of the product from the substrate is balanced by the 
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backwards transformation to substrate from the product. For the reaction (7.3) 

we have: 

 
= 0,

d B
v

dt
    (7.9) 

and since 
 

   
d B

k A k B
dt

   , this gives the equilibrium constant: 

 
 

= =
Bk

K
k A




   (7.10) 

 

The equilibrium constant in Equation (7.10) characterizes the extent, to which 

reactants are converted to products by this reaction, and not the reaction speed 

[331].  

 

7.1.2 Molecular binding 

Molecular binding describes the interaction between reacting molecules that 

lead to the formation of a stable complex. The biochemical reaction for the 

molecular binding can be written as follows: 

A B C,
k

k





     (7.11) 

where C  is the molecular complex. The reaction rate in Equation (7.11) is given 

by: 

 
    = ,

d C
v k A B k C

dt

     (7.12) 

 

The total concentration of A , denoted by  A , is conserved in this reaction: 

   ,TA A C     (7.13) 

where TA  is the total constant concentration of A . 

 

In equilibrium, Equations (7.12) and (7.13) give the concentration of C : 

 
 
 T

d

B
C A

K B



  (7.14) 
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where d

k
K

k




  is called the dissociation constant, which represents the inverse 

of A

k
K

k




 , which is called the association constant. 

 

The following reaction describes the case where there are multiple binding sites 

in molecule B : 

0 1A X X , 0,..., 1
i

i

k

i i
k

i n




     (7.15) 

where 0X i
 is the ith binding site of the multisite protein B  in unbound state, 1Xi

 

is the ith binding site of the multisite protein being occupied, ik 
and ik 

are the 

association and dissociation constants, respectively. 

 

Cooperative binding is a special case of molecular interactions where the 

association and dissociation constants of the binding to one site of a molecule 

depend on the state of other sites. There are several approaches of modelling 

the Equation (7.15). 

 

Studying oxygen binding to haemoglobin, Hill was looking for an equation that 

would describe haemoglobin saturation curve and satisfy the experimental 

observations [9]. He suggested the following empirical formula for the 

probability of a molecular binding of protein Xi  with ligand A : 

 

 

n

nn

d

A
p

K A



   (7.16) 

where dK  is the dissociation constant and n  is the Hill coefficient [9]. The Hill 

coefficient represents the degree of cooperativity rather than the number of 

bound sites and quantitatively describes the cooperativity dependence on the 

state of other sites. Despite the fact that Equation (7.16) agreed with the 

experiments [9], this phenomenological equation could not explain the 

underlying biological mechanisms of molecular binding since Hill coefficient is a 

value that is found in order to fit the experimental data rather than based on 

physiological assumptions [332]. 
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Later, Adair experimentally tested Hill's equation and found that it was 

qualitatively consistent with experiments for 1n  , as it was stated in Adair's 

original work [10]. However Hill's theory was not confirmed quantitatively. Adair 

demonstrated that there are four binding sites of haemoglobin for oxygen and 

assumed that haemoglobin is built up in stages. Assuming the ideal solution 

where all components obey the mass law, he deduced the following formula for 

the probability of the building up of the four oxygen molecules: 

       

       

2 3 4

1 2 3 4

2 3 4

1 2 3 4

2 3 41

4 1

K A K A K A K A
p

K A K A K A K A

         
 

       
, or in general form, for the 

molecule with n  binding sites: 

 

 

1

1

1

1

n
i

i

i

n
i

i

i

i K A
n

p

K A





  



 




,  (7.17) 

where n  is the number of binding sites and iK  are the corresponding 

association constants [10]. Equation (7.17), suggested by Adair, is biologically 

more meaningful than Equation (7.16) due to the fact that n  in Equation (7.17) 

describes the number of binding sites of multisite molecule and not a 

phenomenological constant. 

 

In order to deliver a deeper understanding of the underlying biophysical 

mechanism of molecular binding of oxygen binding to haemoglobin, Pauling in 

his original work [11] developed Adair's model [10] by deriving an equation 

based on the structure of haemoglobin module. Pauling assumed in his model 

[11] that the haemoglobin molecule contains four equivalent hemes connected 

with others in such a way that the interactions are equal for the connected pairs 

of hemes and suggested the following equation for the probability of binding: 

       

       

2 3 42 3 3 6 4

2 3 42 3 3 6 4

3 3

1 4 6 4

K A K A K A K A
p

K A K A K A K A

  

  

  


   
,  (7.18) 

where K  is such that lnRT K  is the free energy change when oxygen is added 

to the heme, R  is the universal gas constant, T  is the thermodynamic 

temperature in SI unit kelvins, and   is such that lnRT   is the additional free 

energy that is required to stabilize two groups of interacting hemes [11]. 
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Another attempt to develop the Adair's equation was performed by Klotz [12]. 

He assumed that the ligand molecules bind sequentially and introduced 

description of a model of cooperative binding by using the mass-action law 

[333]. This implies that the second site can be bound by ligand only if the first 

site is already bound. The Klotz equation for the probability that all the sites of 

the protein are bound is given by: 

 

 

1 1

1 1

1

n i
i

j

i j

n i
i

j

i j

i K A

p

K A

 

 


 
 


 

 

 

 

,  (7.19) 

where  ( 1,..., )jK j n  are individual binding constants. The advantage of 

Equation (7.19) is that it reveals the interaction type in each of the individual 

steps of molecular binding [12]. 

