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ABSTRACT 

Resistance exercise training is known to be effective in increasing muscle mass in older people. 

Acute measurement of protein metabolism data has indicated that the magnitude of response 

may differ between sexes. We compared adaptive responses in muscle mass and function to 18 

weeks resistance exercise training in a cohort of older (>65years) males and females. 

Resistance exercise training improved knee extensor maximal torque, 4 m walk time, time to 

complete 5 chair rises, muscle anatomical cross sectional area (ACSA) and muscle quality with 

no effect on muscle fat/water ratio or plasma glucose, insulin, triacylglycerol, IL-6 and TNF-

α. Differences between sexes were observed for knee extensor maximal torque and muscle 

quality with greater increases observed in males vs females (P<0.05). Maximal torque 

increased by 15.8 ± 10.6 % in females and 41.7 ± 25.5 % in males whilst muscle quality 

increased by 8.8 ± 17.5 % in women and by 33.7 ± 25.6 % in men. In conclusion the current 

study has demonstrated a difference in the magnitude of adaptation, of some of the outcome 

measures employed, in response to 18 weeks of resistance exercise training between males and 

females. The mechanisms underlying this observation remains to be established.  
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INTRODUCTION 

The loss of skeletal muscle mass and function can occur in many conditions, such as sarcopenia 

(age related atrophy), cachexia (wasting associated with disease) and general disuse 

(Baumgartner et al., 1998; Cruz-Jentoft et al., 2010). Focussing on ageing, “healthy ageing” is 

associated with a progressive loss of skeletal muscle mass, approximately 0.5-2 % per annum, 

and skeletal muscle strength, around 3% per annum, after reaching 40-50 years of age 

(Baumgartner et al., 1998; Clark & Manini, 2008). The incidence of sarcopenia has been found 

to be between 4.6 and 7.9 % in community dwelling older men and women in the UK (Patel et 

al., 2013). In the year 2000, the healthcare costs associated with sarcopenia were estimated to 

$18.5 billion in the USA (Janssen et al., 2004), with this figure likely to be higher currently 

due to the increasing age of the population. The major consequences of sarcopenia include the 

concomitant loss of functional abilities, such as the ability to rise from a chair or step on to a 

bus, an increase in the likelihood of falls and subsequent hospitalisation, loss of independence 

and a decrease in the quality of life (O'Loughlin et al., 1993).  

Currently, there are no therapeutic interventions that can prevent this loss of muscle mass and 

function which occurs with ageing. However, resistance exercise can be effective in older 

people, even nonagenarians (Fiatarone et al., 1990), although to a lesser extent than in younger 

people due to the so called anabolic resistance (Wackerhage & Rennie, 2006). Another factor 

which may determine the magnitude of response to anabolic stimuli, such as resistance exercise 

and nutrition, is sex although this is rarely accounted for in such studies. The first study to 

investigate this found that in response to a bout of resistance exercise muscle protein synthesis 

(MPS), measured for 2h after exercise, was the same regardless of sex in healthy older people 

(Dreyer et al., 2010). In another study in obese older men and women it was demonstrated that 

prior to any training basal MPS was higher in women compared to men but whilst the 

consumption of a mixed-meal increased MPS in men, it had no effect in women. After 3 months 



of resistance exercise training it was shown that in both men and women basal MPS was 

increased, with no effect on post mixed-meal MPS, but the increase was larger in males (Smith 

et al., 2012b). However, we know that acute post exercise measures of MPS do not reflect long 

term muscle hypertrophy (Mitchell et al., 2014), highlighting the need for longer term studies. 

Longer term studies are lacking and the current data ambiguous. In a small study (9 men and 5 

women) relative increases in muscle fibre hypertrophy and maximal strength, in response to 26 

weeks of resistance exercise training, were greater in older men compared to older women 

(Bamman et al., 2003). In a larger study (29 men and 24 women) it was shown that, in response 

to 24 weeks of resistance exercise training, relative increases in muscle mass and function were 

similar between men and women (Leenders et al., 2013b). Interpretation of these results are 

however confounded as the participants had been randomly assigned to either 15g/day protein 

or placebo (Leenders et al., 2013a) and, although in that study there was no effect of protein 

on muscle strength/function overall, we cannot be sure these findings reflect purely the effects 

of exercise alone (i.e. 2 variables were different between participants: sex and supplement).  

