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Abstract: An imprecise probabilistic framework for design flood estimation is proposed on 17 

the basis of the Dempster-Shafer theory to handle different epistemic uncertainties from data, 18 

probability distribution functions and probability distribution parameters. These uncertainties 19 

are incorporated in cost-benefit analysis to generate the lower and upper bounds of the total 20 

cost for flood control, thus presenting improved information for decision making on design 21 

floods. Within the total cost bounds, a new robustness criterion is proposed to select a design 22 

flood that can tolerate higher levels of uncertainty. A variance decomposition approach is used 23 

to quantify individual and interactive impacts of the uncertainty sources on total cost. Results 24 

from three case studies, with 127-, 104- and 54-year flood data sets respectively, show that the 25 



imprecise probabilistic approach effectively combines aleatory and epistemic uncertainties 26 

from the various sources and provides upper and lower bounds of the total cost. Between the 27 

total cost and the robustness of design floods, a clear trade-off which is beyond the information 28 

that can be provided by the conventional minimum cost criterion is identified. The interactions 29 

among data, distributions and parameters have a much higher contribution than parameters to 30 

the estimate of the total cost. It is found that the contributions of the various uncertainty sources 31 

and their interactions vary with different flood magnitude, but remain roughly the same with 32 

different return periods. This study demonstrates that the proposed methodology can 33 

effectively incorporate epistemic uncertainties in cost-benefit analysis of design floods.  34 
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1. Introduction 39 

Estimation of design flood discharge related to a specific return period plays a crucial role in 40 

flood management: for example, the design of hydraulic structures. Conventionally, Flood 41 

Frequency Analysis (FFA) is used to estimate design floods, i.e., fitting Probability 42 

Distribution Functions (PDFs) to observed flood data and deriving a design flood discharge 43 

through the extrapolation of the upper distribution tail to specified low exceedance probabilities 44 

[Merz and Blöschl, 2008]. Recently, cost-benefit analysis has been incorporated into FFA to 45 

compare different design floods and obtain a cost effective design value [Tung and Mays, 1981; 46 

Bao et al., 1987; Ganoulis, 2003; Jonkman et al., 2004; Abrishamchi et al., 2005; Rossi et al., 47 

2005; Su and Tung, 2013a; Su and Tung, 2013b; Botto et al., 2014]. It has been proven that the 48 

design flood value calculated using cost-benefit analysis with the assumption of liner damage 49 



and cost functions is equivalent to the flood value from the conventional FFA method [Botto 50 

et al., 2014].  51 

 52 

A key issue in design flood estimation is to quantify and reduce the various uncertainties from 53 

different sources [Wood and Rodríguez-Iturbe, 1975a; Wood and Rodríguez-Iturbe, 1975b; 54 

Bodo and Unny, 1976; Stedinger et al., 1993; Tanaka and Takara, 2002; Pandey et al., 2004; 55 

Beguería, 2005; Merz and Thieken, 2005; Su and Tung, 2013b]. The inherent variability of 56 

flood events which is of aleatory uncertainty in nature is represented using a PDF. Significant 57 

uncertainties exist regarding the PDF derivation, such as the use of insufficient historical data, 58 

selection of PDFs and estimation of PDF parameters; most of these uncertainties are epistemic 59 

in nature and related to imprecise and incomplete knowledge about flood systems [Merz and 60 

Thieken, 2005; Fu et al., 2011; Su and Tung, 2013b].  61 

 62 

Previous research has analysed the respective effects of epistemic uncertainties in data, PDF 63 

selection and distribution parameters on design flood estimation. It has been illustrated that a 64 

longer length of data could reduce the uncertainty in design flood estimation and project 65 

benefits [Su and Tung, 2013a; Su and Tung, 2013b; Botto et al., 2014]. However, the 66 

uncertainties related to the use of the Peak Over Threshold (POT) series selection have not 67 

been analysed in terms of cost-benefit. PDF selection has been widely recognised as a major 68 

uncertainty source for flood frequency analysis [Kidson and Richards, 2005; Calenda et al., 69 

2009; Rahman et al., 2013]. Many PDFs, such as Generalized Extreme Value (GEV) and 3-70 

parameter Lognormal (LN3), have been used for comparison [Botto et al., 2014], but the 71 

overall uncertainty from these PDFs which cannot be rejected using statistical tests has not 72 

been quantified and compared to other uncertainty sources. Parameter uncertainty of PDFs 73 

arises from parameter estimation approaches or data used in estimation, and has been 74 



represented using normal distribution [Su and Tung, 2013b] or using other distributions derived 75 

from the Monte Carlo approach [Tung and Mays, 1981; Bao et al., 1987; Botto et al., 2014]. 76 

Consequently, there is lack of understanding of combined and interactive contributions of 77 

different uncertainty sources to design flood estimates and lack of understanding of overall 78 

benefits of design options.  79 

 80 

The various uncertainties should be represented and handled in a more holistic and coherent 81 

framework which will allow for a more realistic design flood estimation considering multiple 82 

uncertainty sources. Most recently, efforts have been made to systematically represent and 83 

quantify multiple uncertainty sources in a chain of models, such as investigating climatic 84 

impacts on hydrological systems and water resources management [Steinschneider et al., 2012], 85 

investigating impacts of precipitation and hydrological model uncertainties on discharge 86 

simulation uncertainty [Qi et al., 2016a], and investigating influence of parameter uncertainties 87 

on algorithm performance [Qi et al., 2016b]. Uncertainties in emission scenarios, global 88 

circulation models, downscaling methods and hydrological models have been quantified and 89 

their respective contributions to the overall output uncertainty have been compared [Vrugt et 90 

al., 2005; Wilby and Harris, 2006; Kay et al., 2009; Prudhomme and Davies, 2009; Bosshard 91 

et al., 2013]. In those prior studies, Monte Carlo based probabilistic approaches or sensitivity 92 

analysis approaches have been used. This holistic framework allows for identification of 93 

predominant sources of uncertainty and provides a more complete understanding of 94 

uncertainties in the modelling chain. To the best of our knowledge, a holistic framework has 95 

not been developed for design flood estimation, which requires simultaneous handling of 96 

multiple aleatory and epistemic uncertainty sources.  97 

 98 



The overall aim of this paper is to develop an Imprecise Probabilistic Design Flood (IPDF) 99 

approach that can effectively handle various aleatory and epistemic uncertainties through cost-100 

benefit analysis. In this approach, an imprecise probabilistic approach, based on Dempster-101 

Shafer theory [Dempster, 1967; Shafer, 1976], is used to combine the epistemic uncertainties 102 

of data, probability distributions and their parameters. As a result, the lower and upper bounds 103 

of cumulative probabilities of flood can be generated and incorporated in cost-benefit analysis. 104 

