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Abstract  

 

To mitigate potential negative impacts to marine vertebrates it is necessary to gain, 

and build on, knowledge and understanding of their spatial ecology. Aerial and ship 

based surveys, as well as satellite telemetry data, have allowed for growing insight 

into habitat use across a broad spectrum of migratory marine species. 

Furthermore, these data have often enabled characterisation of anthropogenic 

impacts and identified potential conservation management strategies. This thesis 

seeks to investigate the spatial ecology of marine vertebrates using sea turtles as a 

study group. Data for inter-nesting and post-nesting sea turtles are analysed, and 

where possible, threats investigated. The analyses presented here integrate the 

use of multiple spatial ecological tools, including aerial surveys, satellite tracking, 

remote sensing, Geographical Information Systems (GIS) and habitat modelling. 

Many of the analytical processes employed formulate novel methodologies, as well 

as build upon and develop existing techniques. For post-nesting turtles, foraging 

and migratory data are analysed, and observed and modelled habitat niches 

described. Putative threats from fisheries and climate change are investigated, and 

where appropriate, contextualised with data describing limits of Marine Protected 

Areas (MPAs). For inter-nesting turtles, at-sea distributions and coastal density 

patterns are explored. Vessel Monitoring System (VMS) and Automatic 

Identification System (AIS) data are used to elucidate shipping densities; spatial 

patterns of threat from fisheries, and other maritime industries are inferred. Aerial 

survey data are used to ascertain potential impacts to turtles on nesting beaches. 

Throughout this thesis spatially explicit areas are identified where concentrated 

conservation efforts could be applied. Furthermore, many of these analyses 

highlight that conservation policy must recognise the spatial extent of migratory 

species, and be flexible and adaptive to accommodate potential range shifts under 

climate change. Much of the presented analyses assimilate data from multiple 

sources to provide large datasets; allowing analyses to be made that would be 

otherwise unfeasible. Finally, this thesis demonstrates the utility of developing and 

applying novel analytical methodologies to these data to investigate the spatial 

ecology of marine vertebrates of conservation concern. As such, it is likely that 

many of the analytical techniques presented here could be adapted and applied to 

other widely dispersed marine vertebrate species to help inform global 

conservation planning and practice. 
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List of Tables and Figures 

 

Chapter I 

 

On the front line: integrated habitat mapping for olive ridley sea turtles in 

the southeast Atlantic 

 

Figure 1. Study area (a). Post-nesting movements based on best daily 

locations for satellite tracked olive ridley turtles released from (b) Gabon (n = 

12) and (c) Angola (n = 9). Release locations (open stars), 200 m continental 

shelf isobath (broken line). Parts (b) and (c) are drawn to the same spatial 

scale. EEZ maritime boundaries (broken line polygon used throughout all 

maps). Countries and EEZs are labelled as follows: Gabon (GAB), Republic of 

Congo (COG), the Democratic Republic of the Congo (COD) and Angola 

(AGO). Maps drawn to Geographic Coordinate System: WGS 1984. 

 

Figure 2. Density mapping of olive ridley post-nesting movements (n = 21) 

based on interpolated best daily location data. Polygon sampling grid (75 x 75 

km) of (a) the sum of spatially coincident olive ridley locations and (b) the sum 

of individuals occupying a grid square. Map features are drawn and labelled in 

accordance with Figure 1. Maps drawn to Geographic Coordinate System: 

WGS 1984. 

 

Figure 3. Median and inter-quartile ranges for (a) latitudinal distribution (°), (b) 

distance from shore (m), (c) monthly SST (°C) (3 year mean) and (d) depth (m). 

Data were derived from non-interpolated, best daily locations, excluding 

locations within 25 km inter-nesting zone. Box widths are proportional to the 

square-roots of the number of observations in the box, outliers are not drawn. 

Month order was determined by the start of turtle post-nesting activity. 

 

Figure 4. Ecological Niche Models using the (a) Generalised Additive Model 

(GAM), (b) Multivariate Adaptive Regression Splines (MARS) and (c) MaxEnt 

modelling algorithms within the biomod2 package (R Development Core Team 

2008 R package: biomod2; Thuiller et al. 2013). ENMs were run with non-

interpolated location data and with the environmental variables of depth, SST, 
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SSH, NPP and proximity to oceanic frontal activity, using long-term averaged 

yearly products. These ENMs describe the relative suitability of oceanic habitat, 

scaled between 0 and 1, where 0.5 represents areas of typical habitat suitability 

and are represented by monochrome shading as follows: white < 0.5, mid grey 

0.5-0.75, dark grey 0.75-0.9 and black > 0.9. Countries are labelled as follows: 

Gabon (GAB), Republic of Congo (COG), the Democratic Republic of the 

Congo (COD) and Angola (AGO). Maps drawn to Geographic Coordinate 

System: WGS 1984. 

 

Figure 5. (a) Ensemble ecological niche model for post-nesting movements 

based on best daily locations for olive ridley turtles (n = 21), depth and the long 

term yearly environmental variables of SST, SSH, NPP and proximity to oceanic 

frontal activity. The relative suitability of oceanic habitat is scaled between 0 and 

1, where 0.5 represents areas of typical habitat suitability, 0 represents lowest 

suitability and 1 highest suitability, is represented by monochrome shading as 

follows: white < 0.5, mid grey 0.5-0.75, dark grey 0.75-0.9 and black > 0.9. (b) 

Shows the location and spatial extent of longer-term persistent oceanic frontal 

activity, the 1000 m isobath is represented as a broken line. (c) Cumulative 

yearly post-nesting movements based on best daily locations satellite tracking 

data for all olive ridley turtles (n = 21) with key fishing ports labelled. The 

northern (NFZ), central (CFZ) and southern (SFZ) Angolan fisheries zones are 

shown as polygons with heavy weight broken black lines. Maps drawn to 

Geographic Coordinate System: WGS 1984. 

 

Figure 6. Cumulative tuna and billfish catch data (1995-2009) by Fishing Area 

Cell at 5º by 5º resolution, apportioned by the cell's coincident sea area, as a 

percentage of all data, by (a) gear type and fisheries zone, Angolan EEZ 

fisheries zones identified as: northern (light grey), central (mid grey) and 

southern (dark grey), and by (b) Angolan EEZ fisheries zone and gear type, 

gear type is identified as: longline (dark grey), purse seine (mid grey) and all 

other gear type (light grey).  

 

Table S1. Summary of PTT data detailing nesting season, release site, and 

data start and end dates. Post-nesting periods, including track durations, are 

identified together with post-nesting turtle IDs and habitat classifications. 
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Table S2. Ecological Niche Modelling evaluation metrics for 10-fold cross 

validation.  Algorithm abbreviations: Generalized Additive Model (GAM), 

Multivariate Adaptive Regression Splines (MARS) and Maximum Entropy 

(MaxEnt). Key algorithm modelling parameters and evaluation metric 

descriptions are detailed at the foot of the table.  

 

Biomod2 modelling parameters 

One set of 5000 randomly generated 'pseudo absence' locations (background 

data), with no minimum or maximum distance to presence locations were 

generated. All locations that had missing coincident environmental data were 

removed from the analysis (background data locations that were spatially 

referenced on land). Total background data locations used in analysis: n = 

4175. 

 

The algorithm modelling parameters in biomod2 were as follows: 

GAM: package = 'mgcv', family = 'binomial', type = 's' (spline based smooth). 

MARS: package = 'mda', maximum interaction degree = 2, penalty (cost per 

degree of freedom) = 2, thresh (forward stepwise stopping threshold)  = 0.001, 

prune = (TRUE). 

MaxEnt: Run within biomod2, maximum iterations (for training) = 200, 

linear/quadratic/product/threshold/ hinge features (the transformation 

coefficients applied to each environmental variable), default prevalence = 0.5. 

 

Evaluation metrics  

AUC (Area under the curve): a measure of the ratio of true positives out of the 

positives vs. the ratio of false positives out of the negatives. 

KAPPA (Cohen's Kappa, Heidke skill score) and TSS (True Skill Statistic): 

measures of accuracy relative to that of random chance. 

SR (Success Ratio): the fraction of the true positives that were correct. 

Accuracy (fraction correct): the  fraction of the predictions (true and false) that 

were correct. 

 

Table S3. Summary of Angolan marine fisheries gear types and fisheries zones 

(FAO 2007). 
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Approximate latitudinal banding of fisheries zones: 

Northern zone: Cabinda to Luanda (S 5° to S 9.25°) 

Central zone: Luanda to Benguela/Lobito (S 9.25° to S 13°) 

Southern zone: Benguela/Lobito to the Cunene River (S 13° to S 17.25°) 

 

Table S4. Cumulative tuna and billfish catch data (1995-2009) by FAO Major 

Fishing Area Cell (FAO 2012a; 2012b) at 5º by 5º resolution. These data were 

apportioned for the cell's coincident sea area, by fisheries zone and gear type. 

Source data: http://www.fao.org/figis/geoserver/tunaatlas/ 

 

Table S5. Ecological Niche Modelling variable importance for 10-fold cross 

validation. 

 

Relative importance of the contribution of an environmental variable is 

calculated using a randomisation process. This procedure calculates the 

correlation between a prediction using all environmental variables and a 

prediction where the independent variable being assessed is randomly re-

ordered. If the correlation is high the variable in question is considered not 

important for the model and conversely, if low, important. A mean correlation 

coefficient for each environmental variable is then calculated over multiple runs. 

This is repeated for each environmental variable. The calculation of the relative 

importance is made by subtracting these mean correlation coefficient from 1 

(Thuiller et al. 2009 ). 

 

Table S6. Gear modifications and adjustment to fisheries practice to reduce 

turtle bycatch (Gilman et al. 2009). 

 

* There is the potential for the interaction rate to be much lower with deeper set 

nets, although the mortality rate for those turtles that are caught is higher. 

 

Figure S1. Monthly satellite tracked post-nesting movements for olive ridley 

turtles derived from non-interpolated, best daily locations. Months are ordered 

from November (a: top left) to October (l: bottom right). Month order was 

determined by the start of turtle post-nesting activity. The release sites for 
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tagged turtles are shown as open stars. Maps drawn to Geographic Coordinate 

System: WGS 1984. 

 

Figure S2. Median and inter-quartile ranges for (a) depth (m), (b) NPP (mg C 

m-2 day-1), (c) SSH (cm) and (d) SST (°C) for areas of persistent frontal activity 

(sample n = 887) and the entire study area (sample n = 1000). 
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Chapter II 

 

Modelling the niche for a marine vertebrate: a case study incorporating 

behavioural plasticity, proximate threats and climate change 

 

Table 1. Exclusive economic zones (EEZs) in order of greatest overlap of 

oceanic ensemble ecological niche model (EENM) with EEZs, where waters 

shallower than 200 m were excluded; and neritic EENM with EEZs, where 

waters deeper than 200 m were excluded.  

 

Figure 1. Satellite tracked, post-nesting loggerhead turtle movements, based 

on non-interpolated best daily locations for, (a) oceanic foragers: previously 

published data 2004/05/06 (n = 8, grey circles), (b) oceanic foragers: 

unpublished data 2006 (n = 9, black circles) and (c) neritic foragers: previously 

published data 2004/05/06 (n = 4, grey circles), unpublished data 2006 (n = 2, 

black circles) (see metadata in Supplementary Material, Table S1). Black lines 

represent routes taken to foraging areas. Release location for all turtles (black 

star). Parts (a), (b) and (c) are drawn to the same spatial scale and are located 

according to the inset of part (a). 200 m continental shelf isobath (broken line) 

and EEZ maritime boundaries (broken line polygon). Countries are identified by 

their 2 digit sovereign state ISO code as follows: Morocco (MA), Madeira (PT), 

Canary Islands (ES), Western Sahara (EH), Mauritania (MR), Cape Verde (CV), 

Senegal (SN), Gambia (GM), Guinea-Bissau (GW), Sierra Leone (SL), Guinea-

Conakry (GN), Liberia (LR), Ivory Coast (CI), Ghana (GH), Togo (TG), Benin 

(BJ), Nigeria (NG), Cameroon (CM) and Equatorial Guinea (GQ). Maps drawn 

to Geographic Coordinate System: WGS 1984. 