The aim of the current study, therefore, was to determine whether skeletal muscle adaptations 

to a long term resistance exercise training differ between older men and women. Due to the 

aforementioned studies we hypothesise that resistance exercise training will result in a greater 

anabolic response in older men compared to older women.  

  



METHODS 

Participants 

Ten females and 13 males (aged 71.3 ± 4.1 years, height 166.6 ± 9.4 cm, weight 70.1 ± 12.3 

kg; mean ± SD) volunteered to participate in the study. Participants were recruited via 

advertisements placed in local newspapers and magazines. Participants were classified as 

medically stable (Greig et al., 1994), i.e. free from cardiac illness, cancer, arthritis, respiratory 

disease, metabolic disease, recent fractures and loss of mobility.  Furthermore, participants 

were not on daily analgesia and were not consuming any nutritional supplements or 

participating in regular exercise. Two participants were taking medication: one female 

volunteer (ACE inhibitors) for mild hypertension, and one male volunteer (allopurinol) for 

gout. These participants were recruited as part of a randomised controlled trial (UKCRN ID 

13024) investigating the effects of fish oil consumption on the adaptive response to resistance 

exercise training and were the control group within this trial. As part of this trial, participants 

from the control group consumed 3.0 g of safflower oil per day for 18 weeks, which was neutral 

with regards to red blood cell fatty acid composition (Table 1). The study was approved by the 

University of Aberdeen College of Life Sciences and Medicine Ethics Review Board 

(CERB/2011/6/644). Participants were made aware of the aims, risk and potential discomfort 

associated with the study prior to providing written informed consent.  

Study protocol 

Upon entry to the study baseline measurements of body weight, height and physical activity 

levels (IPAQ – short form) were performed, knee extensor isometric strength was measured, 

the short performance physical battery test (SPPB) administered, quadriceps muscle volume 

and fat content measured by magnetic resonance imaging (MRI) and a fasting blood sample 

collected. Then participants undertook a supervised resistance exercise training programme of 



the lower limbs for 18 weeks, with two sessions per week. All participants completed all 36 

sessions. As 7 male participants went on holiday for an average of 1 week their training periods 

were extended by the same period. Each session consisted of participants performing leg 

extension, leg press, leg curl and calf raise exercise (4 sets of 9 repetitions at 70% of their one-

repetition maximum (1RM)). The 1RM was re-tested every 6 weeks and the load re-adjusted 

accordingly. Repeated measurements of body weight, knee extensor isometric strength and the 

SPPB were made every 6 weeks whereas blood samples and MRI measures were repeated at 

18 weeks.  

Measurements 

Knee extensor isometric strength 

Knee extensor isometric strength of the right leg was determined during a maximal voluntary 

contraction (MVC) with the participant seated on a Biodex dynamometer as a knee angle of 73 

degrees. Subjects were secured on the seat using seatbelts and the settings recorded and 

reproduced during successive measurements.   Each MVC was repeated a minimum of three 

times and the highest values used for subsequent analysis. 

SPPB 

The SPPB consists of tests of balance, walk speed and timed chair standing (Guralnik et al., 

2000). The balance tests required participants to maintain a side-by-side, semi-tandem and 

tandem stance for 10 seconds. All participants were able to complete these three tests for the 

full 10 seconds and so these data are not presented. The chair standing test involved participants 

rising from a chair with their arms across their chest 5 consecutive times, and this was repeated 

three times with the time recorded. From a standing start participants were instructed to 

complete three separate 4 m walks at the fastest pace possible and the time recorded. For both 

tests the fastest of the three attempts was used for subsequent analysis. 



