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Abstract
In this thesis, original theoretical and numerical investigations into the interaction
of light with excitonic nanostructures are presented, in a bid to demonstrate that
excitonic nanostructures are viable alternatives to the use of plasmonic nanostructures
where electric field enhancement and confinement are sought. In particular, the field
enhancement and confinement around excitonic nanostructures on resonance is shown
to be comparable if not in excess of that around noble metal nanoparticles such as gold
and silver. These excitonic modes, when set in the context of a core-shell geometry,
are shown to offer tunability through nanoparticle design and through the index of
the environment. In addition, hybrid ‘hyperbolic’ and ‘plexcitonic’ modes are shown
to offer similar properties in metallic-excitonic nanostructures. Altogether, these
excitonic and hybrid excitonic modes are shown to have potential in nanophotonic
applications.
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2.2 ε and ñ for a best-fit Lorentz model in the steady-state to a 70 nm

1.46 wt% TDBC:PVA film. . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 ε for a Lorentz model in the time domain for a TDBC:PVA film. . . . 27
2.4 Comparison of a Drude model for silver against experimental data in

the optical range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Comparison of a Drude model for gold against experimental data in

the optical range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 ε for 1.46 wt% TDBC:PVA, assuming 2D and 3D distributions, along-

side experimental data. . . . . . . . . . . . . . . . . . . . . . . . . . 43
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Introduction
The nanophotonic applications of plasmon-based (plasmonic) devices is wide ranging:
the field enhancement associated with surface plasmon polariton1–3 (SPP) and particle
plasmon polariton4–7 (PPP) modes has been exploited to induce non-linear effects in
non-linear materials,8 and to increase the photoluminesence of molecules9–11 enabling
nanoscale microscopy.12 These properties are highly medium dependent, and naturally
lead to applications within environmental sensing,13–17 including biosensing18, 19 and
material characterisation.20, 21

With the advent of modern fabrication techniques,16, 22 the nanoscale control of
light23, 24 offered by plasmonic nanostructures has been of interest, with a view towards
applications in optical computing25 and optical communication.26, 27 SPPs have been
explored within a waveguide context28–32 and PPPs in lattices have been researched
for their potential as nanoantennae with relatively high quality factors.33

In a departure from traditional plasmonics, outlined in this thesis is original theoret-
ical and numerical investigation into whether excitonic nanostructures can exhibit
the properties normally associated with plasmonic nanostructures: electric field en-
hancement and electric field confinement. If these properties can be demonstrated
for excitonic nanostructures, this research may prove key towards demonstrating ex-
citonic nanostructures as alternatives to plasmonic nanostructures for applications
such as nanoscale microscopy, optical communication, environmental sensing, or
material characterisation. Within this thesis, polariton modes in excitonic nanostruc-
tures are termed ‘exciton polaritons’ as compared to ‘plasmon polaritons’ in metallic
nanostructures, indicating the origin of the modes. It is shown in this thesis that the
properties of excitonic materials may be exploited in conjunction with plasmonic
materials to tailor bespoke absorption properties within either artificially-constructed
two-dimensional materials (metamaterials) or nanoparticles with a core-shell geometry,
thereby expanding the potential of such modes.

This thesis is organised as follows:

In Ch. 1, the concepts of complex refractive index and permittivity are introduced, and
an experimental technique utilising the Fresnel coefficients34 and the Kramers-Kronig
relations35 to determine these quantities for thin films is outlined. Next, experimental
results in the optical range for several thin films of plastic doped with the excitonic dye
molecule TDBC are given; these results were obtained using this technique. Lastly,
a method for relating reflectance and transmittance spectra to the colour seen by the
human eye is related.

In Ch. 2, the permittivities of the excitonic thin films as determined in Ch. 1 are used
in order to evaluate classical and quantum-mechanical models for the permittivity
of TDBC:PVA films. In addition, classical models for metals are evaluated against
published experimental data. It is shown that the quantum models for the permittivity
of excitonic films are superior to that of the classical model, but the classical model
suffices to describe the permittivity of metals.
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In Ch. 3, surface exciton polaritons (SEP) modes are introduced and explored in the
context of TDBC:PVA films. The models for the permittivity evaluated in Ch. 2
are used in order to quantify the skin depths and propagation lengths of SEPs in
TDBC:PVA films, and compared with SPPs in metal films. The reflectance and ab-
sorption properties of TDBC:PVA thin films are then quantified. The colours predicted
from the calculated reflectance and transmittance spectra are then evaluated against
photographs of experimental TDBC:PVA films, and the features of the calculated
absorption spectra are analysed. Next, multilayer stacks comprising excitonic and
plasmonic materials are investigated in a bid to explore the properties of so-called hy-
perbolic metamaterials,36 and whether absorption spectra can be controlled by careful
design of these multilayers.

In Ch. 4, the focus lies upon particle polariton modes. Particle exciton polariton (PEP)
and epsilon near zero (ENZ) modes are introduced and explored in the context of
nanospheres and nanospheroids of TDBC:PVA. The Mie scattering and absorption
spectra of these nanoparticles are compared against those of metallic nanoparticles, and
the spectral positions of the resonances are evaluated by use of quasistatic theory. The
power flow and electric field enhancement in the vicinity of TDBC:PVA nanospheres
is examined in order to characterise the PEP and ENZ modes. An experimental method
for measurements of these properties is outlined, and the initial results of such an
experiment are detailed for nanospheroids. Lastly, a proposal for an extension to this
work is related.

Ch. 5 builds upon the findings of Ch. 4, and explores particle polariton modes in the
context of coated nanospheres. Through a combination of quasistatic considerations
with a scattering theory for coated nanoparticles based upon Mie theory, several
nanoparticle geometries are explored. First, the tunability of the modes for nanospheres
with metallic and excitonic cores are contrasted against each other. Second, it is shown
that for excitonic nanoshells, hybridised exciton polariton modes can be obtained.
Third, the nanosphere with both an excitonic core and shell is explored and the effect
of an increase in dye concentration of the shell determined. Lastly, it is shown that by
fabrication of an excitonic-plasmonic nanosphere in a core-shell geometry, particle
exciton and particle plasmon modes can hybridise to form ‘plexciton’ modes. The
tunability of these plexciton modes is then explored via changes in geometry, choice
of dye molecule, and dye concentration.

The findings of the work outlined in this thesis are summarised in Ch. 6, along with
suggestions for future work that could build upon the research themes in this thesis.



1
Determination of the

Permittivity of Excitonic Thin
Films

In this chapter, the concept of complex permittivity is introduced and developed. A
method for determination of this quantity for thin films over a range of wavelengths is
outlined. The excitonic dye molecule TDBC is introduced, and the complex permittivity
of TDBC-doped thin films of inert material is extracted, and examined for several
dopant concentrations.

1.1 Introduction

In order to perform calculations to describe the optical response of nanostructures,
the response of the material to an electromagnetic wave must first be determined.
The most useful quantity used to describe how a specific material responds to light
is its complex permittivity; this quantity is now derived, starting with Maxwell’s
equations.37, 38 These are written in current-free form as,

∇ · B = 0 (1.1)

∇ · E =
ρ

ε
(1.2)

∇ × B =
1
c2

∂E
∂t

(1.3)

∇ × E = −
∂B
∂t
, (1.4)

where E is the electric field, B is the magnetic flux density, c is the speed of light in
the material and ε = ε0ε is the complex permittivity of the material. The magnetic flux
density is related to the magnetic field by B = µH, where µ = µ0µr is the magnetic
permeability of the material. These fundamental equations governing electric and
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magnetic fields can be used to derive wave equations for electric and magnetic fields
by substitution of Eq. 1.1-1.4 into each other,

(
∇2 −

1
c2

∂2

∂t2

)
E = 0 (1.5)(

∇2 −
1
c2

∂2

∂t2

)
B = 0, (1.6)

which are Maxwell’s electromagnetic wave equations. Given that the speed of the
waves implied by solutions to these equations is the speed of light, these equations
describe the wave nature of light. Hence, light is demonstrably an electromagnetic
wave and these wave equations can be used to mathematically describe light within the
field of optics. One-dimensional solutions to Eq. 1.5 are of the form E = E0eikx+iωt.
Putting this solution into Eq. 1.5 procures a relationship between the wavenumber k
and the angular frequency ω,

ω = kc

=
k
√
µε
, (1.7)

where the relationship 1/c2 ≡ µε has been used to write Eq. 1.7. This relationship is
applied to determine that k = ω

√
µε. In this thesis, the materials under consideration

have a relative permeability of unity (µ = µ0). In this case, the magnetic fields are not
modified by the material and,

k = ω
√
µ0ε0

√
ε

=
ñω
c0
, (1.8)

where ñ = n + iκ is the complex refractive index of the material and c0 is the speed of
light in free space. The importance of the quantity ñ on the response of the material is
evident when the one-dimensional solution to the wave equation is decomposed as a
product of its time and spatially-dependent parts,

E = E0ei(ω/c0)ñx+iωt

= E0eiωtei(ω/c0)nxe−(ω/c0)κx. (1.9)

Eq. 1.9 implies that for κ > 0 (κ < 0), the amplitude of the electric field dies away
(is enhanced) exponentially with propagation inside the material. Therefore, this
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imaginary part of the refractive index accounts for energy dissipation (or enhancement)
within the material. A definition for the real part of the refractive index of a material
(�e(ñ) = n) is the ratio of the speed of light in free space to the speed of light in the
material39 (the phase velocity): this can be seen by substitution of Eq. 1.7 into Eq. 1.8.
n is therefore inversely related to the phase velocity, and n is always positive.

In this thesis, the relative permittivity of a material is given the symbol ε. This quantity
is complex and is written in terms of its real and imaginary parts in this thesis as
ε = ε′ + iε′′. The relative permittivity (henceforth referred to as ‘permittivity’ unless
otherwise stated) of a material is related to the material’s complex refractive index by
ñ =
√
ε. From this relationship, the following two equations can be derived,

ε′ = n2 − κ2 (1.10)
ε′′ = 2nκ. (1.11)

From Eq. 1.10 & 1.11 and by inspection of Eq. 1.9, a set of eight distinct classes of
materials can be identified, as summarised in Tab. 1.1.

ε n κ Type
ε′ > 0 0 Translucent material

ε′ + iε′′ > 0 0 < κ < n Lossy dielectric
ε′ − iε′′ > 0 −n < κ < 0 Gain material

iε′′ κ n Epsilon Near Zero (ENZ) material
−iε′′ κ −n ENZ gain material
−ε′ + iε′′ > 0 > n Metallic
−ε′ − iε′′ > 0 < −n Highly reflective gain material
−ε′ 0 > 0 Index Near Zero (INZ) metamaterial

Table 1.1: A summary of several classes of materials, where ε′ and ε′′ are real and positive.

The differences between each of these classes are best observed by comparison of the
reflection and transmission coefficients across a boundary for each of them at normal
incidence. Solutions for the electric field of the form Eq. 1.9 are assumed. By applying
wave amplitude continuity boundary conditions across each interface, the (generally
complex) amplitude reflection and transmission coefficients from material i to material
j (ri j and ti j) can be derived by elementary algebra as,

ri j =
ñi − ñ j

ñi + ñ j
≡

ki − k j

ki + k j
(1.12)

ti j =
2ñi

ñi + ñ j
≡

2ki

ki + k j
, (1.13)

where ki and k j are the complex wavenumbers in the ith and jth media respectively.
The two general expressions in Eq. 1.12 & 1.13 relate the wave amplitude reflected
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and transmitted at a boundary. The fraction of light reflected (transmitted) is given by
R = |r|2 (T = |t|2/n j). With air on one side of the boundary these become,

R =

∣∣∣∣∣ ñ − 1
ñ + 1

∣∣∣∣∣2 =
n2 + κ2 − 2n + 1
n2 + κ2 + 2n + 1

(1.14)

T =
1
n

4(n2 + κ2)
(ñ + 1)2 =

4(n2 + κ2)
n2 + κ2 + 2n + 1

. (1.15)

These relations show that the complex refractive index (and hence the permittivity)
governs the fraction of incident light a material will reflect or transmit at a given
wavelength i.e. the reflectance and transmittance spectra, and by extension, the optical
properties of the material. The dependence of R upon n and κ is illustrated in Fig. 1.1.
The minimum in R occurs at n =

√
κ2 + 1. It can be seen that R = 1 for INZ materials,
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Figure 1.1: Reflectance (R) as a function of n for three different values of κ, and for κ = n. The
dotted lines indicate the values n which minimise R.

irrespective of the value of κ. For metallic materials (where n2 < κ2, indicated by the
region to the left of the respective dotted lines in Fig. 1.1) R is high-valued, as expected.
This boundary is also demarcated by the curve for an ENZ material (κ = n). In the
case where κ = 0 (corresponding to a translucent dielectric), R < 0.5 for 1 < n < 5.8.
For the case where n→ ∞, R→ 1, albeit more slowly in relation to ENZ materials,
for all values of κ.

This analysis can be generalised by calculation of R for a range of ε′ and ε′′, and
plotting the results in a Cole-Cole plot40 (ε′ vs. ε′′). The Cole-Cole plot in Fig. 1.2
shows that R increases as ε′ becomes more negative. Also plotted in Fig. 1.2 are ε′ and



1.2. Fresnel Approach 7

Figure 1.2: Reflectance as a function of both ε′ and ε′′, with lines of constant n (solid) and κ
(dashed). Gold (silver) for optical frequencies is indicated by the thick blue (black) line.

ε′′ for gold and silver at optical frequencies. It can be seen that these two curves lie in
the region of negative ε′, where R is high-valued. Fig. 1.2 therefore demonstrates that
a negative real permittivity enables metals such as silver to be used in the manufacture
of high-quality mirrors. Fig. 1.2 also shows that there is a region of low |ε| within
which R is suppressed. This region can be described as a low loss tangent region,
where the loss tangent is defined as δ = ε′′/ε′, when {ε′, ε′′} > 0. Fig. 1.2 therefore
demonstrates why balls of polyethylene and large quartz crystals (both materials with
low loss tangents41, 42) are relatively transparent.

From this analysis, it can be seen that the eight classes of materials in Tab. 1.1 are sorted
in ascending order by the amount they reflect at normal incidence. In this chapter,
it is shown that a single material may exhibit many of these different properties: for
instance, a material may behave as a dielectric at one wavelength, and yet metallic
behaviour at another.

1.2 Fresnel Approach

The complex refractive index of a thin film of material can be extracted by comparison
of experimental measurements for reflectance and transmittance with theoretical values.
The theoretical values are obtained by modelling the film as a homogeneous thin film
of thickness t1 with complex refractive index ñ1, surrounded by two semi-infinite
non-absorbing media with frequency-independent refractive indices n0 and n2, as
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shown in Fig. 1.3. The effective (amplitude) reflection and transmission coefficients

Figure 1.3: A schematic showing the notation used and the physical picture for reflectance and
transmittance through a thin film.

(r and t) for a film in terms of the coefficients at each interface (ri j and ti j) can be
obtained by summation of the infinite geometric series of the reflections within the
film.34, 35 The final result is,

r = r01 +
r12t01t10e−2ñ1k1t1

1 + r12r01e−2ñ1k1t1
(1.16)

t =
t01t12e−ik1t1

1 + r12r10e−2ik1t1
. (1.17)

The (intensity) reflectance and transmittance values as measured in experiment are the
absolute magnitude squared of these expressions, i.e. R = |r|2 and T = |t|2. Written
out in full in terms of n0, ñ1 and n2, R and T assume the following form34, 43, 44,

R(n1, κ1) = Rnum(n1, κ1)/D(n1, κ1), (1.18)
T (n1, κ1) = Tnum(n1, κ1)/D(n1, κ1), (1.19)

where,
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Rnum(n1, κ1) = e2κ1qt1 (n2
0 − 2n0n1 + |ñ1|

2)(|n1|
2 + 2n1n2 + n2

2)

+e−2κ1qt1 (n2
0 + 2n0n1 + |ñ1|

2)(|n1|
2 − 2nn2 + n2

2)

+2cos(2n1qt1)[(n2
0 − |ñ1|

2)(|ñ1|
2 − n2

2) − 4n0n2κ
2
1]

−4k1sin(2n1qt1)[(n0 − n2)|ñ1|
2 − n0n2(n2 − n0)],

(1.20)

Tnum(n1, κ1) = 16n0n2|ñ1|
2, (1.21)

D(n1, κ1) = e2κ1qt1 (n2
0 + 2n0n1 + |ñ1|

2)(|n1|
2 + 2n1n2 + n2

2)

+e−2κ1qt1 (n2
0 − 2n0n1 + |ñ1|

2)(|n1|
2 − 2nn2 + n2

2)

+2cos(2n1qt1)[(n2
0 − |ñ1|

2)(|ñ1|
2 − n2

2) + 4n0n2κ
2
1]

+4k1sin(2n1qt1)[(n0 + n2)|ñ1|
2 − n0n2(n0 + n2)].

(1.22)

Here, q = k0/n0 where k0 = 2π/λ0, i.e. the wavenumber in the incident medium. The
explicit dependency of ñ1 upon ω has been omitted here for clarity.

Now that expressions for R and T of a thin film have been arrived at, the next step is to
formulate a function which, when minimised, will yield ñ1. If the complex value for
ñ1 is found exactly (given the film thickness and the indices of the surrounding media),
the two equations R(n1, κ1) = Re and T (n1, κ1) = Te will be satisfied, where Re and Te

are the values of reflectance and transmittance measured in experiment. Given these
two equations, the following function can be defined,

f (n1, κ1) = |R(n1, κ1, ω) − Re(ω)| + |T (n1, κ1, ω) − Te(ω)| , (1.23)

which is termed here the ‘Fresnel residual function’. When minimised, this function
will give ñ1 at frequency ω. To perform this minimisation, suitable trial ranges for
n1 and κ1 must be established for each wavelength in which n1 and κ1 are expected
to lie. Computations for R and T using these ‘guessed’ values are made for the
values of n1 and κ1 across these ranges and substituted into Eq. 1.23. Given that
there are two variables (n1 and κ1) which must be determined, the computational cost
of the process increases with the square of the number of trials taken in the range -
therefore, restriction of the range of guessed values to a physically plausible range is
recommended.



10 1. Determination of the Permittivity of Excitonic Thin Films

1.3 Kramers-Kronig Relations

Once the complex permittivity of a material has been extracted for all wavelengths,
the solutions need to be checked for physical plausibility. This can be done using the
Kramers-Kronig (KK) relations. These relations arise from causality arguments and
are defined as,35

ε′(ω) = 1 +
2
π
P

∫ ∞

0

ω′ε′′(ω′)
ω′2 − ω2 dω′ (1.24)

ε′′(ω) = −
2ω
π
P

∫ ∞

0

ε′(ω′) − εb

ω′2 − ω2 dω′. (1.25)

Here, P symbolises the Cauchy principal value and εb is a constant background
contribution to ε′. The infinite range stipulated in Eq. 1.24 & 1.25 imply that ε(ω)
must be known over the entire spectrum, or at least over the range where ε(ω) in
non-zero. The Kramers-Kronig relations also apply to n and κ and can be written in
the following form,

n(ω) =
1
π
P

∫ ∞

−∞

κ(ω′)
ω′ − ω

dω′ (1.26)

κ(ω) = −
1
π
P

∫ ∞

−∞

n(ω′)
ω′ − ω

dω′. (1.27)

Eq. 1.26 & 1.27 enable one to obtain n from κ or vice versa by a relatively simple
Hilbert transform on κ or n. The former of these transforms can be aided by identifying
that the Fourier transform κ(t) = F {κ(ω)} is real-valued for all times t, i.e.,

�m
∫ ∞

−∞

κ(ω)eiωtdω = 0

= �m
∫ ∞

0
(κ(−ω) + κ(ω))eiωtdω

=

∫ ∞

0
(κ(−ω) + κ(ω)) sin(ωt)dω. (1.28)

This implies that κ(ω) = −κ(−ω) i.e. that κ is odd under time-reversal symmetry.45

Using κ(ω) = −κ(−ω) in Eq. 1.26 produces a more accurate result for n and is slightly
more convenient than using Eq. 1.24, since Eq. 1.24 requires the data points for κ to
be linearly spaced in ω2, which is often not the case for experimental data.
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1.4 Permittivity of Excitonic Films

The permittivities of poly(vinyl alcohol) (PVA) thin films doped with excitonic dye
molecules are now procured using the procedure detailed above on experimental
reflectance and transmittance data. Here, ‘excitonic’ refers to the ability of the
molecules to host excitons, and ‘dye’ indicates the strong colour obtainable arising
from the affinity between the molecules and the PVA substrate. The dye molecule used
is 5,6-dichloro-2-[[5,6-dichloro-1-ethyl-3-(4-sulphobutyl)-benzimidazol-2-ylidene]-
propenyl]-1-ethyl-3 -(4-sulphobutyl)-benzimidazolium hydroxide, sodium salt, inner
salt (herein referred to as TDBC). With a sufficient dopant concentration, the dye
molecules form aggregates of 10 − 102 molecules, and the film exhibits a metallic
appearance in a narrow optical frequency range when illuminated with white light
(the microscopic origin of this metallic appearance is detailed in Ch. 2). Outside this
range, the film behaves like a transparent dielectric. Four such TDBC:PVA films are
considered in this section, each produced via a spin-coating procedure46 in collabora-
tion with Sara Núñez-Sánchez, whose practical work on fabricating and measuring
the reflectance and transmittance spectra of these films is acknowledged. It is implicit
from here on in this thesis that any original experimentally-determined values for
the permittivity derive from Sara’s measured reflectance and transmittance spectra
for these samples. Each of the films in question were fabricated to thicknesses of
approximately 70 nm, and supported by a one millimetre thick glass substrate. A
photograph of the most highly-doped of these (with a dye concentration of 1.46 wt%)
is shown in Fig. 1.4, alongside a 70 nm gold film for comparison. In order to show

Figure 1.4: A 70 nm gold film (left) and a 70 nm 1.46 wt% TDBC:PVA film (right, as
fabricated by Sara Núñez-Sánchez) illuminated with (unpolarised) sunlight.

clearly the steps involved and the challenges faced in extracting the permittivity of
these films from reflectance and transmittance data, the focus of this section is upon
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Figure 1.5: Reflectance (R) and transmittance (T ) as a function of wavelength at normal
incidence for the 1.46 wt% TDBC:PVA film shown in Fig. 1.4. Data credit: Sara Núñez-
Sánchez.

the 1.46 wt% film. The final results for the other three films are then displayed.
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Figure 1.6: Complex refractive index for a 70 nm film of 1.46wt% TDBC:PVA as deter-
mined with the Fresnel procedure.
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As a first step in the extraction process, reflectance and transmittance spectra for each
film were measured at normal incidence; the measured spectra for the 1.46 wt% film
are displayed in Fig. 1.5. These data were measured in nanometres (nm), but in this
thesis electron-volts (eV) are used predominantly; these two units are related by the
relationship eV = 1270.7/nm (5 s. f .). By application of the Fresnel approach detailed
above, initial results for ñ(ω), and hence ε(ω), obtained from these reflectance and
transmittance spectra are plotted in Fig. 1.6. It can be seen from Fig. 1.6 that the results
show two solutions for both n and κ: the physical solution, and a spurious solution.
The spurious solution emerges from the following limitations in the Fresnel approach:
inaccuracies in the measured reflectance and transmittance values;44 rounding errors
in the ‘guessed’ values for n and κ; and errors in the film thickness.47 The method
used to determine the film thickness is destructive to the film, and the value obtained
here is accurate to within 12%, giving a film thickness of t = 69.6 ± 8.1 nm.

In spite of these failings, the results in Fig. 1.6 demonstrate that there is less uncertainty
in κ than in n. Therefore, by application of KK analysis on κ, a physically plausible
solution for n (and hence ñ) can be obtained. This requires extraction of the physical
solution for κ for all energies considered. In order to do this, and to reduce the
uncertainty in κ introduced by the uncertainty in the film thickness, the Fresnel
procedure can be re-run for many thicknesses across the confidence interval for the
film thickness. The results from these calculations for twenty different film thicknesses
are displayed in Fig. 1.7a (overleaf). In this figure, a continuum of data points for
the physically-plausible solution for κ is now evident, along with a band of erroneous
results. In order to improve upon these values further, the transmittance through the
film can be assumed to have the following dependency (for a given thickness t),

T ≈ e−κt = e−κ
′t′ . (1.29)

This leads to,

κ′ =
t
t′
κ. (1.30)

By application of Eq. 1.30 (with t = 69.6 nm) to the data in Fig. 1.7a, the plot in
Fig. 1.7b is achieved, where in effect, the data have been deconvoluted.

The final results for n determined using Eq. 1.26 to perform KK analysis on the de-
convoluted physical solution of κ are displayed in Fig. 1.8a. ε′ and ε′′ are shown in
Fig. 1.8b, by use of Eq. 1.10 & 1.11.

From Fig. 1.8b, ε′ < 0 and ε′′ > 0 for the energy range 2.10 eV < E < 2.25 eV . This
indicates that for this range of energies, the 1.46 wt% TDBC:PVA film is metallic in
nature. This accounts for the metallic appearance of the TDBC:PVA film in Fig. 1.4.
Outside this range, the film behaves either as a lossy dielectric (E ≈ {2.04, 2.10} eV)
or as a translucent material: indeed, the value of n approaches that of the PVA host
(nPVA = 1.52) at the edges of the range of energies shown in the plot.
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Figure 1.7: κ for a 1.46 wt% TDBC:PVA film, assuming a range of thicknesses before (a)
and after (b) adjustment for these thicknesses.

The concentrations and thicknesses of the four TDBC:PVA films studied in this thesis
are summarised in Tab. 1.2. The distribution of thicknesses is a limitation of the
manufacturing procedure used. The results obtained by repetition of the extraction
procedure for permittivity on the three remaining TDBC:PVA films are displayed in
Fig. 1.9 (overleaf).
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Figure 1.8: The retrieved refractive index (a) and permittivity (b) for a 70 nm 1.46 wt%
TDBC:PVA film after KK analysis on κ.

Dye Concentration (wt %) Film thickness (nm)
0.12 64.9 ± 3.9
0.48 76.6 ± 5.9
1.00 69.7 ± 4.9
1.46 69.6 ± 8.1

Table 1.2: Dye concentration and thickness for each of the TDBC:PVA films studied in
this thesis. Data credit: Sara Núñez-Sánchez.

One general trend seen in Fig. 1.9 is that the minimum value of the real part of
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Figure 1.9: Experimentally-determined ε′ (blue circles) and ε′′ (black crosses) for
TDBC:PVA films with concentrations (a-c) 0.12 wt%, 0.48 wt% and 1.00 wt%, with
thicknesses 64.9 ± 3.9 nm, 76.6 ± 5.9 nm and 69.7 ± 4.9 nm respectively.

the permittivity decreases with concentration. If the dye were absent from the PVA
completely, the permittivity would be equal to ε = (1.52)2 = 2.31 for all photon
energies. Therefore, it is expected that a threshold concentration exists for which
the real part of the permittivity of the film dips below zero, and the film takes on
quasi-metallic optical properties. From the data shown in Fig. 1.9a, it is deduced
that this concentration is less than 0.12 wt%, since the minimum value of ε′ for the
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0.12 wt% sample is approximately equal to ε′ = −0.51.

The minimum in the real part of the permittivity decreases to ε′ = −1.3 for the
0.48 wt% TDBC:PVA film, and to ε′ = −4.2 for the 1.00 wt% TDBC:PVA film. The
lowest data point for the ε′ for the 1.00 wt% film as calculated is even less than this,
but the data points around the peak in κ from which ñ was deduced have the most
amount of noise for any of the samples tested. Therefore, the values shown for ε′

around this point are assumed to be subject to this experimental error. Indeed, given
the general trend of the evolution of ε′ from the other three samples (including the
minimum of ε′ = −5.6 for the 1.46 wt% sample), the evidence for this presumption is
bolstered.

Another observation drawn from Fig. 1.9 is that the energy range over which the real
part of the permittivity is negative increases with dye concentration. For the 0.12 wt%
TDBC:PVA film, this range is 2.10 eV < E < 2.12 eV . As shown above, this range
increases to 2.10 eV < E < 2.25 eV for the 1.46 wt% TDBC:PVA film. This range of
energies is sometimes referred to as the ‘polariton gap’.48

1.5 Computing the Apparent Colour of Materials

All structures (be they bulk, planar, or nanoparticle structures) have reflectance and
transmittance spectra associated with them. Some structures, such as balls of strongly
water-absorbing polymers49 in aqueous environments, or materials coated with VANTA
black,50 reflect relatively little in the visible range; whereas others, such as bulk silver,
reflect strongly in the visible range. The visible spectra give rise to colours as seen by
the human eye. The human eye itself possesses three types of cone cells embedded
in the retina, with each cone type containing a different light-sensitive pigment.51

These different pigments have different peak absorption wavelengths and different
sensitivities, as shown in Fig. 1.10 (overleaf). It is the relative amount of each of the
three cone cells stimulated which produces the colours observed by the human eye.

In order to verify the reflectance and transmittance calculations made in this thesis, a
function was developed to compute the RGB values which best represent the colours
that would be observed by the human eye, taking the reflectance (or transmittance)
spectra as inputs. This code is detailed in App. A.1. To illustrate the range of colours
produced by the function, the visible spectrum is plotted alongside the three curves
in Fig. 1.10. The spectrum was produced using 200 roughly monochromatic square
spectra, each with equal intensity, across the visible range.

Colour calculations for the measured spectra of the 70 nm 1.46 wt% TDBC:PVA
film at normal incidence are shown in Fig. 1.11. The orange colour as observed in
reality for reflection (cf. the photograph of the same system in Fig. 1.4) is recovered.
Therefore, given that the code can be used to reproduce an experimentally-observed
colour, it can by extension be applied to predict the colour observed given a particular
spectrum. This is explored in the context of thin films and multilayer stacks in Ch. 3.
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Figure 1.10: Curves: Relative absorbance (sensitivities) for the s (short, or blue) m
(medium, or green) and l (long, or red) cones in the typical human eye. The spectrum
shown is computed using the data from these three curves.

Figure 1.11: The calculated colours from reflectance (orange) and transmittance (greenish)
spectra for a 70 nm 1.46wt% TDBC:PVA film.

One current limitation of the colour produced is that the range of wavelengths for which
experimental data is available in Fig. 1.11 is not inclusive of the visible wavelength
range 400 nm < λ < 450 nm: this range is dominated by the s (or blue) cone, seen
in Fig. 1.10. The omission of this range means that the RGB colours calculated may
suffer from an underestimate in the B (blue) channel, and consequently, the colours
plotted in Fig. 1.11 may not be as blue as they might be in reality. Given that the
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reflectance of the TDBC:PVA film is dominated by the peak at around λ = 580 nm,
and that R is expected to be low-valued for this range of wavelengths, the orange
colour observed in reflectance is recovered regardless of this omission. However,
the green colour plotted for transmittance in Fig. 1.11 is almost certainly in need of
adjustment: this is seen by continuation of the line for transmittance in Fig. 1.11 to
shorter wavelengths, where it is expected that T should be high-valued.

1.6 Conclusions

The optical properties of a material such as its colour, the fraction of light it reflects
and the fraction it transmits are governed by its complex permittivity, ε. In order to
extract the permittivity of a thin film from its reflectance and transmittance spectra,
the thickness of the film must be determined with as much accuracy as possible.
Fresnel calculations over a range of film thicknesses can help to achieve smoother
numerical solutions for the imaginary part of the refractive index, κ. These results can
be deconvoluted and subsequently analysed using the Kramers-Kronig (KK) relations
to find the real part of the refractive index n. The KK relations themselves are best
used in the form where one integrates over all frequencies (−∞ < ω < ∞), with the
application of time-reversal symmetry on κ. Once n and κ are established, ε = ε′ + iε′′

can be found easily.

The metallic appearance of plastic films doped with sufficient concentration of the
excitonic dye TDBC is no coincidence: the permittivity of such films within a narrow
range of photon energies is like that of a metal, with a negative real part. This range
of energies increases with dye concentration. The question remains as to what extent
TDBC-doped nanostructures exhibit metallic properties; this question is addressed in
the following chapters. For the moment, this negative permittivity causes such films
to be highly reflective in this range, and they appear orange as a result. This colour
is recovered by use of a computer program operating on experimental reflectance
data. The lack of experimental data at the blue end of the visible spectrum for the
samples considered within this chapter means that the calculated colours are not
completely accurate. In order to calculate more accurate colours, a model for ε is
needed. Development of such a model is the central topic of Ch. 2.





2
Modelling the Permittivity of

ExcitonicMaterials
In this chapter, semi-classical and quantum-mechanical models for the permittivity of
excitonic materials are introduced and evaluated against experimental data. Models
to describe metals are also examined.

2.1 Introduction

As seen in Ch. 1, permittivity ε governs the response of a material to incident light.
So far, the microscopic origin of ε has been left undiscussed. In this chapter, the
microscopic origin of ε is explored, and several models (semi-classical and quan-
tum mechanical) are evaluated against experimental data for metals and excitonic
TDBC:PVA films. It is implicit in this chapter that the materials considered are linear
and non-magnetic.

As a starting point for the interaction of a non-magnetic isotropic material with an
incident optical field, the electric displacement vector D is defined,

D = ε0εE, (2.1)

where E is the electric field strength of the optical field. For linear materials, D
is written as a linear function52 of the polarisation density induced in the material
(P = ε0χE) as,

D = ε0E + P
= ε0(1 + χ)E, (2.2)

where χ is the linear electric susceptibility of the material. Comparison of Eq. 2.2 with
Eq. 2.1 gives the relationship ε = 1 + χ.
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These fundamental macroscopic relationships enable models (either semi-classical or
quantum) to be built mathematically in order to calculate ε.

2.2 Semi-Classical Models for Permittivity

In this section, two semi-classical theoretical models for material permittivity - the
Lorentz model and the Drude model - are reviewed and evaluated. The Lorentz
model is more suited to modelling insulators, and the Drude model is more suited to
modelling metals. Mathematical expressions for both the steady-state and temporal
responses of each are examined, and their applicability to modelling the permittivity
of silver, gold and TDBC:PVA is quantified.

2.2.1 The Lorentz model

Since the advent of the Bohr model53 of the atom it has been known that electrons
do not orbit their nuclei at arbitrary distances, but instead occupy discrete shells - a
fact explained by application of De Broglie’s postulate of wave-particle duality54 to
the electron. With application of an electric field provided by a light source, a driving
force is imparted upon these bound electrons, distorting the positions of the electrons
from the orbitals in which they sit. Therefore, the starting point for a semi-classical
frequency-dependent model of permittivity for a general material is to assume that
the electrons in the material can be modelled as point particles, each with mass m,
bound to their electron orbitals by a harmonic potential with resonant frequency ω0.
The motion of the electrons is assumed to be damped; in practice, this damping can
arise from processes such as electron-phonon,55, 56 electron-defect57, 58 and (to a lesser
extent) electron-electron59 scattering. In the Lorentz model, all of these processes are
accounted for phenomenologically by a single (real) constant damping term, γ. In
general, this damping term is a function of temperature,55 but room temperature is
assumed throughout this thesis.

The response of the system to a uniform electric field E is considered as follows: first,
the force law F = eE is assumed. This force induces a separation of charge of length
x between the electrons and the unperturbed orbitals, and as a result, the potential
U = eE · x is established. The Lagrangian for the system is written as,

L(x, ẋ, t) =
m
2

e−γt
(
ẋ2 − ω2

0x2 −
2e
m

E · x
)
, (2.3)

from which the following equation of motion can be derived using the Euler-Lagrange
equation,60
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m(ẍ − γẋ + ω2
0x) = eE(t). (2.4)

Solving this classical forced damped harmonic equation of motion in the time domain
assuming that the magnitude of the applied field takes the form E(t) = E0exp(−iωt)
gives the following solution,

x(t) = xc(t) + xp(t). (2.5)

Here,

xc(t) = e−γt/2
(
Aeibt + Be−ibt

)
, (2.6)

xp(t) = x0e−iωt. (2.7)

The constants A, B and x0 are complex and b2 = ω2
0 − (γ/2)2. The solution for xc(t) is

transient, and the steady-state solution is therefore wholly dependent upon xp(t). The
amplitude x0 is written as,

x0 =

(eE0

m

) 1
ω2

0 − ω
2 − iγω

, (2.8)

which can be found by substitution of xp(t) into the equation of motion (Eq. 2.4). This
separation of charge length is related to permittivity in the following way: polarisation
of a material per unit volume is defined as,61

P = ε0χ(ω)E
= Nex, (2.9)

where N is the number of oscillators per unit volume and χ the electric susceptibility.
From Eq. 2.9, the permittivity contribution ε = 1 + χ arising from these oscillators can
be found as,

ε(t) = 1 +
Nex(t)
ε0E(t)

. (2.10)

The division of x by E in Eq. 2.10 causes ε to approach a constant value as t → ∞,

ε(ω) = εb(ω) +

(
Ne2

ε0m

)
1

ω2
0 − ω

2 − iγω
, (2.11)
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where εb is the background contribution to the permittivity arising from the lattice.62

This result is known as the Drude-Lorentz model63 (p.251). Its applicability can
be extended to general dielectric materials by taking the assumption that there exist
a number of resonant frequencies, ωi. The relative strength of the ith oscillator is
accounted for by a reduced oscillator strength64 fi (where

∑
i fi = 1) so ε becomes,

ε(ω) = εb(ω) +
∑

n

fnω2
p

ω2
n − ω

2 − iωγn
, (2.12)

where a plasma frequency ω2
p = Ne2/ε0m has been defined. In this way, εb(ω) in

Eq. 2.11 can be imagined as the result of many single-mode harmonic oscillators
spectrally far-removed from electronic transition energies.48, 65 Some authors66, 67

write Eq. 2.12 in the form,

ε(ω) = εb(ω) +
∑

n

fn ω2
n

ω2
n − ω

2 − iωγn
, (2.13)

which necessitates redefinition of fi. The form in Eq. 2.13 is suited to materials with a
discrete number of resonances, termed Lorentz dielectrics.

Considering only a single resonance at ω0 and a constant background contribution,
Eq. 2.13 reduces to,

Figure 2.1: Colour plot: reflectance for a boundary constructed from ε1 = 1 and ε2 =

ε′ + iε′′. Solid lines: Cole-Cole plots for ε arising from single-oscillator Lorentz models.
Broken lines: the boundaries for differing behaviour (ε′ = 0, ε′ = −2 and ε′ = ε′′).
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ε(ω) = εb +
f0 ω2

0

ω2
0 − ω

2 − iωγ
. (2.14)

The properties of the single-oscillator Lorentz dielectric depend strongly upon the
reduced oscillator strength, f0: if f0 is sufficiently large then the real part of the per-
mittivity (ε′) will become negative in a small wavelength range below ω0

68 and the
material will take on a metal-like appearance.46 In practice, ω0 may correspond to an
exciton excitation. Since any oscillator strength fi depends upon the emitter concen-
tration, a threshold concentration necessary for a negative permittivity is produced,
as illustrated in Fig. 2.1: in this figure, four Cole-Cole (ε′ vs. ε′′) plots are shown for
four differing values of f0. In Fig. 2.1, the dielectric with the smallest value of f0 is
indicated by the orange line, and the largest in black. These plots are superimposed on
a reflectance plot similar to Fig. 1.2. From Fig. 2.1, as f0 increases, the reflectance
of the macroscopic Lorentz dielectric increases in a small range of wavelengths as it
becomes more metal-like in this range. As shown however, there is no escape from the
inherent dielectric nature of such materials, as ε in the Cole-Cole plot will always pass
through the low loss tangent region. Therefore, Lorentz dielectrics behave optically
like metals at some wavelengths, and like dielectrics at others.

This property is seen more readily in Fig. 2.2 (overleaf), where a best fit for the
permittivity of the 70 nm 1.46 wt% TDBC:PVA film examined in Ch. 1 is shown
using a single-oscillator Drude-Lorentz model (Eq. 2.14). This fit was obtained by
determination of ω0, f0 and γ in turn by evaluation of ε(ω) using Eq. 2.14, with
comparison to the experimentally-determined values of ε(ω).

The transient behaviour of ε(ω) is now examined semi-classically, by finding solutions
for A and B in Eq. 2.6. This requires imposing initial conditions on x and ẋ. Presuming
the electrons in the material to be initially unperturbed and at rest within their orbitals,
the conditions x(0) = ẋ(0) = 0 are chosen. These two conditions lead to the following
expressions for A and B,

A =
x0

2b

(
i
γ

2
− (b + ω)

)
(2.15)

B =
x0

2b

(
−i
γ

2
− (b − ω)

)
. (2.16)

With the use of Eq. 2.10, the following full, time-dependent solution for ε is ob-
tained,

ε = εb +

(
Ne2

ε0m

) 1 + e−γt/2
[(

γ
2b − iωb

)
sin(bt) + cos(bt)

]
ω2

0 − ω
2 − iγω

, (2.17)

which for t → ∞ approaches Eq. 2.11.
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Figure 2.2: Experimentally-determined (a) ε and (b) ñ for a 70 nm thin film of 1.46 wt%
TDBC:PVA (circles and crosses), with the same quantities from the best-fit single-oscillator
Lorentz model (lines). The parameters used are f0 = 0.3, γ = 46.1 meV and ω0 = 2.11 eV .

Using the same parameters used to plot ε in Fig. 2.2, the time-dependent solution
is plotted in Fig. 2.3. The oscillatory behaviour of ε in Fig. 2.3 follows the angular

frequency b =

√
ω2

0 − γ
2/4 − ω. When γ � |ω0 − ω|, b ≈ ω0 − ω, which is

approximately equal to the generalised Rabi frequency69 Ω̃ =
√

Ω2 + (ω − ω0)2.
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Figure 2.3: The real (a) and imaginary (b) parts of ε in the time domain for 1.46 wt%
TDBC:PVA using the best-fit Lorentz model, using the same parameters as Fig. 2.2.

2.2.2 The Drude model

In metals, the leading contribution to permittivity arises from free electrons.70 The
Lorentz model for dielectrics can be adapted to develop a semi-classical model which
includes contributions from free (as opposed to bound) electrons. This is accomplished
mathematically by removal of the resonant frequency in Eq. 2.4, i.e. ω0 = 0. This
results in the electrons being unbound from their ions in the metal model. The
phenomenological damping term γ is retained, in order to account for all collisional
processes. In doing this, the equation of motion for the Drude model is obtained,

mẍ − mγẋ = eE(t). (2.18)

As before, a time-dependent solution can be found by solving Eq. 2.18 for x, with
substitution of this solution into Eq. 2.10. The full, time-dependent solution for ε takes
the form,

ε(t) = εb +

(
Ne2

ε0m

)
1

ω2 + iωγ

(
e−γte−iωt − 1

)
, (2.19)

for which as t → ∞ gives the steady-state equation,

ε(ω) = εb(ω) −
ω2

p

ω2 + iγω
, (2.20)

where ω2
p = Ne2/ε0m. Besides the assumption that free electrons are the only contri-

bution to ε, in the Drude model fixed ions are assumed, and it is also assumed that
electron-electron interactions can be neglected.70
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Figure 2.4: Permittivity for bulk silver over the optical range calculated with a Drude fit
using the parameters as determined by Le Ru and Etchegoin5 next to experimental data.71–74

The plasma frequency ωp for metals such as silver and aluminium is in the ultraviolet
(UV) region of the spectrum. Below this frequency, ε′ < 0 and metals become
highly reflective (cf. Fig. 2.1). This is the explanation for why silvered mirrors reflect
visible frequencies particularly well. Permittivity calculations made using Eq. 2.20
for bulk silver are shown in Fig. 2.4, in comparison to four sets of experimentally-
determined data.71–74 The differences in experimental data can be attributed to variation
in temperature for the various experiments: a higher temperature can give a slightly
raised value75 of ε′′. Overall, the Drude model provides a close fit to the experimental
values over the range shown. The Drude model can therefore be relied upon to calculate
physically realistic values of the permittivity for bulk silver within this range.

In common with silver and aluminium, the plasma frequency for gold is in the UV,
but there exists an extra contribution to the permittivity besides the contribution from
free electrons: the interband contribution.76 The Drude-Lorentz model can be adjusted
phenomenologically to accommodate this additional contribution in the following
way,5, 76

ε(ω) = ε∞

1 − ω2
p

ω2 + iωγ

 +
∑

n

Anωn

[
eiφn

(ωn − ω) − iγn
+

e−iφn

(ωn + ω) + iγn

]
. (2.21)

Here, φn are phase shifts, ωn are the frequencies of the interband transitions, and γn

are their associated damping terms. An is a dimensionless constant. Using Eq. 2.21
with the parameters used by Le Ru and Etchegoin,5, 76 the permittivity for bulk gold is
plotted in Fig. 2.5 against experimentally-determined values.71–74 The fit is sufficiently
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Figure 2.5: The calculated real (black) and imaginary (blue) parts of the permittivity for bulk
gold using the Lorentz model with interband transitions (Eq. 2.21) plotted against experimental
data.71–74 The turning points of the interband transitions lie at 2.64 eV (470 nm) and 3.82 eV
(325 nm).

close to the four datasets available for Eq. 2.21 to be used to make physically plausible
calculations.

In order to model metal nanoparticles, one cannot simply take Eq. 2.21 at face value,
because γ is dependent upon the length scale of the system. Expressing γ in terms of
the Fermi velocity (vF) of the metal and the radius (r) of the metal nanoparticle,77

γ = γb + A
vF

r
, (2.22)

where A is a dimensionless constant of order unity. Eq. 2.22 implies that smaller
nanoparticles (with diameters less than d ≈ 20 nm) have correspondingly larger values
of γ, leading to spectrally flatter permittivities.

2.3 Quantum Models for Permittivity

Throughout the whole discussion of the Lorentz and Drude models for permittivity,
nothing was assumed about the specifics of the microscopic structure of the material
modelled, except that the electrons in the material occupy orbitals and respond to light
as classical damped harmonic oscillators. Equivalently, the Lorentz model assumes
that each atom in the material can be modelled as a classical non-interacting harmonic
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oscillator. Given that real atoms and molecules have energy eigenstates between which
the electrons can transition, this simplicity does not capture all of the physics involved.
To address this problem, physically more appealing quantum-mechanical models are
now examined for molecular materials, based on the specifics of the microscopic
structure of the material in question.

The start point is to examine the macroscopic polarisation, P, induced in a general
linear material by an applied electric field E. Macroscopic polarisation is proportional
to the average dipole moment of each molecule in the material, represented by 〈d〉.
Eq. 2.9 can be re-written for linear materials in the following way,52

P =
1
2
ε0E(χe−iωt + χ∗eiωt) = N〈d〉, (2.23)

where N is now the number density of molecules. To find χ (and hence ε) an expression
for 〈d〉 is required. In quantum mechanics, 〈d〉 is the expectation value of the dipole
moment, computed from the trace of the matrix ρd, where ρ is the density matrix for
the system and d is the transition dipole matrix.

This general treatment can in principle be applied to any material. However, in this
thesis it is excitonic dye molecules only which are treated quantum mechanically. The
primary reason for this is that the Drude model suffices to model both gold and silver,
whereas the Lorentz model for permittivity does not fully account for all of the features
seen in the permittivity of a TDBC:PVA film. Indeed, the damping parameter used
in the Lorentz model bears little correlation to the decay rate observed by others.78

Therefore, in the following subsections, a quantum mechanical description for the
permittivity of aggregated excitonic dyes is developed. The dual hope is to establish
a more accurate model for permittivity than the Lorentz model, and to yield results
which might help form an instructive microphysical picture of such dyes.

