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Abstract

Many vector-borne pathogens rely on antigenic variation to prolong infections and increase their likelihood of onward
transmission. This immune evasion strategy often involves mutually exclusive switching between members of gene families
that encode functionally similar but antigenically different variants during the course of a single infection. Studies of
different pathogens have suggested that switching between variant genes is non-random and that genes have intrinsic
probabilities of being activated or silenced. These factors could create a hierarchy of gene expression with important
implications for both infection dynamics and the acquisition of protective immunity. Inferring complete switching networks
from gene transcription data is problematic, however, because of the high dimensionality of the system and uncertainty in
the data. Here we present a statistically rigorous method for analysing temporal gene transcription data to reconstruct an
underlying switching network. Using artificially generated transcription profiles together with in vitro var gene transcript
data from two Plasmodium falciparum laboratory strains, we show that instead of relying on data from long-term parasite
cultures, accuracy can be greatly improved by using transcription time courses of several parasite populations from the
same isolate, each starting with different variant distributions. The method further provides explicit indications about the
reliability of the resulting networks and can thus be used to test competing hypotheses with regards to the underlying
switching pathways. Our results demonstrate that antigenic switch pathways can be determined reliably from short gene
transcription profiles assessing multiple time points, even when subject to moderate levels of experimental error. This
should yield important new information about switching patterns in antigenically variable organisms and might help to
shed light on the molecular basis of antigenic variation.
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Introduction

For pathogenic organisms whose opportunities for transmission

are episodic, rather than continuous, long infectious periods are

crucial for successful transmission. Most notably vector-borne and

sexually transmitted pathogens have evolved various strategies to

increase their transmission potential by evading their hosts’ immune

responses. One of the most sophisticated strategies is antigenic

variationwhereby the pathogen repeatedly changes its antigens over

the course of a single infection. Although the underlying mechan-

isms differ between pathogens, many involve a polymorphic family

of genes encoding functionally similar but antigenically diverse

variants (reviewed in [1]). Of these genes, only one is actively

transcribed while all other genes are transcriptionally silent. During

infection, the active gene can ‘switch off’, leading to the activation, or

‘switching on’, of a previously silent gene. It is believed that this

mono-allelic gene expression pattern helps the pathogen to guard its

available antigenic repertoire from the immune system. Further-

more, gene expression has to be coordinated across the whole

parasite population, such that the majority of the population

expresses the same gene at the same time, as the host would

otherwise build up immunity to all variants early on and clear the

infection prematurely. As a result, infections with antigenically

variable pathogens are often characterised by successive waves of

parasitemia that are sequentially dominated by one or only a few

antigenic variants.

Some of the best studied organisms employing antigenic variation

are African trypanosomes and the causative agent of severe malaria

in humans Plasmodium falciparum. Various theoretical studies have

concentrated on determining the underlying mechanisms respon-

sible for the observed coordination in antigen presentation during

infection by these pathogens. In particular, gene activation

hierarchies or differences in growth rates have been put forward

as potential drivers behind their characteristic infection dynamics

[2–7]. Although it was found that parasite intrinsic factors could

orchestrate the parasite population in the initial phases of infection,

they are insufficient for maintaining sequential dominance of

antigenic variants during the later, chronic stages of infections.

Instead, immune selection via cross-reactive immune responses has

been proposed to offer a more parsimonious solution to this

problem, even in the absence of structured differences in switch or

growth rates [8]. Nevertheless, in vitro studies of malaria parasites

have since shown that variant switching is non-random and partly

gene specific. For example, Horrocks et al. [9] demonstrated that var

genes, which encode the surface-expressed virulence factor PfEMP1

(P. falciparum erythrocyte membrane protein 1), switch on and off at

different but constant rates during long term culture. Frank et al. [10]

also found that these rates differ widely between different genes and
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that centrally located genes appear to have lower switch rates than

those in subtelomeric loci. This has recently been confirmed by

Enderes et al. [11] who also showed that these switch preferences

appear to be independent of genetic background. Similarly, in

Trypanosoma brucei it has been shown that switching between vsg

genes, which encode the pathogens surface coat, is determined by

a fixed hierarchy of activation probabilities that appear to depend on

features of the genes’ loci [7,12,13]. An expression hierarchy

dependent on two particular extragenic elements has also been

found to underlie antigenic variation in the spirochete Borrelia hermsii

[14]. Such observations have led to the hypothesis that structured

switching or switch hierarchies might be important for structuring

the parasite population during the early stages of infection. On the

one hand this wouldmake it easier for the adaptive immune response

to desynchronise the parasite population and set up a pattern

whereby single variants can successively dominate the infection [8].