 

Figure 2. Density mapping of loggerhead turtle post-nesting movements based 

on interpolated best daily location data summed by hexagonal polygon 

sampling grid (100 km edge to edge). Sum of individuals occupying a single 

hexagon polygon for (a) oceanic and (b) neritic foragers. Turtle densities are 

represented by monochrome shading as detailed in the figure legend. Parts (a) 

and (b) are drawn to the same spatial scale. Exclusive economic zones (EEZs) 

are labelled with ISO codes and all other map features are drawn and labelled 
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in accordance with Figure 1. Maps drawn to Projected Coordinate System: 

Africa Albers Equal Area Conic. 

 

Figure 3. Ensemble Ecological Niche Models (EENMs) for post-nesting 

loggerhead turtles run with non-interpolated best daily location data, and with 

the environmental variables of depth, SST, NPP, sea surface current velocity 

and SST oceanic frontal activity using Long-Term Yearly Averaged (LTYA) 

products for, (a) oceanic foragers (n = 17), and (b) neritic foragers (n = 6). Parts 

(a) and (b) are drawn to the same spatial scale. The inset (c) of part (b) shows 

the location and extent of our EENMs. The relative suitability of habitats are 

scaled between 0 and 1 (where 0.5 represents areas of typical habitat 

suitability, 0 represents lowest suitability and 1 highest suitability), are 

represented by monochrome shading as detailed in the figure legend. All other 

map features are drawn and labelled in accordance with Figure 1. Maps drawn 

to Geographic Coordinate System: WGS 1984. 

 

Figure 4. Forecast Ensemble Ecological Niche Models (EENMs). Oceanic and 

neritic EENMs (Figure 3) were run with projected Long-Term Yearly Averaged 

(LTYA) Sea Surface Temperature (SST) increases of between 0.6º C and 2º C 

in accordance with Coupled Model Intercomparison Project Phase 5 (CMIP5) 

Representative Concentration Pathway (RCP) scenarios RCP 2.6 to RCP 8.5 

(IPCC 2013): (a) existing conditions, (b) LTYA SST + 0.6º C, (c) LTYA SST + 1º 

C and (d) LTYA SST + 2º C. Habitats with a relative suitability ≥ 0.5 for foraging 

loggerhead turtles are drawn as filled polygons as follows: oceanic turtles (mid 

grey), neritic turtles (dark grey). All parts are drawn to the same spatial scale. 

All other map features are drawn and labelled in accordance with Figure 1. 

Maps drawn to Geographic Coordinate System: WGS 1984. 

 

Figure 5. Cumulative fisheries catch data (1995-2009). (a) Cumulative longline 

tuna and billfish catch data, and (b) cumulative catch data for all marine species 

(excluding tuna and billfish) expressed as tonnes km-2 per EEZ. All data are 

drawn as filled polygons with a low (white/light grey stipple) to high (dark grey) 

monochrome shaded ramp in accordance with the legend detailed in each part. 

Parts (a) and (b) are drawn to the same spatial scale. All other map features are 
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drawn and labelled in accordance with Figure 1. Maps drawn to Projected 

Coordinate System: Africa Albers Equal Area Conic. 

 

Table S1. Summary of PTT data for turtles assigned to a foraging strategy, 

detailing: study ID, foraging strategy, sex, nesting season, data start and end 

dates, days tracked, PTT manufacturer and model and curved carapace length 

(CCL) in cm. Turtle IDs: 1-9 (Hawkes et al. 2006), 10 &11 (Varo-Cruz et al. 

2013), 12-22 (unpublished data). All turtles were captured at the nesting beach 

with the exception of turtle IDs 7, 10 & 11 which were captured at sea. All turtles 

were released at Boa Vista except turtle ID 7 which was released at Sao 

Vicente. 

 

Table S2. Ecological Niche Modelling evaluation metrics for 10-fold cross 

validation (mean and 1SD). Algorithm abbreviations: Generalised Linear Model 

(GLM), Multivariate Adaptive Regression Splines (MARS) and Maximum 

Entropy (MaxEnt). Key algorithm modelling parameters and evaluation metric 

descriptions are detailed at the foot of the table. 

 

Biomod2 modelling parameters  

Randomly generated 'pseudo absence' locations (background data), with no 

minimum or maximum distance to presence locations were generated for each 

habitat model. All locations that had missing coincident environmental data 

were removed from the analysis (background data locations that were spatially 

referenced on land). 

The key algorithm modelling parameters in biomod2 were as follows: 

GLM: package = 'stats', family= 'binomial'. 

MARS: package = 'mda', maximum interaction degree = 2, penalty (cost per 

degree of freedom) = 2, thresh (forward stepwise stopping threshold) = 0.001, 

prune = (TRUE). 

MaxEnt: Run within biomod2, maximum iterations (for training) = 200, 

linear/quadratic/product/threshold/ hinge features (the transformation 

coefficients applied to each environmental variable), default prevalence = 0.5. 
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Evaluation metrics  

AUC (Area under the curve): a measure of the ratio of true positives out of the 

positives vs. the ratio of false positives out of the negatives. 

KAPPA (Cohen's Kappa, Heidke skill score) and TSS (True Skill Statistic): 

measures of accuracy relative to that of random chance. 

SR (Success Ratio): the fraction of the true positives that were correct. 

Accuracy (fraction correct): the fraction of the predictions (true and false) that 

were correct.  

 

To compute the threshold value used  to transform the probability of presence 

model output data to binary data for model evaluation metrics based on the 

comparison of binary data (e.g. True Skill Statistic (TSS)), the algorithm 

calculates the evaluation metric in question (e.g.. TSS) for a sequence of 

thresholds from 0 to 1 (100 values). The value that maximises this evaluation 

metric is then selected as the threshold value used (Thuiller et al. 2009). 

 

Table S3. Ecological Niche Modelling variable importance for 10-fold cross 

validation. 

 

Relative importance of the contribution of an environmental variable is 

calculated using a randomisation process. This procedure calculates the 

correlation between a prediction using all environmental variables and a 

prediction where the independent variable being assessed is randomly re-

ordered. If the correlation is high the variable in question is considered not 

important for the model and conversely, if low, important. A mean correlation 

coefficient for each environmental variable is then calculated over multiple runs. 

This is repeated for each environmental variable. The calculation of the relative 

importance is made by subtracting these mean correlation coefficient from 1 

(Thuiller et al. 2009). 

 

Figure S1. Oceanic loggerhead foraging tracks (n =16). Two tracks are drawn 

in each map part and coloured black and grey respectively. 200 m continental 

shelf isobath (broken line). Maps drawn to Geographic Coordinate System: 

WGS 1984. 
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Figure S2. Fishery Committee for the Eastern Central Atlantic (CECAF) Major 

Fishing Area 34 statistical sub-areas and divisions (FAO 2013a). 

 

Figure S3. Ecological Niche Model (ENM) environmental variables. (a) 

Bathymetric depth (m), (b) Sea Surface Temperature (SST: °C), (c) Net Primary 

Production (NPP: mg C m-2 day-1), (d) daily SST frontal activity and (e) sea 

surface current velocity (m s-1). All environmental data surfaces were sampled 

to a 9 km x 9 km resolution using bilinear interpolation. Surfaces (b), (c) and (e) 

are Long-Term Yearly Averaged (LTYA) products. 200 m continental shelf 

isobath (broken line). Maps drawn to Geographic Coordinate System: WGS 

1984. 

 

Figure S4. Forecast Ensemble Ecological Niche Models (EENMs) projected 

Long-Term Yearly Averaged (LTYA) Sea Surface Temperature (SST) 

environmental variable surfaces. Increases of between 0.6º C and 2º C were 

made in accordance with Coupled Model Intercomparison Project Phase 5 

(CMIP5) Representative Concentration Pathway (RCP) scenarios RCP 2.6 to 

RCP 8.5 (IPCC 2013). (a) existing conditions, (b) LTYA SST + 0.6º C, (c) LTYA 

SST + 1º C and (d) LTYA SST + 2º C. SST (ºC) are classified into bands and 

drawn with a blue-yellow-red colour ramp in accordance with the legend 

detailed in each part. 200 m continental shelf isobath (broken line). Maps drawn 

to Geographic Coordinate System: WGS 1984. 
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Chapter III 

 

Mediterranean marine turtle foraging habitats: a test of marine protected 

areas under climate change 

 

Table 1. Sea area (km2) of Mediterranean state 12 nautical mile waters 

coincident with seasonally aggregated green and loggerhead turtle Ensemble 

Ecological Niche Models (EENMs), with year-round relative suitability ≥ 0.5 

(areas with category 2 (red) in Figures 2 and 3), based on present day 

environmental data, and forecast models. Sea area (km2) also expressed as a 

% of total coincident sea area. Net gain or no change in coincidental sea area 

indicated by + or 0 respectively.  

 

Table 2. Green and loggerhead turtle foraging site centroids, counts (n) and 

expressed as a percentage of conspecific foraging site centroids coincident with 

classified and un-classified Marine Protected Areas (MPAs), and proposed 

United Nations Environment Programme (UNEP) Priority Conservation Areas 

(PCAs). Total turtles tracked: green turtles n = 27, loggerhead turtles n = 49. 

Total foraging sites: green turtles n = 29, loggerhead turtles n = 54. 

 

a MPAs: n = 1. Amvrakikos Wetlands, National Park, Greece, IUCN category VI.  

b MPAs: n = 3. 

c MPAs: n = 3. 

d UNEP PCAs: n = 4. Areas; F: Southern Strait of Sicily, G: Northern and 

Central Adriatic, K: North-eastern Levantine Sea and Rhodes Gyre, L: Nile 

Delta Region (Figure. 5d).  

 

Table 3. Area (km2), and percentage, of the total footprint of species-specific 

aggregated EENMs (relative suitability ≥ 0.5), for present and forecast models, 

coincident with classified and un-classified Mediterranean Marine Protected 

Areas (MPAs). 

 

Table 4. Area (km2), of classified and un-classified protected areas coincident 

with of the total footprint of species-specific aggregated EENMs (relative 

suitability ≥ 0.5), for present and forecast models. Areas (km2) are also 
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expressed as a % of total area of either; classified areas or un-classified areas. 

IUCN protected areas are defined by management category: Ia strict nature 

reserve, Ib wilderness area, II national park, III natural monument or feature, IV 

habitat/species management area, V protected landscape or seascape and VI 

protected areas with sustainable use of natural resources (see full IUCN 

protected area definitions and management categories in Supplementary 

Material, Table S6). 

 

Figure 1. Post-nesting foraging site centroids (1998 to 2013) (black circles), 

based on satellite tracked, best daily locations for, (a) green turtles (foraging 

sites n = 29; turtles n = 27), (b) loggerhead turtles (foraging sites n = 54; turtles 

n = 49). The total number of foraging sites at grouped locations are numbered 

in bold. Twelve nautical mile limit (broken line). Release locations (grey stars). 

In part (a) maritime areas are labelled as follows: Mediterranean basins (roman 

capitals), seas, gulfs and straits (italics). In part (b) countries are identified using 

their 2 digit sovereign state ISO code (roman capitals) as follows: Spain (ES), 

France (FR), Italy (IT), Slovenia (SI), Croatia (HR), Bosnia (BA), Montenegro 

(ME), Albania (Al), Greece (GR), Turkey (TR), Syria (SY), Lebanon (LB), Israel 

(IL), Egypt (EG), Libya (LY), Tunisia (TN), Algeria (DZ) and Morocco (MA). 