2.3.1 The density matrix

The dynamic evolution of a quantum system (or an ensemble of quantum systems)
subject to a perturbing potential may be deduced by solving the Schrödinger equation79

for the wave function |Ψ〉,

i~
∂

∂t
|Ψ〉 = Ĥ|Ψ〉, (2.24)

given the complete Hamiltonian Ĥ. Performing this analysis for a two-level system
illuminated by an electric field leads to unitary evolution between the two levels.
However, when the system is brought into contact with a thermal environment, decay
from the excited state - along with dephasing on the coherence of the two levels -
becomes induced in the system; this causes the response to become damped. The
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density matrix offers a neat way of representing this mathematically. The density
operator is defined by,80–82

ρ̂ =
∑

k

|Ψ〉〈Ψ|, (2.25)

where the wave function |Ψ〉 contains the set {|k〉}, i.e. the energy eigenstates of the
system constituents, be these molecules, emitters, or atoms. The elements of the
density matrix are computed using these eigenstates around the density operator,

ρi j = 〈i|ρ̂| j〉. (2.26)

The diagonal density matrix elements written in terms of the eigenstate coefficients are
ρii = c∗i ci = |ci|

2. These diagonal elements are the populations82 of the density matrix
and correspond to the probability of any given emitter being in that particular state.
This leads to two constraints on the density matrix such that,

∑
i

ρii = Tr(ρ) = 1 (2.27)

Tr(ρ2) ≤ 1. (2.28)

The case where Tr(ρ2) = 1 corresponds to a pure state,80 and under this circumstance
all the constituent systems occupy the same energy eigenstate. In theory, this only
occurs for ensembles at T = 0 K (absolute zero). Boltzmann statistics83 show that an
undisturbed ensemble of two-level systems at room temperature may be regarded as
occupying a pure state to an accuracy of 99% if the ground state of each system is
separated from the first excited state by at least 0.112 eV .

In the case where Tr(ρ2) < 1, the system is a thermal ensemble, equivalent to a mixed
state ensemble, or a coherent superposition of states81 used by other authors. The
off-diagonal density matrix elements ρi j = c∗i c j (i , j) are the coherences of the
density matrix. These are generally complex and relate the response of the system to
the applied field;82 they also give a measure of the superposition of any given element
of the ensemble between the two levels.

The density matrix can be used to calculate the expectation value of an observable.
This is seen by calculation of the expectation value of an observable Q̂,
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〈Q̂〉 = 〈Ψ|Q̂|Ψ〉

= 〈Ψ||Ψ〉〈Ψ|Q̂|Ψ〉

= 〈Ψ|ρ̂Q̂|Ψ〉

=
∑

i

ρiiQii

= Tr(ρQ). (2.29)

Therefore, the expectation value of an observable is the trace of the matrix product of
the observable with the density matrix.

The time-dependency of ρ can be determined by taking the time derivative of Eq. 2.25
with substitution of the Schrödinger equation (Eq. 2.24),

dρ̂
dt

=
d
dt

(|Ψ〉〈Ψ|)

= |Ψ̇〉〈Ψ| + |Ψ〉〈Ψ̇|

=
i
~

(−Ĥ|Ψ〉〈Ψ| + |Ψ〉〈Ψ|Ĥ)

= −
i
~

(Ĥρ̂ − ρ̂Ĥ)

= −
i
~

[Ĥ, ρ̂]. (2.30)

This result is the Liouville equation and governs the time evolution of an ensemble.
For the case where the interactions with the environment are neglected, the expected
unitary evolution is recovered.84

Given that the interaction of a system with its environment causes dephasing on the
coherences of the density matrix, for a thermal bath with no memory of interaction
(the Born-Markov regime85), an assumption can be made that this dephasing occurs
exponentially. This leads to the following differential matrix equation for ρ,

ρ̇ = −
i
~

[H, ρ] − LDρ, (2.31)

which is the Liouville-von Neumann equation.86 Here, LD is the dissipative Lindblad
superoperator containing the constants corresponding to the population relaxation and
dephasing rates between the levels.84, 87
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2.3.2 The Hamiltonian for an excitonic material

Excitons are quasi-particles comprising an electron and an electron hole, first described
by Frenkel as, “excitation waves” .88 Excitons in various guises can be hosted by
insulators,88 semiconductors89 and organic dye molecules.90 The excitons examined in
this thesis are Frenkel excitons, where the electron holes are assumed to be localised.
Excitons have a particular excitation energy.88 Given these properties, an excitonic
material comprising organic dye molecules can be treated as an ensemble of quantum
systems with two energy eigenstates each. Each molecule in the ensemble is an open
quantum system, and as such, the Hamiltonian for an open quantum system can be
expressed as,91, 92

Ĥ = Ĥ0 + ĤB + ĤI , (2.32)

where Ĥ0 is the Hamiltonian of the isolated system, ĤB is the bath Hamiltonian
which describes the interaction of Ĥ0 with the environment, and ĤI is the interaction
Hamiltonian to describe the interaction of Ĥ0 with an applied electric field.

For TDBC molecules in a PVA host medium, ĤB should represent the 3νm − 6 = 129
intramolecular93 vibrational modes (where νm is the number of atoms per molecule)
and a multitude of intermolecular modes. These vibrational modes are responsible for
induced decay and dephasing in the system,94, 95 along with a small shift in the excited
state energy of the molecules.96 Rather than determining ĤB directly, two commonly-
used simplifications can be made: first, the effects of the bath (vibrationally induced
decay and dephasing) can be accounted for phenomenologically by application of the
dissipative Lindblad superoperator (see above). Second, the small energy shift induced
by the bath can be assumed to be small, and is ignored.91, 92, 97

2.3.2.1 Single-exciton Hamiltonian

For an ensemble of N two-level excitonic molecules in a nanoparticle, Ĥ0 can be
written as,96, 98, 99

Ĥ0 = ~ω0|0〉〈0| +
N∑

i=1

~ω(1)
1 |1i〉〈1i| +

N∑
j=1
j,i

Ji j|1i〉〈1 j|

 . (2.33)

Here, |0〉 is the ground state of the nanoparticle, and |1i〉 represents a single exciton
excited in the nanoparticle, localized on molecule i, with all of the other molecules in
their ground states, i.e. |1i〉 = |01, ..., 1i, ..., 0N 〉. In this way, only a single exciton is
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permitted within the ensemble at any time. The first term in brackets in Eq. 2.33, ~ω(1)
1 ,

represents the average energy eigenvalue of a non-interacting molecule in the excited
state (an exciton). The second term corresponds to inter-molecular coupling, with
coupling energy Ji j. The coupling is taken to be Förster (dipole-dipole) coupling98, 100

since the overlap between the wave functions of each site are assumed to be small.
The corresponding interaction Hamiltonian ĤI modelled in the Schrödinger picture101

and written in the same basis is,

ĤI =

N∑
i=1

(
g∗i |0〉〈1i| + gi|1i〉〈0|

)
. (2.34)

The coupling strength of the dipole to the external optical driving field is defined
as gi = −E(ri) ·µi, where µi is the transition dipole moment of molecule i. The
single-exciton Hamiltonian matrix written in site basis is therefore,

HN =



~ω0 g∗1 g∗2 · · · g∗
N

g1 ~ω(1)
1 J12 · · · J1N

g2 J21 ~ω(1)
1 · · · J2N

...
...

...
. . .

...

gN JN1 JN2 · · · ~ω(1)
1


. (2.35)

Although thorough, the Hamiltonian in Eq. 2.35 has dimension (N + 1)× (N + 1), and
a density matrix formed using Eq. 2.35 would also have these dimensions. Given that
N can typically be several thousand (for even a moderately-doped 100 nm diameter
nanosphere), solving for such a large matrix would be computationally very demanding,
despite considering only a single exciton in the ensemble. Therefore, a simpler
Hamiltonian for a TDBC-doped nanoparticle which approximates the formalism above
is now sought, which can be used to model macroscopic excitonic materials.

2.3.2.2 Nearest-neighbour Hamiltonian

As a first step of this simplification process, it is identified that for an ensemble of
aggregates (where the monomers within each aggregate are aligned with each other),
the intra-aggregate coupling terms dominate.102 This enables neglection of the inter-
aggregate coupling terms. By making this approximation, the approach taken to
describe a material (film or nanoparticle) doped with randomly distributed aggregates
is to first describe a Hamiltonian for a single aggregate, and then to take an orientational
average. This approach significantly eases computation by reduction of the dimension
of the Hamiltonian from the total number of molecules in the structure (N ≈ 104 or
greater) to merely the number of monomers in each aggregate (n ≈ 101).

The next step is to identify that for a single aggregate, nearest-neighbour couplings
dominate the intra-aggregate interactions. The Hamiltonian matrix formed under
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this approximation using Eq. 2.33 is termed the ‘nearest-neighbour Hamiltonian’,
and denoted ĤNN . The nearest-neighbour Hamiltonian matrix for a single aggregate
containing n monomers takes the form,

HNN,n =



~ω0 0 0 0 · · · 0
0 ~ω(1)

1 J 0 · · · 0
0 J ~ω(1)

1 J · · · 0
0 0 J ~ω(1)

1 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · ~ω(1)
1


. (2.36)

Here, J represents the nearest-neighbour coupling (presumed equal for each site in the
regular lattice). The eigenvalues and eigenstates for this Hamiltonian matrix are now
derived. Eq. 2.36 can be written in the form,

H =

(
~ω0 0

0 Hn + λI

)
, (2.37)

where Hn + λI is the sub-matrix of HNN,n written explicitly in Eq. 2.36, and represents
an aggregate with n molecular units. The eigenvalues of Eq. 2.36 can be determined
by solving,

(~ω0 − λ)|Hn| = 0. (2.38)

The first of these is the ground state energy λ0 = ~ω0, which readily yields the
eigenvector |0〉. The other eigenvalues and eigenvectors require more consideration.
The first step is to find an expression for |Hn|. Writing this determinant in terms of
further sub-matrices gives the following recursive relationship,

|Hn| = (~ω(1)
1 − λ)|Hn−1| − J2|Hn−2|. (2.39)

The next step is to identify that this recursive relationship can be put into the same
form as the recurrence relation for Chebyshev polynomials,103 i.e.,

Un+1(x) = 2xUn(x) − Un−1(x). (2.40)

In order to do this, both sides of Eq. 2.39 are multiplied by J−n,

J−n|Hn| =
~ω(1)

1 − λ

J
J−(n−1)|Hn−1| − J−(n−2)|Hn−2|. (2.41)

Redefining |H′n| = J−n|Hn| gives,
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|H′n| =
~ω(1)

1 − λ

J
|H′n−1| − |H

′
n−2|. (2.42)

In doing this, the matrix determinants |H′n| are identified as Chebyshev polynomials
of the second kind (written as Un(x)) with argument x = (E − λ)/2J. Therefore, the
eigenvalues λ are solutions of the equation,

|Hn| = JnUn

~ω(1)
1 − λ

2J

 = 0. (2.43)

Given that the explicit form of Chebyshev polynomials of the second kind is,

Un(x) =
sin(n + 1) arccos(x)

sin(arccos(x))
, (2.44)

the set of eigenvalues λ are found as,

λ = ~ωm = ~ω(1)
1 − 2J cos

( mπ
n + 1

)
. (2.45)

The eigenvectors |m〉 are determined by analysis of Hn|m〉. The jth element of Hn|m〉
is,

Jm j−1 + ~ω(1)
1 m j + Jm j+1 = λm j, (2.46)

which can be re-arranged into the form,

m j−1 +

~ω(1)
1 − λ

J

 m j + m j+1 = 0. (2.47)

This expression is (again) identical to the recurrence relation for Chebyshev polynomi-
als.103 By identifying,

m j+1 = U j(−(~ω(1)
1 − λ)/2J)

= C sin

( j + 1) arccos

~ω(1)
1 − λ

2J


= C sin

(
j + 1
n + 1

mπ
)
, (2.48)

where C =
√

2/n + 1 is a normalisation constant, the final expression for the excited
states of the aggregate is,97, 104
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|m〉 =

√
2

n + 1

n∑
j=1

sin
( jmπ
n + 1

)
|1 j〉, (2.49)

where 1 < m < n. These states each describe a single exciton delocalised over the
aggregate, with energy ~ωm.

The accuracy of the nearest-neighbour Hamiltonian is quantified by consideration of
the next nearest-neighbour interactions using a similar process. Adopting the same
approach as above inclusive of the next nearest-neighbour interactions generates a
recurrence relation involving four terms. Such a recurrence relation might in principle
be solved by comparison with four-term recurrence relations of the Hypergeometric
function,105 but it can be shown that such a correction is less than 5% different to
the nearest-neighbour Hamiltonian. The nearest-neighbour Hamiltonian is therefore
sufficiently accurate to describe the system as a whole.

2.3.2.3 Reduction of the nearest-neighbour Hamiltonian

Thus far, the simplification process of the Hamiltonian for aggregates has reduced
the number of excited eigenstates in the system from the number of molecules in the
structure to merely the number of molecules in each aggregate. However, analysis of
the relative strengths of the transition dipole moments of the aggregate shows that half
of these eigenstates can be discarded with impunity. The starting point is the definition
of the transition dipole moment for the aggregate,

d0m = 〈m|
∑

j

µ̂0 j|0〉 (2.50)

=

√
2

n + 1

 n∑
j=1

sin
( jmπ
n + 1

)
〈1 j|


∑

j

µ̂0 j

 |0〉, (2.51)

where µ̂ is the monomer dipole moment operator. Assuming that all sites are equal,

d0m =

√
2

n + 1

n∑
j=1

sin
( jmπ
n + 1

)
µ. (2.52)

The sum in Eq. 2.52 is a combination of two geometric series, which when evaluated
gives cot(mπ/2(n + 1)) for even m, and zero otherwise. The full formula for the
transition dipole moment of the aggregate can therefore be written as,106

d0m = µ

√
1 − (−1)m

n + 1
cot

(
mπ

2(n + 1)

)
. (2.53)
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This proves that states with even m cannot couple with the incident field, and can
therefore be discarded. This reduces the number of states to be considered by a factor
of two. By a similar process, it can be shown that dnn′ = 0 where n > 0 and n , n′.
The interaction Hamiltonian for the aggregate is now written as,

ĤI =

(n+1)/2∑
m

G0m (|0〉〈2m − 1| + |2m − 1〉〈0|) , (2.54)

where G0m = E · d0m is the coupling strength of the electric field to the aggregate dipole
moment d0m. In the case where the ensemble comprises randomly-distributed aggre-
gates this dipole moment can be taken as the orientational average of the aggregate
dipole moment, i.e.

d̄01 = d01/D, (2.55)

whereD is the dimensionality of the space in which the dipoles are distributed. This
orientational average is derived in App. B.1.

With the use of Eq. 2.45, 2.49 & 2.54, the reduced, diagonalised nearest-neighbour
Hamiltonian for the aggregate is written in the form,

H =



~ω0 G01 G03 · · · G0n′

G01 ~ω1 0 · · · 0
G03 0 ~ω3 · · · 0
...

...
...

. . .
...

G0n′ 0 0 · · · ~ωn′


, (2.56)

where,

n′ =

{
n (n = odd)
n − 1 (n = even). (2.57)

The matrix Hamiltonian in Eq. 2.56 can be further reduced while maintaining a
relatively accurate - yet simpler - model. Eq. 2.53 implies that even for very modest
aggregates with n ≈ 6, the leading dipole moment (d01) is approximately a factor of
three stronger than the next (d03). Given that the effective transition dipole moment of
the aggregate is dominated by d01, one is able to approximate the system by taking
this sole excited eigenstate, thereby retaining only the states |0〉 and |1〉. By Eq. 2.49,
|1〉 is written explicitly as,

|1〉 =

√
2

n + 1

n∑
j=1

sin
( jπ
n + 1

)
|1 j〉, (2.58)
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which has the eigenvalue (by Eq. 2.45) of,

~ω1 = ~ω(1)
1 − 2J cos

(
π

n + 1

)
, (2.59)

which is of the form ~ω1 = ~ω(1)
1 + ∆. The excitation energy of the aggregate (~ω1) is

shifted from the monomer value by ∆, and this shift arises from the interaction with
other molecules in the aggregate. This energy shift has been observed elsewhere for
aggregates,96, 107 and is loosely termed the ‘effect of aggregation’.100 For J-aggregates
the shift is negative, and for H-aggregates the shift is positive.107 The magnitude of ∆

is typically hundreds of meV .98

By considering these two states only, the single-exciton Hamiltonian in Eq. 2.33 is
written approximately as,

Ĥ0 ≈ ~ω0|0〉〈0| + (~ω(1)
1 + ∆)|1〉〈1|

= ~ω0|0〉〈0| + ~ω1|1〉〈1|, (2.60)

which enables the total Hamiltonian to be represented in the following matrix form,

H =

(
~ω0 G01
G01 ~ω1

)
, (2.61)

using the same notation as above. Altogether, this is a major simplification of the
Hamiltonian formed by Eq. 2.33 & 2.34, and enables fast computation of the optical
response of a material comprising excitonic aggregates. The approximate nature of
Eq. 2.61 can be quantified by comparison of results generated with the use of Eq. 2.56.
A disadvantage of the use of Eq. 2.56 is that inclusion of extra levels necessitates
evaluation of additional free parameters in the form of decay and dephasing rates.

2.3.3 The optical Bloch equations

Now that three alternative Hamiltonians for an excitonic material have been determined,
the goal now is to find an effective medium value of ε at time t and at the frequency
of illumination, ω. The first step is to note that HI/|E(t)| defines the transition dipole
matrix d, the expectation value of which can be found using the trace of the density
matrix acting upon it (see above). In order to find the density matrix itself, the
Liouville-von Neumann equation (Eq. 2.31) is used. In general, when the Liouville-
von Neumann equation is used in conjunction with a Hamiltonian of dimension
n, n2 coupled differential equations108 are produced. These are the optical Bloch
equations109 (OBEs) which, when solved, yield the elements of the density matrix,
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ρ. In this section, OBEs for the two-level Hamiltonian are derived explicitly, as an
example.

In the case where the illuminating optical field is periodic, the rotating wave approxi-
mation110 (RWA) can be applied. To do this, it is assumed that,

d̂0m = cos(ωt)(|0〉〈m| + |m〉〈0|)

=
1
2

(eiωt + e−iωt)(|0〉〈m| + |m〉〈0|) (2.62)

≈
1
2

(|0〉〈m|eiωt + |m〉〈0|e−iωt). (2.63)

The RWA makes the OBEs time-separable, and therefore solvable for any arbitrary
time t without additional computation. To help complete this objective, the substitution
ρ̃0m = ρ0me−iωt is made. For the approximated two-level Hamiltonian described in the
previous section (Eq. 2.61), the OBEs under the RWA take the form,

ρ̇00 = −γ10ρ00 +
i
2

Ω01ρ̃01 −
i
2

Ω01ρ̃10 + γ01ρ11 (2.64)

˙̃ρ01 =
i
2

Ω01ρ00 − (Γ01 − iδ01)ρ̃01 −
i
2

Ω01ρ11 (2.65)

˙̃ρ10 = −
i
2

Ω01ρ00 − (Γ01 + iδ01)ρ̃10 +
i
2

Ω01ρ11 (2.66)

ρ̇11 = γ10ρ00 −
i
2

Ω01ρ̃01 +
i
2

Ω01ρ̃10 − γ01ρ11, (2.67)

where Ω01 = 2E · d̄01/~ is the Rabi frequency between states |0〉 and |1〉, and γi j are the
decay rates of the eigenstates from eigenstate | j〉 to eigenstate |i〉. δ01 = (ω1 − ω0) − ω
is the detuning from the transition. Γi j is the dephasing rate of the |i〉 ↔ | j〉 transition
defined by,84, 111

Γi j = Γ
(d)
i j + Γ

(p)
i j

= Γ
(d)
i j +

1
2

n∑
k=1

(γki + γk j). (2.68)

Here, Γ
(p)
i j arises from population decay (as shown), and Γ

(d)
i j is responsible for inhomo-

geneous broadening from various sources: these include phase-changing collisions,112

broadening of the transition due to static disorder102 and other solid state dynamic
processes.113

Whether or not the RWA is used, it is convenient to write the OBEs in the following
compact matrix form,
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ρ̇V (t, ω) = L(t, ω)ρV (t, ω), (2.69)

where ρV is a vector composed of the elements of the density matrix108 and L is a
matrix of the OBEs. This is a general expression and one may solve these equations
either by use of the RWA110 as shown here, or by numerical methods such as one of
the Runge-Kutta methods.114 Both of these approaches are detailed and evaluated
in App. B.2. To derive an expression for the permittivity, 〈d〉 is determined using
〈d〉 = Tr(ρd). For the transition dipole matrix for the two-level system chosen above,
this value is equal to ρ01 d̄01 + c.c.. By choosing the forward-propagating electric field,
Eq. 2.23 is re-arranged to give ε for an ensemble of two-level molecules as,

ε(t, ω) = εb +
2N
ε0

|d̄01|

|E|
ρ01e−iωt

= εb +
2N
ε0

|d̄01|

|E|
ρ̃01, (2.70)

where ρ01 is a function of both ω and t. A similar and more general expression for ε
derived with multiple energy eigenstates is,

ε(t, ω) = εb +
2N
ε0|E|

∑
i

|d̄0i|ρ̃0i. (2.71)

At first glance, Eq. 2.70 & 2.70 may appear to diverge for the case where |E| → 0.
The resolution to this becomes apparent when an explicit expression for the steady
state permittivity is derived for the two-level system. As such, in the steady-state,
ρ̇00 = ρ̇11 = ˙̃ρ01 = ˙̃ρ10 = 0 and Eq. 2.64-2.67 are re-written as,

−γ10ρ00 +
i
2

Ω01ρ01 −
i
2

Ω01ρ10 + γ01ρ11 = 0 (2.72)

i
2

Ω01ρ00 − (Γ01 − iδ01)ρ01 −
i
2

Ω01ρ11 = 0 (2.73)

−
i
2

Ω01ρ00 − (Γ01 + iδ01)ρ10 +
i
2

Ω01ρ11 = 0 (2.74)

γ10ρ00 −
i
2

Ω01ρ01 +
i
2

Ω01ρ10 − γ01ρ11 = 0. (2.75)

Using the relation ρ00 + ρ11 = 1 and assuming that γ10 = 0, i.e. there is no decay out
of the system, Eq. 2.72 & 2.73 lead to,

ρ11 =
Ω01

γ01
�m(ρ01) (2.76) ρ̃01 =

iΩ01

2
1 − 2ρ11

Γ01 − iδ01
. (2.77)
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Recognising that ~Ω01 = E · d̄01, these two equations can be used to find an expression
for ρ11, which can then in turn be used to find the following expression for ρ̃01,

ρ̃01 =
iΩ01

2
γ01(Γ01 + iδ01)

γ01(Γ2
01 + δ2

01) + Γ01Ω2
01

. (2.78)

This leads to the final expression for the permittivity of an ensemble of two-level
quantum systems in the steady-state,

ε(ω) = εb +
iN |d̄01|

2

ε0

γ01(Γ01 + iδ01)
γ01(Γ2

01 + δ2
01) + Γ01(E · d̄01)2

. (2.79)

Eq. 2.79 shows that in the limit where |E| → 0, ε(ω) becomes independent of the
field as expected. Approximate expressions for multi-level systems can be derived by
following a similar procedure.

2.3.4 Results for TDBC:PVA films

The single-exciton (Eq. 2.35), nearest-neighbour (Eq. 2.56) and approximated nearest-
neighbour (Eq. 2.61) Hamiltonians are now employed to determine the permittivity
and microscopic properties of the TDBC:PVA films measured in Ch. 1, with a more
detailed focus on the 70 nm thick 1.46 wt% film.46

2.3.4.1 Two level nearest-neighbour Hamiltonian

In order to calculate permittivity using Eq. 2.70 (based on the two-level nearest-
neighbour Hamiltonian), four parameters are required: d̄01, ~ω1, γ01 and Γ

(d)
01 . Using

the permittivity determined from measured reflectance and transmittance spectra for
the film in Ch. 1, it was determined that ~ω1 = 2.11 eV ≡ 588 nm. This value agrees
with those obtained by van Burgel115 and Valleau.98

From photoluminescence measurements,78 the decay rate of |1〉 was found to be
γ01 = 1.15 × 1012 s−1 for the aggregate in a PVA host medium. Using an online
tool provided by Molinspiration ©, the molecular weight and the effective volume
of the TDBC molecule were determined. For a concentration of 1.46 wt%, these
quantities determined the molecular number density to be equal to N = 1.47×1025 m−3.
Determination of N enables estimation of the transition dipole moment for TDBC
molecules in aggregate form (|d̄01|) along with the dephasing rate (Γ(d)

01 ) by fitting
the steady-state solutions for Eq. 2.70 to the experimental data for the permittivity.
Following this procedure, the dipole moment was determined to be |d̄01| = 48 Debye
(D). The TDBC-doped thin films from which the experimental data were obtained
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were produced by spin-coating.46 The orientation of dipole moments in thin polymer
films produced by spin-coating lie predominantly in the plane.116 Assuming that the
TDBC aggregates also lie in the plane means that the determined value of 48 D is a
two-dimensionally averaged value. This implies by Eq. 2.55 that the on-axis dipole
moment of a TDBC aggregate is d01 = 97 D; and the value for a three-dimensionally
averaged dipole moment is |d01| = 32 D. This averaged dipole moment in three
dimensions compares with the value of 24 D estimated by van Burgel et al.115, 117 from
experiments in solution, for which the orientations and positions of the dipoles are
distributed randomly in three dimensions. The same work has also shown that there
are approximately 15 monomers per aggregate for TDBC aggregates. By working
backwards using the well-known values of ~ω0 to run repeated calculations for ε, the
monomer transition dipole moment was deduced as µ = 27 D.

The dephasing rate was found to be equal to Γ
(d)
01 = 17 meV for the 1.46 wt% film,

which is approximately equal to kBT , where T is room temperature, as expected.98

The results for permittivity against experimentally-determined data for the film are
displayed in Fig. 2.6. In the figure, the result assuming a planar distribution of dipoles
is shown alongside that of a volume distribution for the same concentration. In the
case of the latter, the decrease in transition dipole moment causes the permittivity to
be flattened with respect to the former. The consequence of this is that the negative
value of the real part of the permittivity becomes lost for a volume distribution. In
order to counteract the effect of the decrease in orientationally-averaged transition
dipole moment brought about by raising the dimensionality of the space in which the
dipoles are distributed, the concentration of the aggregates must be increased. In order
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Figure 2.6: Real (blue) and imaginary (black) parts of the permittivity for 1.46 wt%
TDBC:PVA, assuming a planar (thick lines) and volume (thin lines) distribution, alongside
experimental data for the planar distribution.



44 2. Modelling the Permittivity of Excitonic Materials

to closely match the permittivity of the aggregates in the planar distribution shown in
Fig. 2.6, this increase in concentration is from 1.46 wt% to 3.22 wt%, corresponding
to an increase in number density from N = 1.47 × 1025 m−3 to N = 3.29 × 1025 m−3.

Comparing the two-level nearest-neighbour Hamiltonian (herein referred to as the
the “two-level quantum model”) with that of the single-oscillator Lorentz model
(in Fig. 2.2), the lineshapes appear similar at first glance. Closer inspection proves
otherwise, particularly in the 2.15 eV < E < 2.25 eV region, within which the
two models differ most substantially for ε′. The curve produced by the two-level
quantum model follows the experimental values more closely. This is expected in
part because the two-level quantum model includes dephasing as well as decay within
it, in comparison to the Lorentz model which only has the one (phenomenological)
parameter to account for all damping and dephasing processes. This means that the
two-level quantum model permits realistic values of the decay rate to be included,
and is therefore based on more realistic physical phenomena. Point in fact, Lorentz
himself expressed suspicion regarding the approximate nature of his own model118 i.
It is therefore no surprise that the two-level quantum model produces a more realistic
lineshape, in spite of the model’s apparent simplicity.

The complex refractive index for the best fit to experimental data in this instance is
displayed in Fig. 2.7. In this figure, the model closely follows the experimental data
in the range 1.7 eV < E < 2.2 eV . Above 2.2 eV , there exists a broad tail in the
imaginary part of the complex refractive index, κ; this tail cannot be accounted for by
a single Lorentzian lineshape. Therefore, additional energy levels must be considered
in order to model it.

i„Die übrigens den Mathematikern noch manche Frage darböte.”
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Figure 2.7: Real (blue) and imaginary (black) parts of the complex refractive index for
1.46 wt% TDBC:PVA (assuming a planar distribution) alongside experimental data.
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2.3.4.2 n-Level nearest-neighbour Hamiltonian

In order to make use of a multi (more than two) level nearest-neighbour Hamiltonian,
the nearest neighbour coupling J must first be determined. By use of the parameters
for the brickstone arrangement of TDBC molecules,98, 107 a value of J = −667 meV
was found by calculation of extended dipole-dipole interactions. By substitution of
this value of J into Eq. 2.45, the first two odd excited energy eigenvalues above the
known energy eigenvalue of ~ω1 = 2.11 eV were determined to lie at ~ω3 = 2.31 eV
and ~ω5 = 2.68 eV . Given that 2.68 eV is just outside the range of photon energies
considered and that d01 ≈ 5d05, these three excited states (together with the ground
state) are sufficient to model the system within the range of photon energies of interest.
This model is herein referred to as the “four-level quantum model”.

By using the same procedure as above for the two-level Hamiltonian, the monomer
transition dipole moment was deduced as µ = 20 D. This decrease in the value from
27 D as reported in using the two-level model results from a compensation on the part
of the two-level Hamiltonian for energy eigenstates left unmodelled.

The results for the use of the four-level quantum model are shown in Fig. 2.8 (overleaf),
where Γ

(d)
i j have been optimised within physical constraints: specifically, the critical

rule used is,84

(Γ(d)
01 + Γ

(d)
35 − Γ

(d)
03 − Γ

(d)
15 )2 ≤ 4Γ

(d)
05 Γ

(d)
13 . (2.80)

If the dephasing between the state pairs |0〉 ↔ |3〉 and |0〉 ↔ |5〉 are assumed to be
equal, and the dephasing between the remaining pairs |i〉 ↔ | j〉 are held equal to Γ

(d)
01 ,

then the following inequality for Γ
(d)
03 (or equivalently Γ

(d)
05 ) is derived,

0 ≤ Γ
(d)
03 ≤ (3 + 2

√
2)Γ(d)

01 . (2.81)

The value determined for Γ
(d)
03 by a fitting procedure was 4Γ

(d)
01 , which lies within

the limits of this inequality, and is therefore physically plausible. As a result, the
theoretical line in Fig. 2.8b for the imaginary part of the refractive index κ is now
closer to the experimental data points. In addition, a distinctive hump in the tail
has now become more obvious, which corresponds precisely to the eigenvalue at
~ω3 = 2.31 eV . The code used to generate these results is included in App. A.2.

So far in this chapter, the dye concentration 1.46 wt% has been studied exclusively.
In order to apply the four-level quantum model to any dye concentration, care must
be exercised: the parameters for the 1.46 wt% film, the energy eigenvalues, monomer
transition dipole moment and photoluminescent decay rate are all independent of dye
concentration, but the dephasing rates and the effective number of monomers within
each aggregate (n) may not be. By making the assumption that environment in which
the aggregates sit (the bath119) is constant across each sample, the dephasing rates can
be assumed to be equal for each of the samples. Making this assumption leaves only
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Figure 2.8: The complex permittivity (a) and refractive index (b) for a 70 nm film of
1.46 wt% TDBC:PVA as modelled using the four-level quantum model (lines), against
experimental data (data points).

one remaining free parameter: n. The dependency of the transition dipole moments
associated with the aggregate (d0m) on n is represented in Eq. 2.53. Therefore, in theory,
the best fit for the refractive index (and permittivity) can be found by adjustment of n
and comparison of the resulting curves with the experimentally-determined data.

In performing this procedure for the refractive index of the three other films studied in
Ch. 1, the curves overlying the experimental data in Fig. 2.9 are obtained. By studying
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the evolution of the lineshape of κ, it would appear that the broadening of the tail
at higher energies occurs with an increase in concentration: in Fig. 2.9a, the tail is
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Figure 2.9: Experimentally-determined real (n, blue circles) and imaginary (κ, black
crosses) parts of the complex refractive indices for (a) 0.12 wt% (b) 0.48 wt% and (c)
1.00 wt% TDBC:PVA films, with a four-level quantum model for each (lines).
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well-modelled by the (near-Lorentzian) quantum model, and although a gap appears
in Fig. 2.9b, the hump corresponding to the |0〉 − |2〉 transition only becomes apparent
in Fig. 2.9c, with a dye concentration of 1.00 wt%.

Figure 2.10: Effective number of monomers per aggregate for the four dye concentrations
studied in TDBC:PVA films (blue circles). The exponential fit (black line, of form exp(−x)+
n∞) has its confidence intervals shown by the shaded area. The blue line is the result of a
fit presuming a function of the form n(x) = x exp(−x) + n∞.

The effective number of aggregates used in the quantum model for each of the three
concentrations are n = 70, 31 and 16 for the 0.12 wt%, 0.48 wt% and 1.00 wt% films
respectively. Combining these findings with the result that n = 15 for the 1.46 wt%
film, it would appear that the number of monomers in the aggregate, and hence the
effective length, decreases with an increase in dye concentration. This exponential
decrease in n is shown in Fig. 2.10, alongside two fittings obtained by least-squares fit
procedures. This finding has two plausible physical interpretations for an increase in
dye concentration:

1. The average number of monomers within the aggregates remains constant,
and the disorder within the film acts to limit the effective average number of
monomers within the aggregates. Hence, it is the effective length over which
the excitons are delocalised which decreases with an increase in concentration.

2. The average number of monomers within the aggregate falls exponentially
with an increase in dye concentration. As a consequence, the average length
over which the excitons are delocalised follows an exponential decline with an
increase in concentration.
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Whichever of these interpretations is correct, the correct answer is only relevant for
microscopic calculations for the optical response of monomers; it has no effect on the
macroscopic optical calculations or the effective medium calculations for permittivity
contained within this thesis.

The exponential fit to n in Fig. 2.10 (black line) for concentrations less than 0.12 wt%
is shown as a dotted line. The rationale for this is that the fit for values below the
lowest experimental concentration is extrapolation only. Taking a thought experi-
ment: with no monomers present, there can be no monomers in the aggregate. This
restriction introduces a curve in Fig. 2.10 which rises quickly with an increase in
concentration for low concentrations, and peaks somewhere in the concentration range
0 wt% − 0.48 wt%. An example of a plausible fit is indicated in Fig. 2.10 by the
blue line. The concentration at which the peak occurs is yet to be determined, but
future experimentation on films in the concentration range 0 wt% − 0.48 wt% should
determine the answer to this question. In either of the two models shown, n for large
concentrations tends towards 14.87 ± 0.25; this indicates that the value of n = 15 used
in the four-level quantum model for 1.46 wt% TDBC:PVA is reasonable.

So far, the quantum models for permittivity have been examined exclusively in the
steady-state. As an aside, the response in the time domain is presented for 1.46 wt%
TDBC:PVA using the four-level quantum model. It is assumed that at t = 0, the
ensemble is in a pure state; furthermore, the optical field is turned on suddenly at
t = 0. The resultant permittivity as a function of time is visualised in Fig. 2.11. The
general features of the response are similar to that of the temporal response produced
by the Lorentz model (cf. Fig. 2.3). This observation simultaneously verifies the
Lorentz model as an approximate theory in the time domain, and demonstrates that the
transient effects borne from a quantum mechanical model have a classical analogue
associated with them.

Figure 2.11: Real (a) and imaginary (b) parts of the permittivity for a 1.46 wt% TDBC:PVA
70 nm film in the time domain, assuming a planar distribution of dipoles and using the
four-level quantum model.
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2.3.4.3 General effects of J-aggregation

So far, the nearest-neighbour Hamiltonian has been used in order to model the permit-
tivity of an aggregated system. In this section, the effects of J-aggregation are explored
in general terms by analysis of the permittivity for a collection of randomly distributed
monomers.

The exciton transition energy of the TDBC monomer is ~ω(1)
1 . This energy can be

deduced as ~ω(1)
1 = 3.42 eV by use of Eq. 2.59 together with the value of the nearest

neighbour coupling (J = −667 meV), and the first excited energy eigenvalue of the
aggregate (~ω1 = 2.11 eV). The value of ~ω(1)

1 illustrates that one important effect of
J-aggregation is a dramatic redshift of the exciton transition.

Another effect of J-aggregation is an increase in the effective dipole moment, as seen
above.
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Figure 2.12: Estimate for the (a) permittivity and (b) refractive index of the non-aggregated
form of 1.46 wt% TDBC:PVA. The thick lines correspond to a two-level model, and the thin
lines indicate a three-dipole single-exciton Hamiltonian averaged over 100 arrangements.

These two general features are visualised in Fig. 2.12, where both a two-level quantum
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model incorporating monomer values and a single-exciton Hamiltonian for a collection
of randomly-distributed monomers have been used, each taking µ = 20 D and a
concentration of 1.46 wt%. The axes of the plot are of the same length as Fig. 2.8
for easy comparison with the aggregate results. For the results corresponding to the
single-exciton Hamiltonian, the effect of three dipoles has been calculated assuming
the same dipole positions as in an aggregate, but with arbitrary rotations. The result
shown is an average over one hundred different arrangements. It must be noted that
the values for the permittivity in Fig. 2.12 are for illustrative purposes only, and do
not necessarily represent physical values of the permittivity: this is primarily because
TDBC has a tendency to aggregate in PVA for a concentration of 1.46 wt% (rendering
a non-aggregated response at this concentration unlikely) and also because interactions
with many dipoles have been neglected.

Despite these apparent shortcomings, both models in Fig. 2.12 in comparison with
Fig 2.8 illustrate qualitatively the two well-known features of aggregation:120 that
the act of aggregation itself causes a shift in transition energy, accompanied by a
dramatic increase in oscillator strength. The latter of these effects in particular is
chiefly responsible for the transition of the appearance of TDBC:PVA from that of a
translucent dielectric into that of a metal (within a narrow range of wavelengths). It
is noted that the result arising from the two-level model is fairly close to the three-
dipole single-exciton Hamiltonian. By approximating the lineshape from the single-
exciton Hamiltonian in Fig. 2.12 with a single-oscillator Lorentz model (Eq. 2.14),
the oscillator strength f0 was determined as f0 = 0.075; this value is four times
weaker than the value of f0 = 0.3 found to represent the response of the aggregate in
Fig. 2.2.

2.4 Conclusions

The permittivity of a non-magnetic linear isotropic material illuminated with weak
fields can be modelled by presuming that the electrons inside it sit inside harmonic
potentials within their orbitals - this semi-classical approach is known as the Drude-
Lorentz model. The major drawback of the Drude-Lorentz model is that harmonic
potentials are often insufficient to describe the potentials in which the electrons sit, as
has been illustrated with the addition of the interband contributions to the permittivity
in the case of gold. For metals, the leading contribution to the permittivity arises from
free electrons, and the Drude-Lorentz model can be adapted to yield the Drude model.
The Drude model has been shown to model the permittivity of silver and gold to a
sufficient level of accuracy without the necessity of more detailed quantum-mechanical
treatment.

The single-oscillator Lorentz model can be applied to excitonic dye molecules, but such
an approach does not necessarily incorporate physical damping rates. Development
of more realistic models for the permittivity of excitonic dye molecules is eased by
the binomial nature of the molecular energy levels associated with exciton excitation
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(a ground state and an excited state); this enables the excitonic dye molecules to be
modelled as discrete interacting quantum systems. Even in the single-exciton regime,
such an approach can become computationally demanding, because each molecule
requires individual consideration. This pushes up the number of energy eigenstates
to be equal to the number of molecules in the ensemble, which can be prohibitively
large.

Modelling the permittivity of excitonic dye molecules is simplified in the case where
the molecules assume aggregate form: under this circumstance, the nearest-neighbour
intra-aggregate interactions dominate, which enables diagonalisation of the Hamil-
tonian. This yields a discrete set of optically-active excited energy eigenstates, the
number of which equates to half the number of molecules contained within the ag-
gregate. Given that these energy eigenvalues are each spaced by a few hundred meV ,
the response in the optical range can be accounted for by consideration of only three
or four of these energy eigenstates in the case of TDBC. It has been demonstrated
that the two-level limit produces superior fit for the steady-state permittivity as deter-
mined from experiment in comparison to a Lorentz oscillator model for a 1.46 wt%
TDBC:PVA film. A four-level model has been shown to provide an even better fit, and
accounts for the next two (weaker) optical transitions of the aggregate which broaden
the imaginary part of the complex refractive index.

A full nine-level nearest-neighbour Hamiltonian for aggregates does not significantly
improve the fit produced by the four-level Hamiltonian. Therefore, a question yet to be
answered is the extent to which the next-nearest neighbour interactions might improve
the physicality of the model. Such an approach is beyond the scope of this thesis, but
initial estimates indicate that a correction up to around 5% might be expected in the
energy eigenvalues.

A finding drawn from analysis of the four-level quantum model is that the effective
number of monomers within the aggregate falls with an increase in concentration,
tending towards a value of around n = 15 for TDBC:PVA films of high concentration.
Whether this dependency on concentration arises from an increase in disorder with
concentration or is a real phenomenon is a potential area of future research. Certainly
further experimentation will be able to provide a concentration for which the effective
number of monomers in the aggregate is maximised.

Altogether, with the use of a four-level quantum model to describe TDBC aggregates,
the permittivity of TDBC-doped plastics can be calculated to a level of accuracy ex-
ceeding that of using the Lorentz oscillator model. Hence, accurate optical calculations
based upon this permittivity for nanostructures containing TDBC-doped plastics can
be made. These nanostructures could be films, multilayer stacks or nanoparticles. The
optical response of films and multilayer stacks is examined in Ch. 3, and the optical
response of nanoparticles is examined in Ch. 4 & Ch. 5.



3
Surface Exciton Polariton

Modes in Planar
Nanostructures

In this chapter, surface exciton polariton (SEP) modes are introduced and explored
in the geometry of thin excitonic films. The relative merits of hyperbolic modes in
excitonic-metallic multilayer stacks are then investigated.

3.1 Introduction

A plasmon is defined as a quantized plasma wave.65 In the microscopic picture,
plasmons on a material surface (surface plasmon polaritons, SPPs121) can be imagined
to be induced by separation of charge (electrons from their nuclei); this separation of
charge induces additional separations of charge in the neighbouring atoms, causing
the charge oscillations to propagate out in space along the surface. This is illustrated
in Fig. 3.1 for a generic surface, where the instantaneous electric field is plotted as
a function of position in a top-down view across the surface of a material; here, the
plasma waves propagate out along the surface and decay with length. The plasma
waves also propagate and decay into the surface; this is visualised in Fig. 3.2 for a
cross-section of the same system with the same scale. Surface modes (such as SPPs)
can be excited by electrons122 or by photons.23 When excited by photons, photons are
absorbed in the surface as a consequence of the conservation of energy. Therefore,
absorption for thin films may be indicative of a surface mode.

Since Wood’s observations of anomalously sharp features in the spectrum obtained
through a speculum grating,123 SPPs on metal surfaces have seen varied practical
applications since their theoretical prediction1 and experimental realisation.2, 3 The
electric field enhancement close to the surface provided by SPPs has been used to
induce non-linearity in nonlinear materials,8 and to induce enhanced photolumines-
cence in molecules.9 SPPs themselves have been shown to be of use in environmental
sensing13, 14 and material characterisation.20 More recently SPPs have been demon-
strated within a waveguide context for microwave metamaterials28, 29 and for periodic
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Figure 3.1: Normalised instantaneous electric field (colour scale) propagating across the
top of a generic surface, assuming a point wave source at x = y = z = 0 and an in-plane
wavevector of k|| = 10.4 + 0.323i µm−1.

Figure 3.2: Normalised instantaneous electric field (colour scale) propagating into the y = 0
cross-section of the surface in Fig. 3.1. The in-surface wavevector is kz = 2.43+1.40i µm−1.

lattices of varying construction.30–32 Altogether, this environmental dependency of
SPPs coupled with their suitability to be guided in various geometries means that SPPs
are potential candidates for applications within environmental sensing, optical comput-
ing25 and the nanoscale control of light.24 Plasma waves require the presence of free
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electrons in the material. For this reason, surface modes, along with their properties
of field enhancement and strong absorption, have been traditionally associated with
metals. However, surface modes may be sustained using other materials, provided that
a sufficiently high density of free (or effectively free) electrons is present. One way in
which this is possible is by having excitons act as proxies for free electrons: excitons
are quasi-particles consisting of an electron bound with an electron hole, and are able
to jump from site-to-site,124 as outlined in Ch. 2 when exciton sites exist in sufficiently
high concentration. In this way, with sufficient site concentration, excitonic materials
can support surface modes with similar properties to metals; the key difference being
the origin of the charge carriers from which these properties arise. Consequently, given
that excitons can only be excited within a narrow range of photon energies, excitonic
materials can only host an exciton site density sufficient to exhibit these free-electron
(metal-like) properties within this same narrow range of photon energies. On surfaces,
these metal-like excitonic modes are termed surface exciton polariton46, 125, 126 (SEP)
modes.

In this chapter, the electromagnetic theory for SPPs (for metals) and SEPs in exci-
tonic dye-doped polymers is outlined for planar nanostructures. These nanostructures
include both thin films and multilayer stacks. By constructing and comparing disper-
sion diagrams for these systems with theoretical absorption plots, the existence of
surface modes for these systems is evaluated. In each nanostructure geometry, the
similarity between SEP and SPP modes in each is explored, and the merits of hybrid
‘hyperbolic’36 modes are considered.

3.2 Polarisation of Light (s and p)

As outlined in Ch. 1, light comprises both electric and magnetic fields, labelled E
and H respectively. For linearly-polarised light incident upon a boundary, there are
two orthogonal polarisations with respect to the boundary: first, where E only has
components perpendicular to the interface, and second, where E only has components
parallel to the interface. Equivalently, in the first case, E only has components
parallel to the plane of incidence, whereas in the second case, E only has components
perpendicular to the plane of incidence. These two polarisations are known as p and
s polarisation respectively, “p” stemming from “parallel”, and the “s” deriving from
the German word “senkrecht” meaning “perpendicular”.127 Therefore, definition of
these two polarisations with respect to the plane of incidence is more usual than with
respect to the interface. Both polarisations are illustrated graphically in Fig. 3.3, and
as will be seen, give rise to markedly different optical responses for both excitonic and
plasmonic materials.
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Figure 3.3: Light with p (left) and s (right) polarisation illustrated in two dimensions, with
E, H and k indicated. The horizontal black line represents the interface.

3.3 Isotropic Thin Films

Thin films isotropic in permittivity are the simplest planar nanostructures, and given
their relative ease of fabrication,128, 129 are a natural start point for theoretical exam-
ination of nanostructures in general. In Ch. 1, isotropic excitonic thin films were
examined experimentally and their permittivities extracted from reflectance and trans-
mittance spectra measured at normal incidence. In this section, the dispersion relation
for an isotropic thin film is determined, and compared with the corresponding the-
oretical absorption spectra for a range of incident angles, and ultimately, in-plane
wavevectors.