 

The first realistic schemes of reactions involved in multisite molecular binding 

were suggested by Weiss [13]. He considered both sequential and independent 

binding. For the sequential binding Weiss assumed that the ligand molecules 

stack on top of each other in order to bind their binding sites and derived the 

following equation: 

 

 
1

1

1

1

n

n

j

j

in

n

i
j

j

A

K

p
A

K
















,  (7.20) 

where  ( 1,..., )jK j n  are the individual dissociation constants. 

 

Considering the independent binding, Weiss assumed that the protein has 

multiple ligand binding sites available to the ligand and that the sites can be 

occupied independently of each other. In this case, the probability that all the 

sites of the protein are bound can be written as follows: 
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  (7.21) 

 

7.1.3 Enzyme kinetics 

Enzyme kinetics [334] focuses on the regulation of chemical reactions catalysed 

by enzymes. The enzymes can either activate (speed up) or inhibit (slow down) 

the reaction. There are several ways to describe the enzyme kinetics. The most 

widely used is Michaelis-Menten model [335]. 

 

The basic enzymatic reaction can be described by the following biochemical 

equation: 

E S ES E P
f

c

r

k
k

k

     (7.22) 

where E  is the enzyme, S  is the substrate, ES  is the enzyme-substrate 

complex and P  is the product of the reaction. 

 

According to the law of mass action, the rate of this reaction is given by: 

 
 .c

d P
v k ES

dt
    (7.23) 

 

The total concentration of the enzyme is constant and can be described by the 

following equation: 

   .TE E ES     (7.24) 

 

In their work Michaelis and Menten [335] suggested that the substrate S  is in 

instantaneous equilibrium with the complex ES , which implies: 
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     0.f r

d S
k E S k ES

dt
      (7.25) 

 

Using Equations (7.24) and (7.25) we can write for the concentration of the 

enzyme-substrate complex: 

 
 
 

,T

d

S
ES E

K S



  (7.26) 

where r
d

f

k
K

k
  is the dissociation constant. 

 

The rate of reaction (7.23) in this case can be described by the following 

equation: 

   
 

,max

d

d P S
v V

dt K S
 


  (7.27) 

where max c TV k E . 

 

In contrast to the Michaelis-Menten model, Briggs and Haldane assumed that 

the concentration of complex  ES  reaches equilibrium in a negligible time and 

maintains the constant concentration within the overall time of the reaction [62]. 

This approach is also known as the Quasi Steady State Assumption (QSSA). 

According to the QSSA, the rate of ES  complex formation is zero: 

 
    ( ) 0.f r c

d ES
k E S k k ES

dt
      (7.28) 

 

Using Equations (7.24) and (7.28) it can be written for the concentration of the 

enzyme-substrate complex: 

 
 
 

,T

m

S
ES E

K S



  (7.29) 

where r c
m

f

k k
K

k


  is the Michaelis constant. 
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The rate of reaction (7.23) in this case can be written as follows: 

   
 

,max

m

d P S
v V

dt K S
 


  (7.30) 

where max c TV k E . 

 

It can be seen that Equation (7.30) transforms to Equation (7.27) when 

,c f rk k k . The Michaelis constant mK  in Equation (7.30) represents the 

substrate concentration, at which the reaction rate v  is half of the maximum 

reaction rate maxV . In experiments the reaction rate is measured within a short 

period of time. When the concentration of  ES  rapidly approaches a steady-

state, it is assumed that during this period the enzyme-substrate complex is 

already formed (due to the fact that  ES  is in its steady-state) but the 

concentration of the substrate did not change. The Michaelis constant mK  can 

then be found after plotting the reaction rate against the substrate 

concentration. 

 

7.2 Appendix B 

7.2.1 Derivation of Equation (2.6) 

We can write from Equations (2.5): 

0
0( , )
( , ) ( ).i

i T i i i

dL U t
k L L U t k U k

dt

         (7.31) 

 

Before 0t   the system is in equilibrium, which implies 0U U . In this case the 

steady-state solutions are 0

0

0

( ) i
i T

i

K
L U L

K U



 and 1 0

0

0

( )i T

i

U
L U L

K U



. The 

ligand jumps from 0U  to 1U  at 0t  , which implies 1U U . We find the general 

solution for 0

1( , )iL U t  in Equation (7.31): 

0

1 3

1 1

( , ) exp ,
( )

i
i T

i

K t
L U t L C

K U U


     

  
 (7.32) 
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where 1

1

( )
( )

i

i i

K
U

k U K





 
, i

i

i

k
K

k




  and 

3C  is a constant. 

 

To find 3C  we use the steady-state solutions 0

0

0

( ) i
i T

i

K
L U L

K U



 and 

1 0
0

0

( )i T

i

U
L U L

K U



 as initial conditions for 0t  : 

3

1 0

.i i
T

i i

K K
C L

K U K U


   

  
        (7.33) 

 

A particular solution for the system of differential Equations (2.5) in response to 

the ligand concentration shift from 0U  to 1U  is given by: 

0

1 1 0 1

1 1 1 0

1 1 0 1

( , ) exp ,
( )

( , ) exp .
( )

i i i
i T

i i i

i T

i i i

K K K t
L U t L

K U K U K U U

U U U t
L U t L

K U K U K U U





   
               

   
               

 (7.34) 

 

7.2.2 Derivation of Equation (2.45) 

To find steady-state solutions of System (2.44) we can write from this system: 

0 0 0( ) ( ( )) ( ( )) 0.T T T T T Tk L U U L L U k L L U           (7.35) 

 

Before 0t   the system is in equilibrium: 0TU U . There are two roots of 

Equation (7.35): 

2

0 0 0 0
0( ) 1 2 1 .