Islands (bold italics) labelled in full. All parts are drawn to the same spatial 

scale. Maps drawn to Projected Coordinate System: Europe Albers Equal Area 

Conic. 

 

Figure 2. Aggregated seasonal Ensemble Ecological Niche Models (EENMs) 

for post-nesting green turtles run with: (a) present day and (b) forecast, 

environmental data. Parts (c), (d) and (e) are located according to the insets of 

part (b). Present day models were run with best daily location data, and with the 

environmental surfaces of depth, slope, euphotic depth, Sea Surface 

Temperature (SST) thermal niche, net primary productivity (NPP), and SST 

frontal activity using long-term biannual seasonally aggregated products. 

Forecast models were run with an increase of 2º C to species-specific biannual 

SST thermal niche surfaces in accordance with Coupled Model 5 

(Intercomparison Project Phase CMIP5) Representative Concentration Pathway 

(RCP) scenario RCP 8.5 (IPCC 2013). Seasonal EENMs: (i) winter/spring 

(December - May), and (ii) summer/autumn (June - November) with a relative 
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suitability ≥ 0.5 were aggregated to form a predictive surface where habitat 

niches were weighted by the number of seasons in which the predicted area 

was suitable. These surfaces are drawn in accordance with the figure legend in 

part (a). Countries, islands and seas are labelled in accordance with Figure 1, 

200 m isobath drawn and labelled. Parts (a) and (b) are drawn to the same 

spatial scale, all other parts are drawn to differing spatial scales. Maps drawn to 

Projected Coordinate System: Europe Albers Equal Area Conic. 

 

Figure 3. Aggregated seasonal Ensemble Ecological Niche Models (EENMs) 

for post-nesting loggerhead turtles run with: (a) present day and (b) forecast, 

environmental data. Part (c) is located according to the inset of part (b). See 

Figure 2 for modelling details. Countries, and seas are labelled in accordance 

with Figure 1, 200 m isobath drawn and labelled. Parts (a) and (b) are drawn to 

the same spatial scale. Maps drawn to Projected Coordinate System: Europe 

Albers Equal Area Conic. 

 

Figure 4. Combined foraging habitats (relative suitability ≥ 0.5) suitable for both 

species under: (a) present day and (b) forecast, environmental data. Year-round 

habitat (red polygons), seasonally dependent habitat (mid grey polygons). 

Countries are labelled in accordance with Figure 1, 12 nautical mile waters 

(broken line). Both parts drawn to the same spatial scale. Maps drawn to 

Projected Coordinate System: Europe Albers Equal Area Conic. 

 

Figure 5. Marine Protected Areas (MPAs) within the Mediterranean. (a) Current 

IUCN classified and un-classified MPAs (blue cross-hatched polygons) 

(MAPAMED 2014). MPA centroids (black circles) for, (b) IUCN classified and (c) 

un-classified MPAs. (d) United Nations Environment Programme (UNEP) 

Priority Conservation Areas (PCAs) (blue hatched polygons). A: Alborán 

Seamounts, B: Southern Balearic, C: Gulf of Lions shelf and slope, D: Central 

Tyrrhenian, E: Northern Strait of Sicily, F: Southern Strait of Sicily, G: Northern 

and Central Adriatic, H: Santa Maria di Leuca, I: North-eastern Ionian, J: 

Thracian Sea, K: North-eastern Levantine Sea and Rhodes Gyre, L: Nile Delta 

Region (UNEP 2010). In part (a) countries are labelled in accordance with 

Figure 1. All parts are drawn to the same spatial scale. Maps drawn to 

Projected Coordinate System: Europe Albers Equal Area Conic. 
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Table S1. Summary of PTT data for foraging post-nesting female green turtles, 

detailing: PTT ID, nesting season, release location and date, days tracked, days 

at foraging site and PTT manufacturer and model. A foraging site was deemed 

to be an area where an individual turtle remained resident for more than 30 

days (Blumenthal et al. 2006) and was less than 150 km in diameter. To 

minimise the potential for pseudo-replication within our data we limited the 

maximum number of days retained for analysis at any one foraging site to     

365 d. 

* multiple foraging locations  

 

Table S2. Summary of PTT data for foraging post-nesting female loggerhead 

turtles, detailing: PTT ID, nesting season, release location and date, days 

tracked, days at foraging site and PTT manufacturer and model. A foraging site 

was deemed to be an area where an individual turtle remained resident for 

more than 30 days (Blumenthal et al. 2006) and was less than 150 km in 

diameter. To minimise the potential for pseudo-replication within our data we 

limited the maximum number of days retained for analysis at any one foraging 

site to 365 d. 

* multiple foraging locations 

NA: data not available 

 

Table S3. Ecological Niche Modelling evaluation metrics for 10-fold cross 

validation (mean and 1SD). Algorithm abbreviations: Generalised Linear Model 

(GLM), Multivariate Adaptive Regression Splines (MARS) and Maximum 

Entropy (MaxEnt). Key algorithm modelling parameters and evaluation metric 

descriptions are detailed at the foot of the table. 

 

Biomod2 modelling parameters  

Randomly generated 'pseudo absence' locations (background data), with no 

minimum or maximum distance to presence locations were generated for each 

habitat model. All locations that had missing coincident environmental data 

were removed from the analysis (background data locations that were spatially 

referenced on land). 

The key algorithm modelling parameters in biomod2 were as follows: 

GLM: package = 'stats', family= 'binomial'. 
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MARS: package = 'mda', maximum interaction degree = 2, penalty (cost per 

degree of freedom) = 2, thresh (forward stepwise stopping threshold) = 0.001, 

prune = (TRUE). 

MaxEnt: Run within biomod2, maximum iterations (for training) = 200, 

linear/quadratic/product/threshold/ hinge features (the transformation 

coefficients applied to each environmental variable), default prevalence = 0.5. 

 

Evaluation metrics  

AUC (Area under the curve): a measure of the ratio of true positives out of the 

positives vs. the ratio of false positives out of the negatives. 

KAPPA (Cohen's Kappa, Heidke skill score) and TSS (True Skill Statistic): 

measures of accuracy relative to that of random chance. 

SR (Success Ratio): the fraction of the true positives that were correct. 

Accuracy (fraction correct): the fraction of the predictions (true and false) that 

were correct.  

 

To compute the threshold value used to transform the probability of presence 

model output data to binary data for model evaluation metrics based on the 

comparison of binary data (e.g. True Skill Statistic (TSS)), the algorithm 

calculates the evaluation metric in question (e.g. TSS) for a sequence of 

thresholds from 0 to 1 (100 values). The value that maximises this evaluation 

metric is then selected as the threshold value used. (Thuiller et al. 2009). 

 

Table S4. Ecological Niche Modelling variable importance for 10-fold cross 

validation. 

 

The relative importance of each environmental variable to the model was 

calculated using a randomisation process. This procedure calculated the 

correlation between a prediction using all environmental variables and a 

prediction where the independent variable being assessed was randomly re-

ordered. If the correlation was high the variable in question was considered 

unimportant for the model and conversely, if low, important. A mean correlation 

coefficient for each environmental variable was then calculated over multiple 

runs. This was repeated for each environmental variable. The calculation of the 
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relative importance was made by subtracting these mean correlation 

coefficients from 1 (Thuiller et al. 2009). 

 

Table S5. Loggerhead turtle foraging sites and foraging records apportioned by 

sex (Schofield et al. 2013) coincident with Loggerhead EENM based on present 

day environmental variables. 

 

Table S6. Summary of IUCN protected area definition and management 

categories. IUCN defines a protected area as: A clearly defined geographical 

space, recognised, dedicated and managed, through legal or other effective 

means, to achieve the long-term conservation of nature with associated 

ecosystem services and cultural values. The definition is expanded by six 

management categories (one with a sub-division), summarised below. 

 

Figure S1. Seasonal Ensemble Ecological Niche Models (EENMs) for post-

nesting green and loggerhead turtles run with best daily location data, and with 

the environmental surfaces of depth, slope, euphotic depth, Sea Surface 

Temperature (SST) thermal niche, net primary productivity (NPP), and SST 

frontal activity using long-term biannual seasonally aggregated products. 

Seasonal figure parts: (a,b,c,g,h,i) winter/spring, (d,e,f,j,k,l) summer/autumn. 

(a,d,g,j) Location data. EENMs run with, (b,e,h,k) present day environmental 

data, and (c,f,i,l) forecast models with an increase of 2º C to species-specific 

biannual SST thermal niche surfaces in accordance with Coupled Model 5 

(Intercomparison Project Phase CMIP5) Representative Concentration Pathway 

(RCP) scenario RCP 8.5 (IPCC 2013). The relative suitability of habitats are 

scaled between 0 and 1 (where 0 represents lowest suitability and 1 highest 

suitability). Habitats with relative suitability ≥ 0.5 are drawn as red polygons. In 

part (a) countries and islands are labelled in accordance with Figure 1, 200 m 

isobath drawn (broken line). All parts are drawn to the same spatial scale. Map 

drawn to Projected Coordinate System: Europe Albers Equal Area Conic. 

 

Figure S2. Discrete loggerhead foraging sites digitised from Schofield et al. 

(2013) (black circles) with present day loggerhead EENM (light blue polygons). 

Map drawn to Projected Coordinate System: Europe Albers Equal Area Conic. 
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Figure S3. Spatial coincidence of modelled green and loggerhead turtle habitat 

niche (based on present day and forecast environmental data) with United 

Nations Environment Programme (UNEP) Priority Conservation Areas (PCAs). 

Present day (blue), forecast model (red). Countries are labelled in accordance 

with Figure 1, UNEP PCAs are drawn and labelled in accordance with Figure 

5d. 200 m isobath drawn and labelled. Map drawn to Projected Coordinate 

System: Europe Albers Equal Area Conic. 
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Chapter IV 

 

Here today, here tomorrow: beached timber in Gabon, a persistent threat 

to nesting sea turtles 

 

Figure 1. Gabon National Parks, Reserves and Rivers. National Parks and 

Reserves are shown in mid grey, unclassified areas in light grey; PNP: Pongara 

National Park, UA1: unclassified area 1, WWR: Wonga Wongue Reserve, UA2: 

unclassified area 2, LNP: Loango National Park, SCR: Sette Cama Reserve, 

OR: Ouanga Reserve, UA3: unclassified area 3, MNP: Mayumba National Park. 

The river mouths of the Komo, Ogooué and Nyanga are indicated by solid black 

lines and labelled in italics. The start and end locations for all surveys are 

shown as a filled circle and filled triangle respectively. Maps drawn to 

Geographic Coordinate System: WGS 1984. 

 

Figure 2. Spatial density patterns by latitude. (a) Leatherback turtle nests for 

2003 (Witt et al. 2009). Beached logs km-1 for (b) 2003, (c) 2007 and (d) 2011. 

Data were standardised to a common spatial resolution of discrete 25 km2 

squares derived from the 2003 survey. National Parks and Reserves are shown 

as black bars and unclassified areas as mid grey bars. For abbreviations see 

Figure 1.  

 

Figure 3. Mean logs km-1 (Mean ± SE) for 2003 (dark grey bars), 2007 (mid 

grey bars) and 2011 (light grey bars). A LME indicated that log densities were 

not influenced by the main effect of year  (Chi21 = 0.40, p = 0.53) or by any 

relationship with survey year and area (Chi28 = 5.38, p = 0.72). There was a 

significant difference in the density of beached logs recorded among areas 

(Chi28 = 77.56, p < 0.001). For abbreviations see Figure 1.  