The lower and upper total cost, including construction cost and expected flood damage cost, is 105 

then estimated explicitly. To select a robust design flood within the range of lower and upper 106 

total cost, a new criterion is proposed and contrasted with the conventional minimum total cost 107 

criterion. The individual and interactive contributions of different uncertainty sources to the 108 

overall uncertainty in estimating the total cost are quantified using a variance-based sensitivity 109 

analysis approach. Three case studies, with 54-year, 104-year and 127-year flood data 110 

respectively, were used to test the newly proposed IPDF approach. Similar to Botto et al. [2014], 111 

flood series were assumed to be stationary, i.e., the probability of occurrence of an extreme 112 

event in the current or any future year is the same [Olsen et al., 1998]. In each case study, three 113 

probability distributions were selected on the basis of the Anderson-Darling (A-D) test and 114 

different data sets were generated using POT and Annual Maximum (AM) methods to represent 115 

epistemic uncertainties. In this paper, there are three advancements from the present state of 116 

knowledge: (1) a new and holistic imprecise probabilistic estimation approach for design flood 117 

estimation is proposed and demonstrated to integrate aleatory and epistemic uncertainties; (2) 118 

a new robustness criterion is proposed and demonstrated to select a design flood that can 119 

tolerate higher levels of uncertainty, and a clear trade-off between the total cost and the 120 

robustness of design floods is identified, which is beyond the information that can be provided 121 

by previous research; and (3) the variance decomposition approach is used to quantify 122 

individual and interactive impacts of uncertainty sources on total cost, and it is found that the 123 



interactions among data, distributions and parameters affect the total cost considerably. These 124 

findings represent state-of-the-art knowledge in design flood estimation. The research of this 125 

paper could be used to evaluate design options and guide efforts to reduce the uncertainty from 126 

multiple epistemic uncertainties in design flood estimation.  127 

 128 

This paper is divided into seven sections. Section 2 provides an overview of three case studies 129 

and the related epistemic uncertainties in data selection, probability distribution fitting and 130 

probability distribution parameters. Section 3 introduces the IPDF approach. The numerical 131 

procedures to implement the IPDF approach are described in section 4. Applications of the 132 

IPDF approach to real-world cases are presented in section 5. Discussion and conclusions are 133 

presented in section 6 and section 7.  134 

 135 

2. Case studies 136 

Three case studies of different flood record lengths are used in this study. These are selected 137 

from three rivers of different climates and different catchment areas: Yangtze River in south 138 

China, Songhuajiang and Biliu rivers in northeast China. Yangtze River is the largest rive in 139 

China with a catchment area of 2 million km2, and is dominated by a sub-tropical humid 140 

monsoon climate with abundant rainfall. Songhuajiang is the third largest river in China with 141 

a catchment area of 0.56 million km2, and is characterized by a temperate monsoon climate 142 

with long winter, aridness and low temperature. Biliu is a medium scale basin with a catchment 143 

area of 2814 km2, and is characterized by a temperate monsoon marine climate. The daily flow 144 

records are from 1882 to 2008 (127 years) at the Three Gorges gauge station of Yangtze River, 145 

from 1898 to 2001 (104 years) at the Harbin site of Songhuajiang, and from 1958 to 2011 (54 146 

years) at the Biliu gauge of Biliu.  147 

 148 



2.1 Data selection uncertainty 149 

Hydrological data are generally associated with different sources of uncertainties including 150 

data quality, representative data period selection, AM or POT series selection and length of 151 

time series, as summarised by Merz and Thieken [2005]. In this study, data uncertainty arises 152 

from the selection of historical data, represented by different data sets generated using AM and 153 

POT methods, and other data uncertainties are not considered.  154 

 155 

Selection of a threshold value is normally based on expert judgement [Beguería, 2005], and its 156 

impact on design flood estimation is not fully understood [Tanaka and Takara, 2002; Pandey 157 

et al., 2004; Beguería, 2005]. To analyse the data uncertainty, a series of threshold values were 158 

adopted to generate flood series of different sizes, as shown in Table 1. The dependence 159 

between flood flows at different time steps was not considered, similar to other studies [Coles 160 

et al., 2003; Kidson and Richards, 2005; Calenda et al., 2009; Xu et al., 2009], as the impacts 161 

caused by ignoring the dependence seem negligible [Rosbjerg, 1985; Xu et al., 2009].  162 

 163 

2.2 Probability distribution uncertainty 164 

In FFA, the probability P
T

Q q    of a T-year flood 
T

q  (the flood is exceeded once in T years 165 

on average) can be defined as  166 

  P
T

T
| f q | dq

qQ q


       (1) 167 

where Q denotes the random flow variable and  f q |  denotes a PDF corresponding to the 168 

Cumulative Distribution Function (CDF)  F q| . With the AM series, the sampling interval 169 

of observed floods is one year, so the number of events is automatically one per year. With the 170 

POT series, the number of occurrences of events in a given year is a random variable. Assuming 171 

a Poisson process [Cunnane, 1979; Onoz and Bayazit, 2001], the return period of Q, in years, 172 



can be calculated as [Rosbjerg, 1985; Rosbjerg et al., 1992; Madsen et al., 1997; Beguería, 173 

2005; Bhunya et al., 2012; Bhunya et al., 2013]: 174 

 
1

P
T

T
|Q q


    

  (2) 175 

where   is the mean number of occurrences per year, and T is the return period. 176 

 177 

Many probability distributions have been proposed to simulate the true, unknown probability 178 

distribution of flood in the literature [Stedinger et al., 1993; Kidson and Richards, 2005]. There 179 

are three main approaches for distribution selection: official recommendation [Kidson and 180 

Richards, 2005], experience knowledge based selection [Merz and Thieken, 2005; Viglione et 181 

al., 2013] and statistical test based selection using methods such as L-Moments and A-D test 182 

[Chowdhury et al., 1991; Di Baldassarre et al., 2009; Kjeldsen and Prosdocimi, 2015]. A single 183 

distribution is often recommended for use in an entire country due to simplicity and practicality, 184 

and this approach is used by many countries in the world, though there is no theoretical basis 185 

[Calenda et al., 2009]. The selection based on goodness-of-fit tests is not conclusive and this 186 

does not support the view that only one candidate distribution should be selected as there may 187 

be several distributions that pass statistical tests [Kidson and Richards, 2005; Calenda et al., 188 

2009; Laio et al., 2009; Rahman et al., 2013]. In the sense that many candidate distributions 189 

cannot be rejected, each can be considered as a possible distribution. The uncertainty resulting 190 

from probability distribution selection is referred to as distribution uncertainty hereafter.  191 

 192 

A-D test is normally used to assess the goodness-of-fit of different distributions and it is 193 

suggested that it has good performance for extreme events as it gives more weight to the tails 194 

than the Kolmogorov-Smirnov test [Palynchuk and Guo, 2008; Calenda et al., 2009; Haddad 195 

and Rahman, 2010]. The null hypothesis is that the data follow a specified distribution. This 196 



hypothesis is rejected at the chosen significance level if the test statistic, A2, is greater than the 197 

relevant critical value.  198 

 199 

The A-D test results are shown in Table 2. Three distributions - GEV, Generalized Logistic 200 

(GLO) and LN3 - are shown. The maximum likelihood method was used to estimate 201 

distribution parameter values, and their probability density functions and cumulative 202 

probability density functions are shown in Appendix A. It should be noted that critical values 203 

of the A-D test vary with probability distribution types, distribution parameters and 204 

significance levels. D'Agostino and Stephens [1986; Table 4.32] introduced two approaches to 205 

calculate the critical values: empirical distribution function based approach [Stephens, 1974; 206 

Stephens, 1976; Stephens, 1977; Stephens, 1979; Ahmad et al., 1988] and normalized spacing 207 

based approach [Lockhart et al., 1986b]. It is argued that the latter is better than the former as 208 

it does not depend on a specific parameter estimation method [Lockhart et al., 1986a]. 209 