On the other hand it would also help the parasite to establish an

infection in individuals with pre-existing immune responses, as

recently shown in [15].

To distinguish between parasite-intrinsic switching and host

mediated selection during infection it is important to have

a thorough understanding of inherent switch patterns. One

approach to investigate these patterns is to analyse longitudinal

gene transcription data from in vitro cultured parasites in the absence

of selection. Given sufficient transcription data, it should theoret-

ically be possible to determine the switching network of a complete

gene repertoire. However, a major challenge is the large sample

space which makes simple methods unreliable or impractical. For

instance, to fully determine the switching network of a pathogenwith

a repertoire of 10 variant genes requires 90 parameters to describe

every gene’s rate of activation and silencing (assuming that each

gene’s activation probability may depend on which gene is being

switched off). Using a grid search method testing five values for each

parameter would require 8:1|1062 simulations and would prob-

ably miss the globally optimal solution by a wide margin. Recently,

Recker et al. [15] addressed this problem using an iterative algorithm

to determine the switching pattern of P. falciparum var genes, using

data from clonal parasite populations followed over 60–80

generations, with var transcription levels measured at regular

intervals using quantitative ‘real-time’ PCR (qrt-PCR). Although

this method could robustly determine major switch pathways, it was

able to explore only a small subset of the many-dimensional

parameter space. Furthermore, qrt-PCR data are subject to

measurement error, especially when transcription levels are very

low, and the algorithm could not provide an indication of the

uncertainty of its parameter estimates.

Here we present a statistically rigorous solution to this problem in

the form of simulated annealing and Markov Chain Monte Carlo

(MCMC) algorithms.Using diverse sets of artificially generated gene

transcription time courses we demonstrate that highly structured

and complex switch pathways can be resolved reliably from

relatively limited data. We further show that although experimental

noise can have a major effect on estimates, using transcription

measurements from several populations of the same pathogen strain

can significantly improve accuracy. Ourmethod can thus be used to

resolve complex and high-dimensional switch patterns with high

reliability and accuracy from limited and noisy data.

Results

The general aim of our method is to find a set of parameter

values relating to antigenic switching, i.e. the switch rates and

activation biases, that best fit temporal variant transcript

distributions. Under the assumption that a variant’s switch rate

and biases are constant over time we can describe the proportion

of a parasite population transcribing gene variant i at time t, vti ,
simply as

vti~(1{vi)v
t{1
i z

X
j

vjbjiv
t{1
j ,

where vi is the rate at which gene i is switched off and bji is the

switch bias, or probability of a switch from variant j to variant i.
The switch network or pathway underlying a measured change in

transcription levels can thus be described by the combination of

a switch matrix b~(bij) and off-rate vector v~v1, . . . ,vn. The

task then is to use an iterative approach (see Methods) to find b
and v such that the deviation between the measured and

simulated transcript levels at time points t1, . . . ,tp is minimised.

Method Testing
To test our method for accuracy and reliability in resolving

antigenic switch patterns from gene transcription time courses we

used various test parameter sets representing a wide spectrum of

possible switch pathways (see Methods). That is, we constructed

a number of artificial switch networks of different degrees of

complexity, in terms of the number of genes that each gene

switches to, and the number of consecutive switch events, and used

these to generate temporal gene transcription data. We then

applied our methods in order to reconstruct the most likely switch

pathway underlying the data.

In line with previous var gene transcription studies we assumed

that the parasite population is initially clonal, with every parasite

transcribing the same gene, and that relative transcript levels are

measured at several time points during in vitro culture. A common

feature of the previously described transcription profiles is that

only a fraction of transcripts reach significant levels during in vitro

culture [9–11,15]. We have previously argued that less transcribed

genes are unlikely to play a dominant role in the switching network

in the neighbourhood of the starting gene. We therefore assumed

that removing data for genes that are generally transcribed at very

low levels would have little effect on the parameter estimates for

the interactions between more dominant genes, and that these

interactions would be sufficient to determine the most important

properties of the switching network. Accordingly, our initial

analysis was restricted to a set of 10–16 genes, which could

represent the subset of the most dominantly transcribed genes. We

later provide a numerical justification for using such a reduced

system to determine major transcription pathways.