MRI 

All scans were carried out on a Philips Achieva 3.0 Tesla whole body MRI scanner using a 16-

channel SENSE XL Torso coil. Participants lay in a supine position with their feet going into 

the bore of the scanner first, with the knee extended but in a relaxed state. Velcro straps were 

used to keep the feet and legs close together with the ankle angle for both feet neutral. The 

acetabulum and knee joint line were used as primary reference landmarks to identify positions 

of the scans. A cod liver oil capsule was attached with surgical tape to the mid-point of the 

thigh to provide a point of reference for scans, particularly when the participants were too tall 

for the full thigh to be scanned in a single sequence. High-resolution T1 weighted turbo spin 

echo images were collected contiguously over the length of the thigh (Repetition time 400 ms, 

echo time 15 ms, slice thickness 10 mm and flip angle 90 degrees) for calculation of quadriceps 

muscle anatomical cross sectional area (ACSA). A dual-echo scan giving both in-phase and 

out-phase T1 weighted images in a single acquisition (Repetition time 190 ms, echo time 

2.3/3.5 ms, slice thickness 10 mm and flip angle 70 degrees) was used for determination of 

muscle fat/water ratio. Specifically, the in-phase image (sum of fat and water) and the out-

phase image (difference of fat and water) were combined to obtain a water-only and a fat-only 

images. These 2 images were than used to extrapolate direct image-based water and fat 

quantitation, via average signal intensity. MR images were analysed using ImageJ (version 

1.49, NIH). We analysed 5 slices (the mid-point slice and 2 immediately inferior and superior 

to this) with ACSA determined by manually drawing round the quadriceps muscle with 

fat/water ratio also determined in this manually drawn region of interest. We chose not to 

analyse all slices as it became problematic to accurately draw around the muscles near to the 

inferior and superior regions of the thigh and we found 5 slices to give us the most reproducible 

measure of ACSA. Muscle quality was calculated as force (knee extensor isometric strength) 

per unit ACSA. 



Blood sampling 

Blood samples were collected from a vein in the antecubital fossa into K+EDTA vacutainers, 

placed on ice and processed within 30 mins. Samples were centrifuged for 10 mins at 4 °C at 

2000g and the erythrocyte and plasma aliquoted and stored at -80 °C until analysis. Plasma 

glucose and triacylglycerol were measured in duplicate using a commercially available 

spectrophotometric assay following the manufacturer’s instructions (Randox). Insulin, 

interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) were measured using 

commercially available ELISA assays according to the manufacturer’s instructions (Insulin – 

Mercodia and IL-6 and TNF-α – RnD systems). Lipids were extracted from red blood cells 

with chloroform:methanol (2:1, by vol) with butylated hydroxytoluene present (0.01%) to 

prevent oxidation of fatty acids. Fatty acid methyl esters were prepared by incubation with 14% 

boron trifluoride in methanol at 80°C for 60 min. Fatty acid methyl esters were separated and 

identified by gas chromatography by comparison with standards run previously. 

Statistical analysis 

Data analysis was carried out using SPSS software (v19, IBM Business Analytics). Data were 

analysed using a two-way (time and sex) repeated measures ANCOVA, with baseline values 

as the co-variate. Percentage changes (from 0-18 weeks) were calculated and compared 

between sexes using independent t-test. Statistical significance was accepted as P<0.05. Data 

are expressed as mean ±SD.   



RESULTS 

Baseline characteristics 

As shown in table 2 there were no significant differences between men and women in age, 

weight or body mass index (BMI) at the beginning of the study. Males were taller (P<0.05) 

than females, as expected. The resistance exercise programme did not alter weight or BMI. 

Physical activity levels, according to the IPAQ classification, were: 11 participants in category 

1 (inactive): 5 females and 6 males; 10 subjects in category 2 (minimally active): 4 females 

and 6 males; 2 subjects in category 3 (health enhancing physical activity) 1 female and 1 male.  

Muscle strength and functional abilities 

The resistance exercise programme resulted in a significant increase in maximal torque 

(P<0.05) and faster times to complete the 4 m walk and the 5 chair rises (P<0.05) in both sexes. 