According to D'Agostino and Stephens [1986; Table 4.32], the critical values based on 210 

normalized spacings for GEV, Logistic and Normal distributions are 3.00, 3.41 and 2.73 at a 211 

significance level of 0.01, respectively. These critical values are used as a reference, as other 212 

statistics available for three-parameter distributions are not reliable [Laio, 2004]. All the 213 

distributions in Table 2 pass the test.  214 

 215 

2.3 Parameter uncertainty 216 

After the selection of data sets and probability distributions, the parameter uncertainty will 217 

arise in distribution parameter value estimation because of the limited length of the data sets. 218 

For considering the parameter uncertainty, parameter uncertainty bounds were first defined. 219 

Many methods are available to define parameter bounds of probability distributions: for 220 

example, subjective definition of an interval or perturbation around optimal estimates to 221 



generate lower and upper parameter bounds [Blazkova and Beven, 2002; Liang et al., 2011; Le 222 

Coz et al., 2014]; subjective definition of parameter distribution with known parameters [Reis 223 

and Stedinger, 2005; Ribatet et al., 2006; Lee and Kim, 2008; Su and Tung, 2013b]; and using 224 

regional information to define mean and variance of parameters [Perreault et al., 2000]. In this 225 

paper, because no prior information on distribution parameters was known, the perturbation 226 

method was used. The percentage perturbation of parameters was derived through trial and 227 

error to ensure all the observed extreme flow data were bracketed by the resulting lower and 228 

upper flow bounds. In this study, the posterior probability is calculated according to the 229 

Generalized Likelihood Uncertainty Estimation (GLUE) approach [Beven and Binley, 1992; 230 

Beven and Freer, 2001], which is equivalent to the importance sampling approach [Nott et al., 231 

2012]. The incorporation of the parameter uncertainty into total cost calculation will be 232 

presented in Eqs. (8), (11), (14) and (19) in Section 3.  233 

 234 

3. Imprecise probabilistic framework for design flood estimation 235 

The IPDF approach is illustrated in Fig. 1. This new approach includes five components. (a) 236 

The first is uncertainty characterisation of different sources, i.e., different probability 237 

distributions, their distribution parameters and different data thresholds (three thresholds T1, Ti 238 

and Tn are shown for illustration). (b) The second is uncertainty combination using evidence 239 

theory, which results in lower and upper bounds of probabilities. (c) The third is cost-benefit 240 

analysis to show the variations of total cost. The uncertainty of the total cost is propagated from 241 

the imprecise probabilities of flow. (d) The fourth is sensitivity analysis to quantify individual 242 

and interactive contributions of different uncertainty sources using a variance decomposition 243 

method: the ANalysis Of VAriance (ANOVA). ANOVA can identify important uncertainty 244 

sources, and guide efforts to reduce uncertainty. (e) The fifth component is a new robustness 245 

criterion to select design flood. As shown in Fig. 1c, the T-year design flood falls in an interval 246 



([D1, Dn]). In this interval, different design floods can be selected and compared based on their 247 

robustness which is evaluated by measuring the variations of total cost with different 248 

uncertainty levels (as illustrated by µ0, µi and µn). Steps (a) - (d) can be repeated to reduce the 249 

uncertainty of total cost when new data or distribution models are included. Compared to 250 

previous methods [e.g., Su and Tung, 2013a, b; Botto et al., 2014], this new IPDF approach 251 

provides the upper and lower bounds of minimum total cost for a specific T-year design flood, 252 

as a result of considering different types of epistemic uncertainties. Details of each component 253 

are presented in the following subsections.  254 

 255 

3.1 Dempster-Shafer theory of evidence 256 

Dempster-Shafer theory of evidence is a kind of set-valued and evidence-based theory and can 257 

describe overall uncertainties of stochastic and epistemic nature. It can handle uncertainties 258 

from different aleatory and epistemic sources [Hall, 2003; Hall and Lawry, 2004; Hall et al., 259 

2004; Fu et al., 2011]. This theory has been used in many fields, such as water distribution 260 

system design [Fu and Kapelan, 2011], evaluation of sewer flooding [Fu et al., 2011], 261 

groundwater flow and transport simulation [Ross et al., 2009], reliability analysis [Tonon et al., 262 

2000], climate change [Hall et al., 2007], and rainfall-runoff modelling [Maskey et al., 2004]. 263 

One main difference from the Bayesian theory is that the Dempster-Shafer theory admits 264 

imprecision in probability (e.g., a probabilistic interval), whilst the Bayesian theory assumes 265 

that uncertainty should always be measured by a single probability [Walley, 1991; Hall, 2003; 266 

Fu and Kapelan, 2011]. From this point of view, the Dempster-Shafer theory can be regarded 267 

as a generalization of probability theory to cope with a problem for which information is not 268 

enough for an assignment of a single probability. Many uncertainties in design flood estimation 269 

are epistemic and do not allow the assignment of a single probability value due to insufficient 270 



information or conflicting evidence, thus it is promising to apply the evidence theory to handle 271 

various uncertainties.  272 

 273 

In Dempster-Shafer theory the minimum and maximum amounts of evidence can be taken into 274 

consideration to construct probability. For example, suppose that based on evidence 
1 , the 275 

probability of a set of states  1 n, ,    which relate to interests   (e.g., the probability of 276 

flood events) can be assigned as  1P i i| p   , while using another evidence 
2 , the 277 

probability of a set of states  1 k, ,    which also relate to interests   can be assigned as 278 

2P j j| q     . The Dempster-Shafer theory of evidence can be used to combine 
ip  with jq  279 

to give 1 2,m 
 which represents beliefs assigned to interests   based on evidence 

1  and 
2 .  280 

 281 

Let X be a universal nonempty set containing all the possible values of a variable x, and P(x) is 282 

the power set of X, i.e., the set of all the subsets of X. Dempster-Shafer theory of evidence can 283 

be defined as a pair ( , m), where   is the family of nonempty element of P(x) and m is 284 

mapping  285 

  0,1m :    (3) 286 

Such that   0m    and  287 

   1
A

m A


   (4) 288 

where  A P X  and m is called the basic probability assignment. The related imprecision of 289 

probability can be bounded at the lower end by a belief function 290 

    
A E

Bel E m A


    (5) 291 

and at the upper end by a plausibility function  292 

      1
A E

Pl E m A Bel E
 

     (6) 293 



where E is the complement of E. The  Bel E measures the minimum amount of evidence that 294 

fully supports x E .  Pl E  measures the maximum amount of evidence that could be linked 295 

with the event E.  296 

 297 

3.2 Annual expected damage cost estimation 298 

For hydrologic structures, the Annual Expected Damage Cost (AEDC) can be defined below 299 

using the probability P
T

Q q    in Eq. (1) 300 

      
T

T
E D | , D q f q | dq

qq 


     (7) 301 

where 
T

q


 is the T-year flow capacity of hydraulic structures;  D q  represents the flood-302 

damage function corresponding to a flood magnitude of q and   represents the parameters. 303 

When parameter uncertainty is considered, the expected damage Eq. (7) can be written as [Bao 304 

et al., 1987]  305 

        
T

|ST
E D | , S D q f q | | S d dq

qq  



          (8) 306 

where   is the parameter space of a probability distribution; S is the sample of flow data. The 307 

sampling distribution  |S | S    can be calculated based on Bayesian theory as described 308 

below 309 

  
 

 
S|

|S

S|

| S
l

l























  (9) 310 

where     is the prior probability of parameter  ;  |S | S    is the posterior probability of 311 

parameter  ; S|l   is likelihood function  312 

  
1

N

S| i
i

f x |l


    (10)  313 

where N represents the total number of sampled flow data.  314 



 315 

Based on the total probability theorem the predictive distribution is obtained  316 