Resolving switch networks from a single transcription

time series. Initially we considered four switching networks of

different complexities consisting of 10 genes. The first network

describes a situation in which each gene simply switches to only

one other gene with very high bias, and is referred to as a one-to-

one (1:1) pathway. The second network, referred to as single-

many-single (SMS), is similar to that proposed to underlie var gene

transcription data in a previous study [15]. It describes switching

from the initial gene to a group of genes, which all switch with high

bias to another single gene. The latter gene in turn switches to

a different group of genes, which switch back to the first gene. The

third network has a lattice-like structure containing block-diagonal

switch biases, and the fourth is a uniform network, where each

gene has identical switch biases. The four networks are illustrated

in Figure 1 together with the matrix and vector representation of

switch biases and off-rates, b and v respectively, and the simulated

transcription time courses resulting from these networks of up to

60 generations post cloning.

Antigenic Switching Networks
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Using simulated annealing (see Methods) we aimed to recover

the original switching parameters from the transcript levels

measured at generations 20, 40 and 60. Figure 2 shows that in

each case the method found a good fit between the target and

simulated transcript distributions, and it reliably recovered the first

four consecutive switch events of the 1:1, SMS and uniform target

networks. The switch bias matrix and off-rate vector were less well

resolved for the later stages of the 1:1 network (Figure 2A), which

comprises ten consecutive switches, and for the lattice network,

which has an especially complex structure. Note that parameters

associated with the later network stages, i.e. of those genes that are

activated only after several switch events, have relatively minor

effects on transcript levels and the simulated annealing algorithm is

less sensitive to their variation. That is, even when the model

output fits the transcript time courses of these variants very tightly

(for all networks the average overall error, or deviation between

the input data and the model output, was less than 0.1%), the

particular pathways between rarely transcribed genes are less

accurately described.

We next investigated the effect of noise, in terms of experimen-

tal error (see Methods), on the method’s ability to recover

underlying switch patterns. As shown in Figure 3 and S1, accuracy

dropped markedly when noise was added to the data. However,

under moderate levels of noise, major switch pathways could still

be determined with reasonable accuracy, dependent on the

particular network structure. The mean error increased linearly

with the noise level (Figure 3C) but there was only a weak

correlation between these two variables. It would therefore be

impossible to use this error to estimate precisely the degree of noise

in an experimental data set. Furthermore, we found a very weak

correlation between the noise level and the error in the switch bias

estimates (results not shown), indicating that there would be wide

variation in the accuracy of parameter estimates derived from

experimental data of this type.

To improve the method’s accuracy we increased the number of

time points at which transcript levels were measured. For the 1:1

network with noise added, changing from three to seven time

points resulted in a 22% decrease in the root mean square

deviation between the output switch biases and the target

parameters for the first four network stages. More than doubling

the number of measurements to 15 yielded only a 16% additional

improvement. This non-linear relationship between the number of

time points and the deviation of the parameter estimates indicates

that the method’s accuracy in describing the entire switch

pathways of a parasite’s gene repertoire is not simply limited by

the frequency of measurements.

Resolving switch networks from multiple transcription

time series. Since our method resolved the underlying switch

networks with limited resolution for those genes whose transcript

levels remained low over the whole time course, we next tested

whether accuracy could be improved by using several target data sets

generated by the same network. That is, using the same global switch

pathway we generated transcription time courses from different

clonal starter populations and then tried to find themost likely switch

pathway by fitting the model to all of the data simultaneously. We

increased the size of the parasite’s repertoire to consist of 16 genes

(requiring 240 parameters) and randomly selected eight of these to

be the clonally expressed starter genes for separate data sets,

corresponding to eight clones taken from the same parent culture.

Transcription levels were recorded for each data set at five time

points at generations 20, 30, 40, 60 and 80 post cloning.

As shown in Figure 4 (middle column), despite the high

complexity of the underlying networks and size of the parameter

space all four switch pathways were consistently recovered with

high accuracy and resolution by using multiple time series

simultaneously. Even when we considered a high degree of

experimental noise, the switch bias and off-rates were accurately

predicted for the starter genes (highlighted in red). It should be

noted that the level of noise considered here was considerably

higher than what we would expect of experimental data and

corresponds to transcription level measurements typically differing

from the true values by a factor of two. Although the parameter

estimates for non-starter genes (blue discs) were less reliable at

moderate and high noise levels, they were considerably more

accurate than would be expected by chance. Switch biases of non-

starter genes were recovered most accurately for the 1:1 network

and less accurately for the SMS and lattice network. This is not

surprising, however, given the high degree of complexity of these

particular switching networks. Furthermore, the noisy data were

fitted more closely by the model predictions than by the true, i.e.

noise-less, transcription levels (the error was on average 15%

smaller, independent of network type or noise level), which

confirms that inaccuracies in the parameter estimates were mostly

due to the noise and not to a failure of our method to locate good

optima. Figure 5 shows two examples of the transcription time

courses of the 10 most highly transcribed genes from two different

starter genes (2 and 6) of an underlying 1:1 switch pathway, with

and without added noise, together with the transcript distributions

resulting from the estimated switching networks. This again

highlights the robustness of this method to determine genetic

switch patterns from limited and noisy data.