2

T T T T T T
T

K L U U L U L
L U

K K K K K K


               

   
 

 (7.36) 

 

As long as we need only positive solutions, we need to solve the following 

inequality: 

2

0 0 01 2 1 0.
2

T T T T T TK L U U L U L

K K K K K K


               

   
 

 (7.37) 
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Inequality (7.37) can be rewritten in the following way: 

2

0 01 1 4 0.T T T T TL U L U L

K K K K K

  
          

  
 (7.38) 

Since 4 0TL

K
   there is only one positive root of Equation (7.35): 

2

0 01 1 4 0.T T T T TL U L U L

K K K K K

  
          

  
 (7.39) 

 

7.2.3 Derivation of Equation (2.46) 

The total ligand concentration jumps from 0TU  to 1TU  at 0t  : 1T TU U . We 

find the general solution for 0

1( , )TL U t  in Equations (2.44): 

 

0

1

0 2 0

1 1 1

( , )
.

( , ) ( ) ( , )

T

T T T T T

dL U t
dt

k L U t k U L k L U t k L   


        
   (7.40) 

The integral 
2

02 2 2

1 2 4
ln

4 2 4

dx ax b b ac
C

ax bx c b ac ax b b ac

  
  

     
  if 

2 4 0b ac  . 

In our case 
2 4 0b ac  , where a k   , 

1( ( ) )T Tb k U L k      and 
Tc k L  . 

 

Thus, we can take the integral in Equation (7.40) in the following way: 

 

0 2

1 1 1

0 2

1 1 1

2

1

2 ( , ) ( ( ) ) ( ( ) ) 4

2 ( , ) ( ( ) ) ( ( ) ) 4

exp ( ( ) ) 4 ,

i i T i T T i i T T i i i T

i i T i T T i i T T i i i T

i T T i i i T

k L U t k U L k k U L k k k L

k L U t k U L k k U L k k k L

C t k U L k k k L

      

      

   

              


              

         

 (7.41) 

where 0C   is a constant. 

 

Since 

0 2

1 1 12 ( , ) ( ( ) ) ( ( ) ) 4 0T T T T T Tk L U t k U L k k U L k k k L                       in 

Equation (7.41) we consider the denominator only: 

0 2

1 1 12 ( , ) ( ( ) ) ( ( ) ) 4T T T T T Tk L U t k U L k k U L k k k L                      (7.42) 
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There are two steady-states for 0

1( , )TL U t : 0

0( ,0)TL U  and 0

1( , )TL U  , where 

0 0

0 1( ,0) ( , )T TL U L U  . 

 

For the second steady-state the denominator (7.42) is 0. Since the denominator 

is a decreasing function and starts with 0, the denominator is less than 0 for 

0 0 0

1 1 1( , ) [ ( , ), ( ,0)]T T TL U t L U L U  . Thus, the equation in the module in (7.41) is 

positive: 

 

0 2

1 1 1

0 2

1 1 1

2

1

2 ( , ) ( ( ) ) ( ( ) ) 4

2 ( , ) ( ( ) ) ( ( ) ) 4

exp ( ( ) ) 4 ,

T T T T T T

T T T T T T

T T T

k L U t k U L k k U L k k k L

k L U t k U L k k U L k k k L

C t k U L k k k L

      

      

   

              


              

         

(7.43) 

 

The general solution for 0L  is as follows: 

 

 

0
11 1

1

1

exp ( ) 1( , )
1 ( ) ,

2 exp ( ) 1

TT T T
T

T T T

C F UL U K L U
F U

L L K K C F U





   
           

 (7.44) 

where t k   . 

 

Now we need to find C  when 0t  : 

 

 

1 0
0 1

1 0
0 1

( )

.

( )

T T
T T

T T
T T

U U
F U F U

K KC
U U

F U F U
K K

  



  

       (7.45) 

 

7.2.4 Derivation of Equation (2.57) 

Differentiating Equation (2.52) with respect to t  and solving for / 0mdN dt   

yields the time 
max

m  when the concentration of multisite protein conformations, 

mN , bound to m  ligand molecules is maximal: 

 1 0( ( , )) ( ( , ))
0.

m n m

T T Td L p U t p U t

dt

 
  (7.46) 

 

There are three solutions of Equation (7.46): 
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 (7.47) 

where max

m k t   . 

Consider the first solution 
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    in 

Equations (7.47). We need only real positive solutions, which implies 
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. The expression in the logarithm can be 

written as follows: 
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 (7.48) 

 

Now compare the denominators (here the symbol " " stands for comparison) in 

inequality (7.48): 

   1 1 0
1 0 1

2

0 0 0

1 ( ) ,

1 1 4 .

T T T T
T T T

T T T T T T

U L U U
F U n F U F U
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 (7.49) 

 

Thus inequality (7.48) is not true: 
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 (7.50) 

Thus, the first solution in Equations (7.47) is not useful in our case. 

 

Now consider the second solution in Equation (7.47). The expression in the 

logarithm can be written as follows: 

 

2
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 (7.51) 

which implies that there are only complex solutions. The second solution in 

Equations (7.47) is also not useful. 

 

Now consider the third solution in Equation (7.47). We cannot guarantee the 

sign in the logarithmic function but there are positive asymptotes when 

   1
11 2 0T T

T

U L
F U n m

K K
       for intermediate ( [1, 1])m n   species: 

1 1T TU L
m

K K n m


   

 
. (7.52) 

 

7.2.5 Derivation of Equation (2.59) 

For the apo form Equation (2.52) can be written as follows: 

0 0 0

1
( , ) ( ( ,0) ( , )).

2
T T TN U t N U N U     (7.53) 

 

Equation (7.53) can be written as follows: 
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 (7.54) 

 

7.2.6 Derivation of Equation (2.60) 

For the saturated form Equation (2.52) is: 

1
( , ) ( ( ,0) ( , )).