 

Figure 4. Threat maps for nesting leatherback turtles. Weighted kernelled 

distribution of threat indices with a 5 km smoothing factor for (a) Pongara 

National Park and unclassified area 1 and (b) Sette Cama Reserve. 25%, 50% 

and 75% polygons of the density distribution are shown with black, mid and light 

grey fill respectively. National Parks and Reserves are shown in mid grey and 

unclassified areas in light grey. Maps (a) and (b) are drawn to the same spatial 
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scale and are located according to the inset of part (a). Maps drawn to 

Geographic Coordinate System: WGS 1984. 

 

Table S1. Total log counts, distance flown and number of logs km-1 for the 

survey years 2003, 2007 and 2011 assigned to their respective classified or 

unclassified status. 

 

Table S2. Mean proportion (percentage, standardised for survey effort) of 

leatherback turtle beach movements impeded by logs, at sites for the nesting 

seasons 2006/07 to 2010/11 within Pongara National Park, Sette Cama 

Reserve and Mayumba National Park. Impacts to leatherback turtles were 

assessed using the following criteria: 0) no impact, 1) nesting was definitely 

abandoned due to logs, 2) nesting was probably abandoned due to logs, 3) the 

turtle was blocked by logs but was able to nest above the High Tide Line (HTL), 

4) the turtle was blocked by logs but was able to nest below the HTL, 5) the 

turtle was blocked by logs after nesting, whilst returning to sea. 
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Chapter V 

 

A novel approach to estimate the distribution, density and at-sea risks of 

a centrally-placed mobile marine vertebrate 

 

Figure 1. Location data (black circles) for satellite tracked inter-nesting 

leatherback turtles tracked from, (a) Pongara National Park (n = 18) and (b) 

Mayumba National Park (n = 14). Tagging locations (white stars). (c) Modelled 

leatherback turtle density at-sea October-April. Densities (turtles 100 km-2 

apportioned by percentiles) are drawn in accordance with the figure legend. 200 

m continental shelf isobath (broken line) and EEZ maritime boundaries (broken 

line polygon). In part (c) coastal National Parks and reserves (mid grey 

polygons) and the ports of Libreville and Port Gentil are labelled. Mayumba 

National Park (Marine Protected Area (MPA)), hatched grey polygon. Part (c) is 

located according to the inset. All parts are drawn to differing spatial scales. 

Map drawn to Projected Coordinate System: Africa Albers Equal Area Conic. 

 

Figure 2.  Mean seasonal density of fisheries activity derived from Vessel 

Monitoring System (VMS) and Automatic Identification System (AIS) data. (a-d) 

VMS data for leatherback nesting seasons 2010/11 and 2011/12. A speed rule 

was applied to distinguish fishing from steaming or near-stationery movement 

(Witt & Godley 2007); only data with speeds ≥ 1 or ≤ 5 knots were retained. (e-

h) AIS data for leatherback nesting seasons 2012/13 and 2013/14. A speed rule 

was applied to remove near-stationery movement; only data with speeds ≥ 1 

knot were retained. For each dataset one random location a day for each vessel 

was extracted. Data were summarised (counts) to a 10 x 10 km resolution 

raster. Data for the complete nesting season (a,e) were then apportioned into 

three seasonal groups: (b,f) October and November, (c,g) December to 

February and (d,h) March and April. Parts (a,b,c,d) and (e,f,g,h) are drawn to 

differing spatial scales. All other map features are drawn and labelled in 

accordance with Figure 1. Map drawn to Projected Coordinate System: Africa 

Albers Equal Area Conic. 

 

Figure 3. Mean seasonal density of vessel activity categorised as, (a-d) oil 

support vessels, including tankers carrying crude/refined oil and other 
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petrochemical related products, (e-h) seismic research vessels and (i-l) cargo 

vessels, derived from Automatic Identification System (AIS) data for leatherback 

nesting seasons 2012/13 and 2013/14. A speed rule was applied to remove 

near-stationery movement; only data with speeds ≥ 1 knot were retained. One 

random location a day for each vessel was extracted. Data were summarised 

(counts) to a 10 x 10 km resolution raster. Data for the complete nesting season 

(a,e,i) were then apportioned into three seasonal groups: (b,f,j) October and 

November, (c,g,k) December to February and (d,h,i) March and April. All parts 

drawn to the same spatial scale. All other map features are drawn and labelled 

in accordance with Figure 1. Map drawn to Projected Coordinate System: Africa 

Albers Equal Area Conic. 

 

Figure 4. Cumulative seasonal shipping densities (a,c,e,g). Vessel density 

rasters were re-scaled 0-1and summed. Threat index for inter-nesting 

leatherback turtles (b,d,f,h). Cumulative shipping density rasters were multiplied 

by leatherback density rasters. To provide for data at the same spatial 

resolution leatherback turtle at-sea density raster were re-sampled to the same 

resolution (10 x 10 km) as the VMS and AIS layers using bilinear interpolation. 

Data for the complete nesting season (a,b) were then apportioned into three 

seasonal groups: (c,d) October and November, (e,f) December to February and 

(g,h) March and April. All parts drawn to the same spatial scale. All other map 

features are drawn and labelled in accordance with Figure 1. Map drawn to 

Projected Coordinate System: Africa Albers Equal Area Conic. 

 

Table S1. Aerial survey schedule for the Gabonese coast 2002/03 and 2005/06 

to 2006/07. 

 

Table S2. Summary of PTT data for female leatherback turtles, detailing: PTT 

Id., nesting season, release location, deployment date, inter-nesting periods (n), 

PTT manufacturer and model. 

 

Table S3. Summary of output from Wilcoxon test of semi-major, semi-minor and 

offshore distance for leatherback turtles between the nesting locations of 

Pongara and Mayumba National Parks. 
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Author’s declaration of contributions to co-authored chapters 

 

All chapters presented in this thesis were written by S.K. Pikesley under the 

guidance and supervision of M.J. Witt and B.J. Godley. Author’s contributions to 

chapters are detailed below. 

 

 

Chapter I: On the front line: integrated habitat mapping for olive ridley sea 

turtles in the southeast Atlantic. 

 

Stephen K. PIKESLEY, Sara M. MAXWELL, Kellie PENDOLEY,  Daniel P. 

COSTA, Michael S. COYNE, Angela FORMIA, Brendan J. GODLEY, Warren 

KLEIN, Junior MAKANGA-BAHOUNA, Sheryl MARUCA, Solange 

NGOUESSONO, Richard J. PARNELL, Edgard PEMO-MAKAYA and Matthew 

J. WITT 

 

Chapter I presents analysis of post-nesting movements of olive ridley turtles. 

Observed habitat use is described and ecological niche modelling is used to 

identify regions where environmental variables exist that may be critical in 

defining post-nesting habitats for this species. Fisheries catch data is integrated 

to contextualise potential threat from fisheries. I processed SST frontal activity 

data and carried out all analyses; I was lead author on the manuscript. 

 

The chapter was written under the supervision of M. Witt and B. Godley who 

provided guidance on data analysis, structure and writing. This chapter was 

published in Diversity and Distribution in 2013. 

 

 

Chapter II: Modelling the niche for a marine vertebrate: a case study 

incorporating behavioural plasticity, proximate threats and climate change. 

 

Stephen K. PIKESLEY, Annette C. BRODERICK, Daniel CEJUDO, Michael S. 

COYNE, Matthew H. GODFREY, Brendan J. GODLEY, Pedro LOPEZ, Luis 

Felipe LÓPEZ-JURADO, Sonia Elsy MERINO, Nuria VARO-CRUZ, Matthew J. 

WITT and Lucy A. HAWKES 
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This chapter presents analysis of post-nesting loggerhead turtles. Observed 

habitat use is described and ecological niche modelling is used to identify 

suitable foraging habitats for animals utilising two distinct behavioural 

strategies. Forecast models are used to investigate how these predicted habitat 

niches may alter under the influence of climate change. Fisheries catch data is 

integrated to contextualise potential threat from fisheries. I processed all raw 

data, carried out all analyses and was lead author on the manuscript. 

 

The chapter was written under the supervision of M. Witt, L. Hawkes and B. 

Godley who provided guidance on data analysis, structure and writing.  

This chapter was published in Ecography in 2014. 

 

 

Chapter III: Mediterranean marine turtle foraging habitats: a test of marine 

protected areas under climate change. 

 

Stephen K. PIKESLEY, Annette C. BRODERICK, Ali Fuat CANBOLAT , Onur 

CANDAN , Burak A. ÇIÇEK, Wayne J. FULLER, Fiona GLEN, Yaniv LEVY, 

ALan F. REES, Gil RILOV, Robin T. E. SNAPE, Kimberley STOKES, Iain 

STOTT, Dan TCHERNOV, Matthew J. WITT, Judith A. ZBINDEN and Brendan 

J. GODLEY 

 

Chapter III investigates the foraging habitats of green and loggerhead turtles 

satellite tracked within the Mediterranean basin. Ecological niche models are 

used to predict present day foraging habitats and forecast models are used to 

explore how these foraging habitats may alter under the influence of climate 

change. The spatial efficacy of the extant network of Mediterranean Marine 

Protected Area (MPAs) is investigated with relation to these habitat niche 

models. I processed all raw data, carried out all analyses and was lead author 

on the manuscript. 

 

The chapter was written under the supervision of M. Witt and B. Godley who 

provided guidance on data analysis, structure and writing. 
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Chapter IV: Here today, here tomorrow: beached timber in Gabon, a persistent 

threat to nesting sea turtles. 

 

Stephen K. PIKESLEY, Angela FORMIA, Floriane CARDIEC, Brendan J. 

GODLEY, Cheryl MILLS, Pierre Didier AGAMBOUE, Eric Augowet BONGUNO, 

François BOUSSAMBA, William LAURANCE, Brice Didier Koumba MABERT, 

Gil Avery Mounguengui MOUNGUENGUI, Carine MOUSSOUNDA, Solange 

NGOUESSONO, Richard J. PARNELL, Guy-Philippe SOUNGUET, Bas 

VERHAGE, Lee WHITE and Matthew J. WITT 

 

In this chapter multiple year aerial survey data are analysed to determine the 

temporal persistence and spatial extent of beached timber on the coastal 

beaches of Gabon, central Africa. This knowledge is then integrated with spatial 

data on nesting leatherback turtles to ascertain where leatherback turtles are at 

greatest threat from beached timber. I analysed the aerial survey data to 

determine the spatial distribution and densities of beached timber as well as 

undertaking the subsequent threat analysis to nesting leatherback turtles. I was 

lead author on the manuscript. 

 

The chapter was written under the supervision of M. Witt and B. Godley who 

provided guidance on data analysis, structure and writing. This chapter was 

published in Biological Conservation in 2013. 

 

 

Chapter V: A novel approach to estimate the distribution, density and at-sea 

risks of a centrally-placed mobile marine vertebrate 

 

Stephen K. PIKESLEY, Pierre Didier AGAMBOUE, Jean Pierre BAYET, Jean 

Noel BIBANG, Eric Augowet BONGUNO, François BOUSSAMBA, Annette C. 