Similarly to whenwe used just one transcript time series, the error

increased linearly with the noise level but this time the two variables

were strongly correlated (data not shown). The error value obtained

from a sufficiently large set of experimental data would therefore be

a good estimator of the degree of experimental noise in the data and

could be used as an input parameter for determining the uncertainty

of the resolved switching network using a Markov Chain Monte

Carlo (MCMC) approach described below.

MCMC. One explanation for the inaccuracy of the simulated

annealing method in estimating the switch parameters for non-

starter genes, and generally genes that remain at low transcript

levels during the whole experiment, is that the error is less sensitive

to their variation. This would imply the existence of alternative

switch networks that fit the target data almost as well as the

predicted best-fit solution. To investigate the level of uncertainty

and obtain a probability distribution for each parameter, we used

a Markov Chain Monte Carlo (MCMC) method (see Methods).

As demonstrated in Figure 6, using the same noisy transcription

time series as in Figure 4, we found that the MCMC method

produced generally accurate and precise estimates of starter gene

parameters (indicated by less fuzzy rings) in all four network types.

Figure 1. Target network and transcript data for initial testing. Four switch networks of different complexities were considered for the initial
testing and method calibration: (A) one-to-one (1:1), (B) single-many-single (SMS), (C) lattice, and (D) uniform. The sizes of the discs in the switch
matrices correspond to the transition biases from variant i to variant j, bij , and the sizes of the discs in the off-rate vectors are proportional to the per-
generation de-activation rates, vi . The major switch pathways described by these matrices are highlighted in the middle column and the right
column shows the proportional transcription levels of all 10 variants from point of cloning until 60 generations post cloning, taken at 20 generation
intervals; the insets depict the proportional transcript levels of the 10 variants on a log scale at generations 20, 40 and 60, with each colour
representing a different variant.
doi:10.1371/journal.pone.0039335.g001
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Moreover, off-rates for non-starter genes were estimated with

a good degree of accuracy and precision, except those for the

uniform network which were consistently overestimated. Although

estimates of the switch rates of non-starter genes were less precise

they were still informative. As is evident from comparing the

MCMC output in Figure 6 to the output from simulated annealing

(right column of Figure 4), the MCMC method provides a much

more reliable indication of the true switching structure. However,

the simulated annealing algorithm is still required to estimate the

level of noise in the data used to calibrate the MCMC method.

Dimension reduction. We initially argued that using data

fromonly themost dominant geneswithin the repertoire is justifiable

as long as the majority of gene transcripts remain at very low levels

throughout the experiment. To verify this assumption we created

60-dimensional versions of our four test networks. Starting genes

were selected by first simulating transcription histories for many

generations until the transcript levels were close to equilibrium and

thus resembled a parent population kept in long-term culture. Eight

distinct starting genes were then randomly selected, such that the

probability of selecting each gene was proportional to its level of

transcription in the parent culture, thus mimicking experimental

selection of starting genes by limiting dilution.

For each network we applied the MCMC algorithm using

transcription data for only the 16 most transcribed genes. To

perform the reduction, genes were ranked by their average

transcription levels across all time points and all cultures in the

data generated by the 60-dimensional matrix (after adding noise).

Data for the 16 most highly ranked genes were then selected,

renormalised, and used as input. Note that genes chosen in this

way may come from diverse regions of the switching network, so

that the reduced matrix, which represents disjoint network

elements, may look different from the original, full matrix. For

example, the reduced SMS and 1:1 matrices (Figure 7A and 7B)

are somewhat similar. Later we show how hypothesis testing may

be used to determine the most likely network type, even when the

MCMC output appears ambiguous.

For each of our reduced test networks, the MCMC parameter

estimates gave a good indication of the network structure (Figure 7

and S2). Where estimates varied from the true parameter values,

this was often because genes included in the reduced system took

on roles in the network vacated by omitted genes, so that the

general network structure was preserved. These results confirm

that accurate estimates of the overall switch pathways can be

obtained by using only a subset of highly transcribed genes.

Application
As demonstrated in the previous section, our method can

reliably determine genetic switch pathways from relatively limited

data; however, it also showed how parameter estimates can be

affected by experimental noise or sparseness of the available data

to be fitted. And although the MCMC approach provides a good

indication of the uncertainty in parameter values and thus the

underlying switching pathway, the question remains how to

proceed if the method results in ambiguous outputs. Here we

provide one approach in terms of hypothesis testing, which allows

the direct comparison of the likelihoods of alternative switch

pathways. Finally we apply our method to real var gene

transcription data previously described in [15].