2
n T n T n TN U t N U N U     (7.55) 

 

We can rewrite Equation (7.55) in the following way: 
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 (7.56) 

 

7.3 Appendix C 

Here we present mathematical details of the model for STAT-STAT interactions 

described in the fifth chapter of this thesis. We derive the equations employed in 

the STAT3-STAT5 (Figure 4.3), STAT3-STAT4 (Figure 4.14A) and combined 

STAT3-STAT4-STAT5 (Figure 4.15A) circuits. Table 7.1 shows the short names 

and abbreviations used. 

 

Table 7.1. Abbreviations used in the STAT phosphorylation model. 

Abbreviation Meaning 

I2 IL-2 

RJ2 IL-2 Receptor complex with JAK 

I2RJ2 IL-2 Receptor:JAK complex with bound IL-2 

RpJ2 Phosphorylated IL-2 Receptor:JAK complex 

P2 SHP-1 phosphatase 
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RpJ2P2 Phosphorylated IL-2 Receptor:JAK complex with SHP-1 

I6 IL-6 

RJ6 IL-6 Receptor:JAK complex 

I6RJ6 IL-6 Receptor:JAK complex with bound IL-6 

RpJ6 Phosphorylated IL-6 Receptor:JAK complex 

P6 SHP-2 phosphatase 

RpJ6P6 Phosphorylated IL-6 Receptor:JAK complex with SHP-2 

I12 IL-12 

RJ12 IL-12 Receptor:JAK complex 

I12RJ12 IL-12 Receptor:JAK complex with bound IL-12 

RpJ12 Phosphorylated IL-12 Receptor:JAK complex 

P12 JAK phosphatase 

RpJ12P12 Phosphorylated IL-12 Receptor:JAK complex with P12 

phosphatase 

I35 IL-35 

RJ35 IL-35 Receptor:JAK complex 

I35RJ35 IL-35 Receptor:JAK complex with bound IL-35 

RpJ35 Phosphorylated IL-35 Receptor:JAK complex 

P35 JAK phosphatase 

RpJ35P35 Phosphorylated IL-35 Receptor:JAK complex with P35 

phosphatase 

I21 IL-21 

RJ21 IL-21 Receptor:JAK complex 

I21RJ21 IL-21 Receptor:JAK complex with bound IL-21 

RpJ21 Phosphorylated IL-21 Receptor:JAK complex 

P21 JAK phosphatase 

RpJ21P21 Phosphorylated IL-21 Receptor:JAK complex with P21 

phosphatase 

S3 STAT3 

RpJ2S3 Phosphorylated IL-2 Receptor:JAK complex with STAT3 

RpJ6S3 Phosphorylated IL-6 Receptor:JAK complex with STAT3 

S3p Phosphorylated STAT3 

P3 SHP-1 phosphatase 

P3S3p Phosphorylated STAT3 complex with SHP-1 
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S4 STAT4 

S4p Phosphorylated STAT4 

RpJ12S4 Phosphorylated IL-12 Receptor:JAK complex with STAT4 

RpJ35S4 Phosphorylated IL-35 Receptor:JAK complex with STAT4 

P4 PTP phosphatase 

P4S4p Phosphorylated STAT4 complex with PTP phosphatase 

S5 STAT5 

S5p Phosphorylated STAT5 

RpJ2S5 Phosphorylated IL-2 Receptor:JAK complex with STAT5 

RpJ21S5 Phosphorylated IL-21 Receptor:JAK complex with STAT5 

P5 SHP-2 phosphatase 

P5S5p Phosphorylated STAT5 complex with SHP-2 

phosphatase 

S33 STAT3:STAT3 homodimer 

S34 STAT3:STAT4 heterodimer 

S44 STAT4:STAT4 homodimer 

S35 STAT3:STAT5 heterodimer 

S55 STAT5:STAT5 homodimer 

Gg Gene responsible for IFN-γ production 

S44Gg IFN-γ gene complex with STAT4:STAT4 homodimer 

S55Gg IFN-γ gene complex with STAT5:STAT5 homodimer 

S44S55Gg IFN-γ gene complex with STAT4:STAT4 and 

STAT5:STAT5 

Ig IFN-γ 

Mp1 Metalloprotease that cleaves IFN-γ 

IgMp1 Metalloprotease complex with IFN-γ gene 

Ign Non-active IFN-γ 

G10 IL-10 gene 

S33G10 IL-10 gene complex with STAT3:STAT3 homodimer 

Sp1 SP1 transcription factor 

Sp1a SP1 transcription factor in active form 

S33Sp1aG10 IL-10 gene complex with STAT3:STAT3 and Sp1a 

Sp1aG10 Complex of Sp1a with IL-10 gene 

Mp2 Metalloprotease that cleaves IL-10 
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I10Mp2 Metalloprotease complex with IL-10 gene 

I10n Non-active IL-10 

 

7.4 Model for the STAT3-STAT5 circuit 

The biochemical reactions involved in the STAT3-STAT5 circuit (Figure 4.3) are 

given by: 
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  (7.57) 
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All values here represent concentrations and reaction constants and thereby 

are real positive numbers. 

 

The system of reactions (7.57) can be divided into three major subsystems of 

interactions: i) Cytokine-receptor interactions, ii) STAT phosphorylation and 

dimerisation, iii) Cytokine production. 

 

7.4.1 Cytokine-receptor interactions 

In the most general case the reactions can be written as follows: 
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  (7.58) 
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where C  is cytokine, RJ  is Receptor:JAK complex, P  is phosphatase and small 

p  denotes phosphorylated state. 