      
PD

|Sq f q | | S df 


       (11) 317 

An analytical solution of Eq. (11) can be derived only for a few probability distributions 318 

[Stedinger, 1983; Kuczera, 1999; Fawcett and Walshaw, 2015], and in practice, Monte Carlo 319 

method can be used to calculate the integral in Eq. (11). When data uncertainty and distribution 320 

uncertainty are considered,  
PD

qf  is not unique and the lower and upper bounds of imprecise 321 

probabilities,  
PD

qf  and  
PD

qf , can be defined as  322 

    
PD PD

e
e

q qf inf f   (12) 323 

    
PD PD

e
e

q qf sup f   (13) 324 

where e represents the eth probability function.  
PD

qf  and  
PD

qf  correspond to  Bel E  325 

and  Pl E  in the sense of the Dempster-Shafer theory of evidence. The lower probability 326 

 
PD

qf  measures the minimum probability that evidence can fully support, i.e., the minimum 327 

probability calculated from selected data and probability distributions, and the upper 328 

probability  
PD

qf measures the maximum probability that evidence can potentially support, 329 

i.e., the maximum probability calculated from selected data and probability distributions. The 330 

interval formed with Eqs. (12) and (13) provides a bracketing of a series of probabilities and 331 

its spread represents the extent of incomplete knowledge and imprecise information about the 332 

unknown but true distribution. Combining Eq. (8) with Eqs. (12) and (13), AEDC considering 333 

epistemic uncertainties can be defined as follows 334 

 
     

     

T

T

PD

T

PD

T

E D | ,S D q q dq
q

E D | ,S D q q dq
q

q f

q f









  


  






,  (14) 335 



where  T
E D | ,Sq


 and  T

E D | ,Sq


 represent the minimum and maximum values of AEDC 336 

estimation.  337 

 338 

3.3 Imprecise probabilistic estimation of design floods 339 

Assuming that the construction cost and damage functions are linear and represented as 
T

c q


  340 

and  T
d q q


  , respectively, the total cost function is described below according to Eq. (8) 341 

        
T

total |ST T T
| ,S c d q f q | | S d dq

qq q qC 
  


              (15) 342 

and can also be written as  343 

      
T

PD

total T T T
| S c d q q dq

qq q q fC 
  

        (16) 344 

where c  and d  are parameters.  345 

 346 

There exists a deterministic relationship between parameters c and d and return period T  347 

under the linear cost and damage assumption according to Botto et al. [2014] 348 

 
1

P
T

d
T

c | SQ q


 
 
 

  (17) 349 

which is derived by minimizing Eq. (16) using AM data, i.e., taking the derivative of the total 350 

cost function with respect to 
T

q


 and setting it to 0. When POT data sets are considered, the 351 

above relationship becomes  352 

 
1

P
T

d
T

c | SQ q


 
 
 

  (18) 353 

Eq. (18) is a generalization of Eq. (17), i.e.,   equals to 1 for AM data set. In this paper, the 354 

flood-damage data are available for Biliu, and a linear function is fitted with d =1.891. For 355 

Three Gorges and Harbin case studies, the same value of d  is assumed since damage data are 356 

not available.  357 



 358 

When data uncertainty and distribution uncertainty are considered, the total cost function Eq. 359 

(16) becomes  360 

 
       

       

T

T

PD

total T T T

PD

total T T T

| S c q d q q dq
q

| S c q d q q dq
q

q q q fC

q q q fC









  

  

       


       






  (19) 361 

which shows the lower and upper bounds of the total cost, incorporating epistemic uncertainties 362 

from data, probability distribution, and parameter uncertainties into the aleatory uncertainty of 363 

flood.  364 

 365 

3.4 Robustness criterion  366 

The minimum total cost criterion can be used to select the design flood. This criterion is 367 

employed in the case of one single total cost curve generated as in the study of Botto et al. 368 

[2014]. In the case of imprecise probabilities, a range of total costs can be obtained, bounded 369 

by the lower and upper curves. The total cost intervals provide an indication of the magnitude 370 

of total cost uncertainty which is faced by the decision maker when selecting a design flood, 371 

and with these intervals, the selection of a design flood depends on the preference of the 372 

decision maker or the use of decision criteria. However, the minimum total cost criterion [Botto 373 

et al., 2014] or the expected opportunity loss criterion [Su and Tung, 2013a; Su and Tung, 374 

2013b] can be used for cases where parameter uncertainty is considered only.  375 

 376 

A robustness criterion is proposed here to analyse the differences of design floods. The 377 

robustness, defined in the sense of the Info-gap theory [Ben-Haim, 2006; Hine and Hall, 2010], 378 

seeks a design value that can make a system maintain its prescribed functions over a range of 379 

uncertainty levels. In design flood estimation, robustness involves connecting totalC  with 380 

decision variation 
T

q  under an uncertainty level of  :  381 



     max : minc cT Ttotal
, Cq qr r



       (20) 382 

where cr  is a critical level of 
total

C . This critical level can be assumed to be the minimum 383 

total
C  under an uncertainty level of  , thus robustness can be interpreted as the variation of the 384 

minimum 
total

C  under many discrete uncertainty levels of   [Matrosov et al., 2013]. The 385 

smaller the variations at different uncertainty levels, the more robust the design flood.  386 

 387 

3.5 Variance decomposition 388 

ANOVA is used to analyse the respective contributions of data, distributions, distribution 389 

parameters and their interactions to the overall uncertainty in total cost, totalC . Fig. 2 depicts 390 

the combinations employed in the uncertainty decomposition. To relate totalC  to the uncertainty 391 

sources, the superscripts j, k and l in j ,k ,l
totalC  are used to represent a combination of data set j, 392 

distribution k and parameters l. Two cases, without parameter uncertainty (using the estimated 393 

optimal parameters) and with parameter uncertainty (using predictive probability distributions), 394 

are considered.  395 

 396 

3.5.1 Subsampling approach 397 

It has been argued that the ANOVA approach is based on a biased variance estimator that 398 

underestimates the variance when the sample size is small [Bosshard et al., 2013]. To reduce 399 

the effect of the biased estimator on quantification of variance contribution, Bosshard et al. 400 

[2013] proposed a subsampling method, which was used in this paper. In each subsampling 401 

iteration, i, we select two data sets out of all data sets analysed, and the superscript j (data set) 402 

in calculating j ,k ,l
totalC  is replaced with  h,ig . In the case of Three Gorges, the time series is 403 

divided into nine non-overlapping subsets resulting in 9!/(2!(9-2)!)=36 possible combinations 404 

of two elements, and correspondingly the superscript g is a 2×36 matrix as follows 405 



 
1 1 1 2 2 6 6 6 7 7 8

2 3 9 3 4 7 8 9 8 9 9

 
  
 

g   (21) 406 

Similarly the superscript g is a 2×28 matrix in the case study of Harbin and a 2×15 matrix in 407 

the case study of Biliu.  408 

 409 

3.5.2 ANOVA approach 410 

Based on the ANOVA method, the total sum of squares (SST) of totalC  can be divided into 411 

sums of squares of the individual effects (with SSA, SSB and SSC corresponding to the 412 

contribution of data, probability distributions and parameters respectively) and of their 413 

interactions (SSI) as follows:  414 

 SST = SSA +SSB+SSC +SSI   (22) 415 

 416 

The terms can be estimated using the subsampling procedure as follows [Bosshard et al., 2013]: 417 
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where symbol o indicates averaging over the particular index. Then the contribution of each 423 

uncertainty source 
2

  is calculated as follows: 424 
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I
i

i iI




    (31) 428 

2
  has a value between 0 and 1, which represent 0% and 100% of contribution to the overall 429 

uncertainty of the total cost respectively.  430 

 431 

4. Implementation of the proposed new approach 432 

This section is devoted to describe how the new proposed IPDF approach can be applied in 433 

practice. The numerical procedures are implemented according to the following main steps: 434 