3.3.1 Dispersion relation for a non-magnetic boundary

A thin film can be considered theoretically as a set of two boundaries, with each
boundary separating the film from a semi-infinite medium. Therefore, two possible
sites for surface mode propagation exist: either along one surface, or the other. In
order to develop a dispersion relation for surface modes travelling along either surface,
a single boundary is considered. The boundary is considered to lie in the x − y plane,
straddling two semi-infinite non-magnetic (µ1 = µ2 = 1) media with permittivities ε1
(in positive z) and ε2 (in negative z) respectively. The boundary is illuminated from
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medium 1 (with permittivity ε1) by a p-polarised plane wave. Expressions for the
electric and magnetic fields of the light wave in medium n are,

En = ei(kxn x+kzn z−ωt)(Exn x̂ + Ezn ẑ) (3.1)

Hn = ei(kxn x+kzn z−ωt)Hyn ŷ. (3.2)

The relationship sought in this section is the induced wavevector along the boundary
(k||) as a function of illumination frequency (ω): this relationship defines the dispersion
relation83 (p.92). In the following two-dimensional example, the choice made for the
wavevector is k|| = kx x̂. The starting point is to use Maxwell’s equations (Eq. 1.1-1.4),
to derive the following elementary boundary conditions for the electric and magnetic
fields at the interface between the two media,

Hy1 = Hy2 = Hy (3.3)
Ex1 = Ex2 = Ex (3.4)

ε1Ez1 = ε2Ez2 . (3.5)

Eq. 3.3 is now utilised within Maxwell’s equation for the curl of the magnetic field,

∇ × H = ε
∂E
∂t
. (3.6)

Substitution of Eq. 3.1 & 3.2 into Eq. 3.6 gives,

(−kzn x̂ + kx ẑ)iHyei(kxn x+kzn z−ωt) = −iωεn(Ex x̂ + Ezn ẑ)ei(kxn x+kzn z−ωt)

(−kzn x̂ + kx ẑ)Hy = −ωεn(Ex x̂ + Ezn ẑ). (3.7)

The x̂ component of the above equation re-arranged for Hy is,

Hy =
ωεnEx

kzn

, (3.8)

which yields the following relationship between the perpendicular wavevector compo-
nents across the boundary for p-polarised light,

ε1

kz1

=
ε2

kz2

. (3.9)
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As an aside, the same process repeated for s-polarised light gives kz1 = kz2 , where
there is no dependence upon the material permittivity. Eq. 3.9 is used in conjunction
with k2 = k2

x + k2
zn

= εn(ω/c)2 to form the following matrix equation,

(
1 1
1 (ε2/ε1)2

) (
k2

x
k2

z1

)
=

(
ω

c

)2
(
ε1
ε2

)
. (3.10)

Inversion of Eq. 3.10 gives,

(
k2

x
k2

z1

)
=

(
ω

c

)2
(

(ε2/ε1)2 −1
−1 1

) (
ε1
ε2

)
1

(ε2/ε1)2 − 1
, (3.11)

from which the dispersion relation for p-polarised light at the interface is determined,

k|| =
(
ω

c

) √
ε1ε2

ε1 + ε2
. (3.12)

This result is independent of the choice taken for k̂|| in the derivation. Attempting
to form a dispersion relation for surface modes with s-polarised light does not yield
a dispersion relation, indicating that s-polarised light cannot excite a surface mode.
Therefore, only p-polarised light can excite surface modes. Eq. 3.12 is an entirely
general expression and enables one to investigate SPPs and SEPs alike. To demonstrate
the generality of Eq. 3.12, dispersion diagrams obtained using Eq. 3.12 for gold, silver
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Figure 3.4: Normalised dispersion diagrams for 1.46 wt% TDBC:PVA (blue), gold (dashed)
and silver (black), with the free space light line (thin dashed line).
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and 1.46 wt% TDBC:PVA against an air boundary are plotted in Fig. 3.4. The ω axis
in Fig. 3.4 is normalised to the plasma frequency ωp for gold and silver, and to the
exciton excitation energy ω0 for TDBC:PVA.

3.3.2 Surface mode classifications

The curves in Fig. 3.4 can be analysed with the help of the equivalent dispersion
relation for the perpendicular axis. Performing the derivation in a similar manner to
the derivation above for Eq. 3.12, the dispersion relation for the perpendicular axis is
obtained,

kz2 =

(
ω

c

)
ε2

√
ε1 + ε2

. (3.13)

There are three possible sets of conditions on k|| and kz for which surface modes can be
supported by a film. All three are illustrated in Fig. 3.5, where an annotated dispersion
diagram for 1.46 wt% TDBC:PVA is plotted.

Figure 3.5: Dispersion diagram (blue line) for a 1.46 wt% TDBC:PVA film, using the
four-level quantum model as outlined in Ch. 2. The black line represents the free space
light line, and the dashed line represents the light line in a prism with refractive index
n = 1.5.

The case of primary interest within this chapter is where (within the film) k|| is real
and kz is imaginary. Under this circumstance, a surface mode along the interface is
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permitted and propagation into the material is impeded - this is known as a ‘bound
mode’.130, 131 By use of Eq. 3.12 & 3.13 with the assumption that ε1 is real and positive,
the following constraint on the permittivity of the material (ε2) is established,

ε′2 ≤ −ε1. (3.14)

Therefore, the condition for a material to host a bound mode is such that ε must change
by at least a sign across the boundary. Substitution of the upper and lower bounds on
ε′2 for a bound mode (−∞ and −ε1) into Eq. 3.12 leads to two constraints on k|| such
that,

k0 < k|| < ∞. (3.15)

Put into physical terms, Eq. 3.15 indicates that bound modes are indicated by a
dispersion diagram when k|| lies beyond (to the right of) the free-space light line. As a
consequence, the phase velocity (vp = ω/k) of such modes is less than the speed of
light, but the in-plane momentum is greater than free-space light can supply. Therefore,
in order to excite a bound mode, a prism is needed on the incident side to reduce
the phase velocity of the light, and increase the in-plane momentum. The maximum
momentum available by performing this procedure is indicated by the prism light
line in Fig. 3.5, where the incident angle must be equal to 90◦. An example of an
experimental set up is the Kretschmann configuration2, as shown in Fig. 3.6.

Prism 
 
Film 
 
Air 

Light source 

𝜃0 

𝜃2 

𝜃1 

𝑛0 

𝑛1 

𝑛2 

Figure 3.6: An illustration of the Kretschmann configuration in the ray optics picture.
Depending on its properties, the film under investigation may host a surface mode along
either interface.

Bound modes for silver occur over a broad energy range as shown in Fig. 3.4, from
low energies, up to a value below the plasma frequency. For the TDBC film shown,
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bound modes can only occur over a relatively narrow range of frequencies: a range
corresponding to the window where ε′ < −1 (cf. Fig. 2.8).

The conjugate of a bound surface mode can also be excited, where the mode propagates
along the z-axis and decays along the x-axis. This is known as a ‘quasi-bound’ mode.131

In this case, kz is real, and k|| is imaginary. Performing the same analysis as above for
the bound mode leads to the following condition on ε for such a mode,

− εm < ε′ < 0. (3.16)

By substitution of the upper and lower bounds on ε′ into Eq. 3.12, the following range
for k|| can be established for quasi-bound modes,

0 < k|| < ∞. (3.17)

Therefore, quasi-bound modes can be found at all in-plane wavevectors, or equivalently,
at all phase velocities (including infinity). Quasi-bound modes are evidenced in Fig. 3.4
by the relatively flat regions of ω(k||) for silver and TDBC, where the dispersion lines
cross the light lines with a small increase in ω. In this region, the group velocity
vg = dω/dk is both minimised and (uniquely) negative. This region for the 1.46 wt%
TDBC:PVA film is indicated explicitly in Fig. 3.5.

A third class of surface mode exists under the circumstance that both k|| and kz are real.
In such a case, a mode can propagate freely along both the surface and perpendicular
to it, causing the mode not to be confined to the surface. This type of mode is known
as a ‘radiative’ mode,131 since light can couple to and excite such modes readily. Use
of Eq. 3.12 & 3.13 together leads to the condition for radiative modes such that,

ε′ > 0. (3.18)

This condition leads to the constraint on the in-plane wavevector such that,

0 < k|| < k0. (3.19)

Therefore, k|| for a radiative mode lies below (to the left of) the light line on a dispersion
diagram, implying that the phase velocity for such a mode exceeds the speed of light in
free space. Such a case can be seen in Fig. 3.4 for silver (TDBC) in the region where
ω exceeds the plasma (exciton) frequency and the material becomes transparent.132

This is also indicated explicitly in Fig. 3.5 for the 1.46 wt% TDBC:PVA film.
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3.3.3 Surface modes on thin films

For real materials, permittivity is generally complex. This leads to two consequences:
firstly, spatial decay is incurred in any surface mode, so the three classes of surface
modes as outlined in the previous section are not procured perfectly; secondly, k|| also
becomes complex. Therefore, in order to analyse how a wave propagates along a
material interface, the real part of k|| is taken to produce a dispersion diagram.

The spatial decay of the surface mode can be seen with examination of the parallel
electric field component (the electric field of the surface mode),

E|| = E0eik′
||
xe−k′′

||
x, (3.20)

where k|| = k′
||
+ ik′′

||
. The length for which the electric field intensity (E2

||
) falls to 1/e

of its peak value is defined as the propagation length, an expression for which is easily
derived as,

L|| =
1

2k′′
||

. (3.21)

The electric field perpendicular to the boundary is written as,

E⊥ = E0eik′⊥xe−k′′⊥x, (3.22)

which by performing a similar analysis leads to the following expression for skin
depth,

Lz =
1
k′′z
. (3.23)

Both L|| and Lz calculated for 1.46 wt% TDBC:PVA, silver, gold and aluminium
across the optical range are plotted in Fig. 3.7. In the figure, the four-level quantum
model for the permittivity of TDBC aggregates has been used, and Drude models
for the three metals have been used. As shown, the propagation length of a metal is
in the approximate range 1 µm < L|| < 10 µm, and the skin depth of a metal spans
(approximately) 0.1 µm < Lz < 1 µm. These values are comparable with those found
elsewhere.133

In Fig. 3.7, the regions for which TDBC:PVA exhibits bound and quasi-bound SEP
modes are shown by the dashed and dotted lines respectively, in both L|| and Lz. As
expected for TDBC:PVA, L|| for the bound SEP mode exceeds that of the quasi-bound
SEP mode, and vice versa for Lz. From Fig. 3.7a, L|| for either of these SEP modes is
shorter than the same quantity for the three metals indicated in the plot; this implies
that SEP modes on a 1.46 wt% TDBC:PVA film exhibit relatively high localisation
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Figure 3.7: Propagation lengths (a) and skin depths (b) for 1.46 wt% TDBC:PVA (blue),
silver (black line), gold (black dashed) and aluminium (black dash-dot). The solid, dashed
and dotted parts of the blue line correspond to the radiative, bound and quasi-bound modes
respectively.

with respect to SPP modes for the three metals shown. From Fig. 3.7b, Lz for both the
bound and quasi-bound SEP modes is shorter than for the gold SPP mode, although Lz

on the higher-energy side of the quasi-bound SEP mode exceeds that of the silver SPP
mode. Therefore, in spite of the relatively short propagation length, SEP modes for a
1.46 wt% TDBC:PVA film show a higher degree of confinement to the surface than
SPP modes for the three metals shown.

3.3.4 Reflectance and transmittance for thin films

As outlined in the introduction of this chapter, surface modes manifest themselves by a
peak in absorption. If this peak can be matched to features on the dispersion diagram,
surface modes for thin films can be detected from reflectance and transmittance spectra,
measured across a range of angles. In order to explore this theoretically, a method for
calculation of these quantities is required. In this section therefore, expressions for
reflectance and transmittance are derived for thin films.

First, the reason for a peak in absorption within the film for a surface mode is explored.
Starting with Snell’s law134 of refraction for waves across a boundary,

n1 sin(θ1) = n2 sin(θ2), (3.24)

where the incident angle θ1 is related to the refracted angle θ2 for an incident medium
of index n1 and a refracted medium of index n2. From Snell’s law, a limiting incident
angle can be derived for which the refracted light propagates along the interface, akin
to a surface mode,
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θc = arcsin
(

n2

n1

)
. (3.25)

This incident angle is the ‘critical angle’. For θ1 > θc when n1 and n2 are both real,
incident light is totally reflected. This changes if an imaginary part is introduced into
n2: in this circumstance, the critical angle cannot be strictly defined, since light is
no longer completely refracted along the interface for any incident angle, and the
refracted angle itself decreases with an increase in the imaginary part of n2. Beyond
the critical angle, light is still transmitted, but decays exponentially in space due to
absorption within the material. Therefore, a dip in reflectance beyond the original
critical angle is indicative of the complex refractive index of a material; this is true of
both s-polarised and p-polarised light.

Bound surface modes can only be excited with p-polarised light, by the arguments
put forward in Sec. 3.3.1. This excitation of surface modes occurs beyond the light
line, i.e. beyond the critical angle. By conservation of energy arguments, this process
correlates with an increase in absorption. The implication is that a peak in absorption
for p-polarised beyond the critical angle in contrast to no such evident peak using
s-polarised light for the same set of angles is indicative of the presence of a bound
surface mode. Given that absorption for thin films can be found from both reflectance
and transmittance, these two quantities are now sought.

Reflectance and transmittance are defined as the fraction of reflected and transmitted
light across the boundary, and given the symbols R and T respectively. The most
efficient way to calculate R and T for a film is to adopt a transfer matrix approach
to find the reflected and transmitted electric fields in terms of the incident field, as
outlined by Pedrotti and Pedrotti.135 Here, expressions for the electric and magnetic
fields in media a and b are represented as follows,

(
Ea

Ba

)
=

(
cos δ i/γ1 sin δ

iγ1 sin δ cos δ

) (
Eb

Bb

)
, (3.26)

where γ1 = (ñ1/c)/ cos θt1 (γ1 = (ñ1/c) cos θt1 ) for p-polarised (s-polarised) light
and,

δ = k0∆

= (2π/λ0)ñ1t cos(θ0). (3.27)

ñ1 is the complex refractive index of the film of thickness t. θ0 is the incident angle,
θt1 is the refracted angle within the film and λ0 is the wavelength of the incident light.
The electric field on the left hand side of Eq. 3.26 is Ea = E0 + Er1 , where E0 and
Er1 are the incident and reflected fields respectively; the electric field on the right
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hand side is the transmitted field, Eb = Et2 . Using B = (nE/c) cos(θ), Bb = γ2Et2 and
Ba = γ0(E0 − Er1 ), Eq. 3.26 can be re-written as,

(
E0 + Er1

γ0(E0 − Er1 )

)
=

(
m11 m12
m21 m22

) (
Et2
γ2Et2

)

=M

(
Et2
γ2Et2

)
. (3.28)

The matrix M on the right hand side of Eq. 3.28 is the transfer matrix.135 Using
Eq. 3.28 with the definition of the (amplitude) reflection and transmission coefficients
r10 = Er1/E0 and t02 = Et2/E0, the following two expressions for r10 and t02 in terms
of the matrix elements ofM are obtained,

t02 =
2γ0

γ0m11 + γ0γ2m12 + m21 + γ2m22
(3.29)

r10 =
γ0m11 + γ0γ2m12 − m21 − γ2m22

γ0m11 + γ0γ2m12 + m21 + γ2m22
. (3.30)

The (intensity) reflectance and transmittance coefficients R and T are written in terms
of r10 and t02 as,

R = |r10|
2 (3.31)

T =
n2 cos θt2

n0 cos θ0
|t02|

2. (3.32)

As a test of these formulae, one thousand reflectance spectra calculated for a t = 70 nm
silver film in the Kretschmann configuration (see Fig. 3.6) with a prism of index
n = 1.52 as a function of incident angle are plotted in Fig. 3.8 as a colour plot
(overleaf). Here, the Drude model for silver has been used, and positive and negative
angles correspond to p and s polarised light respectively. For p-polarised light, a dip in
reflectance is evident; a feature which betrays the plasmonic nature of silver.136 The
colour calculated from the reflectance spectra which would be observed by the human
eye is shown beneath the plot (as calculated using the code in App. A.1). Here, the
colour reflects the expected whitish colour of bulk silver metal, with a blue-yellow
feature at around 45◦ for p-polarised light, corresponding to the SPP mode.
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Figure 3.8: Reflectance spectra (top) for a 70 nm silver film in Kretschmann configuration
as a function of angle, together with calculated visual colour (bottom). Negative and
positive angles correspond to s and p polarised light respectively. The index of the prism is
n = 1.52.

Similar reflectance spectra calculated for a t = 70 nm 1.46 wt% TDBC:PVA film in the
same Kretschmann configuration are plotted in Fig. 3.9. Here, positive and negative
angles indicate p and s polarised light, as in Fig. 3.8. The permittivity used for the
film is taken from the four-level quantum model for TDBC:PVA as outlined in Ch. 2.
From Fig. 3.9, there is a dip in reflectance for p-polarised light beyond the critical
angle for the prism-air interface (41◦) at 2.16 eV , as circled in the figure; this dip is
absent from the calculations based upon s-polarised light. Therefore, it is p-polarised
light which minimises the reflectance spectrum beyond the critical angle, and hints at
a plasmon-like SEP mode at this photon energy.

Plotted underneath Fig. 3.9 are the calculated colours, again calculated using the code
in App. A.1. As a consequence of the presence of the dips in R towards the red end of
the spectrum for p-polarised light, the chief difference between the calculated colour
for s and p polarised light at around 60◦ is that the colour appears more blue for
p-polarised light. However, if this is a signature of a plasmon-like mode in the film, it
is by no means as sharp a distinction as that of the feature exhibited by the silver film
in Fig. 3.8 at around 45◦.

The accuracy of the reflectance calculations and the calculated colours can be assessed
by visual comparison with physical samples, using the prepared films outlined in Ch. 1.
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Figure 3.9: Reflectance spectra (top) in Kretschmann configuration for a 1.46 wt%
TDBC:PVA film of thickness 70 nm as a function of angle, where positive (negative)
angles indicate p (s) polarised light. The calculated visual colour as a function of angle is
shown below the plot. The broken circle in the figure indicates a feature of interest.

In order to obtain theoretical reflectance spectra for these samples as a function of
incident angle, the 1 mm glass substrate upon which each film was prepared was taken
to be a semi-infinite medium (this approximation can be shown to hold by comparison
of the result with more precise multilayer calculations). The resulting reflectance
spectra were then used to calculate the corresponding visual colours as a function of
angle, the results for which are shown in Fig. 3.10 (overleaf). This figure leads to the
following predictions for TDBC:PVA films of differing concentration:

1. For either s or p polarised light for any dye concentration, the films for incident
angles tending towards 90◦ become highly reflective for all wavelengths.

2. For p-polarised light, a yellow colour is observed for any of the dye concentra-
tions exceeding 0.12 wt% for incident angles around 60◦ −70◦; for the 0.12 wt%
film, the colour is off-white.

3. For s-polarised light with an incident angle of 60◦ − 70◦, the calculated colour
changes from off-pink through salmon to orange with an increase in concentra-
tion.
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Figure 3.10: The calculated visual colours as a function of angle for four TDBC:PVA films
with concentrations (top to bottom) 0.12, 0.48, 1.00, 1.46 wt%. The theoretical thicknesses
of these films are 64.9, 76.6, 69.7 and 69.6 nm respectively. Negative and positive angles
correspond to s and p polarised light respectively.

The first of these predictions is a simple consequence of the limit of the Fresnel
equations.

The second and third predictions are evaluated with the help of Fig. 3.11, where
photographs of the four films are displayed for both normal incidence and for an
incident angle of 65◦, for both s and p polarised light. Fig. 3.11b shows that for angles
near normal incidence, an orange colour is observed with unpolarised light for each of
the four films with different concentrations. The apparent difference in colour between
the 0.48 wt% and 1.00 wt% films is subtle, but the colour is a more golden orange
for the film of higher concentration. The prediction of a pinkish colour at normal
incidence for the 0.12 wt% film (cf. Fig. 3.10) is at first sight incorrect, but close
examination proves otherwise: firstly, the film is not coated uniformly, and the edges
of the film appear orange. However, the interior of the film has a saturated RGB value
of (r, g, b) = (255, 162, 145), which is a salmon pink colour as predicted in Fig. 3.10.
From this, it can be concluded that the local dye concentration of this film varies across
the surface, and in some places may exceed 0.12 wt%.

The colours predicted in Fig. 3.10 using p-polarised light for an incident angle in the
vicinity of 65◦ are proved in Fig. 3.11c to be correct: for the 0.12 wt% film, the colour
is white, as expected, and a yellow colour is observed for the other three films. For
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Figure 3.11: Photographs of four TDBC:PVA films with concentrations (left to right) 0.12,
0.48, 1.00 and 1.46 wt% with thicknesses 64.9, 76.6, 69.7 and 69.6 nm respectively. Panels
a & b show the colours in transmission and reflection respectively for the four films at
normal incidence. Panels c & d show the colours in reflection for p and s polarised light
respectively, at an incident angle of 65◦.

s-polarised light, the expected colours at 65◦ are observed in Fig. 3.11d for each of
the four films: the 0.12 wt% and 0.48 wt% films show a pinkish colour as expected,
which changes to a more orange-pink colour with an increase in concentration. The
fact that the colours calculated from the colour code for reflectance yield colours of
similar hue to those observed in experiment demonstrates the validity of the four-level
quantum model for the permittivity and of the transfer matrix formalism used.

Fig. 3.11a shows that for transmission at normal incidence, the metallic appearance
of the TDBC:PVA films is not apparent, as it was in the case of reflection: instead,
a bluish-purple colour is observed - a colour which increases in saturation with a
increase in concentration. By calculation of the transmittance through the same film
as in Fig. 3.9 with extraction of the RGB values for T at normal incidence, a bluish
colour is produced. This is not entirely equivalent to the observed colour, as illustrated
in Fig. 3.12, where the 1.46 wt% film is held in front of a scene (in the shadow of the
camera), and contrasted with the calculated colour of the same film. This discrepancy
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Figure 3.12: The observed (a) and calculated (b) effect of using a 70 nm 1.46 wt%
TDBC:PVA film as an optical filter.

may arise from two sources, the first of which is the absorption curve taken for the
l cone in the colour perception program: the l cone is chiefly responsible for the
perception of the colour red. Conceivably, the l cone may be more sensitive to light at
the blue end of the spectrum than assumed;51 this would account for the lack of red
in the calculated colour of the film shown in Fig. 3.12b. The second possible source
of error is that no measurements for the permittivity were taken experimentally at the
blue end of the visible range, from 380 nm < λ < 450 nm. This could potentially lead
to the permittivity assumed in the model at this range to be incorrect. Therefore, an
improvement on the experiment would be to take measurements in this range. Despite
the discrepancy, the calculated blue colour is much closer to the observed colour of
the film than the pale green calculated in Ch. 1 (cf. Fig. 1.11), since the calculated
green colour was produced using (experimentally measured) transmittance values in
the truncated visible range 450 nm < λ < 850 nm. As such, transmittance at the blue
end of the visible range (380 nm < λ < 450 nm) was presumed to be zero, causing the
calculated colour based on the experimentally-determined transmittance values to be
much less blue than it should be.

For practical applications, the colours arising from reflectance and transmittance may
be harnessed simultaneously, as visualised in Fig. 3.13. In this figure, the same scene
is visualised in both panels, with and without the film, assuming the film is positioned
outside of the shadow of the camera (an ambient light source is assumed). Without
the film, the scene shows a white sheep suckling a black lamb. With the film, the
black sheep’s fleece becomes golden, in a nod to the Greek hero Jason’s mythological
quest. This apparent triviality serves an important role however: the visualisation
in Fig. 3.13 recovers the observed metal-like appearance of the film, as displayed
in Fig. 1.4. This result, together with the experimental results above, demonstrates
that the transfer matrix method for making reflectance and transmittance calculations
can reproduce physically observable phenomena, and that the model used for the
permittivity produces values sufficiently close to those of the real film from which
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Figure 3.13: The simulated effect of holding a 70 nm 1.46 wt% TDBC:PVA film in front
of a scene, with an ambient light source: The same scene is visualised without (left) and
with (right) the film placed at normal incidence in front of the camera. The rendering was
produced using GIMP 2.8.

to base physical calculations. The next step is to use both R and T in order to probe
surface modes of thin films.

3.3.5 Absorption for thin films

Absorption (denoted A) is defined as A = 1− T− R. This quantity calculated for the
same film as in Fig. 3.9 using the transfer matrix is plotted against incident angle
and energy for p-polarised light in Fig. 3.14 (overleaf). In this plot, the critical angle
associated with the prism/air interface at 41.1◦ is evidenced by a rise in absorption
with angle, followed by a sharp drop off. This transition corresponds to a sudden
change in reflectance (cf. Fig. 3.9) and transmittance.

The peak in absorption at 2.11 eV in Fig. 3.14 corresponds to exciton excitation. This
is very much stronger than the absorption at the next exciton absorption at 2.31 eV , as
expected, due to the relative strengths between these two transition dipole moments
(see Ch. 2).

The peak in absorption at 2.22 eV in Fig. 3.14 corresponds to the part of the spectrum
where the permittivity of the film is closest to zero: it is at this energy that the film
is closest to behaving as an epsilon near zero (ENZ) material (cf. Fig. 2.8). In this
circumstance, T → 0, and A → 1 − R, leading to a peak value for absorption in the
range A = {0.6, 0.7}.

The feature for high angles at 2.01 eV in Fig. 3.14 occurs due to a rise in the real part
of the permittivity, leading to a dip in R and no change in T , hence a rise in A.

Although incident angle is a variable which is easy to relate to conceptually, for
investigation of surface modes it is more useful to plot absorption spectra against k||,
as shown in Fig. 3.15. Here, negative and positive k|| represent s and p polarised light
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Figure 3.14: Calculated absorption for a 70 nm 1.46% TDBC:PVA film in Kretschmann
configuration with a n = 1.52 prism using p-polarised light. The ENZ and exciton
absorptions are indicated by the white and blue dashed lines respectively.

Figure 3.15: Dispersion relation (blue line) for 1.46 wt% TDBC:PVA with A for the film
in Fig. 3.14, and with the light lines in free space and the prism (magenta lines). Positive
(negative) k|| represents the p-polarised (s-polarised) light.

respectively. The dispersion relation for p-polarised light calculated using Eq. 3.12
for the film-air interface is plotted as a blue solid line in Fig. 3.15. For the region
beyond the free space light line in the p-polarised calculations there exists a peak in
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absorption at 2.18 eV where the dispersion diagram indicates a bound mode, thereby
indicating the existence of a bound SEP mode. For further confirmation of this mode, a
difference plot is shown in Fig. 3.16, where the difference Ap−As is plotted on a colour
scale, where Ap and As represent A for p and s polarised light respectively. Since

Figure 3.16: Ap − As for a 70 nm 1.46 wt% TDBC:PVA film, with dispersion diagrams for
the air-TDBC and prism-TDBC interfaces indicated as solid and dashed lines respectively.

s-polarised light may excite excitons in the film just as effectively as p-polarised light,
this difference highlights the features unique to that of illumination by p-polarised
light, and removes the features corresponding to exciton absorption. Alongside the
calculated absorption difference, dispersion diagrams for the air-film and the prism-
film interfaces are plotted in Fig. 3.16. The peak in absorption in Fig. 3.16 follows
the air-film dispersion diagram, giving further indication that the peak in absorption
at 2.18 eV corresponds to a bound SEP mode along the air-film interface. A possible
quasi-bound mode is also evidenced in the energy range 2.18 eV < E < 2.22 eV with
an absorption of A ≈ 0.33.

The definition for the quality factor of a peak used from this point onwards in this
thesis is,

Q =
max(A)
FWHM

, (3.33)

where FWHM is the full-width half-maximum of the peak. Using this equation, the
quality factor for the peak corresponding to the bound SEP mode in Fig. 3.16 was
determined as Q ≈ 4.7. The peak in absorption was found to be equal to A = 0.71.
These values will be used to quantify how other surface modes considered in this
chapter compare to (thin film) SEP modes.
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Given that the minimum in ε′ lies below minus one for both the 0.48 wt% and 1.00 wt%
films (cf. Fig. 1.9), it is possible for these films to host bound SEP modes. Performing
the same procedure to obtain the difference plot in A for these two concentrations,
similar results to those shown in Fig. 3.16 are obtained (not shown), albeit with an
increased minimum in the phase velocity of the SEP mode, together with a decrease in
the range over which the SEP mode can be established, as expected.

For the 0.12 wt% film, the minimum in ε′ does not lie below minus one, and therefore
the film cannot host a bound SEP mode. The absorption difference plot obtained
using the procedure above is shown in Fig. 3.17. From this figure, the air-TDBC:PVA
dispersion relation does not cross the free-space light line, and no bound SEP mode is
possible along this interface, as expected. However, there is a feature corresponding to
a possible quasi-bound mode in the range 2.13 eV < E < 2.14 eV , with a relatively
nominal amount of absorption (A ≈ 0.25).

Figure 3.17: Ap − As for a 65 nm 0.12 wt% TDBC:PVA film, with dispersion diagrams for the
air-TDBC and prism-TDBC interfaces indicated as solid and dashed lines respectively.

Altogether, these findings demonstrate that bound SEP modes can be hosted by
TDBC:PVA thin films. By increasing the dye concentration in the film, the phase
velocity of these modes can be reduced, and the range of photon energies over which
these modes can be supported increased. In addition, evidence for quasi-bound SEP
modes in TDBC:PVA thin films is presented.
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3.4 Anisotropic Materials

Anisotropic materials are defined by having directionally-dependent properties;137

one of these properties can be permittivity. Anisotropy in permittivity can be either
an intrinsic property of the material arising from its crystal structure (e.g. Barium
Titanate138), or induced by an arrangement of two or more materials with isotropic
permittivity139 (referred to here as ‘isotropic materials’).

So far, surface modes have only been considered for isotropic materials in thin films.
Given that the spectral location, group velocity and quality factor of a surface mode
all depend fundamentally on the permittivity of the material in question, the capacity
for fabrication of thin films designed to host a surface mode of a specific frequency is
limited by the range of materials available. However, anisotropic materials provide
the possibility of surface mode design by tailoring the geometry of the planar nanos-
tructure: by layering two different materials together to form a stack, the effective
permittivity of the multilayer can be controlled, along with the multilayer dispersion
relation, and hence the frequencies of the surface modes.

Under the right circumstances, the dispersion relation of a multilayer stack can yield
‘hyperbolic’ surface modes,36 in addition to possible SPP and SEP modes, which may
provide unique optical properties. Therefore, in the following subsections, an effective
medium dispersion relation for multilayer stacks is derived, with a view to investigate
whether hyperbolic modes can be tuned and designed by fabrication of multilayers in
the correct geometry.

3.4.1 Anisotropic permittivity

For anisotropic materials, the permittivity becomes a tensor, denoted ε̄. Determination
of the tensor elements is central to the prediction of the optical properties of such
materials. The starting point is examination of the electric displacement vector D:
this quantity is related to the permittivity tensor and the electric field vector E by
D = ε0ε̄E. The permittivity tensor for a general non-magnetic (µ = µ0) material is
diagonal, and may be written in the following form,140

ε̄ =

 εxx 0 0
0 εyy 0
0 0 εzz

 . (3.34)

Materials with isotropic permittivity are materials for which ε̄ = εI, i.e. εxx = εyy = εzz.
So far in this thesis, these are the only materials which have been considered. In this
section, the simplest anisotropic materials are explored: these are uniaxial materials,
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materials for which εxx = εyy , εzz. Multilayer stacks composed from isotropic
materials fall under this category. For uniaxial materials, it is convenient to define a
permittivity for electric fields parallel to the surface, ε|| = εzz and a permittivity for
electric fields perpendicular to the surface, ε⊥ = εxx = εyy.

The goal now is to investigate how changes in ε⊥ and ε|| govern the response of the
in-plane wavevector k|| for uniaxial materials. As such, a relationship between the
electric field E and the wavevector k is sought. Maxwell’s equations for the curl of the
electric and magnetic fields for non-magnetic, charge-free and current free materials
are written as,

∇ × E = −µ0
∂H
∂t

(3.35) ∇ × H = ε0ε̄
∂E
∂t
. (3.36)

If the material is illuminated with plane waves, E and H for the incident field are
written in the following form,

E = E0 exp[iωt − ik · r] (3.37)
H = H0 exp[iωt − ik · r]. (3.38)

Substituting these two expressions into Eq. 3.35 & 3.36 and recognising in this case
that ∇ × E = ik × E and that ∇ × H = −ik × H gives,

k × E = µ0ωH (3.39)
k × H = −ε0ε̄ωE. (3.40)

The cross product of Eq. 3.39 with k is,

k × k × E = ωµ0(k × H). (3.41)

Substitution of Eq. 3.40 into this expression gives a relationship between k and E as
required,

k × k × E + k2
0ε̄E = 0, (3.42)

where the relationship k2
0 = ε0µ0ω

2 has been used, and k0 is the wavenumber of the
applied field. Eq. 3.42 can be written in the following matrix form,140
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 k2
0ε⊥ − k2

y − k2
z kxky kxkz

kxky k2
0ε⊥ − k2

x − k2
z kykz

kxkz kykz k2
0ε|| − k2

x − k2
y


 Ex

Ey

Ez

 = 0. (3.43)

The next step is to solve Eq. 3.43 for k0 by taking the determinant of the matrix.
The problem can be simplified considerably by reduction to two dimensions, with
subsequent generalisation. By setting ky = 0, kx = k⊥ and kz = k||, the following
expression for the determinant is obtained,

(k2
0ε⊥ − k2

|| )(ε||ε⊥k2
0 − ε⊥k2

⊥ − ε||k
2
|| )k

2
0 = 0. (3.44)

This expression is valid for any set of Cartesian axes on the material interface, subject
to the condition that the z-axis is orientated normal to the interface. Therefore, in
general, k2

⊥ = k2
x + k2

y . Eq. 3.44 implies three families of solutions for k0: the first of
these is trivial, where k0 = 0. The second family of solutions is of the form,

k2
0 =

k2
||

ε⊥
, (3.45)

implying that the solutions lie on a sphere in k-space, equivalent to the isotropic
solutions. The third family of solutions is of the form,

k2
0 =

k2
⊥

ε||
+

k2
||

ε⊥

 , (3.46)

implying that the solutions lie on a hyperbolic region of k-space when ε||ε⊥ < 0. There
are two possibilities to satisfy this condition: the first occurs where ε|| < 0 and ε⊥ > 0,
and the second occurs where ε|| > 0 and ε⊥ < 0. The first of these cases corresponds
to Type I hyperbolic metamaterials, and the second corresponds to Type II hyperbolic
metamaterials. For the purposes of determination of the class in question, only the real
part of ε is taken while ohmic losses are ignored140 i.e. only the polarisation response
is examined.

3.4.2 Dispersion relation for a uniaxial material

One can derive a dispersion relation for a non-magnetic uniaxial material by adopting a
similar approach to that used for the isotropic film. The boundary condition in Eq. 3.9
becomes,

kz1

εm
=

kz2

ε||
. (3.47)
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Putting this into the hyperbolic solution for k0 (Eq. 3.46) gives,

k2
0 =

k2
x

ε||
+

(
ε||

εm

)2 k2
z1

ε⊥
=

(
ω

c

)2
. (3.48)

The corresponding equation for k0 in the surrounding medium is,

k2
0 = k2

x + k2
z1

= εm

(
ω

c

)2
. (3.49)

Eq. 3.48 & 3.49 can be cast into the following matrix equation,

(
1/ε|| (ε||/εm)2/ε⊥

1 1

) (
k2

x
k2

z1

)
=

(
1
εm

) (
ω

c

)2
. (3.50)

From this, the dispersion relation can be found by once again setting k|| = kx, and
operating the inverse of the matrix on the equation above,

k|| =
(
ω

c

) √√
ε||εm(ε⊥εm − ε

2
||
)

ε⊥ε2
m − ε

3
||

. (3.51)

As expected, in the limiting case where ε⊥ = ε||, the dispersion relation for a simple
interface (Eq. 3.12) is recovered, specifically,

k|| =
(
ω

c

) √
εmε⊥
εm + ε⊥

. (3.52)

Several conditions can be found for modes with zero group velocity in uniaxial
materials by examination of Eq. 3.51. Given that group velocity along the surface is
given by v||g = dω/dk||, in seeking v||g = 0 one can (equivalently) solve for dk||/dω = ∞.
Taking this derivative,

dk||
dω

=

√√
ε||εm(ε⊥εm − ε

2
||
)

ε⊥ε2
m − ε

3
||

+

1
2

(
ω

c

) √√
ε⊥ε2

m − ε
3
||

ε||εm(ε⊥εm − ε
2
||
)

d
dω


√√
ε||εm(ε⊥εm − ε

2
||
)

ε⊥ε2
m − ε

3
||

 . (3.53)

From Eq. 3.53, the following two solutions can be drawn,
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ε⊥ε
2
m − ε

3
||

= 0 (3.54)

ε||εm(ε⊥εm − ε
2
|| ) = 0. (3.55)

Eq. 3.54 gives solutions which cause k|| → ∞, and Eq. 3.55 gives solutions which cause
k|| → 0; these expressions can also be arrived at by direct examination of Eq. 3.51.
The solutions for which k|| → ∞ and k|| → 0 correspond to bound and quasi-bound
surface modes respectively.

3.5 Multilayer Stacks

As stated in Sec. 3.4, a uniaxial material can be created by layering two isotropic
materials in a multilayer stack.139 In this section, the effective permittivity of such
structures is determined, and surface modes for multilayer stacks investigated. In
particular, the relative strengths and quality factors of hyperbolic modes in comparison
to the SPP and SEP modes of their constituent materials are evaluated, with a focus on
silver, gold and TDBC:PVA.

3.5.1 Multilayer stack classifications

Provided that the overall thickness of a multilayer stack is subwavelength, the stack
itself can be approximated as an effective medium. This enables one to express ε|| and
ε⊥ in terms of the filling fraction f = t1/(t1 + t2), where t1 and t2 are the thicknesses
of the two constituent materials with permittivities ε1 and ε2 respectively. One set of
possible expressions for ε⊥ and ε|| are,36

ε⊥ = f ε1 + (1 − f )ε2 (3.56)

ε|| = ( f /ε1 + (1 − f )/ε2)−1. (3.57)

These expressions can be used to determine the classifications of multilayer stacks as
both a function of wavelength and a function of f . To do so, the definitions outlined in
Tab. 3.1 (overleaf) are used.



80 3. Surface Exciton Polariton Modes in Planar Nanostructures

Material Type Conditions
Dielectric ε⊥ > 0 ε|| > 0

Type I hyperbolic metamaterial ε⊥ > 0 ε|| < 0
Type II hyperbolic metamaterial ε⊥ < 0 ε|| > 0

Metal ε⊥ < 0 ε|| < 0

Table 3.1: Definitions for the four classes of multi-layered materials.

Denoting gold as material 1 and PVA as material 2, the material classes obtainable in
the optical range for a multi-layered stack comprising these two materials is plotted in
Fig. 3.18. PVA is assumed to have a refractive index of n = 1.52 across the optical
range, and the modified Drude model for gold is used to model its permittivity, as
outlined in Ch. 2. From the figure, the multilayer stack is classed as a metal (dielectric)
when comprising mostly gold (PVA) as intuitively expected. A Type II hyperbolic
metamaterial is produced for intermediate filling fractions.

Figure 3.18: Material class as a function of filling fraction of gold ( f ) and wavelength (λ)
for a PVA and gold multilayer stack.

A similar class plot using PVA doped with TDBC molecules to a concentration of
1.46 wt% is shown in Fig. 3.19. In Ch. 1, it was shown that 1.46 wt% TDBC:PVA
has a spectral region where ε′ < 0; this is evidenced in Fig. 3.19, where the material
class becomes metal-like for wavelengths in the range 558 nm < λ < 587 nm for a
zero filling fraction (entirely TDBC:PVA). A similar picture arises when the gold in
Fig. 3.19 is substituted for silver, as shown in Fig. 3.20. In either example, the Type I
hyperbolic metamaterial only exists in a narrow range of frequencies.
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Figure 3.19: Material class as a function of filling fraction of gold f and λ for a 1.46 wt%
TDBC:PVA and gold multilayer stack.

Figure 3.20: Material class as a function of filling fraction of silver f and λ for a 1.46 wt%
TDBC:PVA and silver multilayer stack.

3.5.2 Modes for stacks

In designing multilayer stacks to host bound surface modes for two given materials,
an optimal value for f can be determined. By using the condition on ε⊥ and ε|| for a
surface mode given by Eq. 3.54 with substitution of the definitions for ε⊥ and ε|| given
in Eq. 3.56 & 3.57, the following quartic equation in f is obtained,
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( f ε1 + (1 − f )ε2)( f ε2 + (1 − f )ε1)3ε2
m = ε3

1ε
3
2. (3.58)

When Eq. 3.58 is solved for f , the filling fraction required to give a bound surface
mode is obtained; specifically, a value for f which maximises k||. Solving this quartic
depends critically on the values of ε1 and ε2. It must be noted that solutions of Eq. 3.58
for f are generally complex, whereas f can only be a real number in practice. One
trivial solution (for which k|| diverges) is ε1 = ε2 = 0.

In order to find quasi-bound surface modes, solutions for f which minimise k|| must
be found. One approach is to take Eq. 3.51 (excluding ω = 0, and taking εm to be
a positive real constant) and solve for k|| = 0 directly. This gives the following two
conditions,

ε||εm = 0 (3.59)

ε⊥εm − ε
2
|| = 0. (3.60)

The first of these is equivalent to,

ε1ε2

f ε2 + (1 − f )ε1
= 0, (3.61)

which leads to two rather trivial independent conditions: ε1 = 0, or ε2 = 0. Quasi-
bound modes are therefore manifested when the permittivity of one of the materials in
the multilayer is equal to zero; if both are equal to zero, the mode becomes bound (see
above).

The second condition for quasi-bound modes (Eq. 3.60) leads to the following cubic
equation for f ,

( f ε1 + (1 − f )ε2)( f ε2 + (1 − f )ε1)2εm = ε2
1ε

2
2. (3.62)

By using Eq. 3.62 with the specific values of ε1 and ε2, an optimal value of f can be
determined for quasi-bound modes.

The full range of possible dispersion relations for multilayers of 1.46 wt% TDBC:PVA
and silver is displayed in Fig. 3.21, where fifty dispersion diagrams have been plotted
in the range 0 < f < 1; the equivalent set of dispersion relations for TDBC:PVA and
gold is shown in Fig. 3.22.

In both Fig. 3.21 & 3.22, the dispersion diagrams have been colour-coded to show the
material type at each photon energy. Beyond the light line, multilayers comprising
TDBC:PVA-silver or TDBC:PVA-gold behave either as metals or as Type II hyperbolic
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Figure 3.21: Full range of dispersion diagrams for multilayer stacks comprising silver
and 1.46 wt% TDBC:PVA. Black, blue and green represent dielectric, metal and a Type II
hyperbolic metamaterial respectively. The thick blue lines are the light lines for air and
PVA. The thick black lines are the dispersion diagrams for 1.46 wt% TDBC:PVA and silver.

Figure 3.22: Full range of dispersion diagrams for multilayer stacks comprising gold and
1.46 wt% TDBC:PVA, using the same colour scheme as Fig. 3.21. The thick black lines
are the dispersion diagrams for 1.46 wt% TDBC:PVA and gold.
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metamaterials, as indicated by the blue and green lines respectively. The dispersion
diagram for the nanostructure made entirely from TDBC:PVA follows that of Fig. 3.16
as expected. The bound surface modes below 2.2 eV arise from the metallic nature of
the multilayer stack, and occur for any filling fraction of TDBC:PVA and metal, given
the metallic nature of both these materials at these frequencies.

For photon energies above 2.22 eV in Fig. 3.21 & 3.22, the set of dispersion curves
turn and go beyond the light line once more, implying the existence of further bound
modes not found for isotropic films alone. These bound modes at higher energies
occur exclusively for when the material is a Type II hyperbolic metamaterial. The
minimum group and phase velocities of these bound hyperbolic modes are significantly
lower than that of the bound SPP and SEP modes hosted by silver and TDBC:PVA
films alike. The implication is that bound hyperbolic modes are even more tightly
confined than SEP modes, and may be excited over a wider range of incident angles.
For the TDBC:PVA-silver multilayer, the propagation length of the hyperbolic mode
is minimised at a value of L|| = 29.0 nm, with a group velocity of v||g = 0.052c0, where
c0 is the speed of light in free space. This is in contrast to the minimised propagation
length of the SEP mode in the 1.46 wt% TDBC:PVA film at L|| = 39.5 nm, with a
group velocity of v||g = 0.169c0.

It is interesting to note that the change in metal between Fig. 3.21 and Fig. 3.22 does
not significantly shift the photon energy at which the group velocity of the hyperbolic
mode is minimised. Therefore, this particular mode is seen to be dominated by the
ENZ contribution of the TDBC dye, which occurs at 2.23 eV (cf. Fig. 2.8) for this
particular concentration.

Altogether, these findings demonstrate that tightly-bound hyperbolic modes with
relatively low group velocity may be realised with a careful choice of the filling
fraction for a two-material multilayered metamaterial. One of the materials in the
multilayer must have a permittivity close to zero at some particular wavelength, and the
other must behave as a metal around this wavelength in order for hyperbolic behaviour
to be realised.

3.5.3 Reflectance and transmittance for stacks

In order to investigate the dispersion relations theorised in the previous sections, ab-
sorption for multilayer stacks must be computed. The most efficient way to accomplish
this is to compute reflectance and transmittance for multilayer stacks via a generalised
transfer matrix method (as outlined above for thin films, Eq. 3.26). To perform this
generalisation, the transfer matrix for the entire stack is denotedMr. This quantity is
related to the transfer matrix for each layer via,135

Mr =

N∏
i=1

Mi. (3.63)
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The transfer matrix equation is therefore re-written as,

(
Ea

Ba

)
=Mr

(
EN

BN

)
=

 N∏
i=1

Mi

 ( EN

BN

)
. (3.64)

OnceMr is calculated, Eq. 3.29-3.32 can be used to calculate R and T for the multi-
layer, in the same way as for thin films.

From Fig. 3.21, the filling fraction of 1.46 wt% TDBC:PVA (in relation to that of
silver) for which the group velocity is minimised is f = 0.388. For a multilayer
stack with overall thickness 70 nm and twenty constituent layers, this filling fraction
is achieved for film thicknesses of 2.71 nm and 4.29 nm for the TDBC:PVA and
silver respectively. Undoubtedly, practical fabrication of such thin layers would be
challenging, and great care would need to be taken in order to fabricate each layer
with minimal surface roughness. However, presuming that these fabrication challenges
can be overcome, the calculated reflectance spectra for this system in Kretschmann

Figure 3.23: Reflectance for a twenty layer stack 70 nm thick, with alternate layers of
2.71 nm 1.46 wt% TDBC:PVA and 4.29 nm silver. The calculated visual colour as a
function of angle is indicated beneath the plot, where positive (negative) angles correspond
to p (s) polarised light.
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configuration (with a n = 1.52 prism) as a function of angle is plotted in Fig. 3.23,
where negative and positive angles correspond to s-polarised and p-polarised light
respectively. The colour of the stack which would be observed by the human eye for
the range of angles shown is indicated below the plot.

The calculated visual colours shown in Fig. 3.23 demonstrate that for both s-polarised
light and for angles close to normal incidence, an off-white colour would be observed;
this is a very similar colour to a 70 nm silver film (cf. Fig. 3.8). Given that the
theoretical multilayer stack in Fig. 3.23 is 61% silver, this finding is unsurprising. For
p-polarised light, the colour is bluish, with the exception of a feature around 45◦ for
which there is a switch from blue to yellow and back again with increasing angle.
This feature is also observed for a 70 nm silver film, as shown in Fig. 3.8. In the case
of the silver thin film, this feature corresponded to an SPP in the silver film; here, it
may indicate a surface mode in the multilayer stack. The chief difference between
the observed colour of the silver film and the silver-TDBC:PVA multilayer is that the
overall colour for the multilayer (over all angles) is more blue than that of the silver.
This betrays the metamaterial nature of the multilayer stack: if the material were not a
metamaterial, interference colours would be produced as (for example) seen in an oil-
water multilayer. The absence of these interference colours demonstrates the validity
of treating the multilayer stack as an effective medium over optical frequencies.