 

The ODEs for the system (7.58): 

       

        

       

2 3

2 4 6

4 5 6

1 ,

,
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R

d
CRJ q RJ CRJ

dt

d
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  (7.59) 

 

Corresponding conservation equations: 
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  (7.60) 

where 
TR  and 

TP  are the total amounts of receptors and phosphatase, 

respectively. Here we neglect STAT-receptor interactions since STAT proteins 

do not have a significant impact on receptor dephosphorylation. 

 

Equations (7.60) can be written as follows: 

,

,T
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  (7.61) 

where              , , , , , .RJ CRJ RpJ RpJP p P c C          

 

The ODEs (7.59) can be rewritten in the following way: 
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  (7.62) 

 

We need to find steady-state solutions of Equations (7.62): 
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  (7.63) 

 

We found the concentrations of the complexes: 

 

 

5 6 2

4

2 3 2

5 5

2 2

2 3 1

1 3 2

,

,

,

T
T

T T

T

P
P

q

q q

q q Q

Q Q Q

Q

P P

q q

q q Q P

q c Qc

 




 
 

 

 






  

 


 

 





  (7.64) 

where 2 3
1

1q

q q
Q


  and 5 6

2

4q

q q
Q


  are Michaelis constants for phosphorylation 

and dephosphorylation, respectively, and 2
3

5

Q
q

q
 . 

 

We can write the following equation using the conservation Equation for the 

receptor (7.61): 
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  (7.65) 

 

As a result we obtain a quadratic equation: 

20 ,       (7.66) 

where 1
2

3 3

1
1TT

Q
Q R

Qc Q
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, 

2TR Q  . 

 

The solution of Equation (7.66) is: 

2 4

2 2

 






    (7.67) 

 

Equation (7.67) can be rewritten as follows: 
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where 2
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  and 1

3

TP Q

Q
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Using Equation (7.68) we can now write for  2RpJ , 6RpJ  and  21RpJ  in 

non-dimensional form respectively: 
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  (7.69) 

where  
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7.4.2 STAT phosphorylation and dimerisation 

The ODEs describing biochemical reactions in the STAT subsystem: 
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  (7.70) 

 

Conservation equations (here we neglect STAT-gene interactions due to the 

fact that the amount of genes activating certain cytokine production is low 

comparing to STAT): 
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  (7.71) 

 

Then we can normalise Equations (7.71) to 3TS : 
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The ODEs (7.70) can be written in non-dimensional form as follows: 
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  (7.73) 

where 
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We need to find steady-state solutions of Equations (7.73): 
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  (7.74) 

 

Equations (7.74) can be simplified as follows: 
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  (7.75) 

 

Then using conservation Equations (7.72) and System (7.75) we obtain: 
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  (7.76) 

where 
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  (7.77) 

 

We can rewrite Equations (7.77): 
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where we denote Michaelis constants 
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We look for steady-state solutions of System (7.76): 
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We can rewrite Equations (7.79) as follows: 
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where 2 5 11 14
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System (7.80) can be rewritten after substituting solutions from Equation (7.78): 
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15 14
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t t

s p s s p
s p
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s p
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  (7.81) 

 

We solve System (7.81) for  3s p  and  5s p  numerically. 

 

7.4.3 Cytokine production 

In general case, transcription factor T can activate gene G by forming a 

complex with the gene TG: 

2

1

G TGT
h

h



    (7.82) 

 

The ODEs for Equation (7.82): 

      

      

1

1

2

2

,

.

d
G h G h TG

dt

d

T

TTG h G h TG
dt

  

 

  (7.83) 

 

Conservation equation that follows from Equations (7.83): 

   ,TG GG T    (7.84) 

where 
TG  is the total concentration of the gene. 

 

Equation (7.84) can be written as follows: 

,TG       (7.85) 

where      ,G TG   . 
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The ODEs (7.83) can be rewritten in the following way: 

1

21

2 ,

,

d
h h

dt

d
h h

dt

T

T

  

  

  

 

  (7.86) 

where  T T . 

 

We need to find steady-state solutions of Equation (7.86): 

210 ,

.T

T

G

h h 

 








   (7.87) 

 

We can find   from Equations (7.87): 

,T

T
G

Qh T
 


  (7.88) 

where 2

1

h
Qh

h
  is a Michaelis constant. 

 

In the most general case the reactions of the activation of a gene G by two 

transcription factors T1 and T2 are: 

2
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  (7.89) 

 

The ODEs for System (7.89): 

           

           

           

           

2 4

2 3 4

1 3

3 4 1 2

1

3 4 1 2

1 2 ,

1 1 2 1 2 ,
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T G

b G b T G b T T T G
dt

d
T T G b T T T G b T T T Gb T G b

dt

    

   

   

   

  (7.90) 
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Conservation equation that follows from Equations (7.90): 

       1 2 ,1 2T T G TG TGG T G      (7.91) 

where 
TG  is the total amount of the gene. 

 

Equation (7.91) can be written as follows: 

,TG         (7.92) 

where        , 1 , 2 , 1 2 .G T G T G T T G        

 

The ODEs (7.90) can be rewritten in the following way: 

2 4

2 3 4
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d
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d
b b b T
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T T

T b

T b

b b
d

b T b T
dt

    

   

 







 

  

    

   

   

   

  (7.93) 

where    1 1 , 2 2T T T T  . 

 

We find steady-state solutions of Equations (7.93): 

2 3 4

3 4 1
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0 2 1 ,
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  (7.94) 

 

Next, we find concentrations of the complexes: 
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  (7.95) 

where 
1 3

1
4

2
2 ,

b
Qb Qb

b

b b
   are Michaelis constants. 