1. Uncertainties are clearly identified: e.g., data selection, probability distribution and 435 

distribution parameter uncertainty, which forms the basis of the implementation (see Fig. 1a).  436 

2. The imprecise probabilities are quantified on the basis of Eqs. (12) and (13). The upper and 437 

lower probability bounds can be obtained (see Fig. 1b).  438 

3. Once the uncertainties are quantified, Eq. (19) is applied to calculate total costs. Two total 439 

cost curves can then be obtained: lower and upper total cost bounds (see Fig. 1c).  440 

4. The ANOVA approach is applied to quantify the contributions of uncertainties to the total 441 

cost uncertainty on the basis of Eqs. (21)-(31) (see Fig. 1d).  442 

5. The robustness criterion is applied to evaluate flood value estimates based on Eq. (20) (see 443 

Fig. 1e). This criterion could be provided to decision maker for informed decision making.  444 

 445 

It should be noted that, in the first step, although the identification of the uncertainties is 446 

subjective, this procedure enables a rigorous evaluation of the respective and combined impacts 447 

of the uncertainties and thus provides an enhanced understanding of their impacts on the 448 



selection of design floods. Its application to three real-world cases is described below in Section 449 

5.  450 

 451 

5. Application to real-world cases 452 

In this section, the newly proposed methodology is demonstrated step by step in the subsections 453 

from 5.1 to 5.4. Section 5.1 first shows imprecise probability characteristics of flood through 454 

integration of the uncertainties in data selection, probability distributions and parameters, 455 

derived from Eqs. (12) and (13). Section 5.2 shows the total cost derived from Eq. (19). Section 456 

5.3 discusses the use of a new robustness criterion for design flood selection. Section 5.4 457 

discusses the contributions of different uncertainty sources to the overall uncertainty in total 458 

costs using the variance decomposition method.  459 

 460 

5.1 Imprecise probability 461 

In this study, a Monte Carlo based method was used to compute the posterior distributions 462 

using GLUE. 2000 parameter sets for each distribution were sampled within the parameter 463 

uncertainty bounds using Latin Hypercube Sampling. Sampling (larger parameter sets were 464 

also used obtaining similar results) 2000 parameter sets were used in the research.  465 

 466 

Fig. 3 shows the sampling distributions of a specific design flood obtained on the basis of the 467 

posterior parameter distributions of GEV, GLO, and LN3 in Biliu, Three Gorges and Harbin. 468 

Note that the posterior distributions are reduced to a single curve when integrated via Eq. (11). 469 

Cumulative probability curves in each panel represent different data sets under the same 470 

probability distribution. In the case of Biliu, the curves span a large range, while most curves 471 

from the other two case studies are closer to each other, except for one curve (i.e., AM in the 472 

case of Three Gorges and T3 in the case of Harbin). The big departures of AM in Three Gorges 473 



and T3 in Harbin imply high uncertainties in flood estimation when the corresponding data sets 474 

are considered only. Recall that the specific distributions cannot be rejected under each of the 475 

data sets using the A-D test. However, the spread of the distribution curves clearly shows the 476 

epistemic uncertainties in the selection of data sets. Similarly, comparing the differences in 477 

each panel reveals the significant epistemic uncertainties in the selection of distributions.  478 

 479 

Fig. 4 shows the imprecise cumulative probability distributions of Biliu, Three Gorges and 480 

Harbin, respectively, when data and distribution uncertainties are incorporated with parameter 481 

uncertainty. For each individual probability distribution (GEV, GLO and LN3), as shown in 482 

the panels (a-i) of the first three rows, the probability of each flood value is calculated based 483 

on predictive distributions and the intervals are derived from the selected data sets, i.e., 6 data 484 

sets, 9 data sets and 8 data sets for Biliu, Three Gorges and Harbin, respectively. The overall 485 

CDFs in the panels (j-l) of the fourth row result from the selected data sets listed in Table 1, 486 

probability distributions (GEV, GLO and LN3) and calculated predictive distributions related 487 

to parameter uncertainty using Eq.(11). In the case of Biliu, the overall probability bounds are 488 

roughly the same as those of each individual distribution, implying the distribution uncertainty 489 

has less impact than the data uncertainty. However, in the case of Three Gorges, the overall 490 

bounds are primarily determined by the bounds of LN3, implying that the distribution 491 

uncertainty is the dominating uncertainty source. The case of Harbin shows a mixed impact 492 

from both data and distribution uncertainties. This is compared with the study of Botto et al. 493 

[2014] where only one predictive distribution was generated when considering the uncertainty 494 

of distribution parameters only. Theoretically this predictive distribution should lie within the 495 

grey areas, i.e., bracketed by the lower and upper probabilistic bounds, because in this research 496 

data selection, probability distribution and parameter uncertainties all are considered and the 497 

bounds represent the minimum and maximum probabilities.  498 



 499 

5.2 Imprecise probabilistic estimation of total cost 500 

Fig. 5 illustrates the lower and upper total cost bounds for the three case studies when data, 501 

distribution and parameter uncertainties are considered. For any design flood value shown on 502 

x-axis, the lower and upper bounds of the total cost are represented by the two curves in each 503 

panel. For each individual distribution in the panels (a-i), the intervals illustrate the 504 

uncertainties in data and distribution parameters; for the cases of overall uncertainty in the 505 

panels (j-l), the intervals illustrate the uncertainties in data, distributions and distribution 506 

parameters. This is compared with the study of Botto et al. [2014] where only one curve was 507 

generated when considering the uncertainty of distribution parameters only.  508 

 509 

In the case of Three Gorges, the differences of individual distributions in upper and lower total 510 

cost bounds are remarkable, and in the cases of Biliu and Harbin, the differences are also 511 

obvious, as shown in the first three rows of panels in Fig. 5. The overall upper and lower total 512 

cost bounds are notably larger than those of each distribution in all the three cases, in particular, 513 

in the cases of Biliu and Harbin. In the case of Three Gorges, the total cost bounds are mainly 514 

affected by the uncertainty in the selection of distributions, while in the cases of Biliu and 515 

Harbin, the influence of data sets and distributions on total cost bounds are all important. In 516 

total cost calculation, the lower and upper probability bounds are multiplied by flood damage 517 

and flood values, resulting in rather different total cost bounds due to their highly nonlinear 518 

relationships (e.g., as shown in Eq. (19)).  519 

 520 

5.3 Design flood selection using a robustness criterion 521 

In this study, 300 uncertainty levels were used. This means the uncertainty intervals from the 522 

median CDF towards lower and upper bounds (  
PD

qf  and  
PD

qf ) in Fig. 4 were discretized 523 



into 300 subintervals. The variations of minimum total cost are thus calculated for each 524 

uncertainty level as shown in Fig. 6. The minimum total cost within each uncertainty level is 525 

shown on the x-axis, and robustness is shown on the y-axis under a set of uncertainty levels 526 