The colour plot for R in Fig. 3.23 shows that there exists a dip in R for p-polarised light
beyond the critical angle (light line) which may indicate a dispersive, bound, surface
mode similar to that of the SPP for a silver film (cf. Fig. 3.8 and Fig. 3.21). This dip
appears to be due mainly to the presence of the silver, but analysis of the absorption
for the multilayer may prove otherwise.

3.5.4 Absorption for stacks

If a multilayer stack were fabricated from alternate layers of a metallic material and
a dielectric material, bound SPP modes along each interface would be able to be
hosted.139 As a consequence, the electric field would vary significantly over the stack,
and the effective medium treatment for permittivity (Eq. 3.56 & 3.57) would become
invalid. Therefore, it is expected that for shorter wavelengths (higher frequencies), the
dispersion relation in Eq. 3.51 will break down. In this section, absorption for stacks
is calculated via the transfer matrix method in order to evaluate the accuracy of the
effective medium approximation.

Absorption for the same multilayer stack as considered in Fig. 3.23 is plotted in
Fig. 3.24a, assuming p-polarised light. The dispersion diagram for the multilayer
calculated using Eq. 3.51 is overlaid on the colour plot.

From Fig. 3.24a, the uniaxial dispersion curve is accompanied by peaks in absorption
for energies below 2.5 eV . Specifically, in the spectral regions for which the dispersion
curve lies beyond the free-space light line (2.15 eV < E < 2.19 eV and 2.22 eV),
peaks in absorption occur, indicating bound surface modes. Quasi-bound modes are



3.5. Multilayer Stacks 87

Figure 3.24: (a) Absorption (Ap) spectra with the dispersion relation (thick blue line) for
a 20-layer stack of 1.46 wt% TDBC:PVA and silver, with film thicknesses 2.71 nm and
4.29 nm respectively ( f = 0.388). The dispersion relations for the TDBC:PVA and silver
are indicated by the dashed white and black lines respectively. (b) Ap − As for the same
system.

also indicated by the dispersion curve in the region of 2.19 eV < E < 2.22 eV , for
which there is a corresponding peak in absorption.

For energies greater than 2.5 eV in Fig. 3.24, the uniaxial dispersion relation does not
follow any peak in absorption. The dispersion relation for silver shown in Fig. 3.24a
demonstrates that the absorption peak at the high-energy end of the spectrum cor-
responds to a modified SPP arising primarily from the silver. This demonstrates a
breakdown of the effective medium approximation assumed for the permittivity, as
expected for shorter wavelengths. Specifically, 2.5 eV is approximately equal to a
wavelength of λ = 508 nm: a value just over seven times that of the overall thickness
of the multilayer (t = 70 nm). This implies that the multilayer can be both considered
subwavelength and suitably approximated as an effective medium for t ≤ λ/7.

At 2.11 eV in Fig. 3.24a, there exists a feature corresponding to exciton absorption.
The uniformity of this absorption (cf. Fig. 3.15) has been modified by the bound SPP
mode of the silver, and there is a dip in the absorption just before the free-space light
line.

Fig. 3.24b can be used to discern the features of Fig. 3.24a more clearly, where
the difference in absorption between p and s polarised light (Ap − As) has been
plotted. This removes the feature corresponding to exciton absorption at 2.11 eV , and
demonstrates that the peak in absorption beyond the free-space light line between
2.15 eV < E < 2.19 eV is a veritable bound surface mode. By comparison with
Fig. 3.21, this mode is seen to be metallic in nature. This mode has a peak of A = 0.51
and quality factor of Q ≈ 9.6: an increase from that of the SEP mode exhibited by the
single film in Fig. 3.15. The other mode present beyond the free-space light line (at
2.22 eV) is a mode with a hyperbolic Type II nature. This mode has a greater peak in
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absorption (A = 0.63) in comparison to the metallic mode, but a quality factor of only
Q = 4.2, slightly lower than that of the thin film SEP mode in Fig. 3.15. Making a
further comparison of the hyperbolic mode with this SEP mode, the hyperbolic mode
exhibits a lower group velocity, and is evident over a greater range of k||, hence, a
greater range of incident angles. These findings imply that an optical filter constructed
from a multilayer can be designed to absorb with greater uniformity beyond the critical
angle than a single film would be able to, due to absorption from a bound hyperbolic
surface mode.

Figure 3.25: (a) Absorption (Ap) and dispersion relation (blue line) for a 20-layer stack of
1.46 wt% TDBC:PVA and gold, with film thicknesses 5 nm and 2 nm respectively ( f = 5/7).
The dispersion relation for gold is indicated by a dashed line. (b) Ap − As for the same
system.

Repeating the calculations above using gold in the place of silver for a value of f
which maximises k|| yields the plots in Fig. 3.25. Again, for energies less than 2.5 eV ,
the uniaxial dispersion relation is accompanied by a peak in absorption. As in the case
of silver, the bound hyperbolic surface mode gives a greater peak in absorption (1.00)
than that of the bound metallic surface mode (0.71).

Analysis of Fig. 3.25 is muddled by the absorption arising from the intraband tran-
sitions for gold. This can be seen in the dispersion relation for gold, shown as
a dashed line in Fig. 3.25a: although it correctly predicts an SPP mode between
2.2 eV < E < 2.4 eV , the gold dispersion relation diverges from any peak in absorp-
tion for energies exceeding 2.5 eV . In broad terms however, the bound hyperbolic
mode has a broader range of absorption beyond the light line than the bound metallic
surface mode; this is the same result obtained through theoretical calculations with
silver, albeit with less uniformity in absorption.
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3.6 Conclusions

By application of the dispersion relation for p-polarised light across a boundary to the
permittivity of thin films of TDBC:PVA, it has been shown in principle that excitonic
films may host bound surface modes, termed surface exciton polariton (SEP) modes.
Such modes may be excited in the Kretschmann configuration. The group velocity of
SEP modes for 1.46 wt% TDBC:PVA is relatively high in comparison to the group
velocity of surface plasmon polariton (SPP) modes for silver in the region of the
plasma frequency, but the propagation lengths of the two modes are comparable, being
in the region of one micron. The skin depth for SEP modes in 1.46 wt% TDBC:PVA
is below that of silver, indicating that such modes are more strongly confined to the
surface, thereby exhibiting a higher degree of localisation.

In using the four-level quantum model for the permittivity of TDBC:PVA in con-
junction with the transfer matrix and colour perception code, it was predicted that
such films appear yellowish in reflection at incident angles in the region of 65◦ when
illuminated by p-polarised light. This prediction was confirmed by experimentation.
In transmission, the films appear purplish, although the colour perception code used
predicts blue. This indicates one of two possibilities: first, that the absorption curves
of the l, m and s cones in the human eye do not strictly correspond to the perception of
R, G and B respectively. Further revision on the colour code may be necessary in order
to accurately investigate the blue end of the visible spectrum. In the second possibility,
the values for the permittivity of TDBC:PVA are not what they were assumed to be in
the wavelength range 380 nm < λ < 450 nm; further experimentation is required in
order to shed light on this.

Absorption calculations for thin films of TDBC:PVA in the Kretschmann configuration
with p-polarised light have demonstrated that peaks in absorption follow the dispersion
relation. By calculation of the difference in absorption between p and s polarised
light for such films, existence of SEP modes along the surface of TDBC:PVA films is
inferred. SEP modes require at least a sign change across the boundary provided by
the film, and the minimum dye concentration for which SEP modes can be excited
at the interface of a TDBC:PVA film is yet to be determined. However, this value
has been shown to lie in the range 0.12 wt% − 0.48 wt%. Absorption corresponding
to exciton excitation in these films occurs with equal efficiency for s or p polarised
light. Another peak in absorption for TDBC:PVA films occurs at the photon energy for
which the permittivity is close to zero, leading to a possible epsilon-near-zero (ENZ)
mode.

Planar multilayer nanostructures may be considered as uniaxial materials. A dispersion
relation using an effective medium approximation for ε⊥ and ε|| has been developed
and used to investigate bound surface modes in such nanostructures. For a twenty-layer
70 nm stack of gold (or silver) with TDBC:PVA, it has been shown that the dispersion
relation based upon the effective medium approximation breaks down for wavelengths
of light less than around seven times that of the total multilayer thickness. This implies
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an upper limit of approximately λ/7 on the length for which a planar nanostructure
may be considered to be subwavelength for a wavelength λ.

Bound or quasi-bound surface modes in two-material uniaxial multilayers can either
be metallic or hyperbolic in nature, and their properties arise from a combination of
the composite materials. In order to obtain a dispersion relation for which the group
velocity of the hyperbolic modes is minimised, a metallic material and a material for
which the permittivity is close to zero at some photon energy is required. Under this
circumstance, bound hyperbolic surface modes lead to a greater amount of absorption
in the multilayer than the bound metallic surface modes in the multilayer, and exhibit
a greater degree of uniformity in absorption over a wider range of angles. The
quality factor in absorption for the hyperbolic modes is approximately half that of the
(metallic) multilayer SEP modes for the combinations of materials considered. It has
been shown that the presence of hyperbolic modes can sharpen the absorption peak
of an SEP mode. Therefore, multilayers can be used for this purpose, or to introduce
a surface mode which has the capacity to absorb uniformly across a wide range of
incident angles. These hyperbolic modes of TDBC:PVA-silver (or TDBC:PVA-gold)
can exhibit an even greater degree of confinement along the surface than the SEP
counterparts of thin-film TDBC:PVA. With correct determination of the filling fraction
f for two materials, these optical properties can be exploited.

In this chapter, planar excitonic nanostructures in the form of thin films have been
shown to host SEP modes, the properties of which are similar to SPP modes. Multilayer
metamaterials comprising excitonic and plasmonic materials have been shown to
host hyperbolic modes which offer the prospect of surface modes by design. In all,
planar excitonic nanostructures offer the potential for field enhancement and enhanced
absorption in a similar way to that of planar plasmonic nanostructures, paving the
way to the nanoscale control of light using excitonic nanostructures. However, planar
nanostructures are cumbersome in fields such as biosensing within cells - and in this
particular field, nanoparticles are more suited to the environment. Therefore, in the
following chapter, the polariton modes of excitonic nanoparticles are explored.



4
Particle Exciton Polariton

Modes in Nanoparticles
In this chapter, particle exciton polariton (PEP) modes are introduced as analogues to
particle plasmon polariton (PPP) modes. Tunability offered by PEP modes is explored
for both nanospherical and nanospheroidal nanoparticle geometries.

4.1 Introduction

As seen in Ch. 3, quantised charge oscillations in the form of surface modes can
be excited at the interface between two materials. For metals, these are surface
plasmon polariton (SPP) modes and for excitonic materials, these are surface exciton
polariton (SEP) modes. In this chapter, quantised charge oscillations confined to
nanoparticles - henceforth termed ‘particle modes’ - are explored. For metallic and
excitonic nanoparticles, these modes are termed particle plasmon polariton (PPP)
modes and particle exciton polariton (PEP) modes respectively.

Particle modes are accompanied by electric field enhancement in the vicinity of the
nanoparticle5–7 along with an increase in absorption cross-section141. The strength of
the electric field enhancement depends sensitively upon the environment and geom-
etry15 of the nanoparticle. This property can be utilised within the area of chemical
detection in biosensing16, specifically within surface-enhanced Raman scattering
(SERS)142 where excitation of a PPP mode underpins the principle involved. Already,
the monitoring of cell membranes using SERS has been demonstrated.21 PPP modes
have also been shown to modify molecular fluorescences,10, 11 and a proof of principle
chemical detection system utilising PPP modes for industrial applications has also
been relayed.17

Despite these achievements, current mainstream fabrication techniques for plasmonic
nanoparticles depend principally upon expensive, small-scale, top-down techniques
such as electron-beam lithography. Recently, an alternative bottom-up approach has
been demonstrated,22 but this field is relatively unexplored. Metals have been used
traditionally as plasmonic materials due to their negative permittivity: PPP modes
(like SPP modes) depend upon a negative permittivity in order to be excited. As
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shown in Ch. 2, the negative permittivity of metals arises from the contribution of free
electrons. However, as outlined in Ch. 1, excitonic materials can also exhibit a negative
permittivity over a narrow range of frequencies143 arising from a strengthening in
the transition dipole moment of the excitonic molecules under aggregation, as shown
in Ch. 2. Therefore, nanoparticles of these resultant excitonic materials present an
alternative to the use of metals as plasmonic materials, as explored in the context of
planar nanostructures in Ch. 3. Excitonic materials are also of interest for control of
light at the nanoscale in the context of nanoparticles,144 and as means to support PEP
modes.46, 145, 146 In addition, excitonic materials offer a fabrication alternative based on
supramolecular chemistry and self-assembly. Therefore, in this chapter the properties
and merits of PEP modes for nanoparticles are investigated and weighed against those
of PPP modes.

Nanoparticles as defined in this chapter are particles for which the smallest dimension
is of the order of 100 nm or less. Therefore, 100 nm diameter nanospheres are treated
as a limiting case, and are given particular attention throughout this chapter. For
optical wavelengths, this length scale is in the subwavelength regime by a factor of
four. The shape of the nanoparticles considered in this chapter are nanospheres and
nanospheroids, both for their relative simplicity and relative ease of fabrication with
modern techniques.16

In Ch. 3, the evidence for surface modes was presented using absorption calculations
for planar nanostructures with the aid of dispersion diagrams overlaid upon these
calculations. The comparison between the two helped to provide evidence that surface
modes could be supported by films and multilayer stacks. In addition, the reflectance
and transmittance spectra were used to calculate the visual appearance of such systems.
For nanoparticles on resonance (whose diameter is less than that of the skin depth of
the surface mode) the mode is distributed throughout the volume of the particle - the
definition of a particle mode. Therefore, there is no direct equivalent of an induced
wavevector parallel to the surface, as there is for surfaces: hence a dispersion relation
for nanoparticles cannot be constructed in the same way. Accordingly, surface modes
and particle modes are seen to be distinct from each other, and a different approach is
needed in order to analyse particle modes.

The approach taken in this chapter is to first calculate the approximate resonant
energies for the nanoparticle modes. This is accomplished by incorporation of the
findings from Ch. 2 for the permittivity of the materials involved. By finding the
resonant energies as functions of experimentally adjustable parameters (such as the
nanoparticle dimensions, or dopant concentration), the tunability of these modes can
be determined. Scattering and absorption cross-sections are then calculated, along
with the electric field enhancement in the vicinity of the nanoparticle.
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4.2 Dipole Particle Modes

The theoretical starting point for nanoparticles under illumination by an optical field
is to consider the lowest order mode which can be induced in the nanoparticle: a
dipole mode. By making the assumption that a dipole mode possesses a dipole electric
potential, a general expression for the electric potential of a dipole mode at position r
in a medium with relative permittivity εm is,

Φ(r) =
e

4πε0εm

(
1

|r − d/2|
−

1
|r + d/2|

)
, (4.1)

where d is the length and orientation of the dipole. In the point dipole approximation,
the electric potential for a dipole orientated along the z-axis reduces to,

Φ(r, θ) ≈
|p| cos θ

4πε0εmr2 , (4.2)

where θ is the angle which subtends the z-axis and the position vector r. This electric
dipole can in principle be excited by any incident light source with an electric field
component in the z-direction, but exciting this mode in isolation requires a z-polarised
light source incident in the x-y plane; this is the situation under consideration. The
induced dipole moment p of the dipole mode depends linearly on the incident electric
field Ei. These two quantities are linked by,61

p = εmᾱEi, (4.3)

where ᾱ is the polarizability tensor of the nanoparticle. For nanospheres, or for
illumination of a non-spherical nanoparticle with a fixed orientation, ᾱ reduces to
a scalar, here denoted α = α′+ iα′′. This complex quantity is key to determination
of resonance conditions for the nanoparticle, and it governs the optical response of
subwavelength nanoparticles themselves. This is seen by using the elementary relation
E = −∇Φ with Eq. 4.2 to give the following expression for the dipole electric field
induced by the incident field in nanospheres,

Ed ≈
|p|

4πε0εmr3

(
2 cos θ r̂ + sin θ θ̂

)
=
|α||Ei|

4πε0r3

(
2 cos θ r̂ + sin θ θ̂

)
. (4.4)

Here it is seen that the relative strength of the dipole electric field to the incident field
at all points in space is linearly dependent upon |α|.
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The superposition of the incident field with the induced dipole electric field is now
considered. As previously stated, the dipole mode considered above is orientated
along the z-axis and the simplest incident electric field which can induce this mode is
a z-polarised field, i.e.

Ei = Ei ẑ

≡ Ei

(
cos θ r̂ − sin θ θ̂

)
. (4.5)

Denoting the total field as E = Ed + Ei, the following expression for the ratio of the
magnitude of the total electric field strength to the incident electric field strength can
be derived,

ζ =
|E|
Ei

=

√
|α|2β2

r6 (3 cos2 θ + 1) +
4βα′

r3 cos 2θ + 1, (4.6)

where β = 1/4πε0. Two observations of Eq. 4.6 are made: firstly, the field distribution
is independent of axial rotation. Secondly, given that the first term in the square root
is dominant and positive, the relative strength of the total electric field can exceed
that of the incident field within a region of space surrounding the nanosphere given
a sufficiently strong value of |α|. The specific shape of this region of space can be
determined by construction of the following polar equation for isosurfaces for which
the parameter ζ as defined above is constant,

r3 =
−2βα′ cos 2θ

(ζ2 − 1)
± β

√
4α′2 cos2 2θ

(ζ2 − 1)2 +
|α|2(3 cos2 θ + 1)

(1 − ζ2)
. (4.7)

The sign taken in Eq. 4.7 is the one which gives a real solution for r, given the specific
value of α. Given that the strength of a dipole electric field falls off with observation
distance, the region of space within the isosurface defined by Eq. 4.7 is generally a
region for which ζ exceeds its value upon the isosurface. This means that the region
of space for which the electric field is enhanced can be determined by calculation of
the ζ = 1 isosurface. One caveat of Eq. 4.7 is that the ζ = 1 isosurface is not directly
calculable by Eq. 4.7, owing to a pole at ζ = 1. This pole arises from the quasistatic
theory used in order to derive Eq. 4.7. In order to avoid this pole, the isosurfaces
plotted using Eq. 4.7 in this chapter are of the ζ = 1.01 isosurface. These isosurfaces
are used in this chapter to inform the nature of the results obtained using more exact
(and hence less analytically tractable) scattering theories. The specific nature of the
isosurfaces for nanospheres are examined in the following section.
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4.3 Nanospheres

In this section, the resonant modes of bare nanospheres are considered. The resonance
condition for nanosphere modes (the Clausius-Mossotti relation) is introduced, fol-
lowed by consideration of the electric field strength in the vicinity of the nanosphere in
the quasistatic regime. Quasistatic scattering and its relationship with the nanoparticle
polarizability is then outlined, followed by the introduction of Mie theory: an exact
scattering theory for spheres. Lastly, calculations made using Mie theory are presented,
and the results are evaluated against the more approximate predictions from quasistatic
theory.

4.3.1 The Clausius-Mossotti relation

The aim within this section is to find a value for the relative permittivity ε of a
nanosphere for which the dipole moment p induced by the incident field is maximised.
By Eq. 4.3, this quantity is maximised where the polarizability α is also maximised.
For nanospheres, an expression for the polarizability is given by,61

α = 3ε0V
ε − εm

ε + 2εm

= 4ε0πR3 ε − εm

ε + 2εm
, (4.8)

where V (R) is the nanosphere volume (radius). A condition can be drawn immediately
from Eq. 4.8 for the maximisation of α as6 min(ε+ 2εm): this is known as the Clausius-
Mossotti (CM) condition.61 Re-writing this expression in the limit where ε′′ → 0 (and
εm is real-valued) gives the more familiar form of the CM condition,

ε′ = −2εm. (4.9)

Material CM resonance nm
1.46 wt% TDBC:PVA 2.17 eV ≡ 572 nm 1

Gold 2.66 eV ≡ 466 nm 1
Silver 3.02 eV ≡ 411 nm 1.5

Aluminium 7.76 eV ≡ 160 nm 1.5

Table 4.1: Resonant energies for nanospheres of four materials as determined using the CM
condition.
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Using this condition with the permittivity results from Ch. 2, the resonant energies for
nanospheres of four different materials in media of refractive index nm are tabulated in
Tab. 4.1.

The approximate dependence of the resonant energy on the material properties of
excitonic materials can be examined by substitution of the single-oscillator Lorentz
model (Eq. 2.14) into the CM condition, and solving for the resonant frequency ω of
the PEP mode (also known as the Fröhlich frequency65). This yields the equation,

ω = ω0

√
1 +

f
εb + 2εm

. (4.10)

This equation demonstrates that the PEP mode will redshift for an increase in medium
index. In addition, since the oscillator strength f is directly proportional to concentra-
tion, the mode will blueshift for an increase in concentration. It is worth noting that
the resonant frequency is always on the high-energy side of the exciton transition at
ω0 for positive media (εm > 0).

Performing the same analysis for a metal nanosphere using the Drude model (Eq. 2.20)
yields the following expression for the resonant frequency of a particle plasmon
mode,

ω =
ωp

√
ε∞ + 2εm

. (4.11)

Like the formula for the PEP mode energy, Eq. 4.11 demonstrates that an increase in
the medium index leads to a redshift in the PPP resonant energy.

Substitution of the best-fit Lorentz oscillator values for the TDBC:PVA in Tab. 4.1
( f = 0.3 and εb = 1.522) into Eq. 4.10 yields a value of 2.18 eV for the resonant
energy when the nanosphere is in vacuum (εm = 1); this value is within 0.5 % of
the tabulated value from the quantum mechanical model, proving the validity of the
Lorentz oscillator model to make approximate predictions for the PEP mode energy.

4.3.2 Field confinement in nanosphere dipole modes

The electric field strength around nanospheres hosting a dipole particle mode is now
outlined in general terms using quasistatic theory, and then examined for three specific
materials. These calculations are made with a view to help inform calculations made
using Mie theory.

Firstly, the point dipole approximation upon which Eq. 4.7 relies needs to be justified
for nanospheres of TDBC:PVA. The dipole lengths quantified in Ch. 2 are of the order
of ångströms. Given that the radii of the nanospheres considered in this chapter are
R = 50 nm (a value around one hundred times that of the dipole length) the point
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dipole approximation is justified and Eq. 4.7 can be used as a suitable approximation
for the system.

Using Eq. 4.8 for α in Eq. 4.7 with the family of values of ε for which the CM
condition is satisfied (ε = −2εm + iε′′), the following polar equation for electric field
isosurfaces on resonance is obtained,

r
R

=

−2 cos 2θ
ζ2 − 1

±

√(
2 cos2 θ

ζ2 − 1

)2

+
(1 + (3εm/ε′′)2)

ζ2 − 1
(3 cos2 θ + 1)


1/3

. (4.12)

At the nanosphere equator (θ = π/2) this equation becomes,

r
R

=

 2
ζ2 − 1

+

√
4

(ζ2 − 1)2 +
(1 + (3εm/ε′′)2)

ζ2 − 1


1/3

. (4.13)

Eq. 4.13 defines a circle around the nanosphere equator which increases in size with
medium index.

In Eq. 4.12 & 4.13, there is a pole at ε′′ = 0. This implies in the case where
ε = −2εm, the electric field enhancement would be felt over all space. Such a material
is unrealistic however, because in reality, ε′′ is non-zero where the CM condition is
fulfilled, and the speed of light is finite. Furthermore, the maximum extent of the
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Figure 4.1: Cross-sections of ζ = 1.01 isosurfaces (blue lines) for a nanosphere in vacuum
with ε′ = −2 and ε′′ = 0.1i (dotted), 1i (dashed) and 10i (solid). The nanosphere surface is
indicated by the black line. The axes are in units of the nanosphere radius R.
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enhanced field is tightly confined to the nanoparticle with even a modest value of ε′′:
taking an example of ε = −2 + 0.1i, the maximum extent of r within which electric
field enhancement (ζ > 1) occurs in vacuum (εm = 1) is less than seven times the
radius of the nanoparticle, as illustrated in Fig. 4.1. An increase in the loss (ε′′) of the
nanoparticle material causes the profile of this isosurface to shrink and narrow at the
neck, as illustrated for the example permittivity of ε = −2 + i in Fig. 4.1. A sufficiently
large value of ε′′ results in an isosurface which does not fully contain the nanoparticle,
as again demonstrated in Fig. 4.1, with ε = −2 + 10i. These elementary calculations
therefore demonstrate that electric field enhancement is only observed over all solid
angles of the nanoparticle if ε′′ is sufficiently low and the CM condition is fulfilled:
similar plots to the innermost curve in Fig. 4.1 are produced for arbitrary values of ε
(not shown). This demonstrates that this property of electric field enhancement over
all solid angles is a special case, which if demonstrated for a nanoparticle, is strong
evidence for a particle polariton mode.

Isosurfaces for nanospheres of real materials are now considered. On-resonance
calculations made using Eq. 4.7 for ζ = 1.01 isosurfaces for silver nanospheres in a
nm = 1.5 medium along with gold and 1.46 wt% TDBC:PVA nanospheres in vacuum
are visualised in Fig. 4.2. The resonant energies used for this figure are taken from
the tabulated values in Tab. 4.1 and the incident light is z-polarised, following the
formalism adopted above.

One finding from Fig. 4.2 is that the ζ = 1.01 isosurface for the three nanospheres
considered is not more that 5.5R from the surface of the nanosphere. This distance
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Figure 4.2: Cross-sections of ζ = 1.01 isosurfaces in the x-z plane on resonance for nanospheres
of silver in a nm = 1.5 medium (blue dotted line), along with those in vacuum for nanospheres of
1.46 wt% TDBC:PVA (red solid line), and gold (blue dashed line). The nanosphere cross-section
is indicated by the black solid line, and the axes are in units of the nanosphere radius R.



4.3. Nanospheres 99

is maximised at the poles of the nanosphere (x = y = 0). At the nanosphere equator
(z = 0), the isosurface lies outside the nanosphere for both the silver and TDBC:PVA
nanospheres, but not for the gold nanosphere. Therefore, on resonance, the TDBC:PVA
nanosphere exhibits electric field enhancement over all solid angles, whereas the gold
nanosphere does not. However, the total volume of space enclosed by the isosurface for
the gold nanosphere exceeds that of the TDBC:PVA nanosphere. The calculations for
the silver nanosphere in vacuum resemble those of the gold nanosphere, but by raising
the index of the medium to εm = 1.52, the volume of the ζ = 1.01 isosurface around
the nanosphere is increased (see Eq. 4.12 & 4.13). These calculations demonstrate
that if a particle mode can be excited in a nanosphere in a higher index medium, it is
likely to be accompanied by a greater volume over which electric field enhancement
will occur.

There is another value of the permittivity for which electric field enhancement can be
demonstrated over all solid angles: the case where ε′ → 0, i.e. for epsilon near zero
(ENZ) materials. By using Eq. 4.7 & 4.8, the following polar equation can be derived
for isosurfaces with ε = 0 + iε′′,

( r
R

)3
=2

(
2ε2

m − ε
′′2

4ε2
m + ε′′2

)
cos 2θ
1 − ζ2

±

√
4
(
ε′′2 − 2ε2

m

4ε2
m + ε′′2

)2 cos2 2θ
(ζ2 − 1)2 +

(
ε2

m + ε′′2

4ε2
m + ε′′2

)
(3 cos2 θ + 1)

ζ2 − 1
, (4.14)

where light with a z-polarised electric field has been assumed. For ε′′ = 0, Eq. 4.14
becomes,

( r
R

)3
=

cos 2θ
1 − ζ2 ±

√
cos2 2θ

(1 − ζ2)2 +
(3 cos2 θ + 1)

4(ζ2 − 1)
. (4.15)

The shape of the surface described by Eq. 4.15 is that of a doughnut, and bulges
at the equator. By substitution of θ = {0, π} into Eq. 4.15, it can be shown that no
isosurface breaks the surface of the nanosphere (r = R) at the poles when ε′′ = 0.
Therefore, electric field enhancement is not present over all solid angles for ε = 0.
However, by performing the same calculation for ε = 0 + iε′′ with Eq. 4.14, it can be
demonstrated that for small values of ε′′, electric field enhancement can be present
over all solid angles in a similar way to that of a PEP or PPP mode. To illustrate this
point graphically, five x-z plane cross-sections of ζ = 1.01 isosurfaces are plotted in
Fig. 4.3 (overleaf) for differing values of ε′′. It can be seen that for ε′′ < εm, the shape
of the isosurface described is markedly different from that of the dipole isosurfaces (as
seen above) in that electric field enhancement occurs predominantly in the same plane
in which the light is incident (the x-y plane in this case). For the curve calculated with
ε′′ = 2, the isosurface resembles that of the isosurfaces calculated with arbitrary ε,
as seen above. In all, Fig. 4.3 demonstrates that there is a range of ε′′ for which the
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Figure 4.3: Five ζ = 1.01 isosurfaces for a nanoparticle with ε = 0 + iε′′. Axes are in units
of the nanoparticle radius, and the nanoparticle is indicated by the blue circle.

ζ = 1.01 isosurface wholly contains the nanoparticle, giving electric field enhancement
over all solid angles. In this way, an ENZ mode may be expected to act in a similar
way to that of a PEP (or PPP) mode.

4.3.3 Quasistatic scattering

The effect of the particle polarizability on scattering, absorption and extinction cross-
sections for nanospheres is now investigated. In the quasistatic regime (where the
size of the particle is negligible in comparison to the wavelength) the scattering and
absorption cross-sections σsca and σabs are related to the nanoparticle polarizability
by,65

σsca =

(
ω

c

)4 |α|2

6π
(4.16)

σabs = −
ω

c
α′′. (4.17)

As an aside, these two equations can be applied to quasistatic non-spherical nanoparti-
cles. The negative sign taken in Eq. 4.17 is chosen due to the ε = ε′ + iε′′ convention
used in this thesis. It can be seen from these equations that the larger the imaginary
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part of the polarizability of a nanoparticle, the larger the absorption cross-section will
be. By the use of Eq. 4.8, an explicit expression for α′′ for nanospheres is,

α′′ =
−ε′′εm

ε′2 + ε′′2 + 4εm(ε′ + εm)
. (4.18)

This quantity is maximised for ε′ → −2, and ε′′ → 0, as illustrated in Fig. 4.4 where
ln |α′′| has been plotted.

Figure 4.4: The natural logarithm of α′′ as a function of ε′ and ε′′ in units of εm.

A more useful quantity in the measurement of absorption in preference to absorption
cross-section is the absorption efficiency of a nanoparticle, defined by Qabs = σabs/πR2,
where R is the radius of the nanoparticle presented to the incident field. By Eq. 4.17,
it is feasible that this quantity may exceed unity for a sufficiently large value of α′′.
Under this circumstance, the particle will absorb more flux than strikes it geometrically,
implying that the nanoparticle acts as a ‘magnet for light’, providing a facility for near-
field enhancement around the nanoparticle: a prime indicator of a particle mode.147

4.3.4 Mie theory

Whereas quasistatic scattering theory helps provide physical insight for how one might
expect a particle mode to manifest itself on an absorption efficiency spectrum, an exact
scattering theory is needed in order to evaluate the accuracy of the Clausius-Mossotti
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condition; Mie theory148 provides the solution to this problem. Mie theory is an exact,
steady-state scattering theory for spheres. By solving Maxwell’s equations across the
boundary of an isotropic nanoparticle in spherical co-ordinates with application of the
vector spherical harmonics M and N for an x-polarised plane wave (with electric field
amplitude E0) incident on the sphere along the z-axis, the following vector equations
for the scattered electric and magnetic fields are obtained,65, 148

Es = E0

∞∑
n=1

in(2n + 1)
n(n + 1)

(
ianN(3)

e1n − bn M(3)
o1n

)
(4.19)

Hs =
k
ωµ

E0

∞∑
n=1

in(2n + 1)
n(n + 1)

(
ibnN(3)

o1n + an M(3)
e1n

)
, (4.20)

where an and bn are the Mie a and b coefficients respectively, for mode n. Expressions
for these coefficients are well known, and can be written as,

an =
mψn(mx)ψ′n(x) − ψn(x)ψ′n(mx)
mψn(mx)ξ′n(x) − ξn(x)ψ′n(mx)

(4.21)

bn =
ψn(mx)ψ′n(x) − mψn(x)ψ′n(mx)
ψn(mx)ξ′n(x) − mξn(x)ψ′n(mx)

. (4.22)

where ψn and ξn are the Riccati-Bessel functions, m is the ratio of the refractive index
of the sphere to the medium, and x = kR is the size parameter, where k = 2π/λ is
the wavenumber of the incident field. The expressions above for the scattered fields
are used to calculate the scattered Poynting vector, Ss = 1/2�e(Es × H∗s), which
when integrated over all solid angles gives the averaged scattered power. This quantity
(when normalised) is equivalent to the scattering efficiency of the nanosphere,

Qsca =
2
x2

∞∑
n=1

(2n + 1)
(
|an|

2 + |bn|
2
)
. (4.23)

Adopting a similar procedure for the extinction Poynting vector (defined as Sext =

1/2�e{Ei × Hs + Es × H∗i }), the following expression for the extinction efficiency of
the nanosphere is obtained,

Qext =
2
x2

∞∑
n=1

(2n + 1)�e(an + bn). (4.24)

These expressions for scattering and extinction efficiency are used to find the nanopar-
ticle absorption efficiency via, Qabs = Qext − Qsca.
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4.3.5 Nanosphere PEPs vs. PPPs

Now that a theoretical framework has been established to determine the resonant
energies and scattering efficiencies of nanospheres, accurate absorption spectra can be
calculated and analysed for nanospheres. The excitonic material of particular interest
in this chapter is TDBC:PVA, and in this section, the optical properties of TDBC:PVA
nanospheres are compared against nanospheres of gold, silver and aluminium, each
of which can exhibit PPP modes. The TDBC:PVA films considered in Ch. 3 were
fabricated by a spin-coat procedure; as a direct consequence of this process, the
aggregate dipole moments are constrained to lie in the plane of the film (herein referred
to as the ‘planar distribution’). Therefore, if a nanoparticle were to be constructed
directly from this material, the nanoparticle would not be isotropic, as illustrated in
Fig. 4.5a. While the Mie absorption efficiency for this nanosphere in the forward

Figure 4.5: Graphical representations of PVA nanospheres doped with TDBC aggregates
to a concentration of (a) 1.46 wt% in the planar distribution and (b) 3.22 wt% in the volume
distribution.

direction (with the incident field in the plane in which the aggregates are distributed)
is equivalent to the (orientationally-averaged) Mie absorption efficiency given by
Eq. 4.23 & 4.24 for the isotropic nanosphere, the electric field distributions around
these two nanospheres differ from each other. Given that electric field plots around
excitonic nanospheres are needed in order to analyse the existence of PEP modes, to
simplify the theoretical treatment, isotropic excitonic nanospheres are sought. In this
section therefore, a volume distribution of randomly-orientated aggregates within the
nanoparticle is considered, as illustrated in Fig. 4.5b (herein referred to as the ‘volume
distribution’).

The volume distribution of aggregates weakens the magnitude of the effective aggregate
dipole moment (as derived in App. B.1); this causes significant spectral changes in
the permittivity (as shown in Ch. 2) and hence changes in the optical properties of
the nanoparticle. Therefore, for the sake of consistency, the same lineshape of ε
for an isotropic nanoparticle is sought as for the 1.46 wt% TDBC:PVA film studied
in Ch. 1-3. This lineshape can be achieved to a good approximation by increasing
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the concentration of the dye to 3.22 wt% (see discussion around Fig. 2.6 for further
details). By this treatment, the absorption efficiency spectrum calculated for a 3.22 wt%
TDBC:PVA nanoparticle with a volume distribution of aggregates is very similar to that
of the forward absorption efficiency spectrum for a 1.46 wt% TDBC:PVA nanoparticle
with a planar distribution of aggregates, provided that the illumination of the latter is
such that the incident electric field lies parallel to the plane in which the aggregates
are distributed. Therefore, PEP modes can be inferred for nanoparticles with a planar
distribution of aggregates from evidence for PEP modes in nanoparticles with a volume
distribution of aggregates.

From this point on in this thesis, TDBC aggregates are assumed to be in the volume
distribution inside the host nanoparticle and modelled using the four-level quantum
model, unless otherwise stated.

Absorption efficiency spectra calculated using Mie theory for nanospheres of gold,
silver, aluminium and 3.22 wt% TDBC:PVA each with diameter d = 100 nm are
displayed in Fig. 4.6. From this figure, the accuracy of the values for the resonant
energies predicted in Tab. 4.1 can be evaluated: in Fig. 4.6, the absorption peaks
(corresponding to the dipole resonance) for gold, silver and 3.22 wt% TDBC:PVA
occur at 2.42 eV , 2.94 eV and 2.17 eV respectively, giving percentage errors of 9.9%,
2.7% and < 0.10% in relation to the values predicted by the CM condition; these values
are indicated by crosses in the figure. The 100 nm diameter aluminium nanosphere
exhibits its Mie resonance at 6.53 eV in a medium of nm = 1.5, giving an error of 19 %.
This resonance corresponds to a wavelength of λ = 190 nm, in the far ultraviolet, and
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Figure 4.6: Mie absorption efficiency spectra for 100 nm diameter nanospheres of silver
(black), gold (dashed), 3.22 wt% TDBC:PVA (blue), and aluminium (dash-dot). The
medium index for silver and aluminium is nm = 1.5; the others vacuum. The resonant
energies determined from the CM condition are indicated by black crosses on each curve.
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this spectral region is not examined in this thesis.

Of the four nanospheres in Fig. 4.6, it is the TDBC:PVA nanosphere which exhibits
the largest peak value of Qabs (3.19), exceeding the peak value for both the gold (2.48)
and the silver (1.94) nanospheres. The TDBC:PVA nanosphere is also the nanosphere
for which the CM condition is the most accurate. Altogether, these Mie calculations
demonstrate that the CM condition is only approximately true, especially when ε′′

is large, as in the case of gold. For gold in particular, both ε′ and ε′′ increase with
photon energy in the range 2.0 eV < E < 2.6 eV , and this shifts the value of the
peak absorption to longer wavelengths than predicted. Another factor pushing the
resonance off the quasistatic value is that the incident electric field strength varies
over the nanoparticle due to retardation: this gives rise to dynamic depolarization and
radiative damping149, both of which are accounted for within Mie theory, but are not
included in the quasistatic theory. These effects can be included in the quasistatic
theory by a first-order correction to the polarizability,149 giving what is known as the
‘modified long-wavelength approximation’. However, for small nanosphere diameters,
the resonant energies from Mie theory tend towards those given from the quasistatic
theory. With this constraint in mind, Eq. 4.8 is used to determine the spectral locations
of the resonances as an ancillary to Mie theory.

In spite of the peak in the Mie absorption efficiency curve for the TDBC:PVA
nanosphere being the narrowest of the curves shown, the peak is sufficiently broad to
obscure the ENZ mode at E = 2.223 eV , where ε = 0.64i. The absorption efficiency at
this energy does not exceed unity (Qabs = 0.78). Therefore, the prediction in Sec. 4.3.2
stating that particle ENZ modes might show similarity to PEP modes is proved to be
false in terms of strong absorption in this case.

The Mie absorption efficiency peak corresponding to the PPP mode for the gold
nanosphere in Fig. 4.6 is relatively broad in comparison to both the peak for the PEP
mode for the 3.22 wt% TDBC:PVA nanosphere and the peak for the PPP mode for
the silver nanosphere. The quality (Q) factor for the gold (dipole) PPP mode in air
is 6.75, in comparison to 67.7 for the TDBC PEP mode in air and 9.96 for the silver
(dipole) PPP mode at 2.95 eV in nm = 1.5 (the other peak at 3.20 eV in the silver
absorption efficiency spectrum is the quadrupole PPP mode). These differences in
Q-factor arise from the behaviour of the derivative dε′/dω in the region where ε′

crosses the resonance condition: the smaller the value of the derivative, the broader the
resonance will be, leading to a lower Q-factor. For gold and silver, this derivative is
approximately constant in comparison to the derivative for the TDBC. A high Q-factor
is of interest in applications such as biosensing150, due to the tunability with the
host medium this offers (by Eq. 4.8); this is seen best for silver. From inspection
of the lineshape of ε′ for TDBC:PVA in Fig. 2.8, this implies that the quality factor
associated with the TDBC:PVA PEP mode would depend on the refractive index of
the surrounding medium, provided that min(ε′) < −2εm. This condition places a
restriction on the range of wavelengths for which the resonance can be tuned with a
change in the host medium, and demands a high concentration of dye for this tunability
to be accessible. This range is determined from Fig. 2.8 as 2.11 eV < E < 2.24 eV
(558 nm < λ < 587 nm) for a concentration of 3.22 wt% (volume distribution).
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As previously stated, an absorption efficiency above unity implies that the nanosphere
absorbs more light than strikes it. This apparent paradox is resolved by plotting lines
of power flow in the vicinity of the nanosphere. In Fig. 4.7, streamlines of power flow
around a 3.22 wt% TDBC:PVA nanosphere are plotted on (a & c) and off (b & d)
resonance for x-polarised light incident along the positive z-axis. The streamlines
are calculated from the total Poynting vector S = Ss + Sext + Si. On resonance at
2.16 eV (where Qabs = 3.39), the nanoparticle acts akin to a magnet for light in the
y-z plane, as seen in Fig. 4.7a: here, the streamlines for power flow bend towards the
nanoparticle for up to approximately 1.5 times the particle radius. This is in contrast
to the off-resonance case in Fig. 4.7b at 2.12 eV , where Qabs = 0.8. Here, the field
lines do not bend nearly as much towards the nanoparticle and instead the lines which
are absorbed are largely those which strike it geometrically. Examining the power

Figure 4.7: Colour plot: time-averaged |E|/E0 in the vicinity and on the surface of the
100 nm 3.22 wt% TDBC:PVA nanosphere on resonance (left hand plots) and off resonance
(right hand plots). Streamlines: power flow, with incident light along the positive z-axis.
The incident photon energies are (a & c) 2.16 eV ≡ 574 nm and (b & d) 2.12 eV ≡ 586 nm.
The region within which |E|/E0 > 1 is bounded by a green line.
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flow for these two cases in the x-z plane in Fig. 4.7c & 4.7d, it can be seen that less
incident light flows past the nanoparticle on-resonance (Fig. 4.7c), leading to a higher
absorption efficiency, and vice versa off-resonance (Fig. 4.7d).

The colour plots in Fig. 4.7 indicate the time-averaged electric field strength on the
nanoparticle surface and in the surrounding space of the nanoparticle, normalised
to the incident field strength. At both photon energies shown, there is a region of
space within which the field is enhanced, the shape of which follows the two-lobed
shape, as expected from the theory based on the point dipole approximation outlined
in Sec. 4.3.2. The plots in Fig. 4.7 from Mie theory demonstrate that the dipole mode
is the dominant mode of the nanoparticle, as assumed within the quasistatic theory.
The plots at the two different energies appear to be only subtly different from each
other however, and electric field enhancement is not observed over all solid angles off

resonance as is the case on resonance. Therein lies the important difference: Fig. 4.7a
shows that this region is circular and outside the nanoparticle equator on resonance
as predicted. The regions of electric field enhancement around the nanoparticle off

resonance arise from scattering of the electric field at this energy.

Altogether, the two crucial properties of (1) electric field enhancement over all solid
angles and (2) strong absorption are only present for the nanoparticle on-resonance.
Therefore, a PEP mode is demonstrated at a photon energy of 2.16 eV (574 nm) for
a d = 100 nm nanosphere of 3.22 wt% TDBC:PVA in vacuum, with a stronger peak
absorption and higher quality factor than either that of gold, or (in a nm = 1.5 medium)
silver or aluminium.

The reliability of these results is now discussed. To help evaluate the accuracy
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Figure 4.8: Mie absorption efficiency spectra for a 100 nm diameter 1.46 wt% (planar
distribution) TDBC:PVA nanosphere in vacuum using ε from: experiment (dashed line); a
best-fit Lorentz oscillator model (dotted line); the four-level quantum model (black line).
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of the Mie theory results, Mie absorption efficiency spectra are calculated using
the experimentally-determined values of the permittivity for the 70 nm 1.46 wt%
TDBC:PVA film produced via spin-coating, as outlined in Ch. 1, and contrasted
against the same calculations made using two different theoretical models for the
permittivity of TDBC aggregates in the planar distribution. The theoretical models
for the permittivity are the four-level quantum model and the single oscillator Lorentz
model. The Mie absorption efficiency spectra are plotted in Fig. 4.8, and these spectra
are interpreted such that they represent absorption efficiency in the forward direction,
as would be obtained in an experiment for a 100 nm diameter PVA nanosphere doped
with a planar distribution of TDBC aggregates to a concentration of 1.46 wt%. In
Fig. 4.8, it can be seen that the four-level quantum model for permittivity provides a
much closer fit to Qabs calculated using the experimentally-determined values of the
permittivity than the Lorentz oscillator model does. This demonstrates that (despite
apparent similarities) small differences in the lineshape of ε between the Lorentz
model and the quantum model lead to substantial differences in Qabs in the photon
energy range 2.15 eV < E < 2.25 eV . More importantly, the absorption efficiency for
each of the three spectra exceeds unity by a factor of three: given that the permittivity
of 1.46 wt% TDBC:PVA in the planar distribution is very similar to that of 3.22 wt%
TDBC:PVA in the volume distribution, these calculations provide evidence of PEP
modes for both 1.46 wt% TDBC:PVA nanospheres with a planar distribution of aggre-
gates (with illumination in the appropriate direction), and for 3.22 wt% TDBC:PVA
nanospheres with a volume distribution of aggregates.

Given that in Fig. 4.8 the four-level quantum model for permittivity yields a closer
fit to the absorption efficiency spectrum predicted by experimental values, and that
the parameters used in the Lorentz model are the best fit parameters to ε, evidence
is presented such that the quantum model is both a more realistic and more accurate
model. This suggests that the assertions made within this section regarding evidence
for PEP modes in TDBC:PVA nanospheres can be relied upon. In addition, this
indicates that the use of a forced damped harmonic oscillator to model the permittivity
of a quantum ensemble is indeed an approximation only, and Lorentz’s doubts about
his model118 are justified. By no means is the quantum model as used here perfect: the
high-energy tail in the curve using experimental values is not replicated in its entirety
by the quantum model, in spite of the contribution from the |0〉 → |3〉 aggregate
transition at 2.31 eV . In addition, given that the tail borne from the experimental
data appears to be non-Lorentzian, this could demonstrate that the held assumption
that aggregates are non-interacting is not entirely accurate: further research could
help to shed light on this question, either by further experimentation on films, or by
re-evaluation of the Hamiltonian used.