An interaction effect with sex and time was observed for maximal torque (P<0.05) but not for 

walk or chair rise time. From baseline to 18 weeks maximal torque increased by 15.8 ± 10.6 % 

in women whilst there was a greater increase (P<0.05) of 41.7 ± 25.5 % in males. The time to 

complete the 4 m walk improved by 6.5 ± 8.6 % in females and by 10.0 ± 9.3 % in males, with 

no differences in these improvements between sexes (P>0.05). We observed a decrease in the 

time required to complete 5 chair rises of 13.9 ± 15.3 % in females and 13.6 ± 12.1 % in males, 

with no differences between sexes (P>0.05) (Figure 1). 

Muscle cross sectional area, fat/water ratio and quality 

The 18 weeks of resistance exercise training resulted in significant increases in muscle ACSA 

and muscle quality – force per unit ACSA (both P<0.05), with no effect on muscle fat/water 

ratio (P>0.05) (Table 3). There were no interaction effects with sex for muscle ACSA or 

muscle fat, but an interaction effect was observed for muscle quality (P<0.05). Muscle ACSA 

increased by 2.0 ± 3.6% in women and by 3.6 ± 2.9% in men, with no difference between sexes 



(P>0.05). Muscle fat/water ratio tended to increase by 1.2 ± 3.6 % in women and decreased by 

2.7 ± 4.7 % in men (P=0.09). Muscle quality increased by 8.8 ± 17.5 % in women with a greater 

(P<0.05) increase of 33.7 ± 25.6 % in men. 

Plasma measures 

Plasma glucose, insulin, triacylglycerol, IL-6, TNF-α and calculated HOMA- IR remained 

unchanged after intervention (Table 4). 

 

  



DISCUSSION 

The current study has demonstrated for that some of the adaptations that occur with 18-week 

resistance exercise training differ in magnitude between sexes. Specifically, the increase in 

knee extensor muscle strength and muscle quality was greater in men compared to women. 

Improvements in functional abilities (walk and chair rise speed) and muscle mass were not 

different between the sexes. The study, however, was not powered to detect differences in these 

variables and so further work is needed in this area. These findings suggest that older women 

may require a greater resistance exercise stimulus, if possible, to achieve the same 

improvements as seen in men. The mechanisms underlying these observations are not known 

but merit further consideration.  

With the major role of muscle mass and function in healthy ageing it is therefore important to 

understand factors which play a role in determining muscle mass and function and in this regard 

sex is of clear importance. Lindle et al (Lindle et al., 1997) investigated the effect of age and 

sex on muscle strength. This research demonstrated that whilst men have greater muscle 

strength when younger, after reaching around 40 y muscle strength decreases in both sexes; the 

percentage rate of decline was similar in both men and women. However as women begin at a 

lower initial muscle strength they cross the “disability threshold”, where functional 

impairments become evident, earlier and thus, although women live longer than men, they 

spend more time in a disabled state (Dunlop et al., 1997). The findings of the current study, 

larger increase in muscle strength in men, are in agreement with some (Bamman et al., 2003) 

but not all of the previous work in this area (Leenders et al., 2013b), and may indicate that sex-

specific resistance exercise strategies are needed. Further work is needed in this area.  

The current study found that, in response to resistance exercise training, not only did muscle 

strength not increase to the same extent in women as men but that the increase in muscle quality 



was also limited. Muscle quality refers to the maximal force relative to the mass of the muscle 

and is determined by many factors such as the composition of the muscle architecture, fat and 

connective tissue infiltration and neuromuscular properties (Doherty et al., 1993; Frontera et 

al., 2000; Doherty, 2003). Declines in muscle quality have been demonstrated to occur with 

age (Goodpaster et al., 2006) and to be associated with impairments in physical function (Hairi 

et al., 2010). Resistance exercise is known to be effective in increasing muscle quality in both 

young and old people and in one study it was shown that these increases in muscle quality are 

similar between older men and women (Ivey et al., 2000). This is in disagreement with the 

findings of the current study likely due to the short nature of the study of Ivy and colleagues 

and may reflect the mechanism underlying the improvements in muscle quality. In the first few 

weeks of resistance exercise training much of the increase in muscle quality is likely due to 

neuromuscular improvements such as an increase in motor unit recruitment (Hakkinen et al., 

1998). By contrast, the latter increases in muscle quality are likely due to factors such as 

changes in fibre type, fat and connective tissue infiltration, muscle architecture and tendon 

adaptations (Aniansson & Gustafsson, 1981; Degens et al., 2009; Erskine et al., 2011). It may 

be that whilst neuromuscular adaptations are similar between sexes, these latter adaptations do 

not occur to the same extent in women. This hypothesis remains to be tested.  