Hypothesis testing. A strength of our likelihood-based

approach is that it allows testing of hypotheses regarding the

network structure where the predicted switch pathway is not

immediately obvious or where there is a high degree of uncertainty

around the estimated parameter values comprising this pathway.

That is, if the outcome of the MCMC method is ambiguous in

terms of the most likely switching network underlying the observed

change in transcription levels, we can use this approach to

specifically test different hypotheses. To demonstrate how this

technique might be useful in practice we used likelihood ratio tests

to compare the power of two alternative switching models to

explain the transcription data generated by the networks

considered in the previous section (1:1, SMS, lattice and uniform

networks). In the first model, all genes were assumed to have

identical, uniform switch biases, corresponding to a situation with

completely unbiased switching; the second model allowed all genes

to have different sets of switch biases, as in the structured switch

pathways considered previously. We then used simulated anneal-

ing to find the maximum likelihoods of each model using the noisy,

dimension-reduced data sets for each network.

For the 1:1, SMS and lattice networks, the likelihood ratios

correctly indicated that, in each case, the switch biases were unlikely

to be uniform (x2224§2,350, pv0:0001), implying local switch biases

and thus rejecting the hypothesis that a change in transcript levels

would simply be due to differences in off-rates. Conversely, for the

uniform network the test outcome was consistent with uniform

switch biases (x2224~119, p~1:00), thus providing no support for the
notion of variant-specific switch biases in this case. It is also possible

to test for differences between the parameters of specific genes. For

example, likelihood ratio tests indicated that in the SMSmatrix, the

switch biases of gene 10 were likely to differ from those of gene 12

(x213~282, pv0:0001) but not from those of gene 9 (x213~10:5,
p~0:65). The latter result implies, correctly, that the network was

unlikely to have a 1:1 structure.

Results of F-tests were similar to those of the likelihood ratio

tests, and other model selection statistics such as Bayes factors or

information criteria are also compatible with our method. Thus,

given sufficient experimental data, it should be possible to

determine with a high degree of confidence whether a hypothesised

switching pattern is likely to be correct.

Experimental data. Finally, we applied our methods to

experimental data, comprising a subset of the P. falciparum var gene

transcription measurements of three different clones (3D7_AS2,

IT4_2B2 and IT4_2F6) previously analysed by Recker et al. [15].

In agreement with the proposed switch pathways, for each data set

the simulated annealing algorithm found that an SMS (single-

many-single) network structure gave the best fit to the data.

Because of the sparsity of those particular data sets we used the

MCMC-based method to assess the uncertainty in the parameter

estimates. Although the results confirmed that the switching

network was unlikely to have a 1:1 or uniform structure, the output

also revealed that other parameter sets representing different

network structures were equally likely, as indicated by the blurry

matrix entries in Figure 8; unfortunately the data were insufficient

to carry out the more detailed hypothesis testing outlined above.

Note, we obtained similar results when we used a single, artificial

data set generated by a SMS matrix (Figure S3), which strongly

Figure 2. Resolved networks from a single time series. Using simulated annealing the (A) 1:1, (B) SMS and (D) uniform networks are resolved
to up to four consecutive switches, although the complex lattice network (C) is less well described. The starter genes, which were assumed to be
clonally transcribed at generation 0, are highlighted in red. The simulated time courses (right column) show a very good agreement between the
target data and the transcription data resulting from the determined network.
doi:10.1371/journal.pone.0039335.g002
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indicates that more data are required for determining the precise

pattern of antigenic switching among var genes.

Discussion

Here we described a statistically rigorous method for de-

termining genetic switch pathways from quantitative gene

transcription data. The problem in determining switch pathways

with direct methods is the wealth of data required to estimate gene

intrinsic parameters, such as activation biases and off-rates,

especially when the system under consideration consists of more

than just a couple of genes. Most antigenically variable organisms

have gene repertoires that are orders of magnitude larger,

however. We have demonstrated that our iterative method is able

to resolve complex switch patterns from minimal data to a high

degree of accuracy, even when allowing for a reasonable degree of

experimental error or noise. Importantly, we have shown that

using multiple sets of data simultaneously increases accuracy such

that even highly complex networks can be determined. This

should be of particular interest as it suggests that the most reliable

information about a gene’s or gene repertoire’s switch behaviour

can be extracted not necessarily from long-term cultures but from

analysing transcription profiles which are relatively short but

obtained from different clones of the same isolate. In general, our

results suggest the following strategy for determining genetic

switching networks in three stages. The first step would be to

estimate the amount of noise in the data, using simulated

annealing. This would be followed by employing our MCMC

method – calibrated to the estimated noise level – to return reliable

parameter distributions for the parameters comprising the un-

derlying network, i.e. the genes’ off-rates and switch biases. Lastly,

and strongly dependent on the amount and quality of the available

data, one would test hypothesised network structures by compar-

ing the likelihoods of restricted models.