4.3.6 PEP tunability with dye concentration

The PEP mode in TDBC:PVA nanospheres can be tuned by adjustment not only of the
host medium index, but also by the molecular concentration, as indicated through the
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dependency on oscillator strength ( f ) in Eq. 4.10. As stated in the discussion around
Eq. 4.10, the resonant frequency is always on the high-energy side of the transition
ω0 (ω01 in the quantum model). This translates as E > 2.11 eV (λ < 588 nm) for
the resonant energy of the PEP mode for TDBC:PVA nanospheres with arbitrary
molecular concentration. In reality, the range of resonant energies might be restricted
by the presence of the next exciton transition, at ~ω3 = 2.31 eV in TDBC aggregates
(see Sec. 2.3.4.2).
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Figure 4.9: (a) Mie absorption efficiency spectra against photon energy, and (b) Mie
scattering efficiency spectra wavelength for 100 nm diameter TDBC:PVA nanospheres in
vacuum, for five dye concentrations. The calculated colours are shown underneath the
curves in (b).
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To test these predictions, Mie absorption efficiency spectra calculated for a set of
five 100 nm diameter TDBC:PVA nanospheres with dye concentrations in the range
0.5 wt% − 5.0 wt% (volume distribution) are plotted in Fig. 4.9a, where the four-
level quantum model has been used for the permittivity of each, and the assumption
has been made that the damping and dephasing processes considered in Ch. 2 are
concentration independent. The corresponding scattering efficiencies (Qsca) for the
same nanoparticles are plotted in Fig. 4.9b as functions of wavelength, together with
their respective apparent colours for these nanoparticles assuming that Qsca spectra
can be used as proxy for reflectance spectra. From these figures, the resonant energy is
seen to blueshift from 2.12 eV → 2.20 eV (585 nm→ 564 nm) as the concentration is
increased through the range considered. In addition, the apparent colour changes from
a purple for low concentrations (0.5 wt% − 0.93 wt%) through pinkish (1.46 wt%),
orange (3.22 wt%), and finally to yellow (5.00 wt%). The Q-factor in absorption
efficiency visibly increases with concentration due to an increase in the value of the
derivative dε′/dω with concentration. At first glance, the orange colour observed from
thin films with a planar distribution of aggregates with 1.46 wt% concentration (cf.
Fig. 3.11) is recovered for nanospheres with a volume distribution of aggregates for
3.22 wt% concentration; but this is simply a matter of coincidence. In fact, the colour
calculated for the 3.22 wt% nanosphere is more yellow than the 70 nm 1.46 wt% film,
owing to the strength of the PEP mode at 2.17 eV (572 nm).

Concentration (wt%) Res. Energy (eV) max(Qabs) Q-factor
0.50 2.11 1.40 28.1
0.93 2.12 1.43 29.9
1.46 2.14 1.94 38.7
3.22 2.17 3.20 56.1
5.00 2.20 3.77 53.9

Table 4.2: Resonant energies, absorption efficiency maxima and associated Q-factors for 100 nm
diameter TDBC:PVA nanospheres in vacuum for a range of dye concentrations (volume distri-
bution).

The Q-factors and peak values of absorption efficiency shown in Fig. 4.9 are tabulated
in Tab. 4.2. From this table are drawn two immediate observations:

1. The highest quality factor in Qabs (56.1) occurs for a concentration of 3.22 wt%,
for which the permittivity is equal to ε = −2.02 + 1.68i (cf. Fig. 2.8), fulfilling
the CM condition to within 1%.

2. The highest peak in Qabs occurs for a concentration of 5.00 wt%. Here, the
permittivity is equal to ε = −2.59 + 1.52i, a value 30% away from the CM
condition.

The first of these two observations is explained by a difference in the value of the
derivative dε′/dω in the region of each resonance: these derivative values are 65.5
and 56.7 for the 3.22 wt% and 5.00 wt% nanospheres respectively. In the case of the
5.00 wt% nanosphere, the derivative around the resonance is modified by the presence
of the exciton transition ~ω3 = 2.31 eV; this leads to a broader peak for the 5.00 wt%
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nanosphere, and a smaller Q-factor. The second of these observations is explained by
the relatively weaker value of ε′′ at the resonant energy for the 5.00 wt% nanosphere.
Given that ε′′ controls the loss within the material, a smaller value of ε′′ leads to a
larger peak value in absorption.

The evidence for PEP modes hosted by each of the five nanospheres in Fig. 4.9 is now
investigated in turn. For each of the nanospheres, the scattering efficiency in Fig. 4.9b
appears to follow Rayleigh scattering151 for wavelengths shorter than about 500 nm, as
indicated by the rising tails for short wavelengths. Given the relatively small amount
of scattering and absorption present around the exciton transition energies for the
0.5 wt% TDBC:PVA nanosphere, the scattering is dominated by Rayleigh scattering,
leading to a purple colour from scattering in this case. The absorption efficiency for
the 0.5 wt% TDBC:PVA nanosphere does exceed unity, a prime indicator of a PEP
mode; but the real part of the permittivity for this material is not negative for any
visible frequency. Given that a negative real permittivity is a requirement for a PEP
mode (via the CM condition), this particular nanosphere cannot host a PEP mode
at visible frequencies. The resolution to this apparent paradox is that at a photon
energy of 2.11 eV , the permittivity of the material in the nanosphere is close to zero
(ε = 0.21 + 2.54i), leading to an ENZ particle mode in this region of the spectrum.
The electric field enhancement and power flow around the nanoparticle on this mode is
illustrated in Fig. 4.10. Here it is shown that the ζ = 1 isosurface is that of a doughnut

Figure 4.10: Power flow (streamlines) and electric field strength (colour plot) around a
d = 100 nm 0.5 wt% (volume distribution) TDBC:PVA nanosphere in vacuum at 2.11 eV .
The ζ = 1 isosurface is demarcated in green.

as predicted (cf. Fig. 4.3), and that electric field enhancement occurs over all solid
angles - in this case to a greater extent than for the PEP mode (cf. Fig. 4.7a). Therefore,
the prediction in Sec. 4.3.2 that ENZ modes might show similarity to PEP modes
by way of strong absorption and electric field enhancement over the nanoparticle is
demonstrated in this case. However, in contrast to Fig. 4.3, this ENZ mode occurs
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in spite of a relatively high value of ε′′. It is possible that the small positive value of
ε′ at this energy has modified the ENZ resonant condition to enable the ENZ mode
properties to be manifested. Performing Fresnel calculations for R and T across a plane
boundary for ε = 0.21+2.54i reveals that R ≈ 0.2 and T ≈ 0.8 (cf. Fig. 1.1). This value
of T (R) is significantly higher (lower) than the same coefficients for a material with
ε = −2 + ε′′i, for any value of ε′′ (again, cf. Fig. 1.1). These elementary calculations
demonstrate that a nanoparticle of ENZ material permits greater transmittance of the
field through the nanoparticle, which in turn results in a lower absorption efficiency
than for a PEP mode on resonance. This greater transparency to the incident field is
confirmed through the relative prevalence of the streamlines of power flow passing
through the nanoparticle in Fig. 4.10 in comparison to the equivalent plots for which
the PEP mode is excited (Fig. 4.7a), or the loss is much greater (Fig. 4.7b).

A similar ENZ mode is encountered for the 0.93 wt% TDBC:PVA nanosphere at
2.12 eV in Fig. 4.9, where ε = 0.17 + 2.59i: this results in a similar purple colour in
scattering.

For the 1.46 wt% TDBC:PVA nanosphere in Fig. 4.9, the minimum in ε′ is equal to
−0.85, a value insufficiently negative to satisfy the CM condition in vacuum. However,
this negative value of ε′ leads to some metal-like optical properties which begin to
dominate the response. In this case, the observed colour from the scattering spectrum
is pink, rather than purple as in the previous two examples, as Rayleigh scattering
begins to be overcome by the increasing oscillator strength borne from the increase in
the transition dipole moments due to a rise in dye concentration. This fairly modest
peak in scattering is however dwarfed next to the scattering curve for the 3.22 wt%
TDBC:PVA nanosphere in Fig. 4.9b, for which an orange colour is apparent. This
dramatic colour change results from the large absorption peak arising from a value
of ε = −2.02 + 1.68i for the permittivity at 2.168 eV (572 nm). This value of the
permittivity satisfies the CM condition: therefore, a PEP mode can be hosted by a
nanosphere with this concentration of dye. Similarly, evidence is presented for a PEP
mode in the 5.00 wt% TDBC:PVA nanosphere, where the permittivity is equal to
ε = −2.39 + 1.37i at 2.20 eV (564 nm).

4.4 Nanospheroids

Now that evidence for PEP modes has been presented for excitonic nanospheres in a
theoretical framework, the next step is to perform an experiment to observe such modes
directly. However, the fabrication of perfect nanospheres is difficult; nanospheroids
are easier to produce. Nanospheroids exhibit different physics to that of nanospheres
and therefore, scattering and absorption calculations for nanospheroids must be made
in order to evaluate experimental results from nanospheroids. Therefore, this section
begins by defining nanospheroids mathematically, and by considering two scattering
theories for nanospheroids. Scattering and absorption calculations are then made
from which the evidence for PEP modes in TDBC:PVA nanospheroids is evaluated
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when compared against experimental data. Lastly, the polarisation dependency of the
transmission of light through nanospheroids is studied, the findings of which may be
utilised in a future investigation.

4.4.1 Definition of a spheroid

Mathematically, nanospheroids are related to nanospheres by a distortion along one
axis: this distortion leads to two classes of nanospheroid - oblate and prolate - for
which a cross-section across the axis of distortion gives a circle larger and smaller than
the average radius respectively. In layman’s terms, oblate spheroids are ‘squashed’
spheres, and range from spheres to ‘pancakes’ or (in the extreme case) ‘discs’. Prolate
spheroids are ‘stretched’ sphere, and range from spheres to ‘rugby balls’ (or ‘cigars’),
to (in the extreme case) ‘needles’. Many planetary bodies are roughly oblate spheroids,
including the Earth, and most notably Jupiter. These general shapes are illustrated in
Fig. 4.11.

Figure 4.11: Illustrations of (from left to right), a prolate spheroid, a sphere, and an oblate
spheroid.

In general mathematical terms, a spheroid is a special case of an ellipsoid, where
an ellipsoid has three distinct semi-axes a, b and c. The Cartesian equation for an
ellipsoid is152 (p.17),

( x
a

)2
+

( y
b

)2
+

( z
c

)2
= 1. (4.25)

For the two spheroids in Fig. 4.11, the distortion axis was chosen to be the z-axis,
leading to a = b in the expression above. This general treatment allows one to choose
the axis of distortion freely.
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4.4.2 Nanospheroid resonance conditions

The polarizability of a nanospheroid is now examined. Given that nanospheroids are
not triaxially symmetric, the polarizability tensor153 is used i.e.,

ᾱ =

 αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 . (4.26)

This tensor is diagonal for a non-magnetic nanospheroid. It is convenient to pre-
scribe that the orientation of the nanospheroid is such that the principle axes of the
nanospheroid coincide with the co-ordinate axes. In this theoretical framework, ex-
pressions for the polarizability tensor elements along each axis (the diagonal elements)
are65, 153 (p.145),

αii = 3V
ε − εm

3εm + 3Li(ε − εm)
, (4.27)

where Li is the shape factor for axis i, where i = {x, y, z}. These expressions for αii can
be used within the quasistatic formalism (Eq. 4.16 & 4.17) to obtain scattering and
absorption cross-sections and efficiencies for illumination of the nanospheroid with an
electric field parallel to the i direction. An integral expression for Li is65 (p.146),

Li =
abc
2

∫ ∞

0

dq

(q + x2
i )

√
(q + a2)(q + b2)(q + c2)

, (4.28)

where xi is the semi-axis in question. A constraint upon Li is such that
∑

Li = 1. For a
sphere, symmetry arguments lead to Li = 1/3, and Eq. 4.27 reduces to Eq. 4.8. In the
extreme case where the spheroid becomes a needle, Lz → 0 and Lx = Ly → 1/2. In
the other extreme, the spheroid becomes a disc and Lz → 1 and Lx = Ly → 0.

The full range of Lx, Ly and Lz for spheroids with a distortion along the z-axis is shown
in Fig. 4.12. In this case, spheroids are prolate (oblate) for aspect ratios greater (less
than) than unity. Included in the plot are three example nanoparticles with aspect ratios
1/3, 1 and 3, modelled as silver, in a medium of refractive index nm = 1.5. The colours
of the nanoparticles are calculated from the scattering spectra using Eq. 4.16 and the
colour code in App. A.1, where illumination is such that the electric field is parallel to
the long axes of each nanoparticle i.e. towards the side of the prolate nanospheroid
and ‘top down’ towards the face of the oblate nanospheroid. The range of colour
produced for a distortion in the silver nanoparticle demonstrates that the scattering
properties of a silver nanoparticle are intimately linked with its shape. Indeed, the
range of colours produced extends across the visible spectrum. This dependency of
scattering properties on shape can be seen best by study of the resonance condition for
each axis i of nanospheroids; this can be found from the denominator of Eq. 4.27,
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Figure 4.12: Spheroid shape factors as functions of aspect ratio, with distortion along the
z-axis, with renderings of silver nanospheroids with aspect ratio (left to right) 1/3, 1 and 3.

ε +

(
1 − Li

Li

)
εm = 0. (4.29)

This expression for nanospheroids is equivalent to that of the CM condition (Eq. 4.8)
for nanospheres, and reduces to the CM condition for the spherical case (Lx = Ly =

Lz = 1/3). By definition, two of the three shape factors are equal for spheroids. This
leads to two distinct modes: a ‘longitudinal’ mode for which the incident electric
field is parallel to the nanospheroid long axis, and a ‘transverse’ mode for which the
incident light is perpendicular to the nanospheroid deformed axis. In Fig. 4.12, it is
the longitudinal PPP modes which have been excited in the silver nanospheroids.

For oblate nanospheroids, the nanospheroid long axis is not uniquely defined. The
longitudinal mode can be envisaged as an excitation distributed across the flatter faces
of an oblate nanospheroid, or between the two ends of a prolate nanospheroid. In
the extreme case of a needle, the ends of the prolate nanospheroid become infinitely
small in comparison to the curved area of the nanoparticle, and the nanoparticle
becomes like that of an infinitely long cylinder,154 or equivalently, a flat surface. It is
therefore expected that the resonance condition for the transverse mode of a prolate
nanospheroid will approach that of a surface as the eccentricity is increased.

This hypothesis is now examined: the resonance conditions for both the transverse
and longitudinal modes of nanospheroids are plotted in Fig. 4.13 as a function of
aspect ratio. In the limiting case of a needle, the resonance conditions tend towards
εL = −∞ εm and εT = −εm for the longitudinal and transverse modes respectively.
The transverse mode therefore tends towards the same condition as for a bound surface
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Figure 4.13: The longitudinal (black dashed line) and transverse (blue line) resonance
conditions on the real part of the permittivity (ε′) for nanospheroids as a function of aspect
ratio c/a, i.e. the ratio of the distorted to non-distorted axes.

mode (see Eq. 3.14) and is expected to dominate the prolate nanospheroid response
for extreme distortion.

By a similar argument, the longitudinal mode is expected to dominate the oblate
nanospheroid response, and the limiting condition on transverse modes for discs is
equal to εT = −∞ εm as expected, implying the mode becomes unreachable with
a significant distortion of the nanospheroid. In contrast to the resonance condition
for a planar surface, the longitudinal resonance condition tends towards εL = 0
for increasing eccentricity. This suggests that the ENZ and longitudinal modes can
coincide as the nanoparticle approaches the geometry of a disc.

4.4.3 Nanospheroid forward scattering

In this section, theory is identified which allows one to probe the extinction efficiency
of nanospheroids through experiment. It is assumed that identical nanospheroids have
been fabricated in a square array with a pitch sufficiently large to ensure the interactions
between adjacent nanospheroids are small. The transmittance through the array of
nanospheroids is linked to the extinction efficiency of the individual nanospheroids.
By quantifying this relationship, the extinction efficiency of nanospheroids can be
determined experimentally from transmittance measurements.

Beginning with the transmitted electric field (Et) through a slab of thickness d em-
bedded with (identical) particles with volume number density N gives the following
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expression65 (p.77 & p.112),

Et = Eieikx
(
exp

[
−

2πNd
k2 S 2

]
x̂ −

2πN
k2 S 4 ŷ

)
, (4.30)

where the incident electric field Ei is x-polarised. S 2 and S 4 in Eq. 4.30 are elements
of the amplitude scattering matrix155 for any of the individual nanoparticles. The
scattering matrix relates the angular components of the incident and scattered fields by
the following (written in spherical polar co-ordinates),

(
Esθ

Esφ

)
=

eikr

r

(
S 1 S 3
S 4 S 2

) (
Eiθ

Eiφ

)
, (4.31)

where Es = Esθθ̂ + Esφφ̂ is the scattered field. For non-scattering, non-absorbing
nanoparticles, S i = 0 and the transmitted field in Eq. 4.30 is given by Et = Ei. In
general, the electric field transmitted through the slab of nanoparticles is rotated if
S 4 , 0: this leads to the following polarisation-dependency upon transmittance,

T =

(
|Et |

Ei

)2

=

exp
[
−

4πNd
k2 �e(S 2)

]
x̂ +

(
2πN
k2

)2

|S 4|
2 ŷ

 , (4.32)

where T = Tx x̂+Ty ŷ. For nanospheres, the amplitude scattering matrix is a multiple of
the identity matrix,156 and no rotation occurs. In this circumstance, the transmittance
reduces (for unpolarised light) to,

T ≈ exp
[
−

4π
(µk)2�e(S 2)

]
, (4.33)

where the number density N = 1/(µ2d) has been used, with µ equal to the pitch of the
nanoparticle array. The approximation symbol in Eq. 4.33 indicates the approximate
nature of applying this expression to nanospheroids, where S 4 is non-zero. However,
for nanospheres, this expression can be taken as exact. Eq. 4.33 can be re-arranged
into the form,

T = exp[−NCextd]

= exp
[
−

Qextπr2

µ2

]
, (4.34)
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where r is the geometrically-presented nanoparticle radius. This can be derived using
either Mie theory or quasistatic theory. The same result can be derived by making the
assumption that the Beer-Lambert law157 applies, as shown in App. B.3. From Eq. 4.34,
the extinction efficiency of a nanoparticle can be obtained through the formula,

Qext = −
µ

πr2 ln |T |, (4.35)

which can (for nanospheres) be compared against the value of Qext obtainable through
Mie theory, keeping in mind that the orientationally-averaged efficiency is identical
to the forward efficiency for nanospheres. For nanospheroids, a modified version of
Mie theory in spheroidal co-ordinates158 can be used. However, a more convenient
approach is to use a T-matrix method,156, 159, 160 the details of which are beyond the
scope of this thesis.

Unfortunately, a similar expression to Eq. 4.35 involving Qsca and reflectance (R)
cannot be constructed. Therefore, in designing an experiment to investigate PEP
modes, it is recommended that Qsca be minimised by manufacture of the smallest
nanoparticles possible. In this way, Qext approaches Qabs and PEP modes can be more
easily investigated. Another advantage of small nanoparticles is that the quasistatic
regime becomes approximately correct, leaving the system more open to elementary
theoretical probing.

A theoretical expression for T can also be found for single nanospheroids in the qua-
sistatic regime. The easiest theoretical framework is to assume that the nanospheroid
lies at the origin and is illuminated with unpolarised light incident along the positive
y-axis. This enables electric dipole modes to be established in the nanoparticle along
the x and z axes. The potentials of these dipoles (in the point dipole approximation)
written in spherical polar co-ordinates take the form,

Φx =
|px| cos φ
4πε0r2 (4.36)

Φz =
|pz| cos θ
4πε0r2 , (4.37)

where pi = αiiεmEi. Using these potentials to compute the dipole electric field
Ed = −∇Φ (where the total electric potential is considered to be Φ = Φx + Φz),
the following expression can be derived for the normalised electric field intensity
(transmittance) on the opposite side of the nanoparticle for a distance y along the
y-axis,

T =

(
|αxx|

2β2

y6 −
2α′xxβ

y3 + 1
)

x̂ +

(
|αzz|

2β2

y6 −
2α′zzβ

y3 + 1
)

ẑ , (4.38)

where β = 1/4πε0. A full derivation of this expression is outlined in App. B.4.
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4.4.4 Nanospheroid results

In order to investigate the existence of these nanospheroidal modes, a set of nanospheroids
were fabricated161 composed of the same 1.46 wt% TDBC:PVA (planar distribution)
as examined in Ch. 1-3. This set of nanospheroids were of constant height h = 90 nm,
as illustrated in the schematic in Fig. 4.14. These nanospheroids were fabricated in
square arrays of pitch µ = 750 nm.

Figure 4.14: Illustrations of the four nanospheroid aspect ratios fabricated alongside a
nanosphere (b). All nanoparticles shown have height 90 nm, and are arranged in ascending
order of width, with widths (a-e) 50, 90, 150, 200 and 350 nm respectively.

As a consequence of the fabrication process, the nanospheroids were located on
supporting cylinders, as illustrated by the SEM image in Fig. 4.15 (overleaf), resulting
in a mushroom-like shape for each of the nanoparticles. The extent to which these
supporting cylinders affect the resonances of the nanospheroids is a question for further
research.

In the experimental setup, transmittance (T ) measurements were taken through these
arrays at normal incidence. The arrays were sat in a medium with refractive index nm =

1.46. The expected longitudinal and transverse mode energies for these nanospheroids
in this medium calculated with reference to Fig. 4.13 are tabulated in Tab. 4.3.

d (nm) εL εT EL (eV) ET (eV)
50 −8.82 −3.16 − 2.12, 2.15
90 −4.26 −4.26 2.12, 2.14 2.12, 2.14

150 −2.35 −6.00 2.12, 2.16 −

200 −1.70 −7.47 2.12, 2.17 −

350 −0.92 −11.97 2.12, 2.19 −

Table 4.3: Tabulated resonance conditions and resonant energies for the longitudinal (sub-
script L) and transverse (subscript T ) modes for 1.46 wt% (planar distribution) TDBC:PVA
nanospheroids of diameter d, with height h = 90 nm in a nm = 1.46 medium.
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Figure 4.15: An SEM image of a square array of 1.46 wt% TDBC:PVA nanospheroids,
with pitch µ = 750 nm, height h = 90 nm and diameter d = 350 nm. The image is taken at
an angle to the sample; measurements through the sample were taken at normal incidence.
Image and sample fabrication credit: Sara Núñez-Sánchez.

Tab. 4.3 indicates that for this material, the longitudinal mode for the prolate nanospheroid
and the transverse modes for the oblate nanospheroids are unreachable in this medium;
this can be seen by the minimum value in the real part of the permittivity in Fig. 2.6,
at ε′ = −4.81(≡ −2.26εm, where εm = 1.462 in this case). This suggests that for
nanospheroids of 1.46 wt% (planar distribution) TDBC:PVA in this medium, the range
of aspect ratios for which both longitudinal and transverse modes can be excited
is severely restricted, since the CM condition is only just satisfied for (undistorted)
nanospheres. Another striking feature from Tab. 4.3 is that the range over which the
resonant energies in the table can be shifted with a change in geometry is 0.05 eV
i.e. 2.14 eV < E < 2.19 eV (566 nm < λ < 580 nm). This finding implies that
although the spectral position of a PEP mode in a nanospheroid can be tuned with a
change in aspect ratio, in this medium the tuning is not as substantial as the change
achievable by a change in medium (558 nm < λ < 587 nm: see above). This shift is
however comparable to the shift achievable for the PEP mode with a change in dye
concentration (572 nm < λ < 564 nm). The other modes at E = 2.12 eV do not shift
significantly with a change in geometry, and are not expected to be evident owing to
the relatively high loss present at this photon energy.

Using an adapted version of the scattering code freely available from NASA162 based
on Waterman’s T-matrix method,159 the absorption efficiencies of 3.22 wt% (volume
distribution) TDBC:PVA nanospheroids calculated using the same aspect ratios as
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Figure 4.16: Mie absorption efficiency for four 3.22 wt% (volume distribution) TDBC:PVA
nanospheroids (solid lines) of differing diameters (d), with height 90 nm in a nm = 1.46
medium. Qabs for a 90 nm diameter nanosphere is shown for comparison.

tabulated in Tab. 4.3 are plotted in Fig. 4.16. The absorption efficiency for a d = 90 nm
nanosphere is plotted alongside for comparison. Fig. 4.16 shows that in the region
2.14 eV < E < 2.19 eV , the absorption efficiency exceeds unity, indicating transverse
and longitudinal PEP modes for the prolate and oblate nanospheroids respectively.
The other mode evidenced around 2.10 eV in Fig. 4.16 corresponds to a higher-order
Mie mode arising from the large value of ε′ at this energy.

Experimental transmittance spectra (as measured by Sara Núñez-Sánchez) through
square arrays of nanospheroids with pitch µ = 750 nm are shown in Fig. 4.17 (over-
leaf), alongside forward scattering calculations for T based on the T-matrix formalism
(Eq. 4.33), normalised to the experimental data. The equivalent (non-normalised) re-
sults using the quasistatic approximation are plotted in Fig. 4.18: here, the calculations
have been performed using the elements of ᾱ in Eq. 4.17 for which the distortion axis
of the nanoparticle is along the axis of observation.

From Fig. 4.17 & 4.18, the lineshapes obtained using the T-matrix formalism provide
a closer fit to the experimental data than the lineshapes obtained using the quasistatic
approach. This indicates that the quasistatic approach is insufficient to accurately
describe scattering by nanospheres of these sizes at these wavelengths; particularly the
broadening in the lineshape of the 350 nm diameter nanospheroid. Given that the qua-
sistatic formalism relies upon the diameter of the nanoparticle being subwavelength, it
is unsurprising that this theory begins to break down for nanoparticle sizes comparable
with the wavelength of the light used. A question pertaining to the reliability of the
experimental data might be raised, owing to the observation that the transmittance
curve for the 200 nm oblate nanospheroid does not seem to cause as much of a dip in



122 4. Particle Exciton Polariton Modes in Nanoparticles

500 550 600 650 700 750 800
0.5

0.6

0.7

0.8

0.9

1

1.1

Wavelength (nm)

T
ra

ns
m

itt
an

ce

 

 

50 nm
150 nm
200 nm
350 nm

Figure 4.17: Theoretical (solid) and experimental (dashed, data credit: Sara Núñez-
Sánchez) transmittance spectra for a square array of 1.46 wt% (planar distribution)
TDBC:PVA nanospheroids with h = 90 nm and µ = 750 nm in a nm = 1.46 medium,
using Waterman’s T-matrix.
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Figure 4.18: Theoretical (solid) and experimental (dashed, data credit: Sara Núñez-
Sánchez) transmittance spectra for the same nanospheroids as in Fig. 4.17, using a qua-
sistatic approach.
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transmittance as might be expected: the curve is not much different from the curve for
the 150 nm nanospheroid, in stark contrast to the results from the quasistatic treatment.
Therefore, repeat measurements are called for, either on this or a similar system in
order to shed light on this question.

Forward extinction (Qext(θ = 0◦)) spectra from experiment and T-matrix calculations
are now considered. Assuming that Eq. 4.33 can be used to transform T into forward
extinction for nanospheroids, plotted in Fig. 4.19 are the forward extinction spectra
for each of the nanospheroids, using the experimental data for T . Alongside these
curves are the (normalised) forward-extinction efficiency spectra as calculated using
the T-matrix.

1.6 1.8 2 2.2 2.4
0

1

2

3

4

5

6

Energy (eV)

Q
ex

t(θ
=

0° )

 

 

350 nm
200 nm
150 nm
50 nm

Figure 4.19: Forward extinction spectra for the same TDBC:PVA nanospheroids consid-
ered in Fig. 4.17. Dashed lines: derived values from experimental data in Fig. 4.17 & 4.18,
solid lines: normalised theory.

One immediate finding from Fig. 4.19 is that the experimental data for the d = 50 nm
nanospheroid is very noisy. However, this does not detract from the fact that the peak
efficiency is in excess of five, hinting at a transverse PEP mode. The peak efficiency of
three for the d = 350 nm nanospheroid is indicative of a longitudinal PEP mode, with
far less experimental noise than for the smaller nanospheroid. The other two curves
peak above unity, though not as strongly as for the largest nanospheroid; this was
initially thought to be attributed to the fact that the resonance condition for the larger
nanospheroid requires a less negative value of ε′ (cf. Fig. 4.13), leading to a smaller
ε′′ at the resonant energy, resulting in a stronger extinction efficiency. However,
forward absorption efficiency calculations made with the use of the freely-available
nanospheroid code SMARTIES163 shown in Fig. 4.20 (overleaf) demonstrate that the
strong peak in absorption for the largest nanospheroid is an aberration: the strength of
the absorption peak of a nanospheroid is revealed to be inversely proportional to its
diameter and as such, the peak value of absorption for the largest nanospheroid should
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be the smallest. Another finding of Fig. 4.20 is that the peaks corresponding to the
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Figure 4.20: Calculated forward absorption efficiency for the same TDBC:PVA
nanospheroids considered in Fig. 4.17, alongside that of a d = 90 nm nanosphere in
a nm = 1.46 medium.

modes which had been masked in the extinction spectra of Fig. 4.19 are visible. The
spectral locations of these modes are slightly redshifted from the values predicted in
Tab. 4.3, but only within the range 1.00% − 1.15%.

All of the forward-absorption efficiency curves shown in Fig. 4.20 peak above unity,
providing further proof that both longitudinal and transverse PEP modes for 1.46 wt%
(planar distribution) TDBC:PVA nanospheroids are feasible. The strongest peak
corresponds to the transverse mode for the d = 50 nm (prolate) nanospheroid, which
exceeds that of the nanosphere in both its peak value (4.46 compared to 2.71) and
quality factor (93 compared to 26). The peak values of the curves for the oblate
nanospheroids (corresponding to the longitudinal mode) blueshift and diminish with
increasing distortion.

None of the theoretical lineshapes in Fig. 4.19 appear to follow the experimental
results particularly well outside the extinction peak. Comparison of Fig. 4.20 with
Fig. 4.19 enables one to determine the contribution of the supporting cylinders to the
experimentally-deduced forward extinction spectra: this comparison reveals that much
of the broadening - particularly on the high energy side of each curve - probably origi-
nates from the supporting cylinders. This finding may help to explain the anomalously
large peak value of the experimental forward-extinction efficiency for the d = 350 nm
nanospheroid presented in Fig. 4.19, suggesting that the supporting cylinders scatter
strongly.
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4.4.5 Polarisation dependency of transmission

The polarisation dependency of transmittance spectra across single nanospheroids
is now investigated. The rationale for this is that the |αii|

2/y6 term in the expression
for transmittance obtained through quasistatic theory (Eq. 4.38) suggests that for
distances close to nanospheroids, a polarisation-dependent peak in transmission might
be observed, rather than a dip as seen from the experimental results in the previous
section. It is hypothesised that this peak might be harnessed in future experiments in
order to detect the orientation of quasistatic nanospheroids in a sample.

In what follows, a quasistatic theoretical framework is assumed so as to reveal more
clearly the features sought after. It must be noted however that calculations borne
from this framework are size independent, and that these results may only present
themselves in experiment with nanospheroids far smaller than considered in this
chapter in general.

In the theoretical framework, unpolarised light is assumed incident upon a single
nanospheroid along the positive y-axis. Two sets of distortions are considered: along
the x-axis and along the y-axis, so that the nanospheroid in each case is either ‘face on’
or ‘edge on’ respectively to the observer. These two orientations of the nanospheroid
permit unique combinations of the longitudinal and transverse dipole modes in the
nanospheroid, resulting in two distinct transmittance spectra for the x and z polarisa-
tions. In an experiment, these spectra could be observed either by the use of polarised
light to illuminate the nanoparticle, or by the use of a polarising filter on the objective.
In order to estimate the range of spectra obtainable across the four nanospheroids
fabricated of TDBC:PVA, and to probe the relative optical strength of the possible

Figure 4.21: The d = 50 nm prolate nanospheroid in the edge-on orientation (a) and the
d = 350 nm oblate nanospheroid in the face-on orientation (b). The orientation of the dipole
modes excitable along the x and z axes with unpolarised light incident along the positive
y-axis are colour-coded red and green corresponding to the transverse and longitudinal
modes respectively.
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nanospheroidal modes, the two most extreme geometries (as fabricated) are consid-
ered: the (prolate) d = 50 nm and the (oblate) 350 nm nanospheroids, each composed
of 1.46 wt% (planar distribution) TDBC:PVA. The d = 50 nm nanospheroid in the
edge-on orientation and the d = 350 nm nanospheroid in the face-on orientation are
illustrated in Fig. 4.21a & 4.21b respectively.

From Tab. 4.3, and as shown above, the longitudinal mode is easier to reach than
the transverse mode for oblate nanospheroids irrespective of the medium index. In
the face-on orientation for oblate nanospheroids, the longitudinal mode is the only
mode which can be excited, as shown in Fig. 4.21b. For the 1.46 wt% TDBC:PVA
d = 350 nm nanospheroid in vacuum, this mode lies at λ = 563 nm (2.20 eV), a value
which can be calculated from Eq. 4.29, or by examination of Fig. 2.8a. The transverse
PEP mode cannot be excited for this particular nanospheroid (even in the edge-on
orientation), but comes closest to being on-resonance at λ = 580 nm (2.14 eV).

Figure 4.22: (a) Transmittance with arbitrary polarisation for the 350 × 350 × 90 nm 1.46 wt%
(planar distribution) TDBC:PVA nanospheroid, in the face-on orientation (R = 45 nm). (b)
Calculated colour as a function of observational distance. (c) Calculated colour with relative
intensity normalised to the point y = R.

The natural logarithm of the transmittance spectra (ln |T |) calculated using Eq. 4.38 as
a function of observation distance along the y-axis (normalised to nanospheroid semi-
axis along the y-axis, R) for this nanospheroid is plotted in Fig. 4.22a. ln |T |was chosen
in order to show the main features of the spectra. The regions for which ln |T | > 0
indicate electric field enhancement. Fig. 4.22a shows that the longitudinal PEP mode
is evidenced at λ = 563 nm as expected. The calculated colour associated with the
spectra as a function of distance are plotted in Fig. 4.22b, where an orange colour is
observed close to the nanospheroid which fades to white with an increase in distance
as the effect of the nanospheroid is felt less strongly, and the spectrum flattens. There
is a strong electric field enhancement near the surface of the nanospheroid, and this
causes the nanospheroid to glow for short distances along the y-axis; this is represented
in Fig. 4.22c, where the calculated colours are again plotted, but normalised to the
intensity observed at the nanoparticle surface (y = R). Fig. 4.22c demonstrates the
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strength of the longitudinal mode for the d = 350 nm TDBC:PVA nanospheroid,
since the relative intensity appears black within y < 5R of the nanospheroid. Similar
calculations in the edge-on orientation assuming a simple rotation would reveal the
nanoparticle to be invisible, since excitons in the aggregates cannot be excited, leading
to a spectrally flat permittivity. However, edge-on calculations made assuming the
aggregates to be arranged such that the incident electric field lies in the plane in which
the aggregates are distributed reveal a pale blue colour in transmission (not shown)
for the same range of distances, implying that the transverse PEP mode would be
very much weaker by comparison. This finding implies that the relative strength of
the longitudinal mode of the oblate TDBC:PVA nanospheroid may be used to easily
identify the orientation of the nanospheroid with a volume distribution of aggregates
in an experiment.

Figure 4.23: Transmittance for the x (a) and z (d) polarisations for the 50×50×90 nm 1.46 wt%
(planar distribution) TDBC:PVA nanospheroid in the edge-on orientation (R = 25 nm), with
the calculated colour (b & e) and the calculated colour with relative intensity normalised to the
point y = R (c & f), as functions of the observational distance.
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The transverse mode of a prolate nanospheroid can be excited in the face-on orientation.
However, the edge-on orientation has two advantages: firstly, both the longitudinal and
transverse modes can be excited, which permits one to compare the relative strength
of the transverse and longitudinal modes together. Secondly, the edge-on orientation
for the prolate nanospheroid presents the semi-minor axis to the observer, thereby
permitting one to observe the nanospheroid from a closer range, leading potentially to
stronger electric field enhancement.

In vacuum for the d = 50 nm TDBC:PVA nanospheroid, both the longitudinal and
transverse modes can be excited. By performing the same calculations as before (via
Eq. 4.29), the longitudinal and transverse PEP modes are found to lie at λ = 580 nm
(2.14 eV) and λ = 570 nm (2.18 eV) respectively. The natural logarithm of the
transmittance spectra in the x and z polarisations borne from these two modes are
visualised in Fig. 4.23a & 4.23d respectively. The spectra in the x and z polarisations
have contributions arising from the longitudinal and transverse PEP modes respectively.
The colours calculated for the spectra from the longitudinal mode shown in Fig. 4.23b
appear yellow/orange, whereas the colours from the spectra for the transverse mode
shown in Fig. 4.23e appear green. This difference is sufficiently strong as to make
the colour difference between the two polarisations visually discernible. This finding
therefore demonstrates the theoretical plausibility of an experiment with the aim to
determine the orientation of such nanospheroids. This shift or the actual colours may
differ slightly in reality, given the redshift in the modes whenever Mie theory has been
employed above.

As seen for the d = 350 nm nanospheroid in the face-on orientation, the strength of the
modes in the d = 50 nm nanospheroid fade with distance, and the spectra become flat.
However, analysis of the colours normalised to the intensity seen on the nanoparticle
surface in Fig. 4.23c & 4.23f reveals that the longitudinal mode is optically stronger
than the transverse mode. This finding is counter to what might be expected, since
for prolate nanospheroids with extreme distortion, the transverse mode is shown to
dominate (see above). The answer to this apparent problem may lie in the relatively
lower level of loss within the TDBC:PVA material at λ = 570 nm in comparison to
λ = 580 nm (cf. Fig. 2.8a).

Now that the PEP modes of 1.46 wt% TDBC:PVA nanospheroids have been identified
in calculated spectra for a range of observational distances, normalised spectra taken at
the nanoparticle surfaces (y = R) are now considered for the four nanospheroid aspect
ratios outlined in the previous section. By this process, the range of tunability in the
transmission peaks may be more easily quantified. Plotted in Fig. 4.24 are the spectra
for the four nanospheroids in the face-on orientation in a nm = 1.46 medium, together
with the same calculations for a d = 90 nm nanosphere. The medium index was chosen
to closely represent the conditions of the experiment outlined above. In the orientation
shown, the peak originates from the longitudinal (transverse) PEP mode for d > 90 nm
(d < 90 nm). The increase in medium index has narrowed the range for which the
peak can be tuned with a change in aspect ratio to 567 nm < λ < 573 nm, as shown. In
addition, it is the longitudinal PEP mode which most closely resembles the PEP mode
of the nanosphere. The opposite of this is true for the edge-on orientation, as shown
in Fig. 4.25. Here, Fig. 4.25a and Fig. 4.25b correspond to x and z-polarised light
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Figure 4.24: T spectra for the four 1.46 wt% (planar distribution) TDBC:PVA
nanospheroids in the face-on orientation, together with T for a 90 nm nanosphere.

respectively. The transmittance curve for the d = 50 nm nanospheroid in Fig. 4.25b
arises from the transverse PEP mode, and is closest to the response of the nanosphere,
as shown, in contrast to the other three curves in Fig. 4.25b which arise from the
longitudinal PEP mode.
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Figure 4.25: (a) Tx and (b) Tz spectra for the four 1.46 wt% (planar distribution)
TDBC:PVA nanospheroids in the edge-on orientation, together with T for a d = 90 nm
nanosphere.

Taking Fig. 4.24 & 4.25 together, a peak in the near-field T spectrum is obtained as a
result of an excitation of a PEP mode. The quality factor of this peak is maximised for
longitudinal PEP modes using a highly distorted oblate nanospheroid in the face-on
orientation. Given the relatively high strength of this particular mode (as evidenced in
Fig. 4.22c), it is this mode which should be sought for strong electric field enhancement
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and a high quality factor of the resonance, provided that the nanoparticle is sufficiently
subwavelength for the quasistatic theory assumed here to hold. This strong peak
is highly directional, and if the nanospheroid were rotated, the peak would vanish.
This provides a mechanism by which orientation of an excitonic nanospheroid can be
detected using optical frequencies.

4.5 Conclusions

For silver or gold nanospheres, particle plasmon polariton (PPP) modes can be excited
at optical frequencies given the correct medium index. The PPP mode of aluminium
lies in the ultraviolet, even when embedded in glass. TDBC-doped PVA nanospheres
can exhibit particle modes which bear much similarity to PPP modes in terms of strong
absorption cross-section, electric field enhancement and electric field confinement.
However, these modes originate from the exciton transitions in the molecular aggre-
gates, and are therefore termed particle exciton polariton (PEP) modes. These modes
are excitable over a narrower set of wavelengths than PPP modes.

PEP modes in 100 nm diameter TDBC:PVA nanospheres can exhibit higher quality
factors and absorption efficiencies than PPP modes in either gold or silver nanospheres
of the same size. It has been shown through the use of Mie theory that the spectral
positions of these PEP modes are more accurately predicted by the CM condition than
the PPP modes of either the gold or silver nanospheres are. These findings originate
from a low value of the imaginary part of the permittivity (ε′′) for TDBC when the CM
condition is satisfied, along with a sharper change in the real part of the permittivity
(ε′) around this energy than either that of gold or silver.

Both PEP and PPP modes cause the absorption efficiency of the host nanospheres
to exceed unity on resonance. It has been shown that on resonance the nanosphere
acts as a ‘magnet for light’, wherein the nanoparticle draws power in from outside
its geometrical radius. Another property of particle modes is that on resonance, the
electric field strength is enhanced over all solid angles close to the surface of the
nanosphere; this property has been shown through quasistatic calculations for both
PEP and PPP modes, and for epsilon-near-zero (ENZ) modes. In addition, it has been
demonstrated that electric field isosurfaces can be increased in volume by raising the
medium index.

Through Mie absorption efficiency calculations for nanospheres, the four-level quan-
tum model for permittivity has been shown to produce much closer results to the
same calculations using experimental data for permittivity than in assuming a best-
fit Lorentz oscillator model. This demonstrates both the approximate nature of the
Lorentz model and the relative accuracy of the four-level quantum model.

It has been demonstrated through Mie calculations over a range of dye concentrations
that a TDBC dye concentration of approximately 3 wt% with the volume distribution
is required in order to permit the excitation of PEP modes in TDBC:PVA nanospheres
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(this concentration decreases to around 1.5 wt% for the planar distribution). Tunability
of this PEP mode with concentration has been demonstrated for the wavelength range
564 nm < λ < 572 nm, by increasing the dye concentration up to 5.00 wt%. This range
may in principle extended further for higher dye concentrations. The nanosphere PEP
mode can also be tuned with a change in medium index, and this range of tunability
for a 3.22 wt% (volume distribution) TDBC:PVA nanosphere has been shown to be
558 nm < λ < 587 nm. This sensitivity to the environment combined with a high
quality factor of the resonance may find application in biosensing.

For TDBC:PVA nanospheres with a volume distribution of aggregates and dye con-
centrations in the range 0.5 wt% → 3 wt%, ENZ modes can be excited. The ENZ
resonances can be tuned over the wavelength range 572 nm < λ < 585 nm for a change
in dye concentration. Although these ENZ modes have both a lower quality factor
and strength than their PEP counterparts, ENZ modes have been shown through Mie
calculations to exhibit the two main properties of PEP modes: that of an absorption
efficiency exceeding unity, and electric field enhancement over all solid angles.

Two distinct classes of PEP modes have been demonstrated for nanospheroids: lon-
gitudinal and transverse modes. For prolate (oblate) nanospheroids, transverse (lon-
gitudinal) modes dominate the optical response as the aspect ratio is increased. The
resonance conditions on these modes are in the range ε′ = {0,−∞εm}. Consequently,
if a material has a widely varying real permittivity across optical wavelengths, the
apparent colour of a nanospheroid of that material can be engineered with a change
in aspect ratio. For silver in a nm = 1.5 medium, this range is the entire optical range
(blue to red). For TDBC:PVA nanospheroids in a nm = 1.46 medium, this range of
wavelengths is restricted to 566 nm < λ < 580 nm (green to orange).

Calculations have shown that nanospheroidal PEP modes are evidenced by peaks in
absorption spectra made using the T-matrix method. In order to confirm these modes
experimentally, transmittance spectra have been taken through arrays of 1.46 wt%
(planar distribution) TDBC:PVA nanospheroids in a nm = 1.46 medium; these trans-
mittance spectra have been shown to be in fair agreement with those calculated by
the T-matrix. The transmittance spectra obtained using the quasistatic model recover
the main features in the spectra well, but do not account for the broadening in the
response due to retardation effects (as the T-matrix model does), and become increas-
ingly inaccurate as the size of the nanospheroid is increased. Therefore, the use of
quasistatic scattering for nanospheroids is restricted to the prediction of the spectral
locations of nanospheroidal PEP modes, and to the response of small nanospheroids
only, for which more accurate predictions of the scattering and absorption spectra can
be computed with greater ease.

By reverse-engineering the experimental transmittance spectra, approximate forward
extinction spectra have been obtained for the nanospheroids, which are (again) in
fair agreement with those calculated using the T-matrix. The extinction efficiency
spectra for all the nanospheroids considered peak in excess of unity, hinting at pos-
sible nanospheroidal PEP modes: transverse and longitudinal modes for the prolate
and oblate nanospheroids respectively. By performing forward-absorption efficiency
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spectra calculations, these modes have been shown to be concealed within the forward-
extinction spectra. Much of the broadening observed in the experimental forward-
extinction spectra was found to be the response of the supporting cylinders, but the
main peaks were found to correspond to the response of the nanospheroids. Further ex-
perimentation is encouraged in order to provide further confirmation for these modes,
provided that a fabrication technique for nanospheroids can be developed without the
supporting cylinders being present. In addition, since it is the prolate nanospheroid
which provides the strongest response (both theoretically and experimentally) from the
set of four nanospheroid arrays tested, experimentation upon prolate nanospheroids
within the quasistatic limit is encouraged, since it is expected that these will yield the
strongest optical response.

Quasistatic transmittance calculations have been made for single excitonic nanospheroids
in vacuum in order to determine the theoretical plausibility for optical measurement of
the orientation of excitonic nanospheroids. These calculations have shown that strong
electric field enhancement can be obtained on resonance, provided the observational
distance is sufficiently close to the surface of the nanospheroid. In the face-on ori-
entation, the optical response is independent of polarisation. In this orientation, the
electric field enhancement arising from longitudinal PEP modes associated with oblate
nanospheroids is particularly strong. In addition, the quality factor of these modes
both exceeds that of the nanospherical PEP mode, and increases with the nanospheroid
eccentricity. In the edge-on orientation, either the longitudinal or the transverse modes
can be excited. The exact nature of the transmittance spectra for these modes is the
subject of a future investigation, but these qualitative results suggest that the peak
in transmittance for 1.46 wt% (planar distribution) TDBC:PVA nanospheroids can
be tuned with a change in the polarisation of the incident light in the wavelength
range 572 nm < λ < 580 nm. Colour calculations based upon the quasistatic results
suggest that this shift in wavelength should be noticeable to the human eye. In all,
the transmittance spectra are highly directional for excitonic nanospheroids, and the
plausibility of a detection system to probe the orientation of excitonic nanospheroids
has been demonstrated.

The main objective stated at the beginning of this chapter is to investigate the use
of excitonic materials as alternatives within nanoparticle plasmonics. Given that the
analogues of PPP modes (PEP modes) have been demonstrated for both excitonic
nanospheres and excitonic nanospheroids, and that greater field enhancement and
absorption efficiency may be achieved with the use of excitonic nanoparticles, excitonic
nanoparticles have been demonstrated as viable alternatives to plasmonic nanoparticles.
These PEP modes have a degree of tunability, either through a change in medium
index, dopant concentration, or through a change in the aspect ratio of the nanoparticle.
All-in-all for TDBC:PVA nanoparticles, the most effective technique for PEP tuning
has been determined to be a change in the medium index, provided that the dye
concentration is sufficiently high. This is also by far the most practical technique, since
it does not require re-fabrication of the nanoparticles themselves, unlike changing
the nanospheroid aspect ratio, or the dye concentration within the nanoparticles. One
other possibility for shifting the resonant wavelength of a nanoparticle is by coating
the nanoparticle with a shell: this can be done in a number of different ways, and
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relative merits of some of these possibilities are explored in the following chapter.