 

If a protein is activated by the first and the second transcription factors at the 

same time then its concentration is proportional to the concentration   only: 

1 2

1 2
,

1 2
T

T T
G

Qb T Qb T
  

 
  (7.96) 

which is a probability of the two transcription factors to be bound to the same 

gene. 

 

If a protein is activated by the first or the second transcription factors then it is 

proportional to the sum of concentrations     : 
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2 1 2

T T

T Qb T Qb T


 

  

  (7.97) 

which is a probability of either of the two transcription factors to be bound to the 

same gene. 
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CD46 

The full mechanism of how CD46 enhances IL-10 production is still not clear. 

We assume here that the mechanism of reactions is similar to the one 

described in Equation (7.89). Thus it can be written for the concentration of SP1 

in non-dimensional form according to Equation (7.96): 

 
 

 
 

 16 17

2 46
1 1 ,

2 46
t

i cd
sp a sp

M i M cd
 

 
  (7.98) 

where  
 1

1
3T

SP a
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S
 , 

1
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T
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S
 ,  

 46
46

3T

CD
cd

S
 , 

2
16

1 3T

l
M

l S
 , and 

4
17

3 3T

l
M

l S
 . 

 

We assume here that the gene interaction with the transcription factor and its 

subsequent expression lead to the mRNA translation and certain cytokine 

secretion. The produced cytokine then can be degraded by a metalloprotease. 

In this case the biochemical reactions can be written as follows: 

1 2

3

TG C,

C Mp CMp Cn Mp,
u

u

KP

u


  


  (7.99) 

where TG is the transcription factor complex with gene, C is the active cytokine, 

Mp is the metalloprotease, CMp is cytokine-metalloprotease complex and Cn is 

a non-active cytokine. 

 

The ODEs for the reactions in System (7.99): 

        

       

       

1 3

1 2 3

1 2 3

,

,

.

d
C KP TG u C Mp u CMp

dt

d
CMp u C Mp u u CMp

dt

d
Mp u C Mp u u CMp

dt

  

  

   

  (7.100) 

 

Conservation equation that follows from Equations (7.100): 

   TMp Mp CMp    (7.101) 
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We find steady-state solutions of System (7.100): 

      

     
1 3

1 2 3

0 ,

0 .

KP TG u C Mp u CMp

u C Mp u u CMp

  

  
  (7.102) 

 

Thus we obtain a system of equations: 

 
2

1 2 3

0 ,

0 ,

,T

KP u

u C u u

Mp

 

 

 

 

  

 

  (7.103) 

where        ,, , .C C CG MT Mp p      

 

We can find   from this system of Equations (7.103): 

T

C
Mp

Qu C
 


,  (7.104) 

where 2 3

1

u u
Qu

u


  is a Michaelis constant. 

 

We next substitute   from equation (7.104) to the first equation in System 

(7.103): 
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,

.

1

T
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T

C
KP u Mp

Qu C

KP Qu
C

u Mp KP

Qu
C

u Mp

KP









 









 (7.105) 

 

Since C should be positive and the maximum value for TMp


 is 1, 2KP u , 

which implies that the rate of the cytokine production should be less than its 

maximum rate of the degradation by metalloprotease. 

 

Equation (7.105) can be written as follows: 
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,

1T

Qu
C

Mp

Qp





  (7.106) 

where 
2

KP
Qp

u
 , 1Qp  . 

 

When the cytokine production is up-regulated by one transcription factor only, 

   from Equation (7.88) and thus it can be written: 

.

1T

T

T
G

Qh

Qu
C

Mp

Qp
T





 (7.107) 

 

If the cytokine production is up-regulated by two transcription factors at the 

same time,    as shown in Equation (7.96), it can be written: 

1 2

2

1
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1
1
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T
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Qu
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T T
G

Qb T Qb T

Mp

Qp



 



 (7.108) 

 

If the cytokine production is up-regulated by either of the two transcription 

factors,        as shown in Equation (7.97), and thus it can be written: 

1 2 1 2

1 2 1 2
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1
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 (7.109) 

 

IFN-γ and IL-10 production 

Since IFN-γ is activated by STAT55 only (Figure 4.3) we can write using 

Equation (7.107): 
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 (7.110) 
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where  
  4 5 2 5

18 19 8 8

3 1 4
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, 1 , , , , , 1

3 3 3 3 3
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t t
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Ig Mp Gg k k k l
ig mp gg M M n n

S S S k S k S k


       . 

 

IL-10 gene can be activated by either STAT33 or CD46. Thus it can be written 

according to Equation (7.109): 
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  (7.111) 

where 

11 12 7 9 6
20 21 22 9 9

10 6 8 11

2 10
2 , 10 , , , , , 1

3 3 3 3 3

t t
t t

T T T T T

Mp G k k k k l
mp g M M M n n

S S k S k S k S k


       . 

 

7.5 Model for the STAT3-STAT4 circuit 

The biochemical reactions involved in the circuit (Figure 4.14A) are as follows: 
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7.5.1 Cytokine-receptor interactions 

According to Equations (1.12) we can write for  2RpJ ,  6RpJ ,  21RpJ  and 

 35RpJ  in non-dimensional form respectively: 
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  (7.113) 

where 
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7.5.2 STAT phosphorylation and subsequent dimerisation 

ODEs for the STAT phosphorylation and dimerisation module are given by: 
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  (7.114) 

 

Conservation equations (here we neglect STAT-gene interactions): 
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Conservation Equations (7.115) in non-dimensional form: 
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  (7.116) 

where  
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ODEs (7.114) in non-dimensional form can be written as follows: 
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 (7.117) 
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We need to find steady-state solution of System (7.117): 
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We can simplify System (7.118): 
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Then using conservation Equations (7.116) and System (7.119) we obtain: 
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where 
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Or we can rewrite it as follows: 
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where we denote Michaelis constants 
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When considering steady-state solutions of System (7.120) we can write: 
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Or we can rewrite Equations (7.122) as follows: 
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where 2 5 11 14
5 6 7 8

8 8 17 17
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We can rewrite System (7.123) substituting Equations (7.121): 
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We find  3s p  and  4s p  in System (7.124) numerically. 