Muscle ACSA increased in both sexes during the 18-week resistance exercise programme 

employed in the current study, with no differences between the sexes. This is generally not in 

agreement with the data investigating sex differences in muscle protein metabolism in older 

people. Whilst Dreyer et al (Dreyer et al., 2010) found that exercise has similar effects on MPS 

in young men and women, the work of Smith et al (Smith et al., 2012a; Smith et al., 2012b) 

demonstrated that, whilst basal MPS was higher in old women vs old men, the increase in MPS 

in response to resistance exercise training was less in the old women. There were limitations 

in the study of Smith et al, which the authors acknowledged, with regards to the duration over 



which MPS was measured (3.5 h) and the timing of the measurement after the last exercise 

bout (15-21 h where the acute effect of exercise on MPS would still be present) (Rennie & 

Tipton, 2000). This again highlights the need to rely on long term studies investigating muscle 

mass and function and not solely MPS which, although of clear physiological importance, is 

only one factor amongst many which contribute to changes in muscle mass and function. On 

the other hand, the primary outcome of the current study was muscle knee extensor torque, and 

not muscle ACSA, and with the relatively large variation in response to resistance exercise and 

the fact that changes in ACSA are more subtle and require longer periods of time we may not 

have been statistically powered to detect differences in muscle ACSA between sexes (a 

numerically larger increase of 3.6 ± 2.9% in men compared to 2.0 ± 3.6% in women). We 

cannot therefore rule of more subtle differences, compared to the clear differences in torque 

and quality, in the hypertrophic response to resistance exercise between sexes in older people. 

The mechanism(s) underlying the differences in the adaptive response to resistance exercise 

remain to be established. One potential area which may be worthy of further study is in relation 

to the concept of “muscle memory”. This refers to the observation that prior exercise training 

confers an ability to increase muscle strength more quickly upon an individual beginning 

resistance exercise training again (Staron et al., 1991; Taaffe & Marcus, 1997). Whilst the 

mechanisms underlying this phenomenon are not clear they are likely to involve both 

neuromuscular and myonuclear adaptations (Rutherford & Jones, 1986; Bruusgaard et al., 

2010). Unfortunately, we did not take a prior exercise history in our current participants. 

However data from the Medical Research Council National Survey of Health and Development 

(NHSD) (1946 British Cohort) indicate that a large gap in moderate to vigorous physical 

activity (with males having higher levels) has been present throughout the adult life of this 

cohort which includes participants of a similar age to the participants in the current study 

(Golubic et al., 2014). Therefore, it may be that a higher level of “muscle memory” in the men 



of the current study allowed them to improve their strength and muscle quality to a greater 

extent than women. With the current study small in participant numbers and the 

aforementioned issues with previous studies in this area large scale high quality studies are 

needed to confirm the sex differences, observed in the current study, in the increases in muscle 

mass and function in response to resistance exercise and to evaluate the mechanisms underlying 

these observations.  

In conclusion, the current study has demonstrated that in response to 18 weeks of supervised 

resistance exercise training older men increase muscle strength and quality to a greater extent 

than women. From a practical point of view, it may be that older women require a greater 

resistance exercise stimulus than men, for the same adaptive response.  
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TABLE AND FIGURE LEGENDS 

Table 1. Red blood cell fatty acid composition in men and women before and after the 18-week 

resistance exercise period. 

Table 2. Baseline characteristics of men and women. * denotes a significant (p<0.05) difference 

between men and women 

Table 3. Muscle CSA, fat and quality in men and women before and after the 18-week 

resistance exercise period. * denotes a significant (p<0.05) interaction effect. 

Table 4. Plasma measures of glucose, insulin, triacylglycerol, IL-6, TNF-α and calculated 

HOMA-IR in men and women before and after the 18-week resistance exercise period. 