5
Particle PolaritonModes in

Coated Nanospheres
In this chapter, particle polariton modes are studied in the context of coated nanospheres.
It is shown that particle exciton and particle plasmon modes can hybridise to form
modes with both plasmonic and excitonic origin: so-called ‘plexciton’ modes, which
may be tuned by changes in nanoparticle geometry, dye species, or dye concentra-
tion.

5.1 Introduction

In Ch. 4 it was shown that excitonic nanospheres can exhibit particle exciton polariton
(PEP) modes, which can under the right conditions not only exhibit two properties
which are usually associated with plasmon polariton modes (field enhancement and
strong absorption), but can also exhibit even stronger absorption than that associated
with either silver or gold nanospheres and with a higher quality factor. However, since
for excitonic materials the negative real permittivity necessary for these effects arises
from excitons rather than free electrons, the range of tunability for these PEP modes is
greatly restricted in relation to that of noble metals.

The advent of nanoparticle fabrication techniques164, 165 has enabled the production of
a number of distinct coated nanosphere configurations. Nanospheres with metal cores
and inert shells have been demonstrated for their application as chemical sensors,17

and nanospheres with inert cores and plasmonic shells have been shown to exhibit two
plasmon modes166–168 arising from the hybridisation of the particle plasmon mode with
the cavity plasmon mode. The spectral locations of these two hybridised modes can be
tuned with a change in core and medium index, along with the relative shell thickness
of the nanoparticle; altogether, the resonances for these coated nanospheres provide
greater potential for tunability than bare nanospheres can offer. This potential for
extended particle mode tunability with changes in the coated nanoparticle configuration
or the medium index is the raison d’être for this chapter. Here, the tunability of PEP
modes across several different coated nanosphere geometries is studied with the aim
to find the geometry which will yield the greatest tunability.
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The approach taken in this chapter is as follows: first, PEP modes for nanospheres
with excitonic cores and inert shells are studied, following on from the findings of
Ch. 4. Next, excitonic nanoshells are examined for their potential hybrid PEP modes,
as analogues to plasmonic nanoshells. Going further, nanospheres with both excitonic
cores and shells are studied. Lastly, particle modes for nanospheres with metallic cores
and excitonic shells are investigated. It is hoped that by consideration of these different
systems, a greater understanding for the engineering of PEP tunability may be obtained,
and the conditions necessary for polariton mode hybridisation and maximisation of
mode splitting established.

The theoretical framework taken in this chapter is to begin with a quasistatic approach,
which can then be used in order to inform the findings from Mie theory calculations,
extended to coated nanospheres. In the case of a coated nanosphere, the polarizability
of the nanosphere becomes a function of both the permittivity of the core and the
coating. In addition, the polarizability becomes dependent upon the relative volume of
both materials present. This chapter is restricted to the investigation of nanospheres
with rotational symmetry - the additional complexity introduced by consideration of
coated nanospheroids is a possible topic of investigation borne from the findings of
this chapter.

Several symbol definitions and conventions are now outlined for use within this chapter:
a coated nanosphere is defined as having a core of diameter d with radius r1, and a
coating of thickness t. The overall radius of the nanosphere is denoted r2. The core
and shell have permittivities denoted by ε1 and ε2 respectively. Such a nanoparticle
can be expressed using the notation ε2@ε1. The permittivity of the medium is denoted
εm. These seven quantities are all illustrated in Fig. 5.1. In this chapter, the excitonic
dye considered is the same TDBC dye as studied in previous chapters. The aggregates
of the dye are assumed to be in the volume distribution (cf. Fig. 4.5b) unless otherwise
stated.
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𝜀2 𝜀1 

Figure 5.1: Schematic of the coated nanosphere with overall radius r2: the core has
permittivity ε1 and diameter d = 2r1; the shell has permittivity ε2 and thickness t; and the
medium has permittivity εm.
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5.2 Resonance Conditions

In order to determine the resonant frequencies of a coated nanosphere, the polarizability
tensor ᾱ is considered. For rotationally-symmetric coated nanospheres, this tensor
reduces to a zero-order tensor, α, in the same way as for an uncoated nanosphere.
Calculation of α for a coated nanosphere can be performed in the same way as for an
uncoated nanosphere, using the Clausius-Mossotti (CM) relation,

α = 3V
εeff − εm

εeff + 2εm
, (5.1)

except here the effective permittivity of the nanosphere (εeff) is used. This effective
permittivity can be expressed as,166

εeff = ε2
2ε2 + ε1 − 2x3(ε2 − ε1)
2ε2 + ε1 + x3(ε2 − ε1)

, (5.2)

where the aspect ratio x = r1/r2 = d/(d + 2t). In the limit of thin shells (x→1) the
effective permittivity tends to that of the core (εeff → ε1). Conversely, in the limit of
thick shells, (x → 0) the effective permittivity tends to that of the shell (εeff → ε2).
Substitution of the expression for εeff into the denominator of Eq. 5.1 gives (after a
little algebra) the following master equation for a coated nanosphere,

2(1 − x3)ε2
2 + [(1 + 2x3)ε1 + 2εm(2 + x3)]ε2 + 2εmε1(1 − x3) = 0 , (5.3)

which when solved for ω yields the resonant frequencies of the coated nanosphere.
It can be seen readily that Eq. 5.3 reduces to the CM condition for bare nanospheres
(Eq. 4.9) in the thin-shell limit (x→ 1).

In general, ε1 and ε2 in Eq. 5.3 are both non-constant functions of ω and determination
of the resonant frequencies in terms of the other variables depends on the models used
for ε1 and ε2.

5.3 Mie Theory For Coated Nanospheres

Mie theory as outlined in Ch. 4 can be adapted to make scattering calculations for
coated nanospheres. By solving the relevant boundary conditions, the following
expressions for the Mie a and b coefficients in a coated nanosphere geometry are
obtained,65, 169
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an =
ψn(x2)[ψ′n(m2x2) − Anχ

′
n(m2x2)] − m2ψ

′
n(x2)[ψn(m2x2) − Anχn(m2x2)]

ξn(x2)[ψ′n(m2x2) − Anχ′n(m2x2)] − m2ξ′n(x2)[ψn(m2x2) − Anχn(m2x2)]
(5.4)

bn =
m2ψn(x2)[ψ′n(m2x2) − Bnχ

′
n(m2x2)] − ψ′n(x2)[ψn(m2x2) − Bnχn(m2x2)]

m2ξn(x2)[ψ′n(m2x2) − Bnχ′n(m2x2)] − ξ′n(x2)[ψn(m2x2) − Bnχn(m2x2)]
, (5.5)

where the quantities An and Bn are defined as,

An =
m2ψn(m2x1)ψ′n(m1x1) − m1ψ

′
n(m2x1)ψn(m1x1)

m2χn(m2x1)ψ′n(m1x1) − m1χ′n(m2x1)ψn(m1x1)
(5.6)

Bn =
m2ψ

′
n(m2x1)ψn(m1x1) − m1ψn(m2x1)ψ′n(m1x1)

m2χ′n(m2x1)ψn(m1x1) − m1χn(m2x1)ψ′n(m1x1)
, (5.7)

where mi = εi/εm, xi =kri = 2πri/λ are the size parameters, and χ is the Riccati-Bessel
function of the second kind.170 With these expressions for the Mie a and b coefficients,
Eq. 4.23 & 4.24 can be used to make scattering and absorption calculations for coated
nanospheres.

5.4 Active Core, Inert Shell

As stated in Ch. 4, nanoparticles have the potential to be used as transducers within
biosensing150, and their worth as chemical sensors has already been proven.17 A
number of absorption microscopy techniques are available for measuring absorption
cross section spectra of single nanoparticles through experiment,171, 172 and a technique
for the detection of gold nanoparticles inside cells has been demonstrated.173 If the
experimental absorption spectra of the nanoparticles can be related to the properties of
the environment in which they reside, these applications can be realised. In biosensing
applications, it is feasible that a layer of biomaterial might accumulate around a
nanoparticle to form a shell. This provides a motivation to quantify the effect that such
a shell has on the absorption spectra of excitonic nanospheres.

In this section, absorption spectra for coated TDBC:PVA and silver nanospheres are
calculated using the extension to Mie theory for coated nanoparticles as outlined above.
In order to analyse these spectra, an analytical quasistatic approach is taken based on
solutions of the master equation (Eq. 5.3). In order to extract analytical solutions for
the resonant energies of a coated nanosphere with an active core and an inert shell
from the master equation, a suitable model must be used for the core material, ε1.
For a nanosphere with an excitonic core, the permittivity of the core material can be
approximated by the single-oscillator Lorentz model (see Eq. 2.14). By substitution of
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the Lorentz model for ε1 into the master equation (Eq. 5.3) and by assuming that the
shell material possesses a spectrally constant permittivity ε2, the following expression
for the resonant frequency of this system is obtained,

ω = ω0

√√
2(1 − x3)

(
ε2

2 + εm(ε∞ + f )
)

+
[
(2x3 + 1)(ε∞ + f ) + 2(x3 + 2)εm

]
ε2

2(1 − x3)(ε2
2 + εmε∞) +

[
(2x3 + 1)ε∞ + 2(x3 + 2)εm

]
ε2

.

(5.8)

This expression reduces to the bare nanosphere solution (Eq. 4.10) for thin shells
(x → 1). As per the bare nanosphere solution, the resonant frequency in Eq. 5.8
blueshifts with an increase in oscillator strength f , which can be increased by raising
the concentration of the dye in the core. However, the presence of the shell weakens
this effect, and given that it is the effect of the shell which is of interest in this chapter
rather than the core, the focus is confined to the following three variables and their
effect on the resonant frequency: shell thickness, shell index and medium index.

5.4.1 Shell thickness

From Eq. 5.8, an increase in shell thickness (t) redshifts the resonant frequency,
provided that εm < ε2; in the case where εm > ε2, the resonant frequency is blueshifted.
For biosensing applications, nanoparticles are likely to be in an aqueous environment,
and may bond with (for example) proteins174 to form shells around the nanoparticles.
In this section, it is assumed that the nanoparticles considered bond with fatty acids175

with effective refractive index n2 = 1.5, and that the aqueous medium is non-dispersive
with an index of nm = 1.33.

The resonant wavelength of a d = 100 nm nanosphere with a 3.22 wt% TDBC:PVA
core is now examined using the best-fit single oscillator Lorentz model (with parame-
ters f = 0.3, ε∞ = 1.522, ω0 = 2.11 eV and γ = 46.1 meV) in Eq. 5.8. Without a shell,
the resonant wavelength lies at λ0 = 573.9 nm. This mode redshifts with the addition
of an n2 = 1.5 coating, up to a wavelength of 575.8 nm for a t = 100 nm coating.
This modest redshift of ∆λ = 1.9 nm is visualised in Fig. 5.2 (overleaf), along with
the calculated redshift for the equivalent system with a silver core (using the Drude
model); it can be seen that the substitution of the excitonic core with the silver core
leads to a much larger redshift, up ∆λ = 25.7 nm from the bare nanosphere value at
387 nm for the same t = 100 nm coating. Detailed analysis of the two curves reveals
that the wavelength shift for the TDBC nanosphere becomes saturated more rapidly
with an increase in shell thickness than for the silver nanosphere, with 50% saturation
for shell thicknesses thinner than 20 nm in either case. This is indicative of electric
field confinement for both the PEP and particle plasmon polariton (PPP) modes, given
that most of the redshift occurs over a length scale which is a fraction of both the
nanoparticle diameter and the resonant wavelength itself.
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Figure 5.2: Redshift in particle mode wavelength as a function of shell thickness for d =

100 nm nanospheres of silver and 3.22 wt% (volume distribution) TDBC:PVA, modelled
with the Drude model and the Lorentz oscillator model respectively, with a shell index of
n2 = 1.5 in a nm = 1.33 medium.

The accuracy of these predictions are evaluated in Fig. 5.3, where σabs (in units of µm2)
from Mie calculations for these two systems have been plotted both with and without
the t = 100 nm coating, in order to visualise what might reasonably be expected from
an experiment. The four-level quantum model has been used for the excitonic core.
For this system, a redshift of ∆λ = 2.0 nm is observed, demonstrating that the value of
the redshift predicted by the quasistatic treatment (Eq. 5.8) shown in Fig. 5.2 compared
to the Mie theory calculations is correct to within 5%. The Mie theory values of the
resonant wavelengths (578.2 nm and 580.2 nm) are further redshifted from the values
predicted by Eq. 5.8 due to retardation effects (see Sec. 4.3.5). However, the predicted
resonance wavelengths are correct to within 1% of the Mie calculations, demonstrating
the applicability of the use of this approximate treatment.

The spectra for the nanospheres with silver cores in Fig. 5.3 reveal that the redshift
in resonant wavelength is slightly larger than the value indicated in Fig. 5.2, at ∆λ =

30.1 nm. The predicted value of the shift is however correct to within 15%, and the
absolute values of the resonant wavelengths calculated from Mie theory (392.5 nm
and 422.6 nm) are correct to within 2.5% of the predicted values from Eq. 5.8.

Altogether, these core-shell Mie and quasistatic calculations demonstrate that the reso-
nant wavelength of silver nanospheres is approximately fifteen times more sensitive to
a shell of material in a biosensing context than nanospheres of 3.22 wt% TDBC:PVA.
The relative strength in absorption and the rigidity of the resonant wavelength for the
TDBC:PVA nanospheres might suggest that such nanospheres could be candidates in
applications for which a consistent absorption or scattering profile is necessary regard-
less of the addition of a coating. For example, such nanoparticles may find potential
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Figure 5.3: Absorption cross section (in units of µm2) from Mie theory for silver (thin
lines) and 3.22 wt% (volume distribution) TDBC:PVA nanospheres (thick lines) with (solid)
and without (dashed) t = 100 nm coatings of index n2 = 1.5 in water (nm = 1.33).

for use as tracking devices within the body of a patient, providing non-radioactive
signals the peak of which would be consistent regardless of the amount of biomatter
adsorbed upon their surfaces.

Another observation of the spectra in Fig. 5.3 is that the peak values of the absorp-
tion spectra are increased subtly with the addition of the shell; in broad terms the
peak values are similar for a nanosphere with and without the coating, despite an
increase in overall diameter from 100 nm to 300 nm, and hence a nine-fold increase in
cross-sectional area. Therefore, despite the peak absorption efficiencies of the bare
TDBC:PVA and silver nanospheres in Fig. 5.3 being equal to 2.8 and 2.3 respectively,
the absorption efficiency of the same nanospheres with the addition of a coating do not
exceed 0.33 for either. At first sight, this seems to indicate that particle polariton modes
can only be excited with the bare nanospheres, and not with the coated nanospheres.
This is however, not strictly true: by calculation of the effective absorption radius of
the nanosphere by,

reff =

√
σabs

π
, (5.9)

using the values of the peaks in Fig. 5.3, reff is shown to be equal to 83 nm and 86 nm
for the uncoated and coated TDBC:PVA nanospheres respectively; both of these values
are larger than the active core radius, and the effective radius is in fact increased with
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the addition of the coating. This is evidence that a PEP mode can be established within
the core in either case, but not for the coated nanosphere as a whole: in this case, the
PEP mode is not distributed over the whole volume of the coated nanosphere, and any
electric field enhancement is expected to occur within the shell of the nanoparticle
only, and not outside it.

5.4.2 Medium index

As shown above, the PEP mode of a nanosphere with an excitonic core and an inert
coating will redshift with an increase in shell thickness provided that the medium
index is below that of that shell index, and vice versa. The extent to which this shift
occurs as a function of medium index is now explored for the TDBC:PVA nanospheres
outlined in the previous section. In Fig. 5.4, the resonant wavelengths for nanospheres
with shells of thickness t = 0 nm and t = 100 nm are plotted as a function of medium
index in the range 1 < nm < 2.5, whilst the index of the shell is held at n2 = 1.5.

As expected, the resonant wavelength redshifts (blueshifts) with the addition of the
coating for medium indices below (above) that of nm = 1.5. This shift is maximised
for large differences between the medium index and the shell index. For the example
system plotted, the maximum redshift and blueshift obtainable over the range of
medium indices considered are ∆λ = 6.6 nm and ∆λ = 6.5 nm respectively.
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Figure 5.4: Resonant wavelengths for d = 100 nm 3.22 wt% TDBC:PVA nanospheres
with (solild) and without (dashed) a t = 100 nm coating of index n2 = 1.5 as a function of
medium index.
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Another way of examining this system is as follows: with the addition of the t = 100 nm
coating to the TDBC:PVA nanosphere, the resonant wavelength is confined to the
range 575.6 nm < λ < 576.2 nm for the medium indices considered. Without the
coating, the resonant wavelength is more sensitive to a change in its environment,
with the possible range of resonance wavelengths increased to 569 nm < λ < 582 nm
for the medium indices considered. This demonstrates that an increase in coating
thickness around the nanosphere causes the shell to dominate the optical response; this
leads to a decreased degree of tunability with a change in medium index. Therefore,
in broad terms, a coating around a nanosphere could be used as a stabilising agent in
nanoparticle design, if a consistent resonance wavelength is required.

5.5 Inert Core, Excitonic Shell

The inverse of the nanoparticle considered in the previous section is now studied i.e. a
nanosphere with an excitonic shell and an inert core, herein referred to as an excitonic
nanoshell. As stated in the introduction, the plasmonic (metal) nanoshell system
is already well-understood,167 and it is for this reason that excitonic nanoshells are
explored in order to determine whether or not they have equivalent optical properties.

For a nanosphere with an inert core, ε1 is assumed to be a real constant across optical
frequencies. The master equation (Eq. 5.3) can be re-arranged in terms of the shell
permittivity ε2 to give,

ε2 =
−[(1 + 2x3)ε1 + 2εm(2 + x3)]

4(1 − x3)

±

√
[(1 + 2x3)ε1 + 2εm(2 + x3)]2 − 16εmε1(1 − x6)

4(1 − x3)
. (5.10)

By the use of Eq. 5.10 with the best-fit single oscillator Lorentz model (see above)
in the limit where γ � ω, the following approximate analytic expression for the two
resonant frequencies of the coated nanosphere can be derived,176

ω2
± = ω2

0 +
4 fω2

0(1 − x3)
4ε∞(1 − x3) + B0 ∓ A0

, (5.11)

where,

A0 =
√

[(1 + 2x3)ε1 + 2εm(2 + x3)]2 − 16εmε1(1 − x3)2 (5.12)

B0 = (1 + 2x3)ε1 + 2εm(2 + x3). (5.13)
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The two modes in Eq. 5.11 are hybrid exciton polariton modes, deriving from hybridi-
sation of the cavity and particle modes of the excitonic nanoshell. The ω− and ω+

modes are labelled the ‘symmetric’ and ‘antisymmetric’ modes respectively.166 It can
be shown through a jellium model that the electric dipole moments arising from charge
distributions on the inner and outer surfaces of the nanoshell are aligned (anti-aligned)
for the symmetric (antisymmetric) mode.167

From Eq. 5.11, the splitting of the PEP is maximised for thin shells (x→ 1). This can
be shown by definition of a “splitting parameter” g(x) = ω2

+ − ω
2
−,

g(x) =
8 fω2

0(1 − x3)A0

(4ε∞(1 − x3) + B0)2 − A2
0

. (5.14)

This expression together with the definitions for A0 and B0 and Eq. 5.11 can be used to
derive two general results for the system: firstly, for infinitesimally thin shells (x→ 1),
there exists a single resonant mode at ω0 as expected; the other mode diverges, leading
to g(x) = ∞, providing continuity with the bare nanosphere case. The strength of
this single mode is expected to be weak, owing to the relatively low concentration of
excitonic material on the outside of the nanoparticle for thin shells. Secondly, for thick
shells (where x→ 0) the following two limiting values of ω± are arrived at,

ω2
− =

1 +
4 f

4ε∞ + ε1 + 4εm +

√
ε2

1 + 16ε2
m

 ω2
0 (5.15)

ω2
+ =

1 +
4 f

4ε∞ + ε1 + 4εm −

√
ε2

1 + 16ε2
m

 ω2
0. (5.16)

Again, these two modes blueshift with an increase in dye concentration.

A less approximate equation than Eq. 5.11 can be derived by expanding the expression
in Eq. 5.10 without assuming γ � ω; doing so yields a quadratic in ω2, i.e.

c4ω
4 + c2ω

2 + c0 = 0. (5.17)

The solutions to this equation are too long to be written out here, but the coefficients
are written out in full in App. C.1.

The effects of shell thickness, core index and medium index on the resonant frequencies
and relative strengths of the modes in this coated nanosphere system are now each
considered in turn.
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5.5.1 Shell thickness

The effect of a change in shell thickness on the nanosphere with an excitonic shell
and inert core is now examined. The system chosen in this section is a d = 100 nm
silica (S iO2) core (approximated by n1 = 1.46) with a 3.22 wt% TDBC:PVA shell in
vacuum.

Absorption efficiency spectra for this system as a function of shell thickness are plotted
in Fig. 5.5. The spectra are calculated using coated Mie theory, incorporating the
permittivity for the shell from the four-level quantum model for TDBC:PVA. The
dashed lines on the plot indicate the resonant frequencies obtained using Eq. 5.11
for the system. The solutions arising from the use of the more accurate Eq. 5.17 are
plotted in Fig. 5.5 as black lines. The more accurate calculations are in general closer
to the Mie theory peaks - the higher energy solution in particular, which is substantially
closer, especially for thin shells. This demonstrates that although the approximate
solution illustrates the general behaviour of the system fairly well, a more physical
model produces more accurate results.

The splitting in Fig. 5.5 is maximised for thin shells as expected from the analysis of
Eq. 5.11 above. As predicted, the two modes appear to converge to limiting values for
thick shells. The values observed at t = 40 nm are ω− = 2.157 eV and ω+ = 2.196 eV .

Figure 5.5: Mie absorption efficiency spectra (colour plot) as a function of shell thickness
for a d = 100 nm S iO2 nanosphere coated with 3.22 wt% TDBC:PVA in vacuum. Also
shown are the calculated resonant energies in the γ � ω approximation (dashed lines) and
the full quasistatic approximation (black lines). The Lorentz parameters for the shell are
f = 0.3, ε∞ = (1.52)2, γ = 46.1 meV , ω0 = 2.11 eV .
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These Mie theory values are redshifted from the predicted values of ω− = 2.173 eV
and ω+ = 2.224 eV by Eq. 5.15 & 5.16, but have percentage errors of only 0.74 %
and 1.26 % respectively. This redshift is attributed to retardation effects accounted for
within Mie theory.

In Fig. 5.5 there is a lower limit on the shell thickness of t = 6 nm in order to achieve
absorption efficiency in excess of unity. At this point, there is a sufficient amount of
dye present in the shell in order for electric field enhancement to be exhibited, without
shielding the core completely and losing the distinction between the hybrid modes,
as is the case for thicknesses in excess of approximately t > 25 nm, where only one
peak is discernible. However, there is a degree of asymmetry between the two hybrid
modes: in the range 6 nm < t < 16 nm, only the lower energy mode has an absorption
efficiency in excess of unity. This asymmetry is visualised in Fig. 5.6, where the
normalised electric field strength and power flow has been plotted for a shell thickness

Figure 5.6: Normalised electric field strength and power flow around a nanoparticle with
a S iO2 core and 3.22 wt% TDBC:PVA shell, with d = 100 nm and t = 10 nm at (a & c)
2.13 eV (582 nm) and (b & d) 2.20 eV (563 nm). Green line: ζ = 1 isosurface.
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of t = 10 nm for each of the two modes. The general shapes of the ζ = 1 isosurfaces
are the same as predicted from the quasistatic dipole calculations in Ch. 4. The colour
scale in the figure is slightly too course to show it, but field enhancement is evidenced
over all solid angles for both modes. However, the streamlines of power flow from
the total Poynting vector indicate that the absorption is much less for the ω+ mode,
as the Mie absorption calculations confirm. These calculations therefore demonstrate
that electric field enhancement over all solid angles can be brought about in spite of an
absorption efficiency below unity.

As the shell thickness is increased in Fig. 5.5, theω+ mode exhibits stronger absorption.
However it is only between 16 nm < t < 20 nm where there is a clear splitting between
the two modes. This narrow range of shell thicknesses is somewhat limiting from
a fabrication perspective if two distinct PEP modes are desired in a spectrum, and
therefore the next step is to explore whether the asymmetry illustrated above can be
addressed by adjustment of the core index.

5.5.2 Core index

For the TDBC@S iO2 nanosphere considered in Fig. 5.5, the ω− mode dominates the
response of the nanoparticle. However, the relative strength of the two hybridised
modes can be seen to be dependent upon the index of the core material, since an
increase in core index will tend to increase strength of the electric field within the
nanoparticle, leading to a greater degree of depolarisation. In addition, this depolarisa-
tion is proportional to frequency to the fourth power through Rayleigh scattering.151

Therefore, an increase in the core index for a coated nanosphere will lead to an increase
in the strength of the ω+ mode. One material which could provide this behaviour
in practice for a TDBC:PVA nanoshell is TiO2, since it possesses a relatively high
refractive index177 of n = 2.19→ 3.08 across optical frequencies. It is also suitable
for nanosphere fabrication.178

By modelling TiO2 using the Conrady dispersion formula,179 Mie absorption efficiency
calculations made for a d = 100 nm nanosphere of TiO2 with a TDBC:PVA coating
as a function of coating thickness are plotted in Fig. 5.7 (overleaf). The analytical
solutions for the two modes from Eq. 5.17 (where the approximation has been taken
such that TiO2 has a constant refractive index of n1 = 2.37 across optical wavelengths)
are overlaid on the Mie calculations. In Fig. 5.7, the two Mie theory peaks correspond
to the two hybridised modes of the system predicted by the quasistatic theory, albeit
with a slight redshift as seen previously for other similar systems due to retardation
effects.

In Fig. 5.7, the ω+ mode now dominates the optical response of the system, due to
an increase in the core index. For shell thicknesses in the range 7 nm < t < 14 nm, it
is the ω+ mode only which exhibits absorption efficiency in excess of unity, almost
opposite to the system with the S iO2 core considered above. This indicates that the
index of the core has been increased too much to balance the two modes equally, and
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Figure 5.7: Mie absorption efficiency spectra for a d = 100 nm nanosphere of TiO2 with
a coating of 3.22 wt% TDBC:PVA in vacuum. The dashed lines indicate the quasistatic
solutions to the resonant energies.

a material with an intermediate index is required to achieve this goal. To perform
this redress, an increase in medium index can be utilised, as shown in the following
section.

The asymmetry of the two modes in Fig. 5.7 is now examined: the absorption efficien-
cies of the ω− and ω+ modes peak at 0.8 and 1.4 respectively. The effect of these two
modes on the surrounding environment is visualised in Fig. 5.8, where the electric field
strength (normalised to the incident field) and the power flow around the nanoparticle
(calculated from the total Poynting vector) are plotted for two orthogonal viewpoints
for each mode on resonance. In each plot, the light is x-polarised and incident along
the positive z-axis. Values on the colour plot in excess of unity indicate electric field
enhancement.

The shape of the region of electric field enhancement brought about by these two modes
shown in Fig. 5.8 mirrors the shape expected from the elementary dipole calculations
outlined in Ch. 4. The plots for both modes show electric field enhancement over
all solid angles, evidenced by a circle of field enhancement around the nanoparticle
equator in each case, implying a PEP mode. The streamlines of power flow in the y-z
plane in Fig. 5.8b indicate that for the ω+ mode, the nanoparticle bends the incident
light around it more significantly than the ω− mode does in Fig. 5.8a (this is the
opposite to the findings of Fig. 5.6). In addition, there is a greater extinction of power
from the ω+ mode which leads to a higher absorption efficiency for the ω+ mode.
In the case of the ω+ mode, the light is drawn into the nanoparticle from outside
its geometrical reach, a property indicative of a particle polariton mode (see Ch. 4).
However, the absorption efficiency for the ω− mode is at first glance insufficient to
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Figure 5.8: Relative time-averaged electric field strength and power flow in the vicinity
and on the surface of a d = 100 nm TiO2 nanosphere with a t = 10 nm coating of 3.22 wt%
TDBC:PVA in vacuum, on the (a & c) ω− resonance at 2.11 eV (586.7 nm) and the (b & d)
ω+ resonance at 2.21 eV (560.7 nm) in the (a & b) y-z and (c & d) x-z planes. Light is
incident along the positive z-axis. Green line: ζ = 1 isosurface.

demonstrate a PEP mode. Computing the mean effective radii of these two modes
using Eq. 5.9 gives reff = 53.7 nm and reff = 71.0 nm for the ω− and ω+ modes
respectively. This shows that the effective radius of the ω− mode lies outside the core
of the nanoparticle, but within the shell, suggesting that if this PEP mode is excited,
its electric field enhancement is contained within the nanoparticle - this is a possible
manifestation of the cavity exciton polariton mode. The effective radius of the ω+

mode suggests that field enhancement should be felt (on average) for distances up to
11.0 nm away from the nanoparticle surface, giving strong evidence for the existence
of the ω+ PEP mode for this nanoparticle system.
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5.5.3 Medium index

An increase in medium index around a coated nanosphere acts to effectively decrease
the core index, and vice versa. Given that an isolated non-absorbing nanosphere
will tend to scatter more strongly towards the blue end of the spectrum (Rayleigh
scattering151) and that a nanosphere with a higher refractive index will scatter more
strongly, an increase in medium index will act to decrease the strength of the ω+ mode
relative to the ω− mode, the former of which lies towards the bluer end of the spectrum.
This dependency is illustrated in Fig. 5.9, in which absorption efficiency spectra are
plotted for four different embedding media. The system in question is a nanosphere
with a TiO2 core and a t = 10 nm coating of 3.22 wt% TDBC:PVA. The models used
for the permittivity of TiO2 and TDBC are the Conrady dispersion formula179 and the
four-level quantum model respectively. The four spectra in Fig. 5.9 have been offset
for clarity. For nm < 2, the ω+ mode dominates the response; for nm = 2 the strength
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Figure 5.9: Offset Mie absorption efficiency spectra for a d = 100 nm nanosphere of TiO2

with a t = 10 nm coating of 3.22 wt% TDBC:PVA for four different medium indices.

of the two resonance peaks are approximately in balance; and for nm = 2.5, the ω−
mode dominates. Another finding from Fig. 5.9 is that the ω+ mode redshifts subtly
with an increase in medium index: this dependency can be seen from examination of
Eq. 5.16.

The electric field strength and power flow around the nanoparticle for the ω− and ω+

modes when brought into balance by a nm = 2 medium is examined in Fig. 5.10 from
two orthogonal viewpoints. In the y-z plane shown in Fig. 5.10a & 5.10b, the lines of
power flow reveal that the nanoparticle acts as a ‘magnet for light’ for both modes, in
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Figure 5.10: Electric field strength and power flow for the same system as Fig. 5.8 but in
an nm = 2 medium. The ω− mode is visualised at 2.11 eV (587.7 nm) (a & c) and the ω+

mode is visualised at 2.21 eV (566.7 nm) (b & d).

that light incident from outside the geometrical radius of the nanoparticle ends up on
the surface of the nanoparticle; this effect is stronger than the same effect observed for
the ω+ mode in Fig. 5.8, for which the only difference is a change in medium index.
This strengthening of the effect in Fig. 5.10 is aided by the fact that a nanoparticle with
an index lower than the medium index will act as a nanoparticle void, which can act as
an attractor to light,180 which in turn boosts the electric field enhancement around the
nanoparticle.

Fig. 5.10a & 5.10b seem to indicate that incident light never reaches the nanoparticle,
but Fig. 5.10c & 5.10d reveal that the incident light is transported up and around the
nanoparticle before being tightly confined at two points on the nanoparticle surface,
elevating the electric field enhancement around these two points. This mechanism is
also responsible for depression of the electric field on the nearside of the nanoparticle,
seen most clearly by the blue region in Fig. 5.10a & 5.10c for the ω− resonance.
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The similarity in the absorption efficiencies of the two nanoparticle modes (cf. Fig. 5.9)
implies that the electric field isosurfaces of the two modes should be similar in volume
to each other. Fig. 5.10a-d reveal that this is so, where the region of electric field
enhancement in each is marked by a green line. These isosurfaces are larger than
observed for the same system in the nm = 1 medium (Fig. 5.8). This is an expected
result, since it was shown in Ch. 4 through consideration of the quasistatic dipole that
an increase in medium index would result in an increase in the size of the electric
field isosurface on a nanosphere resonance (cf. Eq. 4.12). From Fig. 5.10, the same
would appear to be true for dipole modes in coated nanospheres. The electric field
distributions on the nanoparticle surface for these two modes also appear different to
each other as expected.

Overall, Fig. 5.10 indicates field enhancement over all solid angles around the
TDBC@TiO2 coated nanosphere, together with the nanoparticle acting as a ‘magnet
for light’ on these two resonances. These two properties combined are evidence that
these two modes are indeed (hybrid) PEP modes.

Figure 5.11: Relative time-averaged electric field strength and power flow in the vicinity
of the same system shown in Fig. 5.10, but off-resonance at 2.15 eV (577 nm).

In Fig. 5.11, power flow and field enhancement is shown for the same system as in
Fig. 5.10 but off-resonance, between the two modes at 2.15 eV (577 nm), again for
a medium index of nm = 2. In this figure, electric field enhancement is evidenced as
before, but crucially, the nanoparticle permits a greater flux of light past it or through
it, resulting in a lower absorption efficiency. The electric field distribution over the
surface of the nanoparticle is an intermediate distribution between the distribution
exhibited by the ω− and ω+ modes, indicating that at this frequency, both modes may
contribute equally to the optical response.

In all, both hybrid PEP modes can be excited in a nanoshell of excitonic material.
These modes exhibit field enhancement and strong absorption provided that the shell
thickness and dye concentration in the shell are sufficient. In addition, the relative
strength of the two modes can be balanced through adjustment of both the core and
medium indices.
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5.6 Excitonic Core and Shell

Now that hybrid PEP modes have been demonstrated for an excitonic nanoshell, the
inert core is substituted for an excitonic core in order to explore hybrid modes in a
new context. So far, the excitonic dye chosen has been the dye TDBC. In this section,
the excitonic dye is not necessarily representational of TDBC. In addition, the planar
distribution (rather than the volume distribution) for the dye aggregates is assumed.
These choices are made so as to examine general qualitative results, and to enable
a straightforward comparison with the results which would be obtained using the
experimentally-determined permittivities for the TDBC:PVA films of differing dye
concentration.

In this section, in order to obtain values of the resonances from quasistatic theory
through the master equation (Eq. 5.3), both the core and shell are modelled as single-
oscillator Lorentz dielectrics, i.e.

εn = ε∞n +
fnω2

0n

ω2
0n
− ω2 − iγnω

. (5.18)

The approach taken in this section is similar to that of the previous section, i.e. by
expansion of Eq. 5.3 to obtain a polynomial, which when solved, yields the resonance
frequencies.

First, an aside to determine the expected number of hybrid modes in such a nanoparti-
cle: as seen above, an excitonic nanoshell can exhibit two hybrid PEP modes, whereas
a bare nanosphere will exhibit one PEP mode only. The system considered in this
section can be imagined as a superposition of these two sub-systems, leading to a
maximum of three modes for the system.

Using Eq. 5.18 in Eq. 5.3 and expanding in terms of ω gives a polynomial of the
following form,

c6ω
6 + c4ω

4 + c2ω
2 + c0+

iω(c5ω
4 + c3ω

2 + c1) = 0, (5.19)

where the coefficients ci are real-valued. For γ � 1, the real part of Eq. 5.19 has
only one real solution, whereas the imaginary part gives two real solutions. Therefore,
three roots arise from this equation: the number expected as postulated above. The
coefficients of the cubic imaginary part are written out in full in App. C.2. In order to
simplify the system a little, it is assumed throughout this section that the embedding
material for the dye is the same for both the core and the shell i.e. ε∞1 = ε∞2 = ε∞.
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5.6.1 Shell exciton energy

In this section, the energy of the exciton transition in the core material (ω01 ) is held
constant, and the energy of the exciton transition in the shell material (ω02 ) is varied.
The question to be addressed in this section is to what extent the three modes of the
nanoparticle interact with each other, and if they do, whether they avoid each other
or not. The materials referred to in this section do not necessarily represent physical
materials, but the calculations made here help to inform the reader from where the
modes in such nanoparticles arise.

Re-writing the imaginary part of Eq. 5.19 in terms of ω02 gives the following,

c5ω
4 + (A2ω

2
02
− A5)ω2 + (A1ω

2
02

+ A3)ω2
02

= 0, (5.20)

where Ai are constants in ω02 . Solving for ω2 gives the following two solutions,

ω2 = −
(A2ω

2
02
− A5)

2c5
±

√√
(A2ω

2
02
− A5)2

c2
5

−
(A1ω

2
02

+ A3)ω2
02

c5
. (5.21)

In the limit where ω02 → 0, the limiting solution ω = A5/c5 is obtained where,

A5 =(2[ε∞(1 + 2x3) + 2εm(1 − x3)] f1ω2
01

+ 3ε∞[(ε∞ + 2εm)γ1γ2 + 2(ε∞ + 2εm)ω2
01

])γ2, (5.22)

and c5 in this case is equal to c5 = 3ε∞(ε∞+2εm)(γ1 +2γ2). In the limit where γ1 � 1,
the solution reduces to,

ω = ω01

√(
1

3ε∞
+

2(ε∞ − εm)x3

3ε∞(ε∞ + 2εm)

)
f1 + 1. (5.23)

This solution implies a particle mode in the core which scales with
√

f1, similar to that
of the particle mode of an excitonic nanosphere with an inert shell (Eq. 5.8). Therefore,
for values of ω02 far detuned from ω01 , there is only one mode which will be evident:
the particle mode arising from the excitonic core. Symmetry arguments can be used
to find a similar result for ω02 → ∞. Therefore, the range of values for ω02 to be
examined for splitting behaviour should be values for which ω01 and ω02 are similar.

These predictions are now tested. The specific core material studied in this section
is assumed to be 1.46 wt% TDBC:PVA (planar distribution, cf. Fig. 4.5a). The two-
level quantum model is used for clarity. The material of the shell is taken as the
same material but for a dye concentration of 0.4 wt% so that the field may penetrate
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the shell more easily. The range of exciton transition energies in the shell material
is 2.0 eV < ω02 < 2.3 eV , and the orientation of the nanoparticle is held fixed
such that the incident electric field lies in the plane within which the aggregates are
orientationally distributed.

Mie absorption spectra calculated for a nanosphere of these two materials in vacuum
with a d = 100 nm core and a t = 15 nm shell are illustrated in Fig. 5.12. The resonant
energies determined using Eq. 5.19 are indicated by the lines overlaid on the plot.

Figure 5.12: Mie absorption efficiency spectra (colour plot) as a function of shell exciton
transition energy for a d =100 nm, t=15 nm nanosphere, together with resonant frequen-
cies calculated from the real (solid line) and imaginary (dashed lines) parts of Eq. 5.19
respectively. The core and shell materials are 1.46 wt% TDBC:PVA (ω0 = 2.11 eV) and a
0.4 wt% TDBC:PVA-like material respectively.

For regions on Fig. 5.12 for which the energy difference between the shell and core
exciton transitions is large, two absorption peaks are evident; these peaks are mirrored
by the analytical solutions for the hybrid modes. The absence of a third absorption
peak indicates that in this case, two hybrid modes are ‘bright’, and the other mode is
‘dark’. It can be seen that one of the modes remains close to 2.15 eV , close to the PEP
mode of the core at 2.16 eV , as predicted by Eq. 5.23.

The two bright modes in Fig. 5.12 do not cross, and seem to avoid each other in avoided
crossing behaviour for ω02 ≈ ω01 (2.11 eV). For this value of ω02 , the two nanoparticle
materials are most alike and the splitting between the two hybrid modes is minimised.
At this point, the nanosphere behaves almost like a homogeneous nanosphere, and only
one peak is evident, accounted for by the third analytical (central) solution indicated in
the figure, which becomes bright in the range 2.07 eV < ω02 < 2.17 eV . The position
of the peak at 2.15 eV indicates that this mode may either be the result of hybridisation,
or simply the limiting case for which the mode approaches that of a homogeneous
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nanoparticle; this is a question which is yet to be resolved, since the two energies are
very close - within 0.01 eV of each other.

5.6.2 Shell dye concentration

Absorption spectra for the same nanoparticle system are now examined as a function
of dye concentration in the shell material. In order to determine the expected behaviour
of the resonant modes of the nanoparticle, a similar procedure to the one outlined in
the previous section is followed: first, the imaginary part of Eq. 5.19 is written in
terms of the oscillator strength f2,

c5ω
4 − (A5 + A2 f2)ω2 + (A1 f 2

2 + A3 f2 + A6) = 0, (5.24)

where Ai are real positive constants and c5 has the same value as outlined in the
previous section. Solving for ω2,

ω2 =
1

2c5

[
(A5 + A2 f2) ±

√
(A5 + A2 f2)2 − 4c5(A1 f 2

2 + A3 f2 + A6)
]
. (5.25)

Given that f2 is related linearly to dye concentration by f2ω2
02

= N2e2/ε0m (see Ch. 2),
for an increase in shell dye concentration, the first term in Eq. 5.25 demonstrates that
the mean of the two modes will blueshift; the term in the square root shows that the
splitting between the two modes will increase.

In order to test these predictions, Mie absorption spectra are plotted in Fig. 5.13 for a
1.46 wt% TDBC:PVA core and a TDBC:PVA shell, both with aggregates in the planar
distribution. The permittivity of the TDBC is calculated using the four-level quantum
model, so that the spectra produced can represent best what might be accomplished in
an experiment. The nanoparticle geometry is fixed with a diameter d = 100 nm and
a shell thickness t = 10 nm. The quasistatic solutions from Eq. 5.19 are overlaid as
thick lines in Fig. 5.13, along with the quasistatic solutions for the shell only (as thin
lines). The higher-energy mode is best accounted for by the result from Eq. 5.19, as
might be expected, and the results from either model for the lower-energy mode are
fairly similar. It must be emphasised that the quasistatic calculations are based upon a
single-oscillator Lorentz model, and therefore only one transition: these quasistatic
models cannot account for the higher-order effects associated with multiple energy
levels, as circled in Fig. 5.13.

One immediate observation from Fig. 5.13 is that out of the three modes theorised
from the quasistatic calculations, only two are bright: the (central) dark mode is only
bright for very low dye concentrations in the shell (< 0.75%). This suggests that the
central mode may correspond to the particle mode of the core, or to the mode of the
homogeneous nanosphere (as hypothesised above). The two predictions regarding the
blueshifting and splitting of the two outer modes are seen to be correct.
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Figure 5.13: Mie absorption efficiency spectra (colour plot) as a function of shell dye
concentration for a d = 100 nm 1.46 wt% (planar distribution) TDBC:PVA core, and a
t = 10 nm TDBC:PVA shell. Thick lines: quasistatic hybrid mode solutions. Thin solid
lines: quasistatic nanoshell solutions. Dotted circle: higher-order feature.

From the two bright modes, it is the mode of the highest energy which dominates the
spectra for all concentrations. This mode is close to the solution for the antisymmetric
mode of the shell (as indicated on the plot), especially for high dye concentrations in
the shell. This finding shows that as the dye concentration of the shell is increased,
the shell dominates the response. As this occurs, the modes of the nanoparticle
tend towards those of the shell. Considering the mode of highest energy to be the
‘antisymmetric’ mode as seen for nanoshells, the fact that the antisymmetric mode is
the ‘brightest’ mode echoes the finding for the TDBC@S iO2 nanoparticle in vacuum.
As shown above, the relative strength of the symmetric and antisymmetric modes
of a nanoshell can be adjusted by embedding the nanoparticle in a medium with a
higher refractive index. This redress in the strength of the modes comes at the cost of
a reduction in the absorption efficiency of the higher-energy mode. However, in the
core-shell geometry there exists an alternative to this approach: replacement of the
excitonic core with a metal core, as examined in the following section.

5.7 Metal Core, Excitonic Shell

As shown in Sec. 5.6, the PEP of an excitonic core can interact with the two hybrid
excitonic polariton modes of an excitonic nanoshell to produce three possible hybrid
PEP modes. In this section, the excitonic core of the nanosphere is replaced with a
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metal core. Consequently, the metal core can exhibit a PPP mode which may undergo
hybridisation with the modes of the excitonic shell to form ‘plexciton’166, 181 modes.
It is already known that a shift can be induced in the PPP mode of a silver core with
the adsorption of a dye-doped shell,16 and similar nanoparticle systems have seen
application within surface-enhanced Raman scattering (SERS)182. In this section, the
extent to which plexciton modes can be excited and tuned for a TDBC@Ag nanosphere
is explored.

In order to obtain solutions for resonances in such systems, the master equation in
Eq. 5.3 is used in conjunction with the Drude model (Eq. 2.20) for ε1, and the single-
oscillator Lorentz model for ε2. Re-arrangement of the resultant equation gives a
polynomial of the form,

c6ω
6 + c4ω

4 + c2ω
2 + c0+

iω(c5ω
4 + c3ω

2 + c1) = 0, (5.26)

from which solutions for ω can be found. The real part of Eq. 5.26 is a cubic in ω2,
and the imaginary part is a quadratic in ω2. The real coefficients ci in Eq. 5.26 are
written out in full in App. C.3.

From this point on in this section, the shell material is assumed to be an isotropic ma-
terial, and aggregates within it are assumed to be distributed in the volume distribution.
The concentration of the dye is presumed to be 3.22 wt% unless otherwise stated.

5.7.1 Shell exciton energy

Adopting a similar approach to the exciton-exciton nanoparticle in Sec. 5.6, the Mie ab-
sorption spectra as a function of exciton transition energy in the shell material (labelled
here as ω0) is calculated. Again, potential anti-crossing behaviour is investigated.

In order to gain some basic understanding of what might be expected by varying ω0,
the imaginary part of Eq. 5.26 is taken, and the expressions for the coefficients outlined
in App. C.3 are used. This produces a quadratic in ω2 which when solved takes the
following form,

ω2 =
a1ω

2
0 + a2

c5
±

√
(a1ω

2
0 + a2)2

4c2
5

−
(a3 + a4ω

2
0)ω2

0

c5
, (5.27)

where ai are real-valued constants. Eq. 5.27 implies two distinct resonant frequencies.
In the limit where ω0 → 0, one of these solutions vanishes (ω = 0) and the other
becomes ω =

√
a2/c5 where,
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a2 =2γ(γγp(ε2
b + ε∞εm) + 2εmω

2
p)(1 − x3)

+ εbγ(ε∞γγp + 2ω2
p)(1 + 2x3) + (2εbεmγ

2γp)(2 + x3). (5.28)

Since for metals {γ, γp} � ωp, a2 becomes,

a2 → 4γω2
p[(2εm + εb) + 2(εb − εm)x3]. (5.29)

Comparing this expression with the value of c5 in App. C.3, the limiting value of the
resonant frequency tends towards ω→ ωp, multiplied by a factor close to unity for all
aspect ratios, x. Symmetry arguments imply the same finding in the limit ω0 → ∞.
Together, these two findings imply that for large detunings of ω0 away from ωp, the
dominant mode of the system is expected to be the PPP mode, which may be modified
slightly (but not significantly) by the presence of the exciton transition. Therefore, via
these arguments, a range of exciton transition energies to be investigated in this section
is established for which mode hybridisation might be expected to occur: values of ω0
in the vicinity of ωp.