 

CD46 

It can be written for SP1 in non-dimensional form according to Equation (7.96): 
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7.5.3 IFN-γ and IL-10 production 

Since IFN-γ is activated in this module by STAT44 only (Figure 4.14A) we can 

write using Equation (7.107): 
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According to Equation (7.109) we can write: 
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7.6 Combined STAT3-STAT4-STAT5 model 

The reactions involved in STAT3-STAT4-STAT5 circuit (Figure 4.15A): 
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7.6.1 Cytokine-receptor interactions 

According to Equation (7.68) we can write for  2RpJ ,  6RpJ ,  21RpJ , 

 35RpJ  and  21RpJ  in non-dimensional form respectively:
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where 
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7.6.2 STAT phosphorylation and dimerisation 

ODEs for the STAT module are given by: 
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Conservation equations (here we neglect STAT-gene interactions): 
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Conservation Equations (7.131) in non-dimensional form: 



281 
 

               

             

             

   

   

   

1 3 3 2 33 34 35 2 3 6 3 3 3

4 4 4 2 44 34 12 4 35 4 4 4

5 5 5 2 55 35 2 5 21 5 5 5

3 3 3 3

4 4 4 4

5 5 5 5

,

,

,

,

,

,

t

t

t

t

t

s s s s s w s w s p s

s s s s s w s w s p s

s s s s s w s w s p s

p p p s

p p

p p p s

p

p p

p p

s pp

p

p

p

       

      

      

 

 

 

  (7.132) 

where  

 
 

 
 

 
 

 
 

 
 3 3 2 3 6 3 3 3 4

3 ,  3 , 2 3 , 6 3
3 3 3 3

,  3 3 ,
3

,
3

4 t

T T T T T T

t

p p
p p

S

S S RpJ S RpJ

S S

S P S S
s s w s w s p s s

S S S
     

 
 

 
 

 
 

 
 

 
 

3 3

4 4 12 4 35 4 4 4
  4 , 4 ,  12 4 ,  35 4 , 

3
4

3
 

3
4 ,

T T T T T

pS S RpJ S RpJ S P S
s s w s w s p

p
p p

S S S S S
s      

 
 

 
 

 
 

 
 

 
 5 5 2 5 21 5 5 55

5 , 5 , 5 ,  2 5 ,  21 5 ,
3 3

  5 5 ,
3 3 3 3

T

T T T T T T

t

S S RpJp p
p p

S S S S S

S RpJ S P SS
s s s w s w s p s

S
     

 
 

 
 

 
 

 
 

 
 

 
 

 
 33 34 44 35 55 3 4

33 , 34 ,  44 , 35 ,  55 , 3 , 4 ,
3 3 3 3 3 3 3T T T T T T TS

S S S S S P P
s s

S S S S S
s p

S
s s p      

 
 5 3 4 5

5 , 3 , 4
3 3 3

.
3

, 5T T T

T T

t t t

T T

P

S S S

P P P
p p p

S
p      

 

ODEs (7.130) in non-dimensional form are given by: 
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where 
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We need to find a steady-state solution of System (7.133): 
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We can simplify System (7.134): 
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Then using conservation Equations (7.132) and System (7.135) we obtain: 
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where 
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Or we can rewrite it in the following way: 
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  (7.137) 

where we denote Michaelis constants 
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We look for steady-state solutions of System (7.136): 
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We can rewrite Equations (7.138) as follows: 
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We can rewrite System (7.139) substituting Equations (7.137): 
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We find  3s p ,  4s p  and  5s p  in System (7.140) numerically. 
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CD46 

It can be written for SP1 in non-dimensional form according to Equation (7.96): 
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7.6.3 IFN-γ and IL-10 production 

Since IFN-γ gene is activated by either STAT44 or STAT55, it can be written 

according to Equation (7.109): 
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The production of IL-10 can be activated by either STAT33 or SP1 through 

CD46. Thus, according to Equation (7.109), it can be written: 
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7.7 Parametric analysis 

 

 

Figure 7.1. The model predictions for the swapped parameters. 

A. STAT monomers. B. STAT homodimers. C. Cytokines. 

 

 

Table 7.2. Nominal, optimised parameters and squared error SM. 
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Figure 7.2. The distribution of the optimised parameters. 

The parameter sets with the closest squared errors SM , namely "O2", "O3", 

"O9", "O10" and "O12". 

 

 

Table 7.3. The percentage of cases when the switching of both 

cytokine and STAT (C+S+), cytokine and not STAT (C+S-), not 

cytokine and STAT (C-S+), neither cytokine not STAT (C-S-) occurs 

for 1-10 fold change of the optimised parameters. 
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Figure 7.3. The model predictions for the produced IFN-γ and IL-10 

dependence on the changes in the STAT3 pathway. 

The influence of STAT3 phosphorylation on the selectivity of IFN-γ. 