BRODERICK, Michael S. COYNE, Philippe Du PLESSIS, François Edgard 

FAURE, J. Michael FAY, Angela FORMIA, Brendan J. GODLEY, Judicael Regis 

Kema KEMA, Brice Didier Koumba MABERT, Churley MANFOUMBI, Georges 

Mba ASSEKO, Kristian METCALFE, Gianna MINTON, Sarah NELMS, Solange 

NGOUESSONO, Jacob NZEGOUE, Carole OGANDANGA, Franck OTSAGHA, 
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Richard J. PARNELL,  Micheline Schummer GNANDJI, Guy-Philippe 

SOUNGUET, Mesmin WADA, Lee WHITE and Matthew J. WITT 

 

Chapter V builds upon the analysis of threat to nesting leatherback turtles 

described in Chapter IV. The chapter describes the development of a novel 

method to model at-sea distribution and densities of inter-nesting leatherback 

turtles in the coastal waters of Gabon. These modelled distributions are then 

contextualised with multiple threat layers derived from Vessel Monitoring 

System (VMS) and Automatic Identification System (AIS) data. I processed all 

satellite tracking, VMS and AIS data, carried out all analyses and was lead 

author on the manuscript. 

 

The chapter was written under the supervision of M. Witt and B. Godley who 

provided guidance on data analysis, structure and writing. 
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Definitions 

 

AAEAC Africa Albers Equal Area Conic 

AIS Automatic Identification System  

AUC Area Under the Curve 

BDL Best Daily Location 

CBD Convention for Biological Diversity  

CCL Curved Carapace Length  

CECAF Fishery Committee for the Eastern Central Atlantic  

CITES Convention on International Trade in Endangered Species of 

Wild Fauna and Flora 

CMIP5 Coupled Model Intercomparison Project Phase 5  

DWF Distant Water Fleet  

EENM Ensemble Ecological Niche Model 

EEZ Exclusive Economic Zone 

ENM Ecological Niche Model 

EU European Union 

FAO Food and Agriculture Organization 

GAM Generalised Additive Model  

GDP Gross Domestic Product  

GIS Geographical Information System 

GLM Generalised Linear Model  

GPS Global Positioning System 

HD High Definition 

HTL High Tide Line  

IPCC Intergovernmental Panel on Climate Change  

IQR Inter-Quartile Range  

ITTO International Tropical Timber Organization 

IUCN International Union for Conservation of Nature 

IUU Illegal, Unreported and Unregulated  

KAPPA Cohen's Kappa (Heidke skill score)  

LME Linear Mixed Effect  

LTYA Long-Term Yearly Averaged 

MARS Multivariate Adaptive Regression Splines  

MaxENT Maximum Entropy 
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MCP Minimum Convex Polygon 

MedPAN Mediterranean Protected Areas Network  

MGET Marine Geospatial Ecological Tools 

MMSI Maritime Mobile Service Identity 

MODIS Moderate Resolution Imaging Spectroradiometer 

MPA Marine Protected Area 

NPP Net Primary Production 

PCA Priority Conservation Areas  

PTT Platform transmitter terminal 

RCP Representative Concentration Pathway 

RICC Relative Importance of the Contribution to the model Coefficients  

RS Relative Suitability 

RTI Relative Threat Index 

SIED Single Image Edge Detection 

SR Success Ratio 

SSH Sea Surface Height 

SSM State Space Modelling 

SST Sea Surface Temperature 

STAT Satellite Tracking and Analysis Tool  

TSS True Skill Statistic  

UNEP/MAP United Nations Environment Programme's Mediterranean Action 

Plan  

UTC Coordinated Universal Time 

VMS Vessel Monitoring System 

WGS84 World Geodetic System 1984 
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Introduction 

 

Human activities are impacting the global marine environment, with the vast 

majority of maritime ecosystems around the world negatively affected by 

various drivers of ecological change (Halpern et al. 2008). These drivers are 

disproportionately distributed among regions and ecosystems. Many marine 

ecosystems with high predicted cumulative impacts are in coastal or continental 

shelf waters (Halpern et al. 2008, 2015); areas where cumulative impacts are 

also identified as increasing (Halpern et al. 2015). Impacts from fisheries (Pauly, 

Watson & Alder 2005) and climate change (Doney et al. 2012; Gattuso et al. 

2015; Halpern et al. 2015) are identified as key stressors. Formulating 

successful conservation policy to mitigate these impacts, and their associated 

effects on marine species, requires knowledge and understanding of the spatial 

ecology of targeted species, particularly when species are highly migratory 

marine vertebrates (Costa et al. 2012). Investigating movement patterns of 

species within high-use areas, such as foraging grounds or migratory routes, 

may provide increased insight into the spatial and temporal use of key habitats 

and help identify potential hotspots of threat. This increased awareness will 

facilitate the decision process of where and when to place what are often limited 

resources to achieve maximum benefit (Hart et al. 2012). However, effective 

design, implementation and regulation of protection for mobile marine species 

can be challenging; especially when the species are far ranging, pelagic and 

migratory (Hyrenbach, Forney & Dayton 2000) and when habitat use becomes 

more diverse or more unpredictable (Hamann et al. 2010). 

 

Aerial and ship based surveys (e.g. Hammond et al. 2002; Leeney et al. 2012; 

Scheidat, Verdaat & Aarts 2012; Aerts et al. 2013), as well as satellite telemetry 

data (e.g. Shaffer et al. 2006; Weng et al. 2007; Kappes et al. 2010; Hazen et 

al. 2012; Robinson et al. 2012) have allowed for growing insight into movement 

patterns and habitat use across a broad spectrum of migratory marine species 

including seabirds, marine mammals, and sharks. Furthermore, these data have 

often enabled characterisation of anthropogenic impacts and/or facilitated 

definition of management strategies across a similarly broad suite of migratory 

marine vertebrates including: pinnipeds, elasmobranchs, albatross and pelagic 
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fishes (e.g. Matthiopoulos et al. 2004; Hobday et al. 2011; Zydelis et al. 2011; 

Graham et al. 2012).  

 

Sea turtles are a group of air breathing marine vertebrates that have been the 

subject of both aerial (e.g. Houghton et al. 2006; Witt et al. 2009; Lauriano et al. 

2011; Fuentes et al. 2015) and extensive satellite telemetry research (e.g. Hays 

et al. 2003; Godley et al. 2008; Hazen et al. 2012). The ongoing use of these 

techniques, coupled with modelling of sea turtle movements has provided 

insight into their spatial and temporal ecology (Polovina et al. 2000; Seminoff et 

al. 2008; Shillinger et al. 2008; Hawkes et al. 2011; Silva et al. 2011; Wingfield 

et al. 2011), as well as identifying potential areas of threat and highlighting focal 

areas for conservation (Peckham et al. 2007; Lauriano et al. 2011; Silva et al. 

2011; Witt et al. 2011).  

 

There are seven extant species of sea turtle. Fossil records date the earliest 

turtle to about 200 million years ago (Spotila 2004) with the extant 'modern' sea 

turtle appearing some 110 million years ago in the Early Cretaceous Period 

(Spotila 2004). Of the extant sea turtle species, six belong to the family 

Cheloniidea (or hard-shell turtles), these are loggerhead (Caretta caretta), 

Kemp's ridley (Lepidochelys kempii), olive ridley (Lepidochelys olivacea), green 

(Chelonia mydas), hawksbill (Eretmochelys imbricata), and flat-backed turtles 

(Natator depressus), and one species to the family Dermochelyidae: the 

leatherback turtle (Dermochelys coriacea). The Cheloniidea have a bony 

plastron (lower shell) and carapace. The carapace, or dorsal (top) shell, is 

overlain by a series of scutes, which are made of keratin. Leatherback sea 

turtles have no keratinised scutes but possess a leathery skin overlying a 

mosaic of thin bony plates connected by soft cartilage (Spotila 2004). 

Morphologically, sea turtles are considered highly adapted for life in the marine 

environment (Meylan & Meylan 1999). Features of note include: (i) a 

streamlined, hydrodynamic efficient carapace shape, (ii) stiff, paddle-shaped 

limbs with elongated digits, (iii) enlarged and modified lacrimal (tear) glands 

capable of removing excess salts from body fluids, and (iv) well-developed 

pectoral muscles attached to a large shoulder girdle to aid propulsion through 

the water (Meylan & Meylan 1999). Instead of teeth sea turtles possess horny 

beaks made of keratin, the shape of the beak varies by species and is thought 
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to reflect diet (Spotila 2004). Physiologically, sea turtles have evolved 

adaptations that allow them to dive to significant depths and remain submerged 

for extended periods of time, which may result in individuals typically spending 

95% of their time underwater (Spotila 2004).  

 

Targeted prey will vary by species and by life-cycle phase (i.e. hatchling, 

juvenile or adult) and foraging niche (i.e. benthic or pelagic foragers). There is a 

paucity of data for the foraging ecology during the early life stages. However, it 

is suggested that many species of young sea turtles (e.g. green, loggerhead, 

hawksbill and Kemp's ridley) may occupy open ocean pelagic habitats, often in 

association with floating rafts of sargassum where their diet may be omnivorous 

(Bjorndal 1997). Adult green sea turtles are primarily benthic herbivores, 

principally feeding on seagrass, although may also feed on jellyfish, salps and 

sponges (Bjorndal 1997). Adult hawksbill sea turtles commonly forage 

benthically over coral or rocky reefs, but may also forage over areas of 

seagrass. This species likely have a specialised diet comprising of sponges, but 

may sometimes take other sessile benthic species (Bjorndal 1997). Benthic 

foraging Kemp's ridley primarily target crab species. Pelagic foraging adult 

loggerhead and olive ridley sea turtles likely target jellyfish and salps. Whilst in 

shallower waters, both species may forage opportunistically on benthic species 

(Bjorndal 1997). Adult leatherbacks will feed throughout the water column taking 

jellyfish, salps and other gelatinous organisms (Bjorndal 1997). 

 

Sea turtles are globally distributed, inhabiting the Atlantic, Pacific and Indian 

Oceans, as well as the Mediterranean Sea. Hawksbills are the most tropical of 

the species, whereas leatherbacks can tolerate colder waters. It is considered 

that all species of sea turtle (with the exception of Kemp’s ridley and flat-backed 

turtles) are cosmopolitan in distribution (Meylan & Meylan 1999). With Kemp’s 

ridley being mainly restricted to the Gulf of Mexico and the eastern seaboard of 

the United States, and the flat-backed turtle endemic to the Australian 

continental shelf (Meylan & Meylan 1999). All species are highly migratory and 

use a wide range of geographic regions and habitats depending on life-cycle 

phase (i.e. hatchling, juvenile or adult). Foraging habitats of many adult sea 

turtle populations are quite distinct from nesting beach habitats (Bjorndal 1997), 

however these distributions need not be random, but may be influenced by 
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areas of favourable habitat niche (Hyrenbach, Forney & Dayton 2000). For sea 

turtles this is likely where habitat is both thermally accessible and prey rich (Witt 

et al. 2007). 

 

On a global scale, the IUCN Red List currently categorises Kemp's ridley, 

hawksbill and leatherback sea turtles as 'critically endangered', loggerhead and 

green sea turtles as 'endangered',  olive ridley as 'vulnerable', and flat-backed 

turtles as 'data deficient'. All sea turtle species are listed in Appendix 1 of the 

Convention on International Trade in Endangered Species of Wild Fauna and 

Flora (CITES) prohibiting trade in species between all signatory parties to the 

convention, alive or dead (Abreu-Grobois & Plotkin 2008). Historically, sea 

turtles were exploited as a food source by sailors and early settlers in many 

parts of the world, leading to localised reductions in numbers and some local 

extinctions (Spotila 2004). In the present, five major threats are identified for 

sea turtles: fisheries impacts, direct take, coastal development, pollution and 

pathogens, and global warming. These present-day threats can be categorised 

as marine or terrestrial. 