(α %). Under each uncertainty level (except when α equals 1), the parameter   (recall Eq. (19)) 527 

was unknown, and the minimum value of   out of all selected data sets in each case study was 528 

used for calculating the minimum total cost. Two design flood selection criteria are compared 529 

in Fig. 6: the minimum total cost approach [Botto et al., 2014] and the robustness based 530 

approach. An α value of 0 means that the probability of a flood q is determined by the median 531 

CDF, while α=1 represents the maximum deviation degree: upper and lower probability bounds. 532 

The minimum total cost curve corresponding to α=0 is shown by the dashed lines in Fig. 5.  533 

 534 

The existence of robust decisions depends on both the degree of uncertainty and the richness 535 

of the available decision options [Lempert and Collins, 2007]. In this research, we did not try 536 

to find the robust decisions but to assess the robustness of options, thus the richness of options 537 

doesn’t matter. The upper and lower total cost bounds correspond to different design floods 538 

with minimum total cost, and the optional design floods fall in an interval. To make an informed 539 

decision, the decision maker is presented with the intervals represented by the upper and lower 540 

total cost curves, though the exact design flood is unknown. Thus, for comparison with D1 541 

which represents the results of the traditional minimum total cost criterion, D2 and D3 were 542 

selected within the interval, representing two possible design floods that might be selected by 543 

decision makers. It should be noted that D2 and D3 correspond to the minimum total cost of 544 

two total curves respectively. In Biliu, D1, D2 and D3 are 5700 m3/s, 8000 m3/s and 10,000 545 

m3/s respectively. In Three Gorges, they are 73,900 m3/s, 80,000 m3/s and 95,000 m3/s 546 

respectively. In Harbin, they are 23,800 m3/s, 35,000 m3/s and 40,000 m3/s respectively. The 547 

selected flood values are marked in Fig. 5.  548 



 549 

In Fig. 6, each curve represents a design flood, and its slope describes the variation of minimum 550 

total cost with uncertainty (α %). The steeper the slope is, the more robust the design is. If a 551 

curve is on the right hand side of another, it has a larger minimum total cost. In the case of 552 

Biliu, the curve of D1 is gentler than the other two designs, thus fewer changes in uncertainty 553 

can result in larger perturbation in total cost. The robustness curves become steeper with an 554 

increase in design floods from D1 to D3, thus the robustness increases, but the smallest 555 

minimum total cost increases as well, when α=1. Similarly, in the cases of Three Gorges and 556 

Harbin, D1 options are less robust compared with D2 and D3, but the smallest minimum total 557 

cost of D2 and D3 is larger than D1. Between total cost and robustness there is a clear trade-558 

off which decision makers need to balance in the decision making process. Under some 559 

uncertainty levels, D1 has a larger minimum total cost than D2 or D3: for example, for α=0 in 560 

Biliu, D1 is larger than D2 but is smaller than D3, and in Three Gorges D1 is larger than D2 561 

and D3, which results from the differences in the total cost curve corresponding to α=0 (shown 562 

in Fig. 5 as dashed lines), and implies that smaller design floods do not mean smaller total cost 563 

and larger total cost does not mean robust designs. In Biliu and Harbin, the curves 564 

corresponding to α=0 are close to the lower total cost bound, while in Three Gorges the result 565 

is different: the curves corresponding to α=0 is close to the upper total cost bound. The 566 

differences may be because of the variations in upper and lower probability bounds and 567 

parameter   (recall Eq. (19)).  568 

 569 

Although only three design flood values are selected for comparison, the results reveal the 570 

patterns: with an increasing design flood magnitude, more uncertainties can be tolerated while 571 

still guaranteeing the calculated total cost varies only slightly; thus the robustness increases, 572 

but the minimum total cost increases as well. Likewise, although 300 uncertainty levels were 573 



used, the results show the different robustness of design floods. Larger uncertainty level 574 

numbers were also analysed resulting similar robustness analysis results.  575 

 576 

5.4 Contributions of uncertainty sources 577 

Fig. 7 shows the breakdown results when applying ANOVA, i.e., the total cost curves of 578 

different data and probability distribution combinations under two cases: with parameter 579 

uncertainty (using predictive probability distributions – the first row panels) and without 580 

parameter uncertainty (using the estimated optimal parameters – the second row panels). It can 581 

be seen that total cost curves change with the variations of data set and probability distribution 582 

combinations. For example, in Biliu, there are 6×3 different total cost curves and these curves 583 

span large areas. Comparing the panels (a-c) and (d-f), it can be seen that the total cost curves 584 

are different in the two cases with and without parameter uncertainty. For example, in Three 585 

Gorges, when considering parameter uncertainty, the total cost curve of the AM-LN3 586 

combination (the most upper total cost curve in Fig. 7b) moves up compared with the optimal 587 

parameter case (the most upper total cost curve in Fig. 7e).  588 

 589 

As shown in Eqs. (16)-(19), the total cost is a function of return period T. Thus, the total cost 590 

is different for different return period floods. On the basis of Eqs. (21)-(31), Fig. 8 shows the 591 

contributions of individual uncertainty sources, i.e., data selection, distribution and parameter 592 

uncertainties, and their interactions to the overall uncertainty in total cost in Biliu, Three 593 

Gorges and Harbin for three return periods, i.e., 500-, 1000- and 2000-year, respectively. The 594 

contributions of uncertainty sources are represented by the strips varying with flood values on 595 

x-axis.  596 

 597 



In Biliu, regarding the 500 years return period, the contributions of data and distribution 598 

uncertainty sources varies slightly with flood magnitude. Interactions which cannot be 599 

considered in conventional FFA have a much higher contribution than parameter uncertainty, 600 

and approximately have the same contribution as distributions. Other return periods in Biliu 601 

show the same tendency. Similarly, in Three Gorges and Harbin, the contributions of 602 

uncertainty sources vary significantly with flood magnitude but almost have no changes in 603 

different return periods. The contribution of interactions is larger than parameter uncertainty in 604 

Three Gorges and Harbin also. In Three Gorges and Harbin which have much longer flow 605 

records than Biliu, with flow increases, contribution from interactions decreases and 606 

contribution from distributions increases. Comparing the differences in the data contribution 607 

among the three cases, the longer the data record, the less impact it has. For example, Three 608 

Gorges with the longest data record (23-year longer than Harbin and 73-year longer than Biliu) 609 

has the least impact from data uncertainty: the uncertainty contributions from data at most are 610 

10.7% in Three Gorges, 38.9% in Harbin and 45.1% in Biliu. The similar contributions of 611 

different uncertainty sources in different return periods imply that the return periods have little 612 

influence on the relative influences of different uncertainty sources.  613 

 614 

6. Discussion  615 

Botto et al. [2014] incorporated parameter uncertainty in the design flood estimation through 616 

cost-benefit analysis, however, epistemic uncertainties from other sources, e.g., data and 617 

probability distribution uncertainties, were not incorporated. Several studies have compared 618 

the separate influence of data and distribution epistemic uncertainties in flood estimation 619 