 

Table 7.4. Parameters in the STAT3-STAT4 subsystem and their 

correspondence to the parameters in the STAT3-STAT5 subsystem. 
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7.8 Appendix D 

In this section the effects of the assumptions introduced to the Gennemark 

model [47] are presented 

 

7.8.1 Gennemark model 

 

 

Figure 7.4. The predictions of the Gennemark model in response to the strong 

hyper-osmotic stress 1M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. 
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Figure 7.5. The predictions of the Gennemark model in response to the mild 

hyper-osmotic stress 0.3M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. 

 

 

 

Figure 7.6. The predictions of the Gennemark model in response to the hypo-

osmotic stress 0.05M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. 
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7.8.2 Modification 1 of the biophysical part 

 

 

Figure 7.7. The model predictions after the introduction of the modified 

biophysical part in response to the strong hyper-osmotic stress 1.5M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. The concentration of osmotically active compounds. 

 

 



295 
 

 

 

Figure 7.8. The model predictions after the introduction of the modified 

biophysical part in response to the mild hyper-osmotic stress 0.3M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. The concentration of osmotically active compounds. 
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Figure 7.9. The model predictions after the introduction of the modified 

biophysical part in response to the hypo-osmotic stress 0.05M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. The concentration of osmotically active compounds. 
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7.8.3 Modification 2 of the glycerol metabolism module 

 

 

Figure 7.10. The model predictions after the introduction of the modified glycerol 

metabolism module in response to the strong hyper-osmotic stress 1.5M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. glucose. F. Glycogen. G. The concentration of osmotically active 

compounds. H. Phosphorylation of glycogen synthase, glycogen phosphorylase 

and Fps1. 

 

 

 

Figure 7.11. The model predictions after the introduction of the modified glycerol 

metabolism module in response to the mild hyper-osmotic stress 0.3M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. glucose. F. Glycogen. G. The concentration of osmotically active 

compounds. H. Phosphorylation of glycogen synthase, glycogen phosphorylase 

and Fps1. 
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Figure 7.12. The model predictions after the introduction of the modified glycerol 

metabolism module in response to the hypo-osmotic stress 0.05M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. glucose. F. Glycogen. G. The concentration of osmotically active 

compounds. H. Phosphorylation of glycogen synthase, glycogen phosphorylase 

and Fps1. 

 

7.8.4 Modification 3 of the Hog1 activation module 

 

 

Figure 7.13. The model predictions after the introduction of the modified Hog1 

activation module in response to the strong hyper-osmotic stress 2.5M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. glucose. F. Glycogen. G. The concentration of osmotically active 

compounds. H. Phosphorylation of glycogen synthase, glycogen phosphorylase 

and Fps1. 
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Figure 7.14. The model predictions after the introduction of the modified Hog1 

activation module in response to the mild hyper-osmotic stress 1M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. glucose. F. Glycogen. G. The concentration of osmotically active 

compounds. H. Phosphorylation of glycogen synthase, glycogen phosphorylase 

and Fps1. 

 

 

 

Figure 7.15. The model predictions after the introduction of the modified Hog1 

activation module in response to the hypo-osmotic stress 0.05M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. glucose. F. Glycogen. G. The concentration of osmotically active 

compounds. H. Phosphorylation of glycogen synthase, glycogen phosphorylase 

and Fps1. 

 

7.8.5 Modification 4 of the receptor activation 
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Figure 7.16. The model predictions after the introduction of the modified 

receptor activation module in response to the strong hyper-osmotic stress 2.5M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. glucose. F. Glycogen. G. The concentration of osmotically active 

compounds. H. Phosphorylation of glycogen synthase, glycogen phosphorylase 

and Fps1. 

 

 

 

Figure 7.17. The model predictions after the introduction of the modified 

receptor activation module in response to the mild hyper-osmotic stress 1M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. glucose. F. Glycogen. G. The concentration of osmotically active 

compounds. H. Phosphorylation of glycogen synthase, glycogen phosphorylase 

and Fps1. 
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Figure 7.18. The model predictions after the introduction of the modified 

receptor activation module in response to the hypo-osmotic stress 0.05M. 

A. The volume of the cell. B. Hog1 phosphorylation. C. Glycerol. D. Turgor 

pressure. E. glucose. F. Glycogen. G. The concentration of osmotically active 

compounds. H. Phosphorylation of glycogen synthase, glycogen phosphorylase 

and Fps1. 
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7.8.6 Other quantitative predictions 

 

Table 7.5. Nominal and optimised parameters. 
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Figure 7.19. The comparison of Hog1 phosphorylation for BG2 and 2001 strains 

of C. glabrata. 

A. Model predictions for BG2 strain. B. Model predictions for 2001 strain. 

 

 

Figure 7.20. The model predictions for the overexpression of Sho1 in 2001 

strain of C. glabrata. 

Phosphorylated Hog1 levels in response to the three NaCl concentrations if the 

assumption regarding the number of activated receptors, noted as Modification 

4, is not correct. 
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Figure 7.21. Model predictions for the double hyper-and-hypo-osmotic stress. 

A. Model predictions for the external glucose concentration. B. Model 

predictions for the turgor pressure. 

 

 

 

Figure 7.22. Model predictions for the double hyper-and-hypo-osmotic stress 

when the concentration of extracellular glucose in equilibrium is increased. 

The increased 0

extglu  (A) leads to the ability of the cell to produce glycerol (B) by 

Hog1 phosphorylation (C) and restore its volume (D). 
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Figure 7.23. Model predictions for the single hyper-osmotic stress when the 

concentration of extracellular glucose in equilibrium is decreased. 

The decreased 0

extglu  (A) leads to the inability of the cell to produce enough 

glycerol (B) even in the presence of Hog1 phosphorylation (C) and restore its 

volume (D). 
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7.9 Appendix E 

7.9.1 The permission to use the experimental data in this thesis 
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