Figure 1. Four metre walk time (A), chair rise time (B) and knee extensor maximal torque (C) 

in men and women before and after the 18-week resistance exercise period. * denotes a 

significant (p<0.05) interaction effect. 

  



Table 1 

 Men (n=13)  Women (n=10)  

Fatty Acid 

(% total fatty 

acids) 

Baseline 18 weeks Baseline 18 weeks 

Palmitic 

(C16:0) 

23.56 ± 1.01 23.58 ± 1.11 24.17 ± 0.80 24.01 ± 1.91 

Palmitoleic 

(C16:1) 

0.69 ± 0.47 0.67 ± 0.51 0.80 ± 0.61 0.44 ± 0.43 

Stearic 

(C18:0) 

14.22 ± 0.70 14.16 ± 1.15 14.11 ± 1.28 14.79 ± 1.09 

Oleic 

(C18:1) 

17.33 ± 0.99 

 

17.34 ± 1.14 18.50 ± 2.57 18.09 ± 2.86 

Linoleic 

(C18:2) 

15.58 ± 2.53 16.73 ± 2.62 15.46 ± 2.27 16.62 ± 3.09 

Eicosatrienoic 

(C20:3) 

2.41 ± 0.97 2.03 ± 0.89 1.80 ± 0.60 1.55 ± 0.46 

Arachidonic 

(C20:4) 

12.99 ± 2.04 12.89 ± 2.25 12.87 ± 1.29 12.53 ± 2.39 

Eicosapentaenoic 

(C20:5) 

1.44 ± 0.97 1.50 ± 1.33 1.47 ± 0.71 1.74 ± 0.50 

Lignoceric 

(C24:0) 

1.83 ± 0.26 1.56 ± 0.57 1.53 ± 0.23 1.61 ± 0.50 

Nervonic 

(C24:1) 

2.12 ± 0.35 1.84 ± 0.66 1.79 ± 0.26 1.87 ± 0.46 

Docosapentaenoic 

(C22:5) 

2.67 ± 0.27 2.44 ± 0.88 2.32 ± 0.43 2.93 ± 1.00 

Docosahexaenoic 

(C22:3) 

5.16 ± 1.19 5.26 ± 1.40 5.18 ± 0.81 5.82 ± 0.62 

  



Table 2 

 Men (n=13) Women (n=10) 

Age (years) 71.5 ± 5.1 70.9 ± 2.6 

Height (cm) 171.6 ± 8.0 160.0 ± 6.7* 

Weight (kg) 73.2 ± 11.5 66.0 ± 12.7 

BMI (kg/m2) 24.7 ± 2.6 25.8 ± 4.6 

 

  



Table 3 

 Men (n=12)  Women (n=10)  

 Baseline 18 weeks Baseline 18 weeks 

ACSA (cm2) 56.7 ± 8.7 58.8 ± 8.6 37.1 ± 5.7 37.8 ± 6.2 

Muscle fat (%) 8.2 ± 2.0 8.0 ± 1.9 8.8 ± 2.1 8.9 ± 2.1 

Muscle quality 

(torque per 

cm2) 

1.93 ± 0.49 2.58 ± 0.58 2.11 ± 0.55 2.22 ± 0.42 

  



Table 4 

 Men (n=11)  Women (n=9)  

 Baseline 18 weeks Baseline 18 weeks 

Glucose 

(mmol/L) 

5.33 ± 0.49 5.14 ± 0.35 6.07 ± 1.44 6.21 ± 1.64 

Insulin (mU/L) 6.11 ± 2.66 5.71 ± 2.52 6.96 ± 4.67 6.02 ± 3.18 

HOMA-IR 1.43 ± 0.61 1.31 ± 0.61 1.89 ± 1.31 1.68 ± 0.95  

Triacylglycerol 

(mmol/L) 

0.86 ± 0.25 0.89 ± 0.31 1.29 ± 0.87 1.03 ± 0.32 

IL-6 (pg/mL) 1.34 ± 0.66 0.88 ± 0.24 1.77 ± 1.11 1.96 ± 1.02 

TNF-α (pg/mL) 4.91 ± 2.61 4.62 ± 2.05 4.81 ± 2.13 4.67 ± 1.89 



 