[Beguería, 2005; Merz and Thieken, 2005]. Bao et al. [1987] studied the influence of the 620 

number of data and four different probability distributions on annual expected damage cost 621 

separately. Su and Tung [2013b] studied the influence of different parameter estimation 622 



methods on flood damage. However, combining data, distribution and parameter uncertainties 623 

in design flood estimation has not been investigated in the previous literature. The approach 624 

proposed in this paper systematically combines the above mentioned aleatory and epistemic 625 

uncertainties (data, probability distribution and distribution parameter uncertainties) in a 626 

holistic framework.  627 

 628 

Every single curve in Fig. 7 represents the results of total costs should the previous approach 629 

proposed by Botto et al. [2014] be used. In the approach proposed by Botto et al. [2014], which 630 

effectively addressed distribution parameter uncertainty in a cost-benefit analysis approach, 631 

one single total cost curve is generated to find the optimal design flood estimate. Building on 632 

this work, our approach can take other uncertainty sources (such as probability distribution and 633 

data selection uncertainties) into consideration, and thus generate uncertainty intervals (the 634 

grey areas in Fig. 7). It can also be seen that the grey areas are different from the uncertainty 635 

ranges spanned by all the total cost curves: for example, the lower bounds of the grey areas can 636 

be larger (e.g., Figs. 7a and 7b) or smaller (e.g., Fig. 7c) than the ranges of all the total cost 637 

curves. These differences are because the total cost calculation (Eq. (19)) considers data 638 

selection uncertainty, probability distribution uncertainty and parameter uncertainty and is very 639 

different from previous approaches: for example, only considering parameter uncertainty 640 

[Botto et al., 2014]. In addition, before a decision maker makes a decision, the design flood 641 

value is a range using the newly developed approach, but the traditional approaches, such as 642 

FFA and the approach proposed by Botto et al. [2014], provide decision maker a precise deign 643 

flood value. The design flood values obtained from the newly proposed approach in this 644 

research are shown to be no smaller than results using FFA and the UNcertainty COmpliant 645 

DEsign (UNCODE) approach proposed by [Botto et al., 2014]. For example, Table 3 shows 646 

the design flood estimates from the newly proposed IPDF approach, the UNCODE approach 647 



and FFA. In IPDF, the design flood intervals correspond to the minimum total costs in the 648 

lower and upper total cost bounds (to clearly show the minimum total costs in the lower total 649 

cost bounds, the minimum total costs in the upper total cost bounds are not shown in Fig. 7); 650 

in UNCODE, the design floods correspond to the minimum total costs among all the total cost 651 

curves shown in Fig. 7; in FFA, the design floods correspond to the minimum values among 652 

all the data set and distribution combinations. In the case of Three Gorges, the minimum 1000-653 

year flood from the newly proposed IPDF approach is 73,900 m3/s, but it is 73,700 m3/s and 654 

73,400 m3/s from UNCODE and FFA respectively (i.e., 0.3% and 0.7% smaller than the IPDF 655 

result respectively); in the cases of Harbin and Biliu, the minimum design floods of IPDF are 656 

no less than those from UNCODE and FFA. In addition, as shown in Table 3, IPDF provides 657 

design flood intervals which are not available in UNCODE and FFA. These intervals result 658 

from the considered uncertainties in data selection, probability distributions and distribution 659 

parameters.  660 

 661 

In the previous research, design flood selection was based on either return periods according 662 

to flood frequency analysis or minimum total cost criterion according to cost-benefit analysis. 663 

Compared with previous studies, in our research, a robustness criterion is introduced. This 664 

criterion can allow decision makers to analyse the sensitivity of calculated total cost to the 665 

variations of uncertainties. This information is particularly useful because it can be 666 

incorporated in the decision making process to select the most robust design floods under deep 667 

uncertainties where data is scarce and distribution is unknown.  668 

 669 

Sensitivity analysis can be conducted to explicitly evaluate the impact of uncertainty sources 670 

on decision making [Van-Waveren et al., 2000; Xu and Tung, 2009], however, the newly 671 

developed framework in our research can quantify the individual and interactive impacts of 672 



uncertainty sources in design flood estimation. As shown in this study, interactive influence 673 

among different uncertainties can be significant (e.g., interactive contribution in Biliu is up to 674 

45.1%), and the importance of an uncertainty source can be underestimated without 675 

considering its interactions with other sources. It should be noted that the uncertainty 676 

contribution fractions obtained in this study are case-specific and might vary depending on the 677 

specific uncertainty sources included. Further research on more case studies is required to 678 

understand how the contribution fractions are affected by different uncertainty sources.  679 

 680 

In addition to the epistemic uncertainties considered in this paper, other epistemic uncertainties 681 

can be explored using the new IPDF approach. For example, the number of distribution 682 

parameter sets used in the calculation of the sampling distributions and, as pointed out by Laio 683 

et al. [2009], the selection of significance level in PDF fitting. The higher the significance level, 684 

the more difficult the probability distributions can pass the test. In this study, with a 685 

significance level of 0.05, GLO and LN3 for the T1 data and LN3 for the AM data in Three 686 

Gorges could be rejected. Recall that these distributions cannot be rejected with a significance 687 

level of 0.01. The inclusion or exclusion of a specific distribution might have an impact on the 688 

lower and upper bounds of flood probabilities and thus on the ranges of total cost. However, 689 

this IPDF approach provides a quantitative means to measure the impacts and thus can better 690 

inform decision making.  691 

 692 

It should be noted that the use of the GLUE approach to calculate the sampling distributions, 693 

and the use of a trial and error approach to define the uncertainty bounds of the probability 694 

distribution parameters are not necessary. Other approaches, such as importance sampling, 695 

Metropolis–Hastings algorithm, Gibbs sampling, and the use of regional information to define 696 

parameter bounds, can be applied as well.  697 



 698 

7. Conclusions 699 

Accurate estimation of design flood plays a crucial role in flood management: for example, the 700 

design of hydraulic structures. However, the estimation is influenced by various uncertainties: 701 

for example, aleatory and epistemic uncertainties. The state-of-the-art methodologies in design 702 

flood estimation did not account for the aleatory and epistemic uncertainties simultaneously, 703 

evaluating the overall benefits of design flood options, and providing quantitative information 704 

about aleatory and epistemic uncertainty contributions and their interactive contributions to 705 

design flood estimation uncertainty. These have posed a long term challenge to hydrologists 706 

and engineers. This paper presents a state-of-the-art progress to meet the challenge. A holistic 707 

and coherent framework to allow for realistic design flood estimation under multiple 708 

uncertainties is developed. To illustrate the proposed methodology, three case studies with 127-709 

year, 104-year and 54-year flood data sets were employed. Three distributions were selected 710 

using the A-D test, and different data sets generated using AM and POT methods from 711 

historical flood data were considered. The major findings from this study are presented as 712 

follows.  713 

 714 

First, an imprecise probabilistic approach for design flood estimation is proposed. This 715 

approach effectively combines aleatory and epistemic uncertainties from data, probability 716 

distribution functions, and parameters on the basis of the Dempster-Shafer theory. It also 717 

presents upper and lower bounds of total cost faced by decision makers when selecting a design 718 

flood.  719 

 720 

Second, a robustness criterion for decision support in design flood selection is proposed. The 721 

design flood corresponding to the smallest minimum total cost can tolerate lower uncertainties, 722 



thus is not robust. With an increasing design flood magnitude, more uncertainties can be 723 

tolerated while still guaranteeing the calculated total cost varies only slightly, thus the 724 

robustness increases, but the minimum total cost increases as well. Between total cost and 725 

robustness, there is a clear trade-off which decision makers need to balance in the decision 726 

making process. This trade-off quantitatively provides the overall benefits of design flood 727 

options, which provides an objective tool for decision makers to balance conflicting concerns.  728 