 

Terrestrially, sea turtles can be impacted on the nesting beach by way of 

harvesting of eggs, or direct take of females for consumption (Marco et al. 2012; 

Tanner 2013), or for processing into turtle products such as oil, leather and shell 

(Islam 2001), or for the medicinal trade (Tanner 2013). Coastal light pollution 

may discourage females from hauling out at nesting beaches, thereby 

interfering with clutch deposition (Salmon 2003; Taylor & Cozens 2010; 

Kamrowski et al. 2012). In addition, lights on shore can cause disorientation of 

hatchlings, causing animals to either crawl in circuitous paths, or on direct paths 

away from the ocean towards artificial lighting (Salmon 2003). Nesting beaches 

may also be subject to anthropogenic disturbance (e.g. noise, vehicle traffic) as 

well as habitat alteration and degradation associated with construction work 

such as beach-side developments or removal of sand (Taylor & Cozens 2010). 

Modification to nesting beach habitats may also be exacerbated by natural 

erosion associated with tidal action (Tanner 2013), sea level rise induced by 

global warming (Katselidis et al. 2014), or increase in the frequency of extreme 

weather events (IUCN 2016). Global warming may also impact natural sex 
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ratios of hatchlings (Hawkes et al. 2007) as well as increase the likelihood of 

disease outbreaks for sea turtles (IUCN 2016). 

 

In the marine environment, sea turtles may be deliberately taken, or incidentally 

caught as bycatch, by both industrial and artisanal fisheries (Spotila 2004; 

Lewison et al. 2013) with species being impacted by oceanic (Lewison, 

Freeman & Crowder 2004; Huang 2015) and coastal fisheries (Lum 2006; 

Alfaro-Shigueto et al. 2007; Witt et al. 2011). Longlines, gill nets and trawls 

pose the most likelihood of bycatch mortality. Bottom towed gears may also 

modify benthic habitats causing changes in food webs, thereby impacting 

benthic foragers (IUCN 2016). Negative interaction with vessels may result in 

serious injuries and in some instances death (Nabavi, Zare & Vaghefi 2012; 

Denkinger et al. 2013). Marine pollution, including plastics, discarded fishing 

gear, petroleum by-products, and other debris directly impact sea turtles 

through ingestion and entanglement (e.g. Follett, Genschel & Hofmann 2014; 

Schuyler et al. 2014; Wilcox et al. 2015). Chemical pollutants can weaken sea 

turtles’ immune systems, making them susceptible to pathogens (Camacho et 

al. 2013). Green turtles in particular, can be affected by Fibropapillomatosis 

which causes tumorous growths around the eyes, neck and mouth. If feeding 

and vision are restricted this may ultimately result in death of individuals (Jones 

et al. 2015). 

 

Whilst sea turtle populations have suffered severe declines over recent 

centuries, sea turtles can still play an important role in ocean ecosystems, 

having major effects on nutrient cycling and community structure in their 

foraging habitats. If sea turtles are able to attain high population densities, they 

can represent major grazers and predators in marine habitats (Bjorndal 1997). 

Green turtles help maintain structure and function of seagrass beds by grazing, 

thereby increasing seagrass productivity and nutrient content. Without grazing, 

the resultant loss of productivity can impact local food webs (McClenachan, 

Jackson & Newman 2006). Hawksbill sea turtles forage on a variety of marine 

sponges, thereby influencing the composition and distribution of species. In 

turn, this can have a positive effect on corals, releasing them from competition, 

as well as affecting overall reef benthic biodiversity (León & Bjorndal 2002). 

Similarly, as loggerhead turtles are major predators of invertebrates, they may 
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have significant influence on community structure in benthic habitats (Bjorndal 

1997). Leatherback turtles are obligate jellyfish foragers (Houghton et al. 2006) 

and are therefore a pivotal predator of jellyfish species (Gibbons & Richardson 

2009). Other species of sea turtle will also target jellyfish as prey species (e.g. 

loggerheads and olive ridley). Declines in jellyfish predators could cause large-

scale ecosystem changes that would allow jellyfish to thrive. Ultimately, this 

may negatively impact marine ecosystems (Purcell, Uye & Lo 2007). All sea 

turtles facilitating nutrient cycling from the marine environment to land by way of 

defecating or deposition of eggs on nesting beaches (Bjorndal 1997). 

 

Throughout this thesis I investigate spatial patterns of sea turtle distribution 

whilst incorporating potential factors that may impact these species, during both 

inter-nesting and post-nesting life-cycle phases. More specifically, the analyses 

presented within this thesis aim to identify spatially explicit areas that may 

benefit from focused conservation efforts, for species of conservation concern, 

where appropriate management strategies could be developed or applied. For 

post-nesting turtles, foraging and migratory data are analysed and observed 

and modelled habitat niches described. Putative threats from fisheries and 

climate change are investigated, and where appropriate, contextualised with 

data describing the extent of Marine Protected Areas (MPAs). For inter-nesting 

turtles, at-sea distributions and coastal density patterns are explored. Vessel 

Monitoring System (VMS) and Automatic Identification System (AIS) data are 

used to elucidate shipping densities; spatial patterns of threat from fisheries, 

and other maritime industries, are inferred. Aerial survey data are used to 

ascertain potential impacts to turtles on nesting beaches.The analyses 

presented here integrate the use of multiple spatial ecological tools, including 

aerial surveys, satellite tracking, remote sensing, Geographical Information 

Systems (GIS) and habitat modelling. Many of the analytical processes 

employed formulate novel methodologies as well as build upon and refine 

existing techniques. In particular, throughout this thesis the habitat modelling 

process is developed and techniques honed to provide for robust analytical 

methods.  

 

These modelling techniques incorporate spatially coincident data describing 

features of the physical and biological environment most likely to be of 
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importance in defining sea turtle habitat niche. These data can include 

environmental surfaces such as sea surface temperature (as a proxy for 

available thermal niche (Hawkes et al. 2007; Witt et al. 2007)) and bathymetric 

depth. Depth may be particularly important when investigating habitat use by 

benthically foraging sea turtles (e.g. green sea turtles), or for defining 

developmental habitats for juvenile sea turtles, or pelagic foraging habitats for 

adults (e.g. olive ridley) (Hamann et al. 2010). Physical and biological 

parameters that likely act as proxies for prey distribution and abundance will 

also influence the spatial distribution of sea turtles (Hamann et al. 2010). These 

can include oceanographic currents and eddies, sea surface temperature frontal 

activity, areas of enhanced net primary productivity, as well as localised 

features such as seamounts and shelf breaks.  

 

The objective of this thesis was to investigate the spatial ecology of air-

breathing marine vertebrates using sea turtles as a study group, with a specific 

focus on the species of loggerhead (North East Atlantic and Mediterranean), 

green (Mediterranean), olive ridley and leatherback (Southeast Atlantic) turtles. 

The IUCN Red List categorises both green and the North East Atlantic 

loggerhead sea turtles as 'endangered' (Seminoff 2004; Casale & Marco 2015), 

whilst olive ridley are identified as 'vulnerable' (Abreu-Grobois & Plotkin 2008). 

The Mediterranean loggerhead subpopulation is classified as of 'least concern', 

however, this assessment should be considered as entirely conservation-

dependent, as the current population status is the result of intense conservation 

programs (Casale 2015). The Southeast Atlantic leatherback subpopulation is 

categorised as 'data deficient' and the current population trend is unknown 

(Tiwari, Wallace & Girondot 2013). 

 

The presented analysis in Chapter I describes the observed and modelled post-

nesting habitats for female olive ridley (Lepidochelys olivacea) sea turtles 

satellite tracked from two distinct nesting regions of the west coast of central 

Africa (Gabon and Angola), over multiple nesting seasons using data collected 

by two independent research groups. Olive ridley sea turtles are considered the 

most abundant of all sea turtles (Abreu-Grobois & Plotkin 2008). Globally, 

however, there is a net decline in olive ridley populations (Abreu-Grobois & 

Plotkin 2008) which is likely attributable to incidental capture (bycatch) in 
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fisheries. The observed and modelled spatial distributions of olive ridley sea 

turtles are contextualised with tuna and billfish catch data (predominantly 

longline fisheries gear) to identify areas of potential threat from fisheries. The 

analysis revealed a considerable overlap of observed post-nesting habitat use 

for olive ridley turtles within the Angolan Exclusive Economic Zone (EEZ). 

Ecological niche models highlighted the importance of areas of long-term 

persistent frontal activity, associated with the continental shelf break, in defining 

the post-nesting habitat niche for these turtles. Furthermore, the analysis 

identified the potential for conflict with fisheries in the Angolan EEZ fisheries 

zones, particularly within the North and Central fisheries zones where both 

observed and modelled olive ridley spatial distributions, and fisheries catch, 

were at their greatest. As far as we are aware this is the first time that Ensemble 

Ecological Niche Modelling (EENM) has been applied to satellite telemetry data 

for a marine species. As such, this approach allowed for the integration of 

multiple single-algorithm model predictions and evaluation metrics, that in turn 

allowed for reduction in potential bias and increased confidence in predictions 

(Scales et al. 2015). This study also represents the largest satellite tracked 

analysis of olive ridley turtles from the Atlantic to date. 

 

Chapter II investigates previously reported size related dichotomy in post-

nesting foraging habitats for adult loggerhead (Caretta caretta) sea turtles 

satellite tracked from Cape Verde (Hawkes et al. 2006, Varo-Cruz et al. 2013). 

Tagging studies were carried out over multiple nesting seasons by two 

independent research groups. In the current study post-nesting data are 

apportioned by foraging strategy and EENMs are used to identify suitable 

present-day foraging habitats for oceanic and neritic turtles. Building on the 

methodology presented in Chapter I, forecast models  incorporating projected 

Long-Term Yearly Averaged (LTYA) Sea Surface Temperature (SST) increases 

of between 0.6º C and 2º C in accordance with Coupled Model Intercomparison 

Project Phase 5 (CMIP5) Representative Concentration Pathway (RCP) 

scenarios RCP 2.6 to RCP 8.5 (IPCC 2013) are used to investigate the effect 

that climate change may have on these habitat niche models. To investigate 

potential threat from fisheries, observed and modelled present day foraging 

habitat are contextualised with longline and trawl catch data. Analysis of 

observed habitat use revealed repeated use of oceanic habitat, over multiple 
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seasons, by all smaller loggerhead turtles, whilst larger neritic turtles occupied 

continental shelf waters. Ecological niche modelling revealed that modelled 

present day oceanic and neritic habitat niches were geographically spatially 

distinct. Forecast models incorporating oceanic temperature rises predicted that 

there would be a progressive northward shift and overall contraction in oceanic 

loggerhead turtle habitat niche. Conversely, neritic loggerhead turtle habitat 

niche were forecast to shift southwards and expand. Analysis of fisheries catch 

data highlighted that the observed and modelled habitats for oceanic and neritic 

loggerhead turtles could extensively interact with intensive fisheries activity 

within oceanic and continental shelf waters of northwest Africa. 

 

In Chapter III analysis is made of the post-nesting foraging habitats for two 

species of sea turtle in the Mediterranean: the green turtle (Chelonia mydas) 

and the loggerhead turtle (Caretta caretta), with data being collected by multiple 

independent research groups over 14 nesting seasons from five nesting 

locations in the eastern Mediterranean. Both species of sea turtle face multiple 

threats within the marine and terrestrial environments of the Mediterranean 

(Casale & Margaritoulis 2010), but because of their high mobility, protection 

beyond nesting beaches is challenging, and requires more knowledge and new 

approaches. This chapter builds on the methodology presented in Chapters I 

and II by seasonally apportioning the satellite telemetry data to provide 

seasonal habitat models, based on present day and forecast environmental 

variables, for both green and loggerhead turtles. The spatial overlap between 

these modelled foraging habitats and the current and speculative Mediterranean 

MPA network is explored. This analysis revealed shortcomings within the 

current Mediterranean MPA network that results in a lack of protection within 

foraging habitats for both species of sea turtle. Nonetheless, adoption of 

suitably designed IUCN categorised MPAs within site-specific areas identified 

by this analysis, and by designating current MPAs with appropriate IUCN 

categories, could provide appreciable gains in protection for both green and 

loggerhead turtles within the Mediterranean. 