For structured networks we noticed that some variant

transcripts remain at very low levels over the whole transcription

time courses considered here. This is consistent with experimental

studies of longitudinal var gene transcription, which also found that

some variants are rarely activated, even after long-term in vitro

culture. Although we could show that data for only the most

dominantly transcribed genes are sufficient for determining the

overall switch pattern, uncertainty in parameter estimates for

genes with low activation probabilities remains a problem for

describing the switch behaviour of an entire gene repertoire.

However, once identified it should be possible to specifically select

these genes for cloning and then apply the method described here.

Knowledge about genes with low activation probabilities in vitro

could yield important information about in vivo selection processes

and should help to distinguish between parasite-intrinsic switching

and immune- or receptor-mediated selection underlying the

within-host infection dynamics of antigenically variable organisms.

Investigating intrinsic switch patterns is of major importance for

a number of reasons. First of all, the non-random nature at which

genes are activated or silenced is likely the result of an evolutionary

process shaped by the interaction between the parasite and the

immune system. Understanding this pattern would therefore

provide valuable insights into the selective pressure acting upon

the parasite during infections, which in turn should also shed light

on the evolution and structure of the gene repertoire itself. For P.

falciparum at least, there also is the added complexity of phenotypic

as well as antigenic variation. Different PfEMP1 variants mediate

cytoadherence of infected red blood cells to different host tissues

[16,17] and expression of certain subsets of the var repertoire has

been associated with disease severity and young host age [18–20].

A full characterisation of the antigenic repertoire in terms of gene

activation rates and hierarchies will therefore help to explain age-

related pathologies of malaria infections and the observed order of

acquisition of protective immunity against certain subsets of genes.

It is also hoped that analysing pre-determined switch patterns will

contribute to our understanding of the molecular mechanisms

behind antigenic variation. For example, differentiation of switch

biases between particular genes and ‘‘universal’’ activation

preferences should help elucidate how antigenic switching is

controlled at the genetic and/or epigenetic level.

Although our method was described with reference to

a particular in vitro experimental set-up in which P. falciparum

parasites are followed from an initially clonal population over

time, there is no restriction on how the data is generated. In fact,

provided that adequate temporal gene transcription data can be

obtained, either from in vitro culture or in vivo infection dynamics,

this method can be used to reliably determine the parameters that

define the switching network between genes in any antigenically

variable organism.

Methods
To analyse antigenic switch pathways from gene transcription

data we follow the approach taken by Recker et al. [15]. We

assume that clonal parasite populations are followed over an

extended period of in vitro culture with relative transcript levels of

all genes measured at various time points. The resulting

transcription profiles can then be described by the following

time-discrete model:

vtz1
i,c ~ 1{við Þvti,cz

X
j=i

vjbjiv
t
j,c,Vi[f1, . . . ,ng,

where vti,c is the relative transcript level of variant i in culture c at time

t, vi is the variant specific off-rate, and bji is the probability of

a switch from variant j to variant i. The task is then to find the

parameter values for v~vi and b~bij that minimise an error

function defined by the deviation between the measured – or in our

case simulated – transcript level vti,c and the model outcome mt
i,c:

E~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

qpn

Xq
c~1

Xp
t~1

Xn
i~1

log2 (v
t
i,c){ log2 (m

t
i,c)

� �2vuut ,

where p is the number of time points where transcript levels were

measured and q is the number of cultures.

We assumed that off-rates do not exceed 6% per generation,

which is consistent with experimental measurements [9,10,12–

14,21].

Simulated Annealing
Because of the large dimension of the system we used iterative

approaches to find solutions that minimised the deviation between

Figure 3. Resolved networks from noisy data. The accuracy in determining switch networks from single transcription time courses is
significantly affected by the level of noise in the data (here s~0:6) and can lead to poorly resolved networks, as shown for both the (A) 1:1 and (B)
SMS pathways. (C) The error shows a linear correlation with the level of noise.
doi:10.1371/journal.pone.0039335.g003
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themodel output and the data. Simulated annealing is a probabilistic

optimisation algorithm which can move between locally optimal

parameter sets [22]. The procedure starts with a random parameter

set B~(b,v) containing the switch biases and off-rates, and applies

a random perturbation to produce B
0
. The move from B to B

0
is

accepted if it reduces the error; otherwise the move is accepted with

a probability dependent on how much it increases the error and on

a ‘‘temperature’’ parameter. The perturbation and acceptance steps

are repeated for many iterations while the temperature is gradually

lowered so that moves that increase the error become less likely to be

accepted. When the temperature becomes sufficiently low the

parameter set converges to a local minimum.