As discussed in Ch. 2, silver (unlike gold) has no intraband transitions at optical
frequencies; its permittivity can therefore be modelled to a good degree of accuracy
with a Drude model, enabling the calculations for the resonant frequencies from
Eq. 5.26 to be evaluated against coated Mie theory. Furthermore, as shown in Ch. 4,
silver nanospheres when embedded in a nm = 1.5 medium can exhibit PPP modes
at optical frequencies (at around 3 eV), unlike aluminium. Therefore, a (plasmonic)
silver core with an excitonic nanoshell provides the potential for plexciton modes at
optical frequencies.

Given that Eq. 5.26 is based upon quasistatic theory, the solutions for ω are expected
to hold best for relatively small metal nanospheres. Therefore, the choice made for
the nanoparticle dimensions in this section are a core of d = 10 nm, and a shell with
t = 2 nm. The material of the shell is fictional, but the parameters used other than that
of the exciton transition energy are that of 3.22 wt% TDBC:PVA using the four-level
quantum model.

Mie absorption efficiency spectra for this system as a function of exciton transition
energy in the range 1.2 eV < ω0 < 3.5 eV are visualised in Fig. 5.14 (overleaf). As
seen in the figure, absorption occurs at the exciton energy ω0 (as expected) and the
dashed line corresponding to one of the solutions from the real part of Eq. 5.26 follows
this peak faithfully. The value of ε′ at ω0 is too high to permit a polariton mode at this
frequency, so this mode is not a polariton mode; merely a feature corresponding to
exciton excitation. The two peaks either side of this exciton excitation in Fig. 5.14
arise from the PPP mode of the silver core, split and shifted by the excitonic shell.
These peaks are mirrored by both the scattering efficiency spectra (not shown) and
by the solutions to the real and imaginary parts of the master equation, as indicated
on the plot. These solutions are generally complex, given that the CM condition is
unlikely to be fulfilled perfectly, so the solutions obtained from the real and imaginary
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Figure 5.14: Mie absorption efficiency spectra for a nanosphere with a d = 10 nm silver
core and a t = 2 nm 3.22 wt% excitonic coating in a nm = 1.5 medium as a function of shell
exciton energy, ω0. The black dashed and solid lines are the analytical solutions for the
resonances from the real and imaginary parts of the master equation respectively.

parts are expected to differ. The higher-energy peak is best accounted for by another
of the solutions from the real part of Eq. 5.26, whereas the lower-energy peak is best
accounted for by one of the solutions from the imaginary party of Eq. 5.26. The
percentage errors between the mode of higher-energy and the peak from coated Mie
theory is within 0.3% for all values of ω0. The percentage error for the lower-energy
mode is within 10%. These two modes exhibit avoided crossing behaviour.

For small values of ω0 in Fig. 5.14, the strong absorption peak in the visible spectrum
tends towards the PPP mode of the bare silver nanosphere in the medium (at 3.0 eV).
This suggests that an increase in the exciton transition energy of the shell material
merely shifts the plasmon mode, as reported elsewhere16 for adsorption of dyes on
silver nanospheres, and as expected from the mathematical arguments above. The
mode becomes blueshifted by up to 0.37 eV (∆λ = 45 nm) at an exciton transition
energy of ω0 ≈ 2.8 eV , beyond which the mode fades in strength with increasing
exciton transition energy. For ω0 > 2.5 eV , another mode becomes evident, manifested
as a ‘kink’ in the (shifted) PPP mode, which is approximately the same strength as
the other PPP mode on the lower energy side of the exciton transition absorption.
Given that these two modes mirror each other and their spectral location depends
upon the exciton transition energy, it is probable that these two modes are the result of
hybridisation with the exciton mode, and are therefore plexciton modes.

The magnitude of the splitting between these two plexciton modes in Fig. 5.14 is
dependent upon ω0, and is minimised when ω0 = 2.97 eV , corresponding to the
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effective plasma frequency of silver in the medium. For a TDBC coating (ω0 =

2.11 eV), the splitting between the two plexciton modes is approximately 1.0 eV .
The plexciton modes in the absorption and scattering efficiency spectra are both
approximately balanced with the exciton transition energy set to ω0 = 2.8 eV; these
spectra are plotted in Fig. 5.15. Given that there are three peaks in both the absorption
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Figure 5.15: Mie absorption and scattering (×20) efficiency spectra for a d = 10 nm silver
nanosphere with a t = 2 nm excitonic coating, with ω0 = 2.8 eV in a nm = 1.5 medium.

and (crucially) the scattering spectra resulting from the splitting of the plasmon mode
by the exciton mode, evidence is presented for strong coupling in the system.183 Strong
coupling suggests hybridisation between these two distinct modes, and therefore
further evidence for plexciton modes. The quality factors of the peaks corresponding
to the low-energy plexciton, exciton, and high-energy plexciton modes in Fig. 5.15
are 63.8, 39.3 and 36.2 respectively. The first of these is comparable to the quality
factor of the PEP mode for the TDBC:PVA nanosphere (Q = 67.7) examined in Ch. 4.
This, coupled with the observation from Fig. 5.14 that the lower-energy plexciton
mode can exhibit an absorption efficiency in excess of unity across the energy range
2.30 eV < E < 2.89 eV (∆λ = 110 nm) suggests that the spectral location of the
plexciton mode can be engineered with a careful choice of dye molecule. The quality
factors of the two remaining modes in Fig. 5.15 are not as high as for the lower-
energy plexciton mode, but are still approximately four times that of the quality factor
associated with the PPP mode of the silver nanosphere, as seen in Ch. 4 (cf. Fig. 4.6).

The difference (the splitting) between the two quasistatic solutions for the plexciton
modes is plotted in Fig. 5.16 as a function of ω0, along with the splitting for similar
nanoparticles with differing aspect ratios x (as defined in Sec. 5.2). It can be seen that
the splitting can be reduced for exciton transition energies near to the effective plasma
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Figure 5.16: Plexciton mode splitting for a silver nanosphere with an excitonic coating
as a function of exciton energy for thick (blue dashed) and thin (blue dotted) shells. The
aspect ratio considered in Fig. 5.14 is indicated with the black line.

frequency for silver in the medium (ω0 ≈ 3 eV) for thinner shells, and increased for
thicker shells. The increase in splitting achievable by adjustment of the shell thickness
for TDBC dye (ω0 = 2.11 eV) is 0.1 eV , which translates to a shift in the resonant
energies of ∆λ = 42 nm. These findings demonstrate that the resonances for this
system can in principle be tuned with careful design of the nanoparticle aspect ratio
i.e. the ratio of the core diameter to the overall nanoparticle diameter. For dyes with
exciton transitions close to that of the plasma frequency of the silver core, this tuning
with aspect ratio is maximised.

5.7.2 Shell dye concentration

As seen in the previous section, three modes are present for a nanoparticle with a
plasmonic core and an excitonic dye shell. The splitting between the two outermost
(plexciton) modes is minimised for exciton transition energies close to the PPP mode
of the metal core. In this section, the core material is kept as silver, and the effect of a
change in shell dye concentration upon the plexciton splitting is explored, with the
exciton transition energy held fixed.

In order to consider mathematically the effect of an increase in dye concentration on
the three modes, solutions to the real part of Eq. 5.26 are considered for two cases:
first, with the oscillator strength of the dye set to f = 0, and second, with f > 0. In
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either case, the resultant equation is a cubic in ω2. For f = 0, the real part of Eq. 5.26
assumes the form,

A6ω
6 + A4ω

4 + A2ω
2 + A0 = 0, (5.30)

where Ai are real positive constants. Keeping the same symbols for f > 0, this equation
becomes,

A6ω
6 + (A4 − B4 f )ω4 + (A2 + B2 f + C2 f 2)ω2 + (A0 + B0 f ) = 0, (5.31)

where Bi and C2 are real positive constants. Eq. 5.30 & 5.31 can be solved for
the unperturbed and perturbed resonant frequencies, ω and ω′. The quantity ∆ω̄ =
√
ω2 − ω′2 gives a measure for the expected shift in the resonant frequency with an

increase in oscillator strength. For the central mode, ∆ω̄ = 0, indicating no shift
with an increase in oscillator strength, and hence, no shift with a change in dye
concentration. For the other two modes,

∆ω̄ =
ω0
√

3

√
B4

A6

√
f , (5.32)

where,

B4 = 4εb(1 − x3) + ε∞(1 + 2x3) + 2εm(2 + x3) (5.33)

A6 = 2(ε2
b + ε∞εm)(1 − x3) + εbε∞(1 + 2x3) + 2εbεm(2 + x3). (5.34)

Given that oscillator strength and dye concentration are linearly related by fω2
0 =

Ne2/ε0m (see Ch. 2) the splitting of the modes can be written as

2∆ω̄ =
e
√

3

√
B4N

A6ε0m
. (5.35)

Eq. 5.35 demonstrates symbolically that the splitting of the two plexciton modes in
the nanosphere with a metal core and excitonic shell increases with the square root
of the dye concentration in the shell, but this splitting is independent of the exciton
transition energy. For a dye concentration of zero (N = 0), Eq. 5.35 implies that there
is only one (dipole) mode present, in accordance with the findings of Sec. 5.4.

These predictions are now examined with the use of Mie absorption calculations. For
the sake of keeping the nanoparticle well-represented by the quasistatic calculations
above, the chosen geometry of the nanoparticle is d = 10 nm and t = 5 nm. The
exciton transition energy chosen is ω0 = 2.8 eV , since for this geometry and value of
ω0, the outer modes are both plexcitonic, their relative strengths are approximately in
balance, and the splitting of the plexciton modes is roughly minimised. A reason for



164 5. Particle Polariton Modes in Coated Nanospheres

keeping the splitting to a minimum is so that the main features of the spectra can be
explored within the visible spectrum, and consideration of modes with equal strengths
helps to reduce the complexity of the system. The splitting of the plexciton modes
in this case is equal to 0.309 eV for a dye concentration of 3.22 wt% (as seen from
Fig. 5.16).

Figure 5.17: Mie absorption efficiency spectra as a function of concentration for a
nanosphere with a d = 10 nm silver core and a t = 5 nm excitonic coating, withω0 = 2.8 eV ,
together with the quasistatic solutions (dashed lines).

Absorption efficiency spectra from coated Mie theory for the nanosphere are presented
in Fig. 5.17, as a function of dye concentration in the shell. The central mode arising
from exciton absorption is evident, along with the two plexciton modes, one on either
side. The exciton absorption increases with concentration as the probability for exciton
excitation in the shell is increased. This mode also blueshifts with an increase in
dye concentration in a similar fashion to both the PEP mode of the bare excitonic
nanosphere (Eq. 4.10) and the PEP mode of the excitonic nanosphere with an inert
shell (Eq. 5.8). However, this blueshift is not as significant as the splitting induced
in the plexciton modes by an increase in dye concentration. From inspection, the
splitting of the plexciton modes scales with the square root of the dye concentration as
expected from Eq. 5.32; this phenomenon has been shown elsewhere.183

The Mie calculations in Fig. 5.17 reveal that the strength of the absorption efficiency
for the split plexcitonic modes is inversely dependent upon the dye concentration in
the shell. Therefore, there exists an optimum concentration at which both the splitting
of the plexcitonic modes and the absorption for each are maximised. However, the
absorption efficiency is greater than unity at the peaks of the three modes for all
concentrations plotted. This finding demonstrates that the plexcitonic modes of this
system can be tuned across the range 2.4 eV < E < 3.5 eV with a change in dye
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concentration of the shell. This degree of tunability translates as a wavelength shift
of ∆λ = 159 nm; a value exceeding all modal shifts considered so far in this thesis.
Given that this shift is independent of exciton transition energy (by Eq. 5.35), this
large shift in wavelength is expected to be observed for other choices of ω0 (and hence
other dyes), provided that the plexcitonic modes can be excited.

5.8 Conclusions

In this chapter, particle exciton polariton (PEP) modes, hybrid exciton polariton modes
and plexciton modes have been demonstrated across a range of coated nanosphere
configurations, incorporating excitonic materials.

An excitonic nanosphere with an inert shell can exhibit a PEP mode, the spectral
location of which shifts with an increase in shell thickness in a similar way to that of a
particle plasmon polariton (PPP) mode for a plasmonic nanosphere with an inert shell.
The direction and the magnitude of the shift is dependent upon the difference between
the medium index and the index of the shell. The mode is redshifted (blueshifted) if
the index of the coating is above (below) that of the medium. A potential application
of an inert coating around an excitonic nanosphere is as a stabilising agent, allowing a
PEP mode of consistent energy for a change in medium index. While the addition of an
inert shell can increase the absorption cross-section of a nanosphere (whether excitonic
or plasmonic), the absorption efficiencies of the coated nanospheres examined in this
chapter are decreased with the addition of a shell. Under such a circumstance, the
particle mode is excited within the core only, and not over the entire nanoparticle
volume.

Excitonic nanoshells with inert cores can exhibit hybrid exciton polariton modes.
Through Mie calculations it has been shown that the spectral locations of these two
modes are predicted well by quasistatic theory for TDBC:PVA nanoshells with a
d = 100 nm core. Thin shells maximise the mode splitting at the cost of a decrease
in absorption efficiency, and hence, the field enhancement around the nanoparticle.
Increasing the core index causes the higher energy (antisymmetric) mode to become
dominant. This is contra to the effect of an increase in the medium index, the effect
of which is to bring the lower energy (symmetric) mode to greater prominence. In
addition, an increase in the medium index causes the antisymmetric mode to redshift
slightly. Specifically for the system with a 3.22 wt% TDBC:PVA shell and a S iO2
core in vacuum, the symmetric mode dominates. Replacement of the core with the
higher-index material TiO2 causes the antisymmetric mode to dominate. These two
hybrid modes can be brought into balance by raising the index of the medium to nm = 2.
In general, increasing the medium index has the effect of extending the region around
the nanoparticle for which electric field enhancement occurs, as predicted with the use
of quasistatic arguments in Ch. 4. For either of the two core materials considered for
this nanoparticle system, a 3.22 wt% TDBC:PVA shell with thickness t ≈ 15 nm is
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required to achieve an absorption efficiency in excess of unity for both hybrid modes,
a finding which can be used to help inform a future experimental investigation.

An excitonic core within an excitonic nanoshell enables interaction of the two modes
of the nanoshell with the PEP mode of the excitonic core: this leads to three possible
exciton polariton modes. Through Mie absorption calculations made by varying the
exciton transition of the shell, the central mode has been shown to be dark if the
exciton transitions of the core and the shell are detuned significantly from each other
(large detunings); the two remaining bright modes exhibit splitting, as shown through
both quasistatic and Mie calculations. In the case of large detunings, the strongest
of these two modes has been shown to lie close to the resonance of the core. The
central mode is only bright for small detunings (up to around 35 meV for the specific
materials considered) and in this case, the mode follows a roughly linear dispersion
with a change in shell exciton transition energy.

For the same nanoparticle system, it has been shown analytically that the splitting
between the two bright modes increases with the square root of the dye concentration in
the shell. It has also been demonstrated that the mean of the two modes blueshifts with
an increase in dye concentration in the shell. These two findings have been confirmed
through Mie calculations. In addition, it has been found that for higher concentrations,
the shell dominates the response; here, the two hybrid modes approach those of the
bare nanoshell. Given that the analytical solutions for the resonant energies based
on quasistatic theory mirror the peaks in the Mie spectra for the system, evidence is
presented for exciton polariton modes in a excitonic-excitonic core-shell nanosphere
geometry.

The PPP mode of a silver nanosphere can be split to give three polariton modes with the
adsorption of an excitonic coating. This splitting is particularly clear where the exciton
transition energy in the shell is close to that of the PPP mode of the core. In this case,
the two outermost modes in the spectrum exhibit roughly equal absorption. Under this
circumstance, the exciton and plasmon modes of the nanoparticle are strongly coupled
and hybridise to form ‘plexcitonic’ modes. By calculation of Mie absorption spectra
for a range of exciton transition energies, the splitting between the plexciton modes
has been shown to be minimised for exciton transition energies in the shell close to
that of the PPP mode of the core. At this exciton transition energy, the quality factor
of one of the plexciton modes for a t = 2 nm PVA coating doped with an excitonic dye
to a concentration of 3.22 wt% have been shown to be comparable to that of the PEP
mode of a 3.22 wt% TDBC:PVA nanosphere. The other two modes have been shown
to exhibit quality factors four times that of the silver nanosphere PPP mode. For all
exciton transition energies in this system, the mode between the two plexciton modes
in the spectrum arises from exciton absorption. For large detunings from the plasmon
mode energy, the strong coupling between the plasmonic and excitonic contributions
to the two outer modes is weaker, and the plexcitonic nature of the two outer modes
is lost. Here, the PPP mode of the core is optically strong and shifted slightly by the
exciton transition, as predicted analytically from quasistatic considerations.

In the case of a silver nanosphere with a 3.22 wt% TDBC:PVA coating in vacuum, it
has been shown that a shift in the plexciton resonances of ∆λ = 42 nm can be achieved
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through a change in shell thickness. This shift exceeds that of the maximum shift
achievable for the silver nanosphere with an inert coating in an aqueous environment,
as outlined above.

The two plexciton modes can also be tuned with an increase in the dye concentration
of the shell. As shown through analytical treatment, the splitting of the two plexciton
modes increases with the square root of the dye concentration, and with careful
selection of the excitonic dye species, the two modes can be held in balance with each
other. For the specific case analysed in this chapter with ω0 = 2.8 eV , the shift in
resonant wavelength achievable for these plexciton modes is ∆λ = 159 nm; a value
which exceeds the shift achievable through a change in shell thickness - and indeed all
wavelength shifts so far outlined in this thesis - by a factor close to four. It has been
shown that in the quasistatic limit, this tunability is independent of the exciton energy.
Therefore, silver nanospheres with excitonic shells provide an exciting prospect for
their range of tunability, provided that a suitable species of excitonic dye can be
utilised in a coating.

In all, PEP modes offer a consistent resonance with the adsorption of an inert shell.
Excitonic nanoshells can exhibit hybrid PEP modes, and metallic-excitonic core-shell
nanospheres can exhibit plexcitonic modes. TDBC-silver plexciton modes offer the
greatest degree of tunability of all the polariton modes considered in this thesis. With
careful nanoparticle design by selection of the most suitable dye, aspect ratio, and dye
concentration, high-quality plexcitonic modes can not only be excited in core-shell
nanospheres, but can be tuned to accommodate design specification across a relatively
broad range of optical wavelengths.





6
Summary

The focus of the work presented in this thesis hinges on the extent to which excitonic
nanostructures can be used in lieu of plasmonic nanostructures for the purposes of
electric field enhancement and electric field confinement. In what follows, the findings
from each of the chapters are summarised in order to answer this question.

In Ch. 1, relative permittivity was established as the fundamental quantity which
governs the optical response of materials. A Fresnel approach, which utilises the
Kramers-Kronig (KK) relations, was outlined in order to find the permittivity of thin
films. The excitonic dye molecule TDBC was then introduced, and the permittivity of
thin films of poly(vinyl alcohol) (PVA) doped with TDBC was investigated. Provided
that the dye concentration in the material is sufficiently high, it was found that the
real part of the permittivity for TDBC:PVA is negative in a small range of energies,
like a metal (such as gold or silver). This spectral region of negative permittivity is
responsible for the metallic visual appearance (and optical properties of) TDBC:PVA,
and increases in breadth with an increase in dye concentration. A current limitation of
the findings outlined in this chapter is that the response of TDBC:PVA films to photons
with wavelengths shorter than 450 nm is currently unknown, due to a limitation of
the equipment used in experiment. The response to photons with short wavelengths
could be the subject of a future investigation in order to obtain improved values for the
permittivity of this excitonic material.

The truncated visible spectrum used in order to obtain the permittivities of TDBC:PVA
films in Ch. 1 necessitated a theoretical model for the permittivity which could be used
to calculate the permittivity for any optical frequency. Therefore, different models
used to describe the permittivity of TDBC aggregates were evaluated in Ch. 2. While
each monomer can be represented as a two-level quantum system, a single-exciton
model for an aggregate has as many energy levels as there are monomers in the
aggregate. It has been shown via solutions to a nearest-neighbour Hamiltonian for
this system that one of the aggregate transition dipole moments dominates the optical
response. Therefore, an aggregate (or an ensemble of non-interacting aggregates)
can be represented to a reasonable approximation with a two-level quantum system,
or to a crude approximation with a single-oscillator Lorentz model. The two-level
quantum model has been shown to be the superior of the two models, on account of
providing a closer fit to the permittivity obtained from experiment. This is attributed
to the variables within the quantum model arising from approximated (Born-Markov)
physical processes. However, a quantum model for plasmonic metals (gold and silver)
is unnecessary, since the length scales of the nanostructures considered in this thesis
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are long enough to permit the macroscopic Drude model (albeit in a modified form for
gold) to be used.

Incorporation of a greater number of energy levels in the quantum model for TDBC
aggregates permits a more accurate fit to the experimentally-extracted permittivity,
as shown in Ch. 2. The highest number of energy levels modelled in this thesis is
four, and analytical constraints on the dephasing rates between these levels have been
used in order to keep the system physically plausible. No such constraints have yet
been encountered for a greater number of energy levels, but limited analysis has
suggested that no significant change to the permittivity at optical frequencies can be
brought about by consideration of further energy levels of the aggregate than currently
considered. Therefore, it has been shown that a four-level quantum model suffices
to model the permittivity of TDBC aggregates across optical frequencies. However,
the broadening of the tail in the imaginary part of the refractive index - particularly
for the 1.46 wt% TDBC:PVA film - is left not completely accounted for with the
use of the four-level quantum model. Therefore, the contribution of inter-aggregate
effects on this broadening provides a topic for future investigation. Another topic for
investigation is the effective number of monomers per aggregate: this quantity has
been shown to reduce to n = 15 for high concentrations, and to peak at around n = 70
in the concentration range 0.1 wt% − 0.2 wt% (planar distribution). This dependency
of monomer number per aggregate upon concentration causes low-concentration
TDBC:PVA films to exhibit stronger transition dipole moments than expected, and
it is for this reason that TDBC:PVA films possess a negative permittivity within a
small range of frequencies for concentrations as low as 0.12 wt%; possibly lower. The
precise concentration at which n peaks is currently unknown. In addition, the question
as to whether n is an effective number or a real number remains unanswered.

Thin films of TDBC:PVA have been shown in Ch. 3 to support both bound and
quasi-bound surface exciton polariton (SEP) modes. The propagation length and skin
depth of these SEP modes are shorter than the same quantities for surface plasmon
polariton (SPP) modes in either gold, silver or aluminium; this implies a greater
degree of localisation for the SEP modes. These SEP modes rely upon the negative
real permittivity of the films originating from the delocalisation of excitons in the
aggregates, causing the electrons in the material to behave in a similar way to those of
free electrons in plasmonic metals. The SEP modes for TDBC:PVA films have been
theorised through the comparison of dispersion diagrams with the calculated absorption
for thin films (obtained using the transfer matrix method with the incorporation of
the four-level quantum model for the permittivity of TDBC:PVA films outlined in
Ch. 2). It has been demonstrated that the colours calculated from the reflectance
spectra generated by the transfer matrix method agree with those observed visually
for both p and s polarised light, thereby supporting the validity of the reflectance
calculations. However, the colours calculated from the transmittance spectra are more
blue than the colours of the films observed in reality, implying that transmittance for
shorter wavelengths is likely to have been over-estimated. Therefore, measurement of
TDBC:PVA films for a wider range of wavelengths together with refinement of both
the colour code and the permittivity model is recommended as a future investigation.
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Surface modes have also been demonstrated for hyperbolic metamaterials comprising
TDBC:PVA with either silver or gold; such metamaterials can exhibit hyperbolic
surface modes, as shown in Ch. 3. The dispersion curves of these metamaterials
indicate that the hyperbolic modes possess much lower group and phase velocity than
either the SEP or SPP modes evidenced by the same nanostructures. In addition,
it has been shown that these hyperbolic modes exhibit a greater amount of - and a
greater uniformity in - absorption with incident angle. Furthermore, hyperbolic modes
have been shown to sharpen SEP modes in the multilayer. The frequency at which
the hyperbolic mode occurs is dependent upon the exciton excitation energy within
the excitonic material. All-in-all, with suitable design and selection of the correct
excitonic dye, hyperbolic surface modes hosted by excitonic-plasmonic metamaterials
could be utilised in future applications for which field confinement, uniformity in
absorption, or a particularly sharp SEP mode is necessary.

Particle exciton polariton (PEP) modes can be excited in excitonic nanospheres and
nanospheroids, as shown in Ch. 4 through the use of both quasistatic and Mie calcula-
tions. Quasistatic treatment has shown that a general property of PEP modes is that of
electric field enhancement over all solid angles within a region close to the surface of
the nanoparticle, accompanied by a peak in absorption efficiency greater than unity -
indicative of the nanoparticle acting as a ‘magnet for light’. Both of these properties
are also exhibited for particle plasmon polariton (PPP) modes. The electric field en-
hancement and confinement has been shown to be similar for both PEP modes hosted
by TDBC:PVA nanospheres and PPP modes hosted by silver and gold nanospheres.
However, it has been shown through Mie theory for TDBC:PVA nanospheres that
with a sufficient dye concentration, the quality factors of the absorption peaks for PEP
modes exhibit much higher quality factors in absorption than their PPP counterparts
for nanospheres of the same size. The PEP modes have been shown to redshift with an
increase in dye concentration, accompanied by an increase in quality factor.

Field enhancement and confinement have also been demonstrated for ENZ modes of a
nanosphere, although unlike the particle polariton modes, the incident power flows
around the nanosphere and does not act as a magnet for light.

The PEP mode for the 100 nm diameter TDBC:PVA nanosphere has been shown to
be tunable with dye concentration in the wavelength range 564 nm < λ < 572 nm
in vacuum. The epsilon near zero (ENZ) mode of the nanoparticle has also been
shown to be tunable with concentration, over the range 572 nm < λ < 585 nm in
vacuum. The PEP modes for the TDBC:PVA nanospheroid have also been shown to be
tunable, particularly with the aspect ratio of the nanospheroid. It was determined that
in an experiment, the practical range of wavelengths over which the nanospheroidal
PEP modes can be tuned is 566 nm < λ < 580 nm. Experimental evidence for
transverse and longitudinal nanospheroidal PEP modes has been presented for prolate
and oblate nanospheroids respectively by calculation of forward extinction efficiency
spectra from transmittance measurements through square arrays of nanospheroids.
The strongest peak in forward extinction has been shown to arise from the smallest
(prolate) TDBC:PVA nanospheroids, in spite of the experimental noise encountered.
The forward extinction spectra calculated for the larger nanospheroids suffer from
contributions from supporting cylinders upon which the nanospheroids (as fabricated)
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sit. Therefore, re-fabrication and experimentation on more TDBC:PVA nanospheroids
is encouraged for further confirmation of nanospheroidal PEP modes.

Given that the transverse and longitudinal modes of a nanospheroid are orthogonal
modes, it has been suggested that the orientation of a single nanospheroid can deter-
mined from its transmittance spectrum. For subwavelength prolate 1.46 wt% (planar
distribution) TDBC:PVA nanospheroids in vacuum, the colour shift between two
orthogonal polarisations in edge-on orientation has been shown to be discernible to
the human eye; no such shift is present in the face-on orientation. For oblate exci-
tonic nanospheroids, the longitudinal mode is strongest: this is also the nanospheroid
mode for which the quality factor is highest, exceeding that of the nanosphere in the
face-on orientation. The high degree of directionality this mode offers may provide a
mechanism by which the orientation of a subwavelength oblate nanospheroid can be
probed.

In all, calculations in Ch. 4 have demonstrated the validity of PEP modes for TDBC:PVA
nanospheres and nanospheroids. These modes are tunable through either a change
in dye concentration, medium index or nanospheroid aspect ratio. In principle, other
excitonic dyes may offer different (or wider ranges of) energies for which these PEP
modes can be excited. Moreover, these findings suggest that in general, excitonic
nanoparticles can be used as alternatives to plasmonic nanoparticles for the purposes
of field enhancement and confinement.

An inert coating adsorbed onto an excitonic nanosphere acts as a resistive agent to
shifts in the absorption peak brought about by changes in the medium index. As shown
in Ch. 5, the magnitude of this shift is suppressed with the addition of an inert coating
around a TDBC:PVA nanosphere. However, the resonance for a silver nanosphere
with the same coating can be shifted more dramatically. Therefore, the PEP mode of
an excitonic nanosphere is likely to be present at a stable resonant frequency, making
the nanospheres easier to detect than silver nanospheres with the adsorption of a
protein or fatty-acid coating in a biosensing context. A subtlety of PEP modes in
these coated systems is described in Ch. 5: the PEP mode may be confined within the
volume of the nanoparticle if the shell is sufficiently thick, and the PEP mode is not
necessarily distributed over the volume of the nanoparticle as a whole, meaning that
field enhancement is not necessarily felt over all solid angles of the outer nanoparticle
surface.

The inverse of this system i.e. an excitonic nanoshell with an inert core, exhibits two
modes, borne from hybridisation between the PEP mode of the shell and the cavity
exciton polariton mode of the core. The splitting between these two hybrid modes is
maximised for thin shells. As shown in Ch. 5, the higher energy (antisymmetric) hybrid
mode is strengthened with an increase in core index; with an increase in medium index,
the reverse is achieved. Two realistic nanoparticle systems have been suggested for
fabrication in order to observe the two modes of an excitonic nanoshell: a d = 100 nm
core of either S iO2 or TiO2 with a t = 15 nm coating of TDBC:PVA, doped with a
concentration of 3.22 wt% (volume distribution).

For a coated nanosphere for which both the core and the shell are excitonic, three
hybrid exciton-exciton modes are observed. The splitting between the two outermost
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of these modes is maximised for high dye concentrations, or for a choice of a shell
material for which the exciton transition is far removed from that of the core.

Hybrid modes are also found for nanoparticles with metal cores and excitonic shells,
with the hybrid plasmon-exciton modes being termed ‘plexciton’ modes. In similarity
to the exciton-exciton coated nanosphere, the splitting between the two plexciton
modes of the coated nanosphere is maximised for high dye concentrations, as well
as for a choice of excitonic shell material for which the exciton transition is far
removed from that of the effective plasma frequency of the core material. Through
Mie calculations of a TDBC:PVA-coated silver nanosphere, it has been demonstrated
that the range of tunability in the plexciton modes with a change in shell thickness
(∆λ = 42 nm) or dye concentration (∆λ = 159 nm) exceeds that of any SEP, PEP
or hybrid PEP mode considered in this thesis. This tunability has been shown to be
independent of the exciton transition energy, affording a wide scope for the fabrication
of suitable plexcitonic nanospheres.

In summary, the negative permittivity brought about by the quasi-free electron be-
haviour of excitonic materials such as TDBC:PVA permits excitation of SEP and
PEP modes within excitonic nanostructures. SEP modes of excitonic films can be
hybridised with SPP modes of metallic films to give hyperbolic modes in multilayer
stacks. These hyperbolic modes offer low group velocity, low phase velocity and
potential sharpening of the quality factor for SEP modes. PEP modes for excitonic
nanospheres have been demonstrated as superior in some aspects to PPP modes for
metallic nanospheres, and nanospheroidal PEP modes have been demonstrated experi-
mentally. PEP modes can also be excited for nanospheres in a core-shell geometry:
these modes can be redshifted with an inert shell coating on an excitonic nanosphere;
redshifted through a change in medium index; split by the use of an inert core in an
excitonic nanoshell; or hybridised with plasmon modes to produce plexciton modes.
These properties enable the tuning of such modes. Given that field enhancement and
confinement runs as a common theme through all of these nanostructured configura-
tions, the polariton modes of excitonic nanostructures offer viable alternatives to the
use of plasmon modes within plasmonic applications.





Bibliography
[1] Ritchie, R. H. Phys. Rev. 106, 874–881 (1957).

[2] Kretschmann, E. and Raether, H. Z. Naturforsch. A Phys. Sci. 23, 2135–2136 (1968).

[3] Swan, J. B., Otto, A., and Fellenzer, H. Phys. Status Solidi B 23, 171–176 (1967).

[4] Ekardt, W. Phys. Rev. B 34, 526–533 (1986).

[5] Le Ru, E. C. and Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy and Related
Plasmonic Effects. Elsevier, Oxford, first edition, (2009).

[6] Kreibig, U. and Vollmer, M. Optical Properties of Metal Clusters. Springer-Verlag, 1st edition,
(1995).

[7] Tanabe, K. J. Phys. Chem. C 112, 15721–15728 (2008).

[8] Sambles, J. and Innes, R. J. Mod. Opt. 35(5), 791–797 (1988).

[9] Kitson, S. C., Barnes, W. L., Sambles, J. R., and Cotter, N. P. K. J. Mod. Opt. 43, 573–582 (1996).

[10] Kitson, S. C., Barnes, W. L., and Sambles, J. R. Phys. Rev. B 52, 11441–11446 (1995).

[11] Chen, Y., Munechika, K., and Ginger, D. S. Nano Letters 7, 690–696 (2007).

[12] Anger, P., Bharadwaj, P., and Novotny, L. Phys. Rev. Lett. 96, 113002 (2006).

[13] Vukusic, P., Bryan-Brown, G., and Sambles, J. Sensors and Actuators B: Chemical 8, 155–160
(1992).

[14] Caruso, F., Jory, M. J., Bradberry, G. W., Sambles, J. R., and Furlong, D. N. J. Appl. Phys. 83,
1023–1028 (1998).

[15] Kelly, K. L., Coronado, E., Zhao, L. L., and Schatz, G. C. J. Phys. Chem. B 107, 668–677 (2003).

[16] Willets, K. A. and Van Duyne, R. P. Annu. Rev. Phys. Chem. 58, 267–97 (2007).

[17] Tittl, A., Yin, X., Giessen, H., Tian, X.-D., Tian, Z.-Q., Kremers, C., Chigrin, D. N., and Liu, N.
Nano Letters 13, 1816–1821 (2013).

[18] Haes, A. J., Zou, S. L., Schatz, G. C., and Van Duyne, R. P. Phys. Chem. B 108, 6961–6968 (2004).

[19] Garcia-Parajo, M. F. Nat. Photonics 2, 201–203 (2008).

[20] Isaac, T. H., Barnes, W. L., and Hendry, E. Appl. Phys. Lett. 93, 2008–2010 (2008).

[21] Taylor, R. W., Benz, F., Sigle, D. O., Bowman, R. W., Bao, P., Roth, J. S., Heath, G. R., Evans, S. D.,
and Baumberg, J. J. Sci. Rep. 4, 1–6 (2014).

[22] Park, D. J., Zhang, C., Ku, J. C., Zhou, Y., Schatz, G. C., and Mirkin, C. A. Proc. Natl. Acad. Sci.
USA 112, 977–981 (2015).

[23] Maradudin, A. A. In Modern Plasmonics, Maradudin, A. A., Sambles, J. R., and Barnes, W. L.,
editors, volume 4 of Handbook of Surface Science, chapter 1, 1–36. Elsevier, London (2014).

[24] Romero, G., García-Ripoll, J. J., and Solano, E. Phys. Rev. Lett. 102, 173602 (2009).

[25] Li, J., Paraoanu, G. S., Cicak, K., Altomare, F., Park, J. I., Simmonds, R. W., Sillanpää, M. A., and
Hakonen, P. J. Sci. Rep. 2, 645 (2012).

[26] Zhao, Y., Engheta, N., and Alú, A. J. Opt. Soc. Am. B 28, 1266–1274 (2011).

[27] Chen, P. Y., Monticone, F., Argyropoulos, C., and Alù, A. In Modern Plasmonics, Maradudin, A. A.,
Sambles, J. R., and Barnes, W. L., editors, volume 4 of Handbook of Surface Science, chapter 4,
109–136. Elsevier, London (2014).



176 Bibliography

[28] Berry, S. J., Campbell, T., Hibbins, A. P., and Sambles, J. R. Appl. Phys. Lett. 100, 101107 (2012).

[29] Brock, E. M. G. and Hibbins, A. P. Appl. Phys. Lett. 103, 111904 (2013).

[30] Constant, T. J., Taphouse, T. S., Rance, H. J., Kitson, S. C., Hibbins, A. P., and Sambles, J. R. Opt.
Express 20, 23921–23926 Oct (2012).

[31] Rance, H. J., Constant, T. J., Hibbins, A. P., and Sambles, J. R. Phys. Rev. B 86, 125144 Sep (2012).

[32] Constant, T. J., Vukusic, P., Hibbins, A. P., and Sambles, J. R. Appl. Phys. Lett. 106, 091106 (2015).

[33] Humphrey, A. D. and Barnes, W. L. Phys. Rev. B 90, 075404 (2014).

[34] Heavens, O. S. Optical Properties of Thin Solid Films. Butterworth, London, (1955).

[35] Kelly, J. J. Graduate Mathematical Physics. Wiley, Weinheim, (2006).

[36] Wood, B., Pendry, J. B., and Tsai, D. P. Phys. Rev. B 74, 115116 Sep (2006).

[37] Maxwell, J. C. Phil. Mag. 21, 281–348 March (1861). Series 4.

[38] Maxwell, J. C. Phil. Mag. 23, 18–24 April (1861). Series 4.

[39] Hecht, E. and Zajac, A. Optics. Pearson Higher Education, fourth edition, (2003).

[40] Cole, K. S. and Cole, R. H. J. Chem. Phys. 9, 341–351 (1941).

[41] Afsar, M. N. IEEE T Instrum Meas. IM-36, 530–536 (1987).

[42] Meurant, G. In Handbook of Glass Data, Mazurin, O. V. and Streltsina, M. V., editors, volume 15 of
Physical sciences data, chapter 1, 1–185. Elsevier, Amsterdam (1983).

[43] Azzam, R. M. A. and Bashara, N. M. Ellipsometry and polarized light. North-Holland, 1st edition,
(1977).

[44] Phillips, R. T. J. Phys. D: Appl. Phys. 16, 489–497 (1983).

[45] Bednorz, A., Franke, K., and Belzig, W. New J. Phys. 15, 023043 (2013).

[46] Gentile, M. J., Núñez-Sánchez, S., and Barnes, W. L. Nano Letters 14, 2339–2344 (2014).

[47] Khawaja, E. E. J. Phys. D: Appl. Phys. 9, 1939–1943 (1976).

[48] Mageto, M. J., Maghanga, C. M., and Mwamburi, M. The African Review of Physics 7, 95–105
(2012).

[49] Raju, K. M., Raju, M. P., and Mohan, Y. M. Polym. Int. 52, 768–772 (2003).

[50] Theocharous, S., Theocharous, E., and Lehman, J. Infrared Phys. Techn. 55, 299–305 (2012).

[51] Schnapf, J. L., Kraft, T. W., and Baylor, D. A. Nature 325, 439–441 (1987).

[52] Mandel, L. and Wolf, E. Optical Coherence and Quantum Optics. Cambridge University Press,
Cambridge, (1995).

[53] Bohr, N. Philos. Mag. 26, 1–24 (1913).

[54] De Broglie, L. Recherches sur la théorie des Quanta. Phd theses, Migration - université en cours
d’affectation, November (1924).

[55] Ziman, J. Electrons and Phonons. Oxford University Press, Cavendish Laboratory, Cambridge,
(1960).

[56] Meddins, H. and Parrott, J. J. Phys. C: Solid State Phys. 9, 1263–1276 (1976).

[57] Srivastava, G. P. The Physics of Phonons. Taylor + Francis, Oxon, (1990).

[58] Balandin, A. and Wang, K. L. Phys. Rev. B 58, 1544–1549 (1998).

[59] Appel, J. Phys. Rev. 122, 1760–1772 (1961).



Bibliography 177

[60] Goldstein, H., Poole, C., and Safko, J. Classical Mechanics. Addison Wesley, San Francisco, third
edition, (2001).

[61] Griffiths, D. J. Introduction to Electrodynamics. Pearson, Reed College, third edition, (2008).

[62] Stuart, M. R. J. Appl. Phys. 26, 1399–1404 (1955).

[63] Lorentz, H. A. Theory of Electrons. Teubner, Leipzig, (1909).

[64] Pockrand, I., Swalen, J. D., Gordon II, J. G., and Philpott, M. R. J. Chem. Phys 70, 3401–3408
(1979).

[65] Bohren, C. F. and Huffman, D. R. Absorption and Scattering of Light by Small Particles. Wiley,
Pennsylvania State University, first edition, (1983).

[66] Fox, M. Optical Properties of Solids. Oxford University Press, Oxford, 2nd edition, (2010).

[67] Lebedev, V. S. Quant. Electron. 42, 701–713 (2012).

[68] Anex, B. G. and Simpson, W. Rev. Mod. Phys. 32, 466 (1960).

[69] Harter, D. J., Narum, P., Raymer, M. G., and Boyd, R. W. Phys. Rev. Lett. 46, 1192–1195 (1981).

[70] Ashcroft, N. W. and Mermin, N. D. Solid State Physics. Holt, Rinehart and Winston, London, first
edition, (1976).

[71] Johnson, P. B. and Christy, R. W. Phys. Rev. B 6, 4370–4379 (1972).

[72] Lynch, D. W. and Hunter, W. R. Comments on the Optical Constants of Metals and an Introduction
to the Data for Several Metals. Academic Press, Inc., USA, first edition, (1985).

[73] Sambles, R. J., Bradbury, G. W., and Yang, F. Contemp. Phys. 32, 173–183 (1991).

[74] Schroder, U. Surf. Sci. 102, 118–130 (1981).

[75] Liljenvall, H. G. and Mathewson, A. J. Phys. C: Solid State Phys. 3, S341–S347 (1970).

[76] Etchegoin, P. G., Le Ru, E. C., and Meyer, M. J. Chem. Phys 125, 164–705 (2006).

[77] See, K. C., Spicer, J. B., Brupbacher, J., Zhang, D., and Vargo, T. G. J. Phys. Chem. B 109,
2693–2698 (2005).

[78] Wang, S., Chervy, T., George, J., Hutchison, J. A., Genet, C., and Ebbesen, T. W. J. Phys. Chem.
Lett. 5, 1433–1439 (2014).

[79] Rae, A. I. M. Quantum Mechanics. Taylor & Francis, fifth edition, (2008).

[80] Rosencher, E. and Vinter, B. Optoelectronics. Cambridge University Press, Cambridge, english
edition, (2002).

[81] Fox, M. Quantum Optics An Introduction. Oxford University Press, University of Sheffield, second
edition, (2010).

[82] Foot, C. J. Atomic Physics. Oxford University Press, Oxford, (2011).

[83] Kittel, C. Introduction to Solid State Physics. Wiley, Hoboken, NJ, eighth edition, (2005).

[84] Schirmer, S. G. and Solomon, A. I. Phys. Rev. A 70, 022107 (2004).

[85] Schaller, G. and Brandes, T. Phys. Rev. A 78, 022106 (2008).

[86] Blum, K. Density matrix theory and application. Plenum Press, New York, second edition, (1996).

[87] Breuer, H. P. and Petruccione, F. The Theory of Open Quantum Systems. Oxford University Press,
New York, (2002).

[88] Frenkel, J. Phys. Rev. 37, 17–44 (1931).

[89] Wannier, G. H. Phys. Rev. 52, 191–197 (1937).



178 Bibliography

[90] Kerp, H., Donker, H., Koehorst, R., Schaafsma, T., and van Faassen, E. Chem. Phys. Lett. 298,
302–308 (1998).

[91] Skinner, J. L. and Hsu, D. J. Phys. Chem. 90, 4931–4938 (1986).

[92] Abramavicius, D., Butkus, V., and Valkunas, L. In Quantum Efficiency in Complex Systems, Part
II: From Molecular Aggregates to Organic Solar Cells, Wurfel, U., Thorwart, M., and Weber, E.,
editors, volume 85 of Semiconductor and Semimetals, chapter 1, 3–45. Elsevier, London (2011).

[93] Harris, D. C. and Bertolucci, M. D. Symmetry and Spectroscopy: an Introduction to Vibrational and
Electronic Spectroscopy. Dover Publications, New York, (1989).

[94] E., D., McCumber, and Sturge, M. D. J. Appl. Phys. 34, 1682 (1963).

[95] Harris, C. B. J. Chem. Phys. 67, 5607 (1977).

[96] Ambrosek, D., Köhn, A., Schulze, J., and Kühn, O. J. Phys. Chem. A 116, 11451–11458 (2012).
PMID: 22946964.

[97] Miura, Y. F. and Ikegami, K. In J-Aggregates, Kobayashi, T., editor, volume 2, chapter 14, 443–514.
World Scientific, London (2012).

[98] Valleau, S., Saikin, S. K., Yung, M., and Guzik, A. A. J. Chem. Phys 137, 034109 (2012).

[99] Spano, F. C. In J-Aggregates, Kobayashi, T., editor, volume 2, chapter 2, 49–75. World Scientific,
London (2012).

[100] Zhao, Y. S. Organic Nanophotonics. Springer, Berlin, (2015).

[101] Parker, S. P. McGraw-Hill Encyclopaedia of Physics. McGraw-Hill Companies, New York, (1993).

[102] Knoester, J. In Proceedings of the International School of Physics, volume 149, 149–186. IOS Press,
(2002).

[103] Chebyshev, P. L. Mémoires des Savants étrangers présentés à l’Académie de Saint-Pétersbourg 7,
539–586 (1854).

[104] Malyshev, V. and Moreno, P. Phys. Rev. B 51, 14587–14593 (1995).

[105] Weisstein, E. W. http://mathworld.wolfram.com/HypergeometricFunction.html. Ac-
cessed: 2015-09-24.

[106] Hochstrasser, R. M. and Whiteman, J. D. J. Chem. Phys. 56, 5945–5958 (1972).

[107] Kuhn, H. and Kuhn, C. In J-Aggregates, Kobayashi, T., editor, chapter 1, 1–40. World Scientific,
London (1996).

[108] Kavanaugh, T. C. and Silbey, R. J. J. Chem. Phys. 98, 9444–9454 (1993).

[109] Allen, L. and Eberly, J. H. Optical Resonance and Two-Level Atoms. Wiley, New York, (1975).

[110] Dorfman, K. E., Jha, P. K., Voronine, D. V., Genevet, P., Capasso, F., and Scully, M. O. Phys. Rev.
Lett. 111, 043601 (2013).

[111] Nakano, M. and Yamaguchi, K. Phys. Rev. A 50, 2989–3004 (1994).

[112] Wang, K. and Chu, S. J. Chem. Phys. 86, 3225–3238 (1986).

[113] Tidström, J., Jänes, P., and Andersson, L. M. Phys. Rev. A 75, 053803 (2007).

[114] Hairer, E. Journal of the Institute of Mathematics and its Applications 21, 47–59 (1978).

[115] van Burgel, M., Wiersma, D. A., and Duppen, K. J. Chem. Phys 102, 20–33 (1995).

[116] Garrett, S. H., Wasey, J. A. E., and Barnes, W. L. J. Mod. Opt. 51, 2287–2295 (2004).

[117] van Burgel, M. and Wiersma, D. The ultrafast dynamics of aggregate excitons in water. PhD thesis,
University of Groningen, (1999).

http://mathworld.wolfram.com/HypergeometricFunction.html


Bibliography 179

[118] Lorentz, H. Physik. Z. 11, 1250 (1910).

[119] Grad, J., Hernandex, G., and Mukamel, S. Phys. Rev. A 37, 3835–3846 (1988).