 

The ecological niche modelling described in Chapters I, II and III have the 

potential to identify likely suitable habitats for species, but lack the ability to 

determine density of species. As a result, identification of high impact areas with 
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greatest abundance of species within the marine environment, and hence 

heightened threat, can be subjective. The fourth and fifth chapters seek to 

develop methods to calculate and identify areas of increased relative threat to 

sea turtles, whilst at the same time moving the focus of analysis from post-

nesting to inter-nesting sea turtle habitats.  

 

Chapter IV investigates the potential negative impacts to nesting leatherback 

turtles (Dermochelys coriacea) in a terrestrial beach environment. Terrestrial 

threats to sea turtles can manifest themselves in many forms, and be specific to 

the geographic location of the nesting beach (e.g. Salmon 2003; Taylor & 

Cozens 2010; Kamrowski et al. 2012; Marco et al. 2012; Tanner 2013; 

Katselidis et al. 2014). An initial assessment by Laurance et al. (2008) 

described the potential for negative interactions between nesting leatherback 

turtles and beached timber at nesting beaches along the coast of Gabon, 

central Africa. Chapter IV builds upon this initial assessment with a rigorous and 

comprehensive statistical analysis of multiple year aerial survey data over a 

nine year period (February 2003, 2007 and 2011), with the aim of describing the 

temporal persistence and spatial extent of beached timber. This analysis is 

coupled with spatial density and distribution data for nesting leatherback turtles, 

thereby allowing the calculation of a threat index for interaction between nesting 

leatherbacks and beached timber for the majority of the Gabonese coast. The 

presented analysis demonstrates that the temporal and spatial extent of 

beached timber, and hence threat to leatherbacks, described by Laurance et al. 

(2008), is persistent and has the potential to remain so. Furthermore, the 

analysis demonstrates that the threat posed by beached timber to nesting 

leatherback turtles is a national issue both within and outside the boundaries of 

Gabon's National Parks and Reserves. 

 

Multiple modelling techniques exist to build an understanding of habit niches for 

species in the marine environment (e.g. Matthiopoulos et al. 2004; Aarts et al. 

2008; Edrén et al. 2010; Pikesley et al. 2014). These methods are challenged 

by the issue of enumerating species densities. In Chapter V a novel method is 

described to model at-sea distribution and densities for inter-nesting 

leatherback sea-turtles of Gabon, using multiple year aerial survey and satellite 

telemetry data. These modelled density distributions are contextualised with 



42 

 

layers of shipping movements generated from Vessel Monitoring System (VMS) 

and Automatic Identification System (AIS) data to derive threat layers 

associated with multiple categories of industrial vessel types. This analysis 

identifies key at-sea areas in which protection for inter-nesting leatherback 

turtles urgently needs to be considered. Although the analysis focuses on a 

single species, many of the associated threats identified (fisheries, seismic 

activity, general shipping) will apply to other air-breathing mobile marine 

vertebrates within Gabonese waters. Recently announced proposals to extend 

Gabon's network of National Parks, including the designation of several new 

Marine Protected Areas (MPAs) in which commercial fishing will be excluded, 

may go some way to securing protection for species. However, this analysis 

highlights that it may be appropriate to consider other categories of threat, as 

well as seasonality, when finalising MPA boundaries and defining management 

strategies within these zones. 

 

The ongoing degradation of the global marine environment associated with 

anthropogenic impacts (Halpern et al. 2008, 2015) makes it imperative that we 

gain and build understanding of the ecology of species in crisis, as well as 

identify potential sources of threat (Hamann et al. 2010). Failure to do so can 

only hinder development and application of appropriate conservation policy and 

practice, and ultimately, may result in extinction of species, locally or globally. 

For sea turtles, this would result in the loss of their valuable services to the 

ecosystem, which in turn may have downstream deleterious effects to both 

marine and terrestrial systems.This thesis presents a suite of integrated 

chapters that investigate sea turtle spatial ecology, together with analysis of 

potential impacts, and where possible, assessment of protection for this 

species, using both post-nesting and inter-nesting data. As a result, these 

studies identify spatially explicit areas where concentrated conservation efforts 

could be applied to achieve maximum benefits. Many of these analyses 

highlight that it is imperative that marine conservation policy recognises the 

spatial extent of highly migratory species with expansive cross-border ranges. 

Furthermore, this thesis presents evidence to suggest that designation of 

mitigation measures also needs to be flexible and adaptive to accommodate 

potential range shift for species under climate change. 
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ABSTRACT 

 

Aim Knowledge and understanding of marine vertebrate spatial ecology are  

required to identify sources of threat and highlight areas for conservation. Olive 

ridley sea turtles (Lepidochelys olivacea) are in decline in some regions and 

data for the Eastern Atlantic are sparse. Here, we seek to describe observed, 

and potential, post-nesting habitats for this species in the southeast Atlantic. We 

contextualise these with fisheries catch data to identify areas of potential threat 

from fisheries interaction for this species.  

 

Methods We tracked twenty-one female olive ridley turtles, from two nesting 

sites, between 2007 and 2010.We used ensemble ecological niche modelling, 

integrated with knowledge on the physical and biological oceanographic 

environment, to identify regions where environmental variables exist that may 

be critical in defining post-nesting habitats for this species. We further integrate 

fisheries catch data to contextualise potential threat from fisheries. 

 

Results We describe key areas of observed, and potential, olive ridley turtle 

occurrence at sea, and reveal that there was considerable overlap of these 

conspecifics, from two distinct nesting regions, within the Angolan Exclusive 

Economic Zone (EEZ). With the inclusion of fisheries catch data, we highlight 

areas that have potential for conflict with fishing activities known to result in 

bycatch. 

 

Main conclusions This study demonstrates that it is imperative that marine 

conservation policy recognises the spatial extent of highly migratory species 

with expansive ranges. It also highlights that deficiencies exist in current 

knowledge of bycatch, both in gear specificity and in catch per unit effort. With 

integration of Vessel Monitoring System (VMS) data and those on fisheries 

catch, knowledge and understanding of bycatch may be improved and this will 

ultimately facilitate development of appropriate management strategies and 

long-term sustainability of fisheries and their supporting ecosystems. 

 

Keywords: bycatch, ensemble ecological niche modelling, fisheries, ocean 

fronts, spatial analysis   
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INTRODUCTION   

 

Successful conservation policy to mitigate anthropogenic impacts to 

marine vertebrates requires knowledge and understanding of their spatial 

ecology, particularly when species are highly migratory (Costa et al. 2012). 

Satellite telemetry has been used to determine oceanographic habitat of a 

number of migratory marine predators including seabirds, marine mammals, 

and sharks (Shaffer et al. 2006; Weng et al. 2007; Kappes et al. 2010; 

Robinson et al. 2012). Furthermore, satellite telemetry has been applied to 

successfully characterise anthropogenic impacts and/or define management 

strategies across a diversity of migratory marine vertebrates, including giant 

manta rays (Manta birostris), grey seals (Halichoerus grypus), albatrosses and 

pelagic fishes (Matthiopoulos et al. 2004; Hobday et al. 2011; Zydelis et al. 

2011; Graham et al. 2012).   

Sea turtles are one marine vertebrate group that has been the subject of 

extensive satellite telemetry research (Hays et al. 2003; Godley et al. 2008; 

Hazen et al. 2012). The ongoing use of satellite tracking techniques, coupled 

with habitat/environmental modelling of sea turtle movements has provided 

insight into their spatial and temporal ecology (Polovina et al. 2000; Seminoff et 

al. 2008; Shillinger et al. 2008; Hawkes et al. 2011; Silva et al. 2011; Wingfield 

et al. 2011), as well as identifying potential areas of threat and highlighting focal 

areas for conservation (Peckham et al. 2007; Silva et al. 2011; Witt et al. 2011). 

This increased knowledge has led to a shift away from a generalist migratory 

model for sea turtle species, to multiple models that recognise post-nesting 

movements that are flexible (e.g. Hawkes et al. 2006; Arendt et al. 2012a; b), 

with inter- and intraspecific variability, dichotomous foraging patterns (Schofield 

et al. 2010) and strong relationships between patterns of movements and 

resources (Plotkin 2010). 

Olive ridleys (Lepidochelys olivacea Eschscholtz 1829) are considered 

the most abundant of all sea turtles (Abreu-Grobois & Plotkin 2008), distributed 

throughout tropical and subtropical oceans, with nesting beaches occurring 

within tropical waters (excluding the Gulf of Mexico). Globally, however, there is 

a net decline in olive ridley populations which is likely attributable to incidental 

capture (bycatch) in fisheries (Abreu-Grobois & Plotkin 2008) . Their associated 

habitat has been described as both coastal (Marcovaldi 1999; Gopi et al.2006) 
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and pelagic (Luschi et al. 2003; Abreu-Grobois & Plotkin 2008), with diverse 

populations occupying different marine habitats (Polovina et al. 2004). They are 

thought to be generalist feeders, targeting prey such as jellyfish, salps, fish, 

molluscs and crustaceans, with diet varying among geographic regions 

(Bjorndal 1997). 

Olive ridley turtles have demonstrated spatial plasticity in their post-

nesting movement strategies within populations (McMahon et al. 2007; Whiting 

et al. 2007; Silva et al. 2011; Rees et al. 2012), as well as in their habitat 

selection (McMahon et al. 2007; Whiting et al. 2007; Silva et al. 2011). Their 

migratory movements have also been associated with frontal regions of cold 

core/warm core eddies (Ram et al. 2009). Data for Eastern Atlantic populations 

of olive ridley turtles are sparse and the status of stocks in this region is 

unknown due to a lack of long-term quantitative data (Abreu-Grobois & Plotkin 

2008).  

Here we describe post-nesting movements of olive ridley turtles from two 

different nesting regions from the central African Atlantic coast countries of 

Gabon and Angola. Our aims are to elucidate facets of the life history of this 

population and to delineate key areas of occurrence. Utilising available physical 

and biological oceanographic satellite derived environmental data, together with 

ensemble ecological niche modelling, we highlight areas where environmental 

conditions for olive ridley turtles may be most favourable and, with the inclusion 

of fisheries catch data, analyse the potential for conflict with this possible threat. 
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METHODS 

 

Satellite tracking data: collection and processing 

 

Platform Transmitter Terminals (PTTs) were attached to twenty-eight 

nesting olive ridley turtles at release sites in southern Gabon and northern 

Angola. These were Nyafessa (S 3.96, E 11.15; all coordinates given as 

decimal degrees: WGS 1984)  in Mayumba National Park, Gabon (n = 18), and 

Kwanda Island and Sereia Peninsula near the mouth of the Congo River (S 

6.07, E 12.22), north of  Soyo, Angola (n = 10) over the nesting seasons of  

2007/08 (Gabon n = 5), 2008/09 (Gabon n = 13, Angola n = 8) and 2009/10 

(Angola n = 2). PTTs deployed in Gabon were attached in accordance with the 

method described by Maxwell et al. (2011). PTTs deployed in Angola were 

attached using a combination of thin layers of epoxy adhesive (Power Fast, 

Powers Fasteners, NY, USA) and fibreglass cloth. Each PTT was positioned on 

the central anterior portion of the olive ridley turtle carapace, covering 

approximately the first and second vertebral scutes. PTTs deployed in Gabon, 

were either KiwiSat 101 (Gabon: n = 12, Sirtrack Ltd, Havelck North, New 

Zealand) or Telonics ST20, Model A1010 (Gabon: n = 6, Telonics Inc, Mesa, 

AZ, USA). PTTs deployed in Angola were KiwiSat (Angola: n = 10, Sirtrack Ltd, 

New Zealand). 