Perturbation of a switch bias parameter bji was achieved by

drawing a random variable b
0

ji from a Cauchy distribution centred

at bji. The distribution was restricted to the permitted range [0,1]

by mapping

Bi.
frac(bji) if floor(bji)is even

1{frac(bji) if floor(bji)is odd,

(

where floor(bji) is the largest integer not greater than bji and

frac(bji) is the fractional part. Off-rates were similarly perturbed

after rescaling in proportion to the parameter range [0,0.06]. In

each iteration the perturbation procedure was applied to one

switch bias per matrix row and the other entries were then rescaled

to normalise the row. All off-rates were perturbed in each

iteration. We chose a Cauchy distribution because it has a fatter

tail than the Gaussian distribution and may therefore be more

likely to generate ‘‘basin hopping’’ moves between local optima.

This perturbation procedure is symmetrical, meaning that the

probability of moving from B to B
0
is always equal to the

probability of moving from B
0
to B. However, normalising each

row of switch biases caused the algorithm disproportionately to

favour small parameter values. Such non-uniformity is permitted

in simulated annealing and should not affect the results. The

perturbation size was determined by the scale parameter of the

Cauchy distribution, which was made constant.

For the acceptance threshold we chose the Fermi distribution;

that is, proposed moves were accepted with probability

1=(1z exp E’{E
T

� �
), where E and E

0
are the errors associated

with the current and proposed parameter sets respectively, and T

is the temperature. We used a geometric cooling schedule and

stopped the algorithm after 10 million iterations.

Experimental Error
Gene transcript levels are calculated from qrt-PCR output using

an exponential formula in which the base is the amplification

efficiency of the gene transcript (which should be approximately 2)

and the exponent is the number of amplification cycles required

for the transcript to reach a threshold abundance [23]. We

therefore assumed that error-prone measurements would follow

a log-normal distribution and that, at least for the most abundant

transcripts, the standard deviation would be proportional to the

mean. Accordingly, measurement errors were simulated by

applying a noise function w(vi,c,t)~2Rvi,c,t, with R*N(0,s2) to

the simulated transcription profiles and then renormalising each

Figure 4. Resolved networks from multiple time series. Transcription histories from eight different clones, each defined by a different starting
gene (highlighted in red), were used to resolve four different switch pathways describing 1:1, SMS, lattice and uniform networks (A–D, respectively).
Without any noise, all matrices and off-rate vectors can be resolved to a high degree of accuracy, even for the non-starter genes (middle column). The
use of multiple data sets also yields better estimates when significant levels of noise are added to the data (s~1, right column).
doi:10.1371/journal.pone.0039335.g004

Figure 5. Resolved transcription time courses from noisy data. When the model is fitted to multiple data sets with different starting genes,
the transcript levels of the predicted network (right column) are more similar to the noiseless data of the underlying network (left column) than to the
noisy data used as input (middle column). Results are shown for two different clones of a 1:1 switch network with transcript levels measured at
generation 20 (blue), 30 (purple), 40 (green), 60 (light blue) and 80 (orange). The insets depict the proportional transcript levels of the 16 variants on
a log scale at generations 20, 30, 40, 60 and 80, with each colour representing a different variant.
doi:10.1371/journal.pone.0039335.g005
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set fv1,c,t, . . . ,vn,c,tg. In most of our trials s~1, which assumes that

transcript levels are typically measured to be two times larger or

smaller than their true values.