 729 

Third, the interactions among data, distributions and parameters are significant and have a 730 

much higher contribution than parameters to the uncertainty in total cost. The contributions of 731 

data, distributions and parameters to the overall uncertaity in total cost vary with flood 732 

magnitude. However, the contributions are almost the same for different return periods. This 733 

information implies that the overall uncertainty in estimated design floods could be 734 

underestimated if the interactions are disregarded, and therefore interactions should be 735 

considered in design flood estimation.  736 

 737 

The approach proposed in this study could provide a blueprint for pragmatic flood frequency 738 

analysis under multiple epistemic uncertainties. Future research is encouraged to examine the 739 

applicability of the approach in other regions. In addition, climate change could influence flood 740 

frequency analysis, and future research should focus on incorporating climate change impacts 741 

into design flood estimation.  742 
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 755 

Appendix A: Probability density functions (f) and cumulative probability 756 

density functions (F) 757 

    The probability density functions (f) and cumulative probability density functions (F) used 758 

in this paper are given in Eqs. (A1)-(A3): 759 

Generalized Extreme Value distribution 760 
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where k , >0 and   are shape, scale and location parameter, respectively.  762 

Generalized Logistic distribution 763 
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 where k , >0 and   are shape, scale and location parameter, respectively.  765 

3-parameter Log-Normal distribution 766 
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where  ,   and   are, shape, scale and location parameter, respectively.  768 
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Table 1 Flood discharge series generated using different thresholds and Annual Maximum 1011 

(AM) approach from flood records in three cases 1012 

Three Gorges  Harbin  Biliu 

Symbol 

Threshold 

level 

(m3/s) 

Number 

of data 
 Symbol 

Threshold 

level 

(m3/s) 

Number 

of data 
 Symbol 

Threshold 

level 

(m3/s) 

Number 

of data 

T1 52,000 270  T1 6500 264  T1 500 105 

T2 53,000 229  T2 7000 227  T2 700 62 

T3 54,000 190  T3 7800 178  T3 737 54 

T4 55,000 169  T4 8500 124  T4 1100 19 

T5 56,000 135  T5 9000 104  T5 1300 13 

T6 56,300 127  T6 9500 88  - - - 

T7 57,000 109  T7 10,000 77  - - - 

T8 58,000 85  - - -  - - - 

AM - 127  AM - 104  AM - 54 
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Table 2 Anderson-Darling test results of three probability distributions in three cases 1015 

 Three Gorges  Harbin  Biliu 

 GEV GLO LN3  GEV GLO LN3  GEV GLO LN3 

T1 1.57 2.46 2.02  1.29 1.97 1.39  0.34 0.41 0.47 

T2 0.98 1.56 1.46  1.49 2.18 1.33  0.73 0.87 0.23 

T3 0.62 1.14 0.56  0.90 1.07 0.59  0.60 0.73 0.33 

T4 0.91 1.36 1.21  1.05 0.95 1.29  0.24 0.27 0.29 

T5 0.54 0.91 0.45  0.89 0.77 1.06  0.18 0.20 0.18 

T6 0.63 1.00 0.49  0.66 0.70 0.93  - - - 

T7 0.67 0.99 0.51  0.90 1.07 0.59  - - - 

T8 0.47 0.68 0.46  - - -  - - - 

AM 0.30 0.77 2.23  0.32 0.44 0.35  0.25 0.25 0.38 

Note: GEV represents Generalized Extreme Value distribution; GLO represents Generalized 1016 

Logistic distribution; LN3 represents 3-parameter Log-Normal distribution. AM represents 1017 

annual maximum approach; the symbols from T1 to T8 represent different thresholds.  1018 
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Table 3 Design flood estimates from the newly proposed Imprecise Probabilistic Design Flood 1021 

(IPDF) approach, the UNcertainty COmpliant DEsign (UNCODE) approach proposed by 1022 

[Botto et al., 2014] and Flood Frequency Analysis (FFA).  1023 

 IPDF(m3/s) UNCODE(m3/s) FFA(m3/s) 

Three Gorges [73,900; 113,200] 73,700 73,400 

Harbin [23,800; 63,800] 23,800 22,800 

Biliu [5700; 17,300] 5700 5700 

Note: in IPDF, the design flood intervals correspond to the minimum total costs in the lower 1024 

and upper total cost bounds; in UNCODE, the design floods correspond to the minimum total 1025 

costs among all the total cost curves shows in Fig. 7; in FFA, the design floods correspond to 1026 

the minimum values among all the data set and distribution combinations.  1027 
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 1029 
 1030 

Fig. 1 Diagrammatic representation of the proposed imprecise probabilistic framework for 1031 

design flood estimation with epistemic uncertainties. Three thresholds T1, Ti and Tn are shown 1032 

for illustration; ANOVA represents the analysis of variance approach; µ0, µi and µn represent 1033 

three different uncertainty levels; PDF represents Probability Distribution Functions; CDF 1034 

represents Cumulative Distribution Function; D1, Di and Dn represent three different flood 1035 

values; C1, Ci and Cn represent three different total cost values.  1036 
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 1038 

 1039 

Fig. 2 The combinations of data sets, distributions and parameters. T1, T2 and AM represent 1040 

three selected data sets.  1041 

1042 



 1043 
Fig. 3 Sampling distributions of a specific design flood obtained using the posterior parameter 1044 

distributions of GEV, GLO and LN3 in Biliu (a, d and g), Three Gorges (b, e and h) and Harbin 1045 

(c, f and i).  1046 

1047 



 1048 
Fig. 4 Lower and upper bounds of cumulative probabilities of flood for GEV, GLO, LN3 and 1049 

combined distributions in Biliu (a, d, g and j), Three Gorges (b, e, h and k) and Harbin (c, f, i 1050 

and l) respectively. For each individual probability distribution (GEV, GLO and LN3), the 1051 

probability of each flood value is calculated based on predictive distributions and the intervals 1052 

are derived from the selected data sets. The combined CDFs (j, k and l) result from selected 1053 

data sets, probability distributions and calculated predictive distributions related to parameter 1054 

uncertainty.  1055 

1056 



 1057 
Fig. 5 Lower and upper total cost bounds for 500-year, 1000-year and 500-year design flood in 1058 

Biliu (a, d, g and j), Three Gorges (b, e, h and k) and Harbin (c, f, i and l) respectively. D1, D2 1059 

and D3 represent three design floods. For each individual probability distribution (GEV, GLO 1060 

and LN3), the uncertainty in total cost results from data selection uncertainty and probability 1061 

distribution parameter uncertainty; the overall uncertainty in total cost results from selected 1062 

data sets, probability distributions (GEV, GLO and LN3) and calculated parameter uncertainty.  1063 
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 1065 
Fig. 6 Robustness of design floods under different uncertainty levels in the three case studies: 1066 

Biliu (a), Three Gorges (b) and Harbin (c). Each curve represents a design flood, and its slope 1067 

describes the variation of minimum total cost with uncertainty. D1, D2 and D3 represent three 1068 

design flood values.  1069 
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 1071 

Fig. 7 Total cost curves of different data and probability distribution combinations (the solid 1072 

lines) under two cases: with parameter uncertainty using predictive probability distributions (a, 1073 

b and c) and without parameter uncertainty using the estimated optimal parameters (d, e and f); 1074 

total cost uncertainty bounds (the grey areas) resulting from data selection uncertainty, 1075 

probability distribution uncertainty and distribution parameter uncertainty.  1076 
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 1078 
Fig. 8 Contributions of uncertainty sources to the total costs of three return periods: 500, 1000 1079 

and 2000 years in Biliu (a, d and g), Three Gorges (b, e and h) and Harbin (c, f and i). The 1080 

contributions of uncertainty sources are represented by the widths of the relevant strips varying 1081 

with flood values on x-axis.  1082 
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