[120] Misawa, K. and Kobayashi, T. In J-Aggregates, Kobayashi, T., editor, chapter 2, 41–66. World
Scientific, London (1996).

[121] Hooper, I. and Barnes, W. L. In Modern Plasmonics, Maradudin, A. A., Sambles, J. R., and Barnes,
W. L., editors, volume 4 of Handbook of Surface Science, chapter 2, 37–74. Elsevier, London (2014).

[122] Bharadwaj, P., Bouhelier, A., and Novotny, L. Phys. Rev. Lett. 106, 226802 (2011).

[123] Wood, R. W. Philos. Mag. 4, 396–402 (1902).

[124] Knapp, E. Chem. Phys. 85, 73–82 (1984).

[125] Lagois, J. and Fischer, B. Phys. Rev. B 17, 3814–3824 (1978).

[126] Lei Gu, Livenere, J., Zhu, G., Narimanov, E. E., and Noginov, M. A. Appl. Phys. Lett. 103, 021104
(2013).

[127] Novotny, L. and Hecht, B. Principle of Nano-Optics. Cambridge University Press, first edition,
(2006).

[128] Geddes, N. J., Sambles, J. R., Jarvis, D. J., Parker, W. G., and Sandman, D. J. App. Phys. Lett. 56,
1916–1918 (1990).

[129] Geddes, N. J., Parker, W. G., Sambles, J. R., and Couch, N. R. Physics, Fabrication, and Applications
of Multilayered Structures, chapter Electrical Characterisation of Thin Insulating Langmuir Blodgett
Films Incorporated in Metal-Insulator-Metal Structures, 377–377. Springer US, Boston, MA (1988).

[130] Zia, R., Selker, M. D., and Brongersma, M. L. Phys. Rev. B 71, 165431 (2005).

[131] Dionne, J. A., Sweatlock, L. A., Atwater, H. A., and Polman, A. Phys. Rev. B 72, 075405 (2005).

[132] Pendry, J. B., Holden, A. J., Stewart, W. J., and Youngs, I. Phys. Rev. Lett. 76, 4773–4776 (1996).

[133] Zhang, J., Zhang, L., and Xu, W. J. Phys. D: Appl. Phys. 45, 113001 (2012).

[134] Wolf, K. B. and Krotzsch, G. Eur. J. Phys. 16, 14–20 (1995).

[135] Pedrotti, F. L. and Pedrotti, L. S. Introduction to Optics. Prentice-Hall International, London, 2nd
edition, (1993).

[136] Auer, S., Wan, W., Huang, X., Ramirez, A. G., and Cao, H. App. Phys. Lett. 99, 041116 (2011).

[137] Loveday, K. http://sivirt.utsa.edu/Documents/Kayla%20Lovelady.pdf, April (2013).

[138] Powell, A. K., Hall, T. J., Iman, H., and Fish, D. A. In Nonlinear Optics in Signal Processing, Eason,
R. and Miller, A., editors, Engineering Aspects of Lasers, chapter 4. Chapman & Hall, London
(1993).

[139] Poddubny, A., Iorsh1, I., Belov, P., and Kivshar, Y. Nature Photon. 7, 958–967 (2013).

[140] Ferrari, L., Wu, C., Lepage, D., Zhang, X., and Liu, Z. Prog. Quant. Electron. 40, 1–40 (2015).

[141] Naik, G., Kim, J., Kinsey, N., and Boltasseva, A. In Modern Plasmonics, Maradudin, A. A., Sambles,
J. R., and Barnes, W. L., editors, volume 4 of Handbook of Surface Science, chapter 6, 189–221.
Elsevier, London (2014).

[142] Stiles, P. L., Dieringer, D. J., Shah, N. C., and Van Duyne, R. Ann. Rev. Anal. Chem. 1, 601–626
(2008).

[143] Philpott, M. R., Brillante, A., Pockrand, I., and Swalen, J. D. Mol. Cryst. Liq. Cryst. 50, 139–162
(1979).

[144] Saikin, S. K., Eisfeld, A., Valleau, S., and Aspuru-Guzik, A. Nanophotonics 2, 17 (2013).

http://sivirt.utsa.edu/Documents/Kayla%20Lovelady.pdf


180 Bibliography

[145] Gentile, M. J., Horsley, S. A. R., and Barnes, W. L. J. Opt. 18, 015001 (2016).

[146] Triolo, C., Cacciola, A., Stefano, O. D., Genco, A., Mazzeo, M., Patanè, S., Saija, R., and Savasta, S.
ACS Photonics 2, 971–979 (2015).

[147] Hohenau, A., Leitner, A., and Aussenegg, F. R. In Surface Plasmon Nanophotonics, Brongersma,
M. L. and Kik, P. G., editors, volume 131 of Optical Sciences, chapter 2, 11–25. Springer, Atlanta,
USA (2007).

[148] Mie, G. Ann. Phys. (Berlin) 25, 377–445 (1908).

[149] Chung, H. Y., Leung, P. T., and Tsai, D. P. Plasmonics 7, 13–18 (2012).

[150] Stewart, M. E., Mack, N. H., Malyarchuk, V., Soares, J. A. N. T., Lee, T., Gray, S. K., Nuzzo, R. G.,
and Rogers, J. A. Proc. Natl. Acad. Sci. USA 103, 17143–17148 (2006).

[151] Cox, A. J., DeWeerd, A. J., and Linden, J. Am. J. Phys. 70, 620–625 (2002).

[152] Hilbert, D. and Cohn-Vossen, S. Geometry and the Imagination, volume 87. AMS Chelsea Pub.,
(1999).

[153] Prikulis, J. Optical Imaging and Spectroscopy of Metal Nanostructures. Phd thesis, Goeteborg
University, Goeteborg, Sweden, (2003).

[154] Asano, S. Appl. Opt. 18, 712–723 (1979).

[155] Mishchenko, M. I. Appl. Opt. 39, 1026–1031 (2000).

[156] Michael, D. W. M. and Mishchenko, I. J. Opt. Soc. Am. A 13, 2266–2278 (1996).

[157] Lambert, J. Photometria sive de mensura et gradibus luminis, colorum et umbrae. Eberhardt Klett,
Augsburg, (1760).

[158] Asano, S. and Yamamoto, G. Appl. Opt. 14, 29–49 (1975).

[159] Waterman, P. C. Proc. IEEE 53(8), 805–812 Aug (1965).

[160] Mishchenko, M. I., Travis, L. D., and Mackowski, D. W. J. Quant. Spectrosc. RA 55, 535–575
(1996).

[161] Núñez-Sánchez, S. "Local exciton resonances in nanospheroid arrays". Four sizes of TDBC:PVA
nanospheroids were constructed each with a pitch of 750 nm, and their transmittance measured at
normal incidence., October (2014).

[162] Mishchenko, M. I., Travis, L. D., and Mackowski, D. W. http://www.giss.nasa.gov/staff/
mmishchenko/t_matrix.html, June (2015).

[163] Somerville, W. R. C., Auguié, B., and Ru, E. C. L. "User Guide for smarties: Spheroids Modelled
Accurately with a Robust T-matrix Implementation for Electromagnetic Scattering." Preprint article
submitted to Elsevier., November (2015).

[164] Kometani, N., Tsubonishi, M., Fujita, T., Asami, K., and Yonezawa, Y. Langmuir 17, 578–580
(2001).

[165] Lekeufack, D. D., Brioude, A., Coleman, A. W., Miele, P., Bellessa, J., Zeng, L. D., and Stadelmann,
P. App. Phys. Lett. 96, 253107 (2010).

[166] Fofang, N. T., Park, T.-H., Neumann, O., Mirin, N. A., Nordlander, P., and Halas, N. J. Nano Letters
8, 3481–3487 (2008).

[167] Prodan, E., Radloff, C., Halas, N. J., and Nordlander, P. Science 302, 419–422 (2003).

[168] Prodan, E., Lee, A., and Nordlander, P. Chem. Phys. Lett. 360, 325–332 (2002).

[169] Kaiser, T. and Schweiger, G. Comput. Phys. 7, 682–686 (1993).

[170] Weisstein, E. W. http://mathworld.wolfram.com/Riccati-BesselFunctions.html. Ac-
cessed: 2016-01-04.

http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html
http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html
http://mathworld.wolfram.com/Riccati-BesselFunctions.html


Bibliography 181

[171] Yurt, A., Daaboul, G. G., Connor, J. H., Goldberg, B. B., and Selim Unlu, M. Nanoscale 4, 715–726
(2012).

[172] Tcherniak, A., Ha, J. W., Dominguez-Medina, S., Slaughter, L. S., and Link, S. Nano Letters 10,
1398–1404 (2010).

[173] Fairbairn, N., Fernandes, R., Carter, R., Elliot, T. J., Kanaras, A. G., and Muskens, O. L. Proc. SPIE
8595, 859501 (2013).

[174] Witzens, J. and Hochberg, M. Opt. Express 19, 7034–7061 (2011).

[175] Murray, W. A., Suckling, J. R., and Barnes, W. L. Nano Letters 6, 1772–1777 (2006).

[176] Gülen, D. J. Phys. Chem. B 117, 11220–11228 (2013).

[177] DeVore, J. R. J. Opt. Soc. Am. 41, 416–419 (1951).

[178] Li, N., Liu, G., Zhen, C., Li, F., Zhang, L., and Cheng, H.-M. Adv. Funct. Mater. 21, 1717–1722
(2011).

[179] Conrady, A. E. Applied Optics and Optical Design. Dover, (1960).

[180] Cole, R. M., Baumberg, J. J., de Abajo, F. J. G., Mahajan, S., Abdelsalam, M., and Bartlett, P. N.
Nano Letters 7, 2094–2100 May (2007).

[181] Fofang, N. T. Optical Properties of Strongly Coupled Plasmon-Exciton Hybrid Nanostructures. Phd
thesis, Rice University, Houston, TX, (2011).

[182] Doering, W. E. and Nie, S. Anal. Chem. 75, 6171–6176 (2003).

[183] Antosiewicz, T. J., Apell, S. P., and Shegai, T. ACS Photonics 1, 454–463 (2014).

[184] Fujii, K. arxiv.org/abs/1301.3585, January (2013).

[185] Euler, L. Institutionum Calculi Integralis, volume II. Imperial, London, (1769).

[186] Charron, E. and Sukharev, M. J. Chem. Phys 138 (2013).

[187] Fehlberg, E. Computing 6, 61–71 (1970).

[188] Sun, T. J. Comput. Appl. Math. 233, 1056–1062 (2009).

[189] Kanemitsu, Y. Acc. Chem. Res. 46, 1358–1366 (2013).

[190] Artis Magnæ, Sive de Regulis Algebraicis Liber Unus. Girolamo Cardano, (1545).

arxiv.org/abs/1301.3585




A
Appendix: Code Snippets

All codes in this appendix are written in MATLAB.

A.1 Colour Perception Code

This function integrates a spectrum over the optical frequencies in order to compute
the RGB values (the colour) the human eye would observe. The data files the function
requires are available on request: these represent the absorption curves of the opsins in
the cone cells. The ‘raw’ RGB values in lower-case represent the unsaturated colours.
The upper-case RGB values represent the saturated values. The colours produced are
normalised to white light (flat spectrum); assuming sunlight achieves a similar result
(to within 2% of the RGB values calculated).

1 %Title: ColourPerception_fn.m
2 %Date: 5-3-15
3 %Author: M. Gentile
4 %Description: This function takes a reflectance or
5 % transmittance spectrum, calculates the RGB value as seen
6 % by the human eye and outputs this RGB value beneath a
7 % graph of the spectrum.
8 % The data files VLambda.dat, BlueCones.dat, GreenCones.dat
9 % & RedCones.dat should be included in the same directory as

10 % this function.
11 % Lambda: Should be in nanometres.
12 % T: Can be a reflectance or transmittance spectrum. It is
13 % normalised within the code.
14

15 function result = ColourPerception_fn(Lambda,T)
16

17 lamnmax = max(size(Lambda));
18

19 for i=1:lamnmax
20 if Lambda(i)<380 || Lambda(i)>730
21 T(:,i)=0;
22 end
23 end
24

25 [Lambda_w,VLambda]=textread('VLambda.dat','%f\t%f');

mailto:m.j.gentile@exeter.ac.uk?subject=Thesis RGB Data Files
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26 [Lambda_b,Cones_b]=textread('BlueCones.dat','%f\t%f');
27 [Lambda_g,Cones_g]=textread('GreenCones.dat','%f\t%f');
28 [Lambda_r,Cones_r]=textread('RedCones.dat','%f\t%f');
29

30 minLambda=min([Lambda_r;Lambda_g;Lambda_b]);
31 maxLambda=max([Lambda_r;Lambda_g;Lambda_b]);
32

33 VLambda_s =abs(spline(Lambda_w,VLambda,Lambda)); %White
34 Cones(1,:)=abs(spline(Lambda_b,Cones_b,Lambda)); %Blue
35 Cones(2,:)=abs(spline(Lambda_g,Cones_g,Lambda)); %Green
36 Cones(3,:)=abs(spline(Lambda_r,Cones_r,Lambda)); %Red
37 VLambda_s = VLambda_s/max(VLambda_s);
38

39 for i = 1:3 %Normalise cone sensitivities
40 Cones(i,:) = Cones(i,:)/max(Cones(i,:));
41 end
42 Cones(1,:)=0.04146649051*Cones(1,:);
43 Cones(2,:)=0.7128272888*Cones(2,:);
44 Cones(3,:)=Cones(3,:);
45

46 %Determine rgb values.
47 %Normalise to (flat spectrum) white light.
48 r = Cones(3,:)*T'*255/124.9521;
49 g = Cones(2,:)*T'*255/73.2213;
50 b = Cones(1,:)*T'*255/3.1633;
51 % rgb_raw = [r,g,b]; %Unsaturated RGB values.
52

53 a = VLambda_s*T'/(max(T));
54 if a>1, a=1; end
55

56 %Renormalize
57 sum = max([r,b,g])/a; %255
58 b = b/sum;
59 g = g/sum;
60 r = r/sum;
61 % rgb_norm = [r,g,b]; %Saturated RGB values, in range 0-->1
62

63 R = round(r*255);
64 G = round(g*255);
65 B = round(b*255);
66 RGB = [R,G,B]; %RGB values in range 0-->255
67

68 % figure %Delete comment as appropriate
69 hold all
70 h1=area(Lambda,T); %Plot the input spectrum
71 set(h1,'facecolor',[r,g,b]) %Colour area under curve with ...

RGB values
72 xlabel('Wavelength (nm)')
73

74 result = [R,G,B]; %Return the RGB values.
75 end
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A.2 Code for Four-Level Quantum Model Permittivity

1 % Title: Optical_Bloch_4level_Jagg_fn.m
2 % Author: M. Gentile
3 % Date: 7-1-14 (corrected on 14-9-15)
4 % Description: This function calculates the permittivity of
5 % J-aggregated TDBC molecules by solving the optical Bloch
6 % equations generated by a four-level quantum model in
7 % conjunction with the rotating wave approximation (RWA).
8

9 % Required inputs:
10 % conc = Concentration (in %),
11 % w_pr = Ang. freq. (in rad/s).
12 % Dim = Dimensionality of the space in which the
13 % aggregates are distributed (1, 2 or 3).
14 % n_m = Refractive index of embedding medium.
15

16 % Outputs:
17 % eps = Complex permittivity.
18

19 function result = Optical_Bloch_4level_Jagg_fn(conc,w_pr,Dim,n_m)
20

21 if Dim < 4 && Dim > 0
22 else
23 disp('Warning: Dimensionality is non-physical.');
24 a = input('Continue?');
25 end
26

27 %=======Program parameters===========
28 MAX = max(size(w_pr)); %Size of input/output
29 MAX_t = 1; %Set to one to save computation time.
30 t = 1; %End time (in seconds) of calculation
31

32 no_eig = 16; %Number of eigenvalues for 4-levels.
33 coef = zeros(no_eig); %Space for coefficients
34

35 %=========Physical constants in SI=======
36 i = sqrt(-1);
37 c_0 = 2.9979e8; %Speed of light in free space
38 e = 1.602e-19; %Elementary charge
39 h = 6.63e-34; %Plank constant
40 hbar = h/(2*pi); %hbar
41 eps_0 = 8.85e-12; %Permittivity of free space
42 u = 1.67e-27; %Atomic mass unit
43 Debye = 0.20819434e-10; %The Debye
44

45 %---------TDBC properties----------------
46 m_TDBC = 756.627*u; %Molecular weight of TDBC
47 m_PVA = 1250; %Density of PVA (kg/m^3)
48 N = (m_PVA/m_TDBC)*0.01*conc/(1-0.01*conc); %pc. by wt.
49

50 %----TDBC Transition dipole moments------
51 mu_mono = 20*Debye; %Monomer dipole moment
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52 n=15; %Number of monomers per aggregate
53

54 %Aggregate dipole moments
55 d01 = mu_mono*e*cot(pi*0.5/(n+1))*sqrt(2/(n+1))*[1,0,0]/Dim;
56 d03 = mu_mono*e*cot(3*pi*0.5/(n+1))*sqrt(2/(n+1))*[1,0,0]/Dim;
57 d05 = mu_mono*e*cot(5*pi*0.5/(n+1))*sqrt(2/(n+1))*[1,0,0]/Dim;
58 d13 = 0;
59 d15 = 0;
60 d35 = 0;
61

62 P = 1e-3; %Illuminating power, in watts
63 A = pi*(0.5*1.5e-3)^2; %Spot area, in metres
64 E_pr = sqrt(P/(eps_0*c_0*A)); %E-field of a laser, in V/m
65

66 %--------Rabi frequencies----------
67 O01 = E_pr*sqrt(d01*d01')/hbar;
68 O03 = E_pr*sqrt(d03*d03')/hbar;
69 O05 = E_pr*sqrt(d05*d05')/hbar;
70

71 %-----------Energy levels----------
72 J = 0.6665; %nearest neighbour interaction energy (eV)
73 hbarw1 = 3.4174; %Monomer exciton energy (eV)
74

75 %Aggregate exciton energies
76 w5 = (hbarw1-2*J*cos(5*pi/(n+1)))*e/hbar;
77 w3 = (hbarw1-2*J*cos(3*pi/(n+1)))*e/hbar;
78 w1 = (hbarw1-2*J*cos(pi/(n+1)))*e/hbar;
79 w0 = 0; %Ground state
80

81 %----Radiative decay rates-----------
82 g_ph = log(2)*2*pi/(0.6e-12); %Photoluminescent dec.rate
83 g01 = g_ph;
84 g03 = (w3-w0)^3*(d03*d03')/(3*pi*eps_0*hbar*c_0^3);
85 g05 = (w5-w0)^3*(d05*d05')/(3*pi*eps_0*hbar*c_0^3);
86 g10 = hbar*(w1-w0)^3/(pi^2*c_0^3)*g01;
87 g30 = hbar*(w3-w0)^3/(pi^2*c_0^3)*g03;
88 g50 = hbar*(w5-w0)^3/(pi^2*c_0^3)*g05;
89 g13 = (w3-w1)^3*(d13*d13')/(3*pi*eps_0*hbar*c_0^3);
90 g31 = hbar*(w3-w1)^3/(pi^2*c_0^3)*g13;
91 g15 = (w5-w1)^3*(d15*d15')/(3*pi*eps_0*hbar*c_0^3);
92 g51 = hbar*(w5-w1)^3/(pi^2*c_0^3)*g15;
93 g35 = (w5-w3)^3*(d35*d35')/(3*pi*eps_0*hbar*c_0^3);
94 g53 = hbar*(w5-w3)^3/(pi^2*c_0^3)*g35;
95

96 %-------------------Dephasing rates---------------------
97 GDephase = 2.85e13;
98 G_05d = 4*GDephase;
99 G_03d = 4*GDephase;

100 G_01d = GDephase;
101 G_13d = GDephase;
102 G_15d = GDephase;
103 G_35d = GDephase;
104

105 %Check the dephasing rates for physical violations.
106 if (G_03d+G_15d)>(G_03d+G_05d+G_13d+G_35d), disp('Warning: ...

Gd cond. 1 violated.'); end
107 if (G_05d+G_13d)>(G_01d+G_03d+G_15d+G_35d), disp('Warning: ...

Gd cond. 2 violated.'); end
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108 if (G_01d+G_35d)>(G_03d+G_05d+G_13d+G_15d), disp('Warning: ...
Gd cond. 3 violated.'); end

109 if (G_05d+G_13d-G_03d-G_15d)^2>4*G_01d*G_35d, ...
disp('Warning: Gd cond. 4 violated.'); end

110 if (G_01d+G_35d-G_03d-G_15d)^2>4*G_05d*G_13d, ...
disp('Warning: Gd cond. 5 violated.'); end

111

112 G05 = G_05d+(g10 + g30 + g50 + g05 + g15 + g35)/2;
113 G03 = G_03d+(g10 + g30 + g50 + g03 + g13 + g53)/2;
114 G01 = G_01d+(g10 + g30 + g50 + g01 + g31 + g51)/2;
115 G13 = G_13d+(g01 + g31 + g51 + g03 + g13 + g53)/2;
116 G15 = G_15d+(g01 + g31 + g51 + g05 + g15 + g35)/2;
117 G35 = G_35d+(g03 + g13 + g53 + g05 + g15 + g35)/2;
118

119 %---Density matrix elements---
120 P00 = zeros(MAX,MAX_t);
121 P11 = zeros(MAX,MAX_t);
122 P01 = zeros(MAX,MAX_t);
123 P10 = zeros(MAX,MAX_t);
124 P33 = zeros(MAX,MAX_t);
125 P03 = zeros(MAX,MAX_t);
126 P30 = zeros(MAX,MAX_t);
127 P13 = zeros(MAX,MAX_t);
128 P31 = zeros(MAX,MAX_t);
129 P55 = zeros(MAX,MAX_t);
130 P05 = zeros(MAX,MAX_t);
131 P50 = zeros(MAX,MAX_t);
132 P15 = zeros(MAX,MAX_t);
133 P51 = zeros(MAX,MAX_t);
134 P35 = zeros(MAX,MAX_t);
135 P53 = zeros(MAX,MAX_t);
136

137 for j2=1:MAX %Loop over energy
138

139 %Optical Bloch equations in matrix form
140 DSLM = [-(g10+g30+g50),g01,i*O01,-i*O01,g03,i*O03,...
141 -i*O03,0,0,g05,i*O05,-i*O05,0,0,0,0;... %p00
142 g10,-(g01+g31+g51),-i*O01,i*O01,g13,0,0,0,0,...
143 g15,0,0,0,0,0,0;... %p11
144 i*O01,-i*O01,i*(w1-w0-w_pr(j2))-G01,0,0,0,0,...
145 0,-i*O03,0,0,0,0,-i*O05,0,0;... %p01
146 -i*O01,i*O01,0,-i*(w1-w0-w_pr(j2))-G01,0,0,...
147 0,i*O03,0,0,0,0,i*O05,0,0,0;... %p10
148 g30,g31,0,0,-(g03+g13+g53),-i*O03,i*O03,0,0,...
149 g35,0,0,0,0,0,0;... %p33
150 i*O03,0,0,0,-i*O03,i*(w3-w0-w_pr(j2))-G03,0,...
151 -i*O01,0,0,0,0,0,0,0,-i*O05;... %p03
152 -i*O03,0,0,0,i*O03,0,-i*(w3-w0-w_pr(j2))-G03,...
153 0,i*O01,0,0,0,0,0,i*O05,0;... %p30
154 0,0,0,i*O03,0,-i*O01,0,i*(w3-w1)-G13,0,0,0,0,...
155 0,0,0,0;... %p13
156 0,0,-i*O03,0,0,0,i*O01,0,-i*(w3-w1)-G13,0,0,...
157 0,0,0,0,0;... %p31
158 g50,g51,0,0,g53,0,0,0,0,-(g05+g15+g35),...
159 -i*O05,i*O05,0,0,0,0;... %p55
160 i*O05,0,0,0,0,0,0,0,0,-i*O05,...
161 i*(w5-w0-w_pr(j2))-G05,0,-i*O01,0,-i*O03,0;... %p05
162 -i*O05,0,0,0,0,0,0,0,0,i*O05,0,...
163 -i*(w5-w0-w_pr(j2))-G05,0,i*O01,0,i*O03;... %p50
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164 0,0,0,i*O05,0,0,0,0,0,0,-i*O01,0,...
165 i*(w5-w1)-G15,0,0,0;... %p15
166 0,0,-i*O05,0,0,0,0,0,0,0,0,i*O01,0,...
167 -i*(w5-w1)-G15,0,0;... %p51
168 0,0,0,0,0,0,i*O05,0,0,0,-i*O03,0,0,0,...
169 i*(w5-w3)-G35,0; %p35
170 0,0,0,0,0,-i*O05,0,0,0,0,0,i*O03,0,0,0,...
171 -i*(w5-w3)-G35]; %p53
172

173 %Compute eigenvector & eigenvalues of DSLM
174 MOD = max(max(abs(real(DSLM))));
175 DSLM = DSLM/MOD;
176 [V,D] = eig(DSLM); %Eigenvectors, V
177 l_s = eig(DSLM)*MOD; %Eigenvalues of DSLM
178

179 R=zeros(1,no_eig); %Set IVs of the density matrix.
180 R(1) = 1; %Start in nanoparticle ground state.
181

182 %---find coefficients for density matrix elements---
183 ABCD = V\R'; %Column vector to find coefficents
184 for j3=1:no_eig %Find the coefficients for each mode
185 for j4=1:no_eig
186 coef(j3,j4) = V(j4,j3)*ABCD(j3);
187 end
188 end
189

190 %--------Compute the density matrix elements----------
191 for j=1:no_eig
192 P00(j2,:) = P00(j2,:) + ...

real(coef(j,1)*exp((l_s(j))*t));
193 P11(j2,:) = P11(j2,:) + ...

real(coef(j,2)*exp((l_s(j))*t));
194 P33(j2,:) = P33(j2,:) + ...

real(coef(j,5)*exp((l_s(j))*t));
195 P55(j2,:) = P55(j2,:) + ...

real(coef(j,10)*exp((l_s(j))*t));
196 P01(j2,:) = P01(j2,:) + coef(j,3)*exp((l_s(j))*t);
197 P10(j2,:) = P10(j2,:) + coef(j,4)*exp((l_s(j))*t);
198 P03(j2,:) = P03(j2,:) + coef(j,6)*exp((l_s(j))*t);
199 P30(j2,:) = P30(j2,:) + coef(j,7)*exp((l_s(j))*t);
200 P13(j2,:) = P13(j2,:) + coef(j,8)*exp((l_s(j))*t);
201 P31(j2,:) = P31(j2,:) + coef(j,9)*exp((l_s(j))*t);
202 P05(j2,:) = P05(j2,:) + coef(j,11)*exp((l_s(j))*t);
203 P50(j2,:) = P50(j2,:) + coef(j,12)*exp((l_s(j))*t);
204 P15(j2,:) = P15(j2,:) + coef(j,13)*exp((l_s(j))*t);
205 P51(j2,:) = P51(j2,:) + coef(j,14)*exp((l_s(j))*t);
206 P35(j2,:) = P35(j2,:) + coef(j,15)*exp((l_s(j))*t);
207 P53(j2,:) = P53(j2,:) + coef(j,16)*exp((l_s(j))*t);
208 end
209 end
210

211 %==Evaluate susceptibility (chi) & permittivity (eps)==
212 Chi = n_m^2-2*N/(eps_0*E_pr)*( (P10*sqrt(d01*d01'))+...
213 (P30*sqrt(d03*d03'))+(P50*sqrt(d05*d05')) );
214 eps = real(Chi(:,MAX_t)) + sqrt(-1)*imag(Chi(:,MAX_t));
215

216 result = eps;
217 end



B
Appendix: Methods and

Derivations

B.1 Orientationally-Averaged Dipole Moment

The dipole moment d0m discussed in Ch. 2 is that of a single, on-axis aggregate. A
realistic nanostructure composed of these aggregates (such as a film or a nanoparticle)
contains randomly-orientated aggregates. It is presumed that these are non-interacting.
In this section, a relationship is derived to relate the on-axis dipole moment with that
of the orientationally-averaged dipole moment.

For a collection of N = n/V identical dipoles per unit volume induced by an electric
field with dipole moments di each with tensor polarizability ᾱi(ω), the polarisation
per unit volume (P) is given by,

P =
1
V

n∑
i=1

di

= N 〈ᾱ(ω)〉 · E
= χ(ω) · E. (B.1)

It is assumed above that the electric field is uniform over the volume V . The average
value of the polarizability is defined as,

〈ᾱ(ω)〉 =
1
N

∑
i

ᾱi(ω). (B.2)

By making the assumption that the dipoles are identical, the polarizabilities ᾱi(ω) have
the same magnitude α(ω), and are only different in their dipole orientation n̂i. For a
collection of such dipoles distributed in aD dimensional space,
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〈ᾱ(ω)〉 = α(ω)〈n̂⊗ n̂〉. (B.3)

Recognising that 〈nin j〉 = δi jnin j gives,

〈ᾱ(ω)〉 = α(ω)
(
〈n2

x〉x̂ ⊗ x̂ + 〈n2
y〉ŷ ⊗ ŷ + . . .

)
. (B.4)

Using 〈n2
i 〉 = 〈n2

j〉 along with the normalisation condition of unit vectors n̂i · n̂i = 1
gives

∑D
i 〈n

2
i 〉 = D〈n2

i 〉 = 1, which enables Eq. B.4 to be re-written as,

〈ᾱ(ω)〉 =
α(ω)
D

(x̂ ⊗ x̂ + ŷ ⊗ ŷ + . . . ) . (B.5)

Combining Eq. B.1 & B.5, one can find the macroscopic isotropic permittivity ε to be
equal to,

ε(ω) = εb +
Nα(ω)
D

, (B.6)

where εb is the permittivity of the embedding medium. For a planar sample, D = 2
and for a bulk sample,D = 3.

B.2 Solving the Optical Bloch Equations

As stated in Sec. 2.3.3, the Optical Bloch Equations (OBEs) derived from the Liouville-
von Neumann equation can be written in the compact form as,

ρ̇V = LρV , (B.7)

where ρV is a vector of the density matrix elements. One may solve the OBEs by
application of the rotating wave approximation (RWA)110 with subsequent use of a
matrix inversion method, or numerically by way of a Runge-Kutta method, such as the
RK10(8) method.114 In this section, both of these approaches are detailed, evaluated,
and shown to be equivalent for an ensemble illuminated with a cosine potential.
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B.2.1 Matrix inversion method

The matrix-inversion method relies on application of the RWA184 to the perturbing
potential, which enables one to write L(t, ω) as a time-independent matrix, L(ω). In
this case, solutions for the density matrix elements can be written in the following
form,

ρmn(t, ω) =
∑

i

cmn,ieiωit, (B.8)

using the principle of superposition. The coefficients cmn,i are determined from initial
conditions and from the eigenvectors of L(ω). The angular frequencies ωi are related
to the eigenvalues λi of the matrix L(ω) by iωi = λi. λi is complex with a negative real
part in order to conserve probability. The RWA may be applied to a cosine potential,
G = d · E0 cos(ωt). An advantage of this method is that computation time is very
short and weak fields may be considered easily.

A restriction on the RWA is that only a field of one frequency may impinge upon the
system in this method, since the time-independence of L must be preserved. In order
to solve the OBEs for circumstances including a frequency-spread pulse, a numerical
approach must be used instead, as outlined below.

B.2.2 Explicit Runge-Kutta methods

For the general case where L cannot be written as time-independent e.g. when the
system is subjected to a pulse, a numerical method must be used to solve the OBEs.
The OBEs have the general form ẏ = f (t, y) which has a general solution written in
discretised form,

yn+1 = yn + hn

n∑
i=1

biki, (B.9)

where,

ki = f

tn + hnai, yn + hn

j=i−1∑
j=1

Ci jk j

 . (B.10)

The estimated error at each step is evaluated as,
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en+1 ∝ yn+1 − y∗n+1. (B.11)

The values ai, bi and Ci j all depend upon the specific method involved. The original
1st-order algorithm using this general method is the Euler method,185 but a much more
accurate method is the Runge-Kutta (RK4) method, which has been used previously
to probe the dynamics of two-level systems.186 This method suffers from being non-
adaptive, in the sense that the step size is always taken to be constant. This makes
numerical solutions for rapidly-changing behaviour unreliable. An improved approach
is to dynamically allocate the step size between each iteration through a comparison
of the estimated local error between the 4th and 5th-order solutions at each point. The
yields the Runge-Kutta-Fehlberg (RK4(5)) method.187 The advantage of an adaptive
numerical method such as the RK4(5) method over a non-adaptive method such as the
RK4 method is that rapidly-changing behaviour can be modelled with greater accuracy.
Local errors are also minimized and the resultant solution that one determines is
numerically smoother.188 However, for weak fields, the RK4(5) method is insufficient
to produce numerically stable solutions. During the course of this thesis being written,
the RK10(8) method (a 10th-order Runge-Kutta method with in-built error estimation
by comparison to the 8th order)114 was tested and found to produce smoother output
for insignificantly more computing time than that of the RK4(5) method.

The main advantage of a Runge-Kutta method over the RWA is that no terms in the
Hamiltonian are neglected. As a result, any arbitrary potential can be modelled, not
just a cosine potential. However, the main drawback of any Runge-Kutta method is
that the computation time for the process is many times longer than using the RWA
with matrix inversion. This longer timescale is sometimes prohibitive depending on
the parameters involved. A further drawback is that for weak fields the solutions to
the OBEs become stiff in time and numerical instability is encountered. This can
be seen from the fact that with the calculations for TDBC illuminated with a 1 mW

Figure B.1: (a) The relative occupancy of the excited state ρ11, for a 1 mW laser potential with
spot size 1.5 mm. (b) The relative occupancy of the excited state ρ11, together with the coherence
ρ01 (real and imaginary parts shown) for a 10 MW laser with the same spot size.
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cosine potential with spot size 1.5 mm, the relative occupancy of the excited state ρ11
does not exceed one part in 1010, so ρ00 remains more-or-less constant in time with
value ρ00 ≈ 1 as shown in Fig. B.1 (conversely, the coherences oscillate in time at the
applied frequency and are of order 10−6). Therefore, the populations are incredibly
stiff and this is where explicit numerical methods fail. One way to avoid the resultant
numerical instability is to confine this procedure to solving OBEs with strong fields.
To achieve physically meaningful solutions in this circumstance, one would need to
introduce other effects such as multi-exciton recombination189 and nonlinear effects.112

By neglecting these effects, similar solutions can be obtained to those of weak fields
for the coherences, provided the field does not induce significant population inversion.
As an alternative to this compromise, one can use an implicit Runge-Kutta method
to solve stiff equations. However, the computation time for implicit Runge-Kutta
methods was found to exceed that of the explicit methods by at least a factor of ten,
making this approach ungainly.

In summary, the procedure for solving the OBEs is as follows: for weak fields the RWA
is used. Solutions derived using this method are supported by the solutions obtained
using the RK10(8) method for strong fields with multi-exciton and nonlinear effects
neglected. It is concluded that by careful use of the RWA, realistic behaviour can be
simulated subject to the condition that the system is illuminated by a monochromatic
field. For slowly time-varying strong fields or for two strong lasers, an explicit Runge-
Kutta method may be used, but for time-varying weak fields an implicit Runge-Kutta
method may be implemented successfully.

B.3 Transmittance Through Array of Nanospheres

The Beer-Lambert law157 (p. 391) states that the intensity of light through an absorbing
medium decreases with distance through the medium,

dI = −κIdz. (B.12)

When integrated, the following expression is obtained,

∫
dI
I

= −

∫
κdz

ln |I| = −κz + ln |I0|, (B.13)

which can be re-arranged as follows,

I
I0

= e−κz, (B.14)
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where I0 is the intensity of the light entering the medium. κ is the coefficient represent-
ing the length over which the fraction 1/e of the light undergoes extinction. For an
array of nanospheres this can be represented as,

κ = Nσext, (B.15)

whereσext is the extinction cross-section of a single nanosphere. For a two-dimensional
square array of nanospheres, the number density of nanospheres in the sample (N) is
related to the nanosphere spacing (µ) by N = 1/µ2z. Therefore, the far-field intensity
transmitted through the array is,

I = I0e−σextz/µ2z

= I0e−σext/µ
2
. (B.16)

Identifying that T = I/I0, the following equation for the transmitted light through the
array is obtained,

T = e−σext/µ
2
. (B.17)

This result is identical to that obtained with more thorough treatment.65

B.4 Transmittance Through a Quasistatic Nanospheroid

As outlined in Ch. 4, the starting point for the transmittance through quasistatic
nanospheroids is the potentials for the two dipole modes induced in the nanospheroid,

Φx =
|px| cos φ
4πε0r2 (B.18)

Φz =
|pz| cos θ
4πε0r2 . (B.19)

Using E = −∇Φ (and denoting β = 1/4πε0), the following expression for the dipole
electric fields can be found,
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Edx = E0αxxβ

(
2 cos φ r̂ −

sin φ
sin θ

φ̂

)
(B.20)

Edz = E0αzzβ
(
2 cos θ r̂ − sin θ θ̂

)
, (B.21)

where |pi| = αiiE0 has been used. The incident (unpolarised) light is assumed to be
incident along the positive y-axis. This gives the following expression for the incident
electric field,

Ei = E0(x̂ + ẑ)

= E0

(
(sin θ cos φ + cos θ)r̂ + (cos θ cos φ − sin θ)θ̂ − sin φφ̂

)
. (B.22)

These expressions are combined to obtain the total field,

E
E0

=

[(
sin θ +

2β
r3 αxx

)
cos φ +

(
1 +

2β
r3 αzz

)
cos θ

]
r̂+[

cos θ cos φ +

(
βαzz

r3 − 1
)

sin θ
]
θ̂+[

βαxx

r3

sin φ
sin θ

− sin φ
]
φ̂. (B.23)

For a point along the y-axis, θ = φ = π/2, and Eq. B.23 reduces to,

E
E0

=

(
βαzz

r3 − 1
)
θ̂ +

(
βαxx

r3 − 1
)
φ̂. (B.24)

For points along the y-axis with x = z = 0, y = r and the unit vectors θ̂ and φ̂ become
− ẑ and −x̂ respectively. This leads to,

E
E0

= −

(
βαxx

y3 − 1
)

x̂ −
(
βαzz

y3 − 1
)

ẑ. (B.25)

Now the field intensity for points along the y-axis is calculated. This quantity is
equivalent to the transmittance coefficient, T , and is dependent upon polarisation as
shown,
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(
E
E0

)2

= T =

[
β2|αxx|

2

y6 −
2βα′xx

y3 + 1
]

x̂

+

[
β2|αzz|

2

y6 −
2βα′zz

y3 + 1
]

ẑ. (B.26)

In the limit where y→ ∞, |T| → 1 as the contribution from the dipole fields becomes
negligible with respect to the incident field. In the (relatively) near-field limit, field
enhancement is possible owing to the 1/y6 dependency in transmission.



C
Appendix: Coefficients To

Hybrid Nanoparticle Equations

C.1 Inert Core, Lorentz Oscillator Shell

As outlined in Sec. 5.5, a more precise equation than Eq. 5.11 can be constructed for
the resonant energies ω of a nanosphere with an inert core and a Lorentz oscillator
shell. This equation takes the form,

c4ω
4 + c2ω

2 + c0 = 0, (C.1)

and can be solved using the quadratic formula. The coefficients have the following
values,

c4 = ε1εb(2x3 + 1) + 2(ε1εm + ε2
b)(1 − x3) + 2εbεm(x3 + 2)

c2 = −ε1(εb(γ2 +2ω2
0)+ fω2

0)(2x3 +1)−2εbεm(γ2 +2ω2
0(1−εm f ))(x3 +2)+2(ε1εm(γ2 +

2ω2
0) + ε2

bγ
2 + 4εbω

2
0(εb + f ))(x3 − 1)

c0 = ε1ω
4
0(εb+ f )(2x3+1)+2ω4

0(ε1εm+ε2
b+2εb f + f 2)(1−x3)+2εmω

4
0(εb+ f )(x3+2).

C.2 Lorentz Oscillator Core and Shell

The resonant frequencies of the exciton-exciton nanoparticle geometry outlined in
Sec. 5.6 satisfy an equation of the form,

(c5ω
4 + c3ω

2 + c1)ωi + (c6ω
6 + c4ω

4 + c2ω
2 + c0) = 0. (C.2)

The coefficients to this equation written out in full are,
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c6 = ε∞1ε∞2(1 + 2x3) + 2(ε∞1εm + ε2
∞2)(1 − x3) + 2ε∞2εm(2 + x3)

c5 = [ε∞1ε∞2(1 + 2x3) + 2ε∞2εm(2 + x3) + 2(ε∞1εm + ε2
∞2)(1 − x3)](γ1 + 2γ2)

c4 = −2[2(ε2
∞2 + ε∞1εm)γ1γ2(γ1 + γ2) + 2ω2

02(ε∞1εm + ε2
∞2 + ε∞2 f2)(2γ1 + γ2) +

ω2
01(2(ε2

∞2 + ε∞1εm) + εm f1)(γ1 + 2γ2)](1 − x3) − 2εm[2ε∞2ω
2
01(γ1 + 2γ2) + (2ε∞2 +

f2)ω2
02(2γ1 +γ2) + 2ε∞2γ1γ2(γ1 +γ2)](2 + x3)− [ε∞2 f1ω2

01(γ1 + 2γ2) + ε∞1 f2ω2
02(2γ1 +

γ2)+2ε∞1ε∞2γ1γ2(γ1+γ2)+2ε∞1ε∞2ω
2
01(γ1+2γ2)+2ε∞1ε∞2ω

2
02(2γ1+γ2)](1+2x3),

c2 = 2 f 2
2ω

4
02(γ1(1 − 2x3) − 1) + ( f1 f2ω2

01ω
2
02(γ1 + γ2) + 2ε∞1ε∞2[ω2

01γ2(ω2
01 + γ1γ2) +

ω2
02γ1(ω2

02 + γ1γ2) + 2ω2
01ω

2
02(γ1 + γ2)] + ε∞2 f1ω2

01[(2ω2
01 + γ1γ2)γ2 + 2ω2

02(γ1 + γ2)] +

ε∞1 f2ω2
02[(2ω2

02 +γ1γ2)γ1 +2ω2
01(γ1 +γ2)])(1+2x3)+ (4εm f2γ1ω

4
02 +4εm f2γ2ω

2
01ω

2
02 +

4ε∞2εmγ1ω
4
02+8ε∞2εmγ2ω

2
01ω

2
02+4ε∞2εmγ

2
1γ2ω

2
02+4ε∞2εmγ1γ

2
2ω

2
01+8ε∞2εmγ1ω

2
01ω

2
02+

2εm f2γ2
1γ2ω

2
02 + 4εm f2γ1ω

2
01ω

2
02 + 4ε∞2εmγ2ω

4
01)(2 + x3) + (2εm f1ω2

01[2ω2
02(γ1 + γ2) +

γ2(ω2
01 +γ1γ2)]+4ε∞1εm[γ2ω

2
01(γ1γ2 +ω2

01)+γ1ω
2
02(γ1γ2 +ω2

02)+2ω2
01ω

2
02(γ1 +γ2)]+

4ε2
∞2[2ω2

01ω
2
02(γ1 +γ2)+ω2

01γ2(ω2
01 +γ1γ2)+ω2

02γ1(ω2
02 +γ1γ2)]+4ε∞2 f2[ω2

02γ1(2ω2
02 +

γ1γ2) + 2ω2
01ω

2
02(γ1 + γ2)])(1 − x3),

c0 = −[(2ε∞1ε∞2ω
2
01ω

2
02 + f1 f2ω2

01ω
2
02)(γ1ω

2
02 + γ2ω

2
01) + ε∞1 f2ω2

01ω
2
02(2γ1ω

2
02 +

γ2ω
2
01)+ε∞2 f1ω2

01ω
2
02(γ1ω

2
02+2γ2ω

2
01)](1+2x3)−[(+4ε∞1εmω

2
01ω

2
02+2εm f1ω2

01ω
2
02)(γ1ω

2
02+

2γ2ω
2
01) + 4ε∞2ω

2
01ω

2
02( f2(γ2ω

2
01 + 2γ1ω

2
02) + ε∞2(γ2ω

2
01 + γ1ω

2
02))](1 − x3)

− 2εmω
2
01ω

2
02[+ f2(2γ1ω

2
02 + γ2ω

2
01) + 2ε∞2(γ1ω

2
02 + γ2ω

2
01)](2 + x3)− 4 f 2

2 γ1ω
2
01ω

4
02.

Solutions for ω can be found using Cardano’s cubic polynomial formula,190

xi = −
1

3a

(
b + uiC +

∆0

uiC

)
, (C.3)

where ui are the three cube roots of unity and,

C =


∆1 +

√
∆2

1 − 4∆3
0

2


1/3

, (C.4)

where,

∆0 = c2
4 − 3c6c2 (C.5)

∆1 = 2c3
4 − 9c6c4c2 + 27c2

6c0. (C.6)
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C.3 Metal Core, Lorentz Shell

The solutions for the nanoparticle geometry with a metal core and excitonic shell as
outlined in Sec. 5.7 satisfy an equation of the form,

c6ω
6 + c4ω

4 + c2ω
2 + c0 + i(c5ω

4 + c3ω
2 + c1)ω = 0.

The real part of this equation can be solved with the cubic formula above, and the
coefficients have the values,

c6 = 2(ε2
b + ε∞εm)(1 − x3) + εbε∞(1 + 2x3) + 2εbεm(2 + x3)

c4 = −2(γ(ε2
b +ε∞εm)(γ+2γp)+2ω2

0(εb(εb + f )+ε∞εm)+ε∞εmω
2
p)(1−x3)−ε∞(εbγ(γ+

2γp) + (2ω2
0 + ω2

p)εb + fω2
0)(1 + 2x3) − 2εm(γεb(γ + 2γp) + (2εb + f )ω2

0)(2 + x3)

c2 = 2(εbω
2
0(2γγp( f + εb) + (2 f + εb)ω2

0) + ε∞εm(γ2ω2
p + 2γγpω

2
0 + ω4

0 + 2ω2
0ω

2
p) +

f 2ω4
0)(1 − x3) + ε∞(εbγ

2ω2
p + (2γγp +ω2

0 + 2ω2
p)εbω

2
0 + fγγpω

2
0 + fω4

0 + fω2
0ω

2
p)(1 +

2x3) + 2εmω
2
0[(2εb + f )γγp + (εb + f )ω2

0](2 + x3)

c0 = −ε∞ω
4
0ω

2
p[(εb + f )(1 + 2x3) + 2εm(1 − x3)]

The imaginary part of the equation can be solved with the quadratic formula, and the
values of the coefficients are,

c5 = [(2εm + εb)(ε∞ + 2εb) + 2(ε∞ − εb)(εb − εm)x3](γp + 2γ)

c3 = −2[(γ2γp +2(γ+γp))(ε2
b +ε∞εm)+2(γ+γp)εb fω2

0 +2ε∞εmγω
2
p](1− x3)−ε∞[(γ+

γp)( f +2εb)ω2
0 +εbγ(2ω2

p +γγp)](1+2x3)−2εm[(γ+γp)( f +2εb)ω2
0 +εbγ

2γp](2+x3)

c1 = 2ω2
0[ω2

0γp((εb + 2 f )εb + ε∞εm + f 2) + 2ε∞εmγω
2
p](1− x3) + ε∞ω

2
0[( f + εb)γpω

2
0 +

(2εb + f )γω2
p](1 + 2x3) + 2εmω

4
0γp( f + εb)(2 + x3).
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