MCMC
To obtain distributions of likely values for the switch biases and

off-rates, instead of only the ‘‘best-fit’’ point estimates, we used

a Markov chain Monte Carlo (MCMC) method known as the

Metropolis-Hastings algorithm [24,25]. This algorithm accepts

Figure 6. Using MCMC on noisy transcription data. In the MCMC output for the four different switch pathways: 1:1, SMS, lattice and uniform,
(A–D, respectively), the parameter range for each switch bias and off-rate was divided into bins, represented by rings. If a large proportion of
recorded solutions contained similar values for a parameter then the corresponding ring is coloured dark, indicating a high likelihood that the true
parameter value lies within that range. The proportions were measured relative to a null distribution H0 , which assumed that all solutions were
equally likely to be accepted. The darkest colour corresponds to proportions that differed from the H0 mean by at least 25 standard deviations.
doi:10.1371/journal.pone.0039335.g006
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proposed moves with probability L(B
0
Dv)=L(BDv), which is the

likelihood ratio of the proposed parameter set B
0
and the current

parameter set B, given the observed data v. To convert the

simulated annealing algorithm to instead perform MCMC we

replaced the acceptance threshold with the exact likelihood ratio,

as derived below, and used the simulated annealing error to

estimate the noise parameter s. The algorithm was run for 10

million iterations and every accepted solution was recorded after

an initial ‘‘burn-in’’ period of 1 million iterations.

To simplify the notation, the following derivation considers the

case with only one culture and one time point, so v~fv1, . . . ,vng is
the observed data and m~fm1, . . . ,mng is the output of the model

Figure 7. Results following dimension reduction. Left column: target parameters for the (A) 1:1 and (B) SMS networks reduced from 60 to 16
genes. Right column: MCMC output after adding noise with s~1. To perform the reduction, genes were ranked by their average transcription levels
across all time points and all cultures in the data generated by the 60-dimensional matrix (after adding noise). The 16 most highly ranked genes were
then selected and their data renormalised. The starter gene parameters are shown in red.
doi:10.1371/journal.pone.0039335.g007
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with parameter set B. Assuming as before that each

vi~2rimi=
Pn

j~1 2
rjmj , where each ri is an instance of a random

variable Ri*N(0,s2), then

ri{r1~ log2 (vim1=(miv1)), Viw1

and

L(BDv)~P(V~vDB)

~

ð?
{?

P(R1~x) P
n{1

i~1
P(Ri{R1~ri{r1DR1~x) dx

Figure 8. Results from experimental data. Best-fit parameter estimates derived by simulated annealing (top row) and MCMC parameter
distributions (bottom row) are shown for three sets of P. falciparum var gene transcription data previously analysed by Recker et al. [15]. Each data set
comprises a single time series of measurements from an initially clonal culture. The results are consistent with an SMS network structure although the
MCMC output (right column) also indicates the likelihood of alternative pathways.
doi:10.1371/journal.pone.0039335.g008
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~

ð?
{?

P(R1~x) P
n{1

i~1
P Ri~ log2

vim1

v1mi

� �
zx

� �
dx

!
ð?
{?

exp
{x2

2s2

� �
P
n{1

i~1
exp

{( log2 (vim1=(miv1))zx)2

2s2

 !
dx:

Changing the variable to y~2xm1=v1 gives

L(BDv)~
ð?
0

1

y
P
n

i~1
exp

{ log22 (yvi=mi)

2s2

 !
dy

! exp
1

2s2
{
Xn
i~1

log22
vi

mi

� �
z

1

n
log22 P

n

i~1

vi

mi

� � !" #
:

It follows that the likelihood ratio for q cultures and p time points is

L(B
0
Dv)

L(BDv)
~ P

q

c~1
P
p

t~1
exp

1

2s2
{
Xn
i~1

log22
vi,c,t

m
0
i,c,t

 !
z
Xn
i~1

log22
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log22 P
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Supporting Information

Figure S1 Resolved networks from noisy data. The

accuracy in determining switch networks from single transcription

time courses is significantly affected by the level of noise in the data

(here s~0:6) and can lead to poorly resolved networks, as shown

for both the (A) lattice and (B) uniform pathways.

(TIFF)

Figure S2 Results following dimension reduction. Left

column: target parameters for the (A) lattice and (B) uniform

networks reduced from 60 to 16 genes. Right column: MCMC

output after adding noise with s~1. To perform the reduction,

genes were ranked by their average transcription levels across all

time points and all cultures in the data generated by the 60-

dimensional matrix (after adding noise). The 16 most highly

ranked genes were then selected and their data renormalised. The

starter gene parameters are shown in red.

(TIFF)

Figure S3 Results from simulating hypothesised var
gene system. In this case the 60-gene SMS network was reduced

to 12 genes by selecting only one starter gene, instead of the eight

starter genes used in Figure 7. Simulated transcription levels were

recorded at only three time points and a high level of noise was

added to the data. These conditions mimic those of the

experimental data sets IT4_2B2 (three time points recorded) and

IT4_2F6 (four time points) analysed by Recker et al. [15] and the

results are similar to those found by analysing the original data

(Figure 8). The best-fit parameter estimates suggest an SMS

network but the MCMC output shows that this result is uncertain

because of the relatively small data set.

(TIFF)
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