Data transmitted by PTTs were collected using the Argos satellite system 

(CLS 2011) and downloaded with the Satellite Tracking and Analysis Tool 

(STAT) (Coyne & Godley 2005). All positions with location accuracy class Z and 

0 were removed; a speed and azimuth filter was then applied (Freitas et al. 

2008; Witt et al. 2010). All filtering was undertaken in R (R Development Core 

Team 2008; R package: argosfilter; Freitas 2010). Location data were then 

reduced to best daily locations, herein after referred to as locations, which were 

positions with the highest quality location class recorded during a 24 h period. If 

more than one location was determined with equal quality within the 24 h period 

the first received location was retained. Where daily locations were missing, we 

interpolated these linearly, in R (R Development Core Team 2008; R package: 

trip; Sumner 2011). 

PTT derived location data were imported into the Geographical 

Information System (GIS) ArcView 9.3 (ESRI, Redlands, CA, USA). To facilitate 
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removal of inter-nesting location data we used a 25 km radius buffer (defined by 

visual assessment of inter-nesting satellite tracking data), extending from each 

release site, to define the coastal inter-nesting zone for each nesting population 

of olive ridley turtles. Data within this inter-nesting zone were excluded from this 

analysis. Seven PTTs (Gabon n = 6, Angola n = 1), failed to transmit post-

nesting movement data, possibly due to premature failure of the transmitter or 

the attachment (Hays et al. 2007). Twenty-one PTTs (Gabon n = 12, Angola n = 

9) transmitted post-nesting movement data for 167 ± 160 days (mean ± 1SD, 

range 33-686) (Figure 1a,b,c, also see Supplementary Material, Table S1).  

Location data, with interpolated positions for missing days, were 

analysed to determine areas of habitat use. We used a polygon sampling grid of 

75 x 75 km grid squares to sum all spatially coincident locations (Figure 2a). 

The same sampling grid was used to determine the number of individual turtles 

occupying a grid square (Figure 2b). Non-interpolated locations for all post-

nesting movements were analysed to determine monthly latitudinal distributions 

(Figure 3a), distance from shore (km) (Figure 3b), Sea Surface Temperature 

(SST °C) (Figure 3c) and depth (m) (Figure 3d) at best daily locations. 

 

Habitat modelling   

 

For our Ecological Niche Models (ENMs), we prescribed the study area 

to be within latitudes N 1.5º, S 18.5 and longitudes E 0.5º, E 14.0º (sea area: 

2.8 million km2) (Figure 1a). We determined spatially coincident physical and 

biological environmental data (2008-2010) using Matlab (The MathWorks, 

Natick, MA, USA) and R (R Development Core Team 2008; R package: raster; 

Hijmans & Etten 2012). These data were: bathymetric depth (m) 

(www.gebco.net), and monthly averaged daily SST (°C) 

(http://podaac.jpl.nasa.gov), Sea Surface Height (SSH) (cm) 

(http://www.aviso.oceanobs.com), Net Primary Production (NPP) (mg C m-2 

day-1) (http://orca.science.oregonstate.edu) and distance to persistent frontal 

activity (km). All data were sampled to a 9 km x 9 km resolution using bilinear 

interpolation, this being the coarsest resolution of our environmental data. 

These monthly data, for SST, SSH and NPP, were then averaged into long-term 

annual products. The resulting data surfaces provided for consistent, near 

cloud-free, images for the spatial extent of post-nesting movements. To test for 
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correlation within these data a random sample of locations (n = 1000) was 

generated and coincident environmental data extracted for each location. A 

Spearman's rank correlation test was then calculated for each paired variable. 

We used Marine Geospatial Ecological Tools  v0.8a43 (MGET; Roberts 

et al. 2010) to detect oceanic frontal activity for the study area. Frontal features 

can represent significant areas of enhanced primary productivity that in turn 

may provide areas of increased prey availability for marine vertebrates (Scales 

et al. 2015). The MGET software applies the Cayula and Cornillon (1992) Single 

Image Edge Detection (SIED) algorithm to gridded SST products and produces 

a binary response raster; a minimum frontal edge detection threshold of 0.5°C 

was used. Level 4 Operational SST and Sea Ice Analysis (OSTIA) data were 

sourced (http://podaac.jpl.nasa.gov). Daily frontal activity rasters were produced 

for 2008-2010 and these were then aggregated into yearly rasters with 

cumulative totals for daily frontal activity. These were in turn averaged into a 

long-term yearly frontal activity raster. To identify key features while reducing 

‘clutter’ from pixels generated by ephemeral frontal activity, we selected the 

upper 50% of pixel positive day values to represent the occurrence of longer-

term persistent frontal activity, from this we then determined a long-term yearly 

raster of distance to persistent frontal activity for the study area. 

For our habitat modelling we adopted an ensemble ecological niche 

modelling approach (Araújo & New 2007; Rangel & Loyola 2012). We used the 

Generalised Additive Model (GAM), Multivariate Adaptive Regression Splines 

(MARS) and MaxEnt modelling algorithms within the biomod2 package (R 

Development Core Team 2008; R package: biomod2; Thuiller et al. 2013) to 

produce ENMs to identify areas where environmental conditions for olive ridley 

turtles were most favourable (Figure 4). Our response variable was binary, 

either 'presence' described by our non-interpolated location data or randomly 

generated 'pseudo absences'; these background data characterise the 

'available' environment parameters within the study area. ENMs were run with 

the environmental variables of depth, SST, SSH, NPP and proximity to frontal 

activity, using long-term averaged yearly products. All models were run using 

10-fold cross validation with a 75/25% random spilt of the location data for 

calibration, and model testing respectively. All other modelling parameters are 

detailed in Table S2. 
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Model performance was evaluated using five metrics. (1) Area Under 

(the receiver operating characteristic) Curve (AUC); a measure of the ratio of 

true positives out of the positives vs. the ratio of false positives out of the 

negatives. (2) Cohen's Kappa (Heidke skill score) (KAPPA) and (3) True Skill 

Statistic (TSS): a measure of accuracy relative to that of random chance. (4) 

Success Ratio (SR): the fraction of the true positives that were correct and (5) 

Accuracy: the fraction of the predictions (true and false) that were correct 

(Thuiller et al. 2009; Thuiller et al. 2013). All evaluation metrics were scaled to 

the range 0 to 1. This enabled us to evaluate model uncertainties within and 

between models (Supplementary Material, Table S2). As all models performed 

with similar accuracy, these ENM projected surfaces were then combined to 

form an ensemble projection using an un-weighted average across models. 

This ensemble ENM described the relative suitability of oceanic habitat, scaled 

between 0 and 1, where 0.5 represents areas of typical habitat suitability, 0 

represents lowest suitability and 1 indicates greatest suitability (Figure 5a).   

The relative importance of the contribution to the model of each 

environmental variable, was calculated using a randomisation process. This 

procedure calculated the correlation between a prediction using all 

environmental variables and a prediction where the independent variable being 

assessed was randomly re-ordered. If the correlation was high the variable in 

question was considered unimportant for the model and conversely, if low, 

important. A mean correlation coefficient for each environmental variable was 

then calculated over multiple runs. This procedure was repeated for each 

environmental variable (Thuiller et al. 2009 ). The calculation of the relative 

importance was made by subtracting these mean correlation coefficients from 1.  

 

Fisheries Data 

 

To contextualise our observed and modelled areas of habitat use with 

fisheries activity, we obtained cumulative tuna and billfish yearly catch data 

(1995-2009) for the study area (FAO 2012a) by FAO Major Fishing Area Cell 

(FAO 2012b). As some of these area cells contained land masses we 

apportioned these data for the cell's coincident sea area (tonnes/km2); these 

were then apportioned by the coincident area of the respective Angolan 

Exclusive Economic Zone (EEZ) fishing zone and by gear type (FAO 2007) 
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(Figure 6a,b, Supplementary Material, Table S3 & S4). This was then compared 

with the spatial distribution of the turtles' observed and potential habitat. 
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RESULTS 

 

Satellite tracking 

 

Post-nesting olive ridley turtles (n = 21) were satellite tracked for 112 

days (median), 84 to 193 days (d) (inter-quartile range (IQR)) with tracked 

distances (minimum straight-line) ranging between 694 and 9182 km. There 

was no significant difference in the median post-nesting tracking durations 

between release sites (Mann-Whitney, p = 0.943) (Gabon n = 12; median 116 d, 

Angola n = 9; median = 111 d). Throughout their post-nesting movements, 

nineteen olive ridley turtles (Gabon n = 12, Angola n = 7) occupied oceanic 

waters, primarily within the 200 nautical mile EEZs of Gabon, Republic of 

Congo, Democratic Republic of Congo and Angola (Figure 1b,c). The remaining 

two turtles (Supplementary Material, Table S1, IDs: T and U) both from the 

Angolan release site (the only turtles tagged during the 2009/10 nesting 

season) departed the inter-nesting coastal zone in November 2009 and moved 

into oceanic waters outside the EEZs, with the most northerly tracked turtle's 

movements being associated with an area of seamounts (Figure 1c). Of the 

nineteen turtles that occupied oceanic EEZ waters, eighteen made post-nesting 

movements that progressed in a southerly direction (Gabon n = 11, Angola n = 

7), the remaining turtle (Supplementary Material, Table S1, ID: B) stayed in 

close proximity to the inter-nesting zone for the period of its PTT transmissions 

(n = 197 days). 

Greatest habitat use occurred within approximately 200 km of the coast, 

off the continental shelf, in depths < 2000 m, with highest densities of olive 

ridley locations consistently occurring within the Angolan EEZ (Figure 2a,b). 

Turtles occupied EEZ waters as follows: Angola 77% of all locations, Republic 

of Congo 9%, Gabon 5%, Democratic Republic of Congo 1% and Equatorial 

Guinea 1%; 7% of all locations fell outside of EEZ waters. 

Analysis of monthly latitudinal distributions showed that there was, in 

general, a progressive southerly movement in distribution post-nesting 

(December to February), followed by a slower northerly contraction (March to 

August) (Figures 3a, Supplementary Material, Figure S1). There was evidence 

for an offshore expansion in the spatial distribution of turtle locations from the 

coast for January through to May associated with an increase in depth (Figures 
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3b,d,  Supplementary Material, Figure S1); sea surface temperatures at best 

daily locations were also at their greatest throughout these months (Figure 3c). 

 

Habitat modelling 

 

Ensemble ecological niche modelling identified that a large majority of 

Angolan EEZ waters together with a small area of Gabonese/Republic of Congo 

and Democratic Republic of Congo EEZ waters potentially hosted the most 

suitable year round environmental conditions for olive ridley turtles. Areas with 

the highest average probability (> 0.9) that environmental conditions were 

favourable, predominantly occurred within 150 km of the Angolan coast in 

depths of 1290 m (638 to 1822 m) (median and inter-quartile range), with much 

of the area straddling the 1000 m isobath (Figure 5a). Proximity to persistent 

fronts was the most important contributory variable across all models (Table 

S5). No one model appreciably outperformed the others on comparison of  

individual model evaluation scores (Supplementary Material, Table S2). The 

environmental variables of depth and NPP, as well as SST and SSH, were 

highly correlated (rho = 0.76, p < 0.001 and rho = 0.84, p < 0.001 respectively); 

frontal activity was also associated with shallower depths and areas of higher 

NPP than was otherwise typically present across the study area 

(Supplementary Material, Figure S2a,b).  

 

Fisheries Data 

 

Fisheries catch data and associated gear type varied across the Angolan 

EEZ fisheries zones. Landings were greatest from the northern zone (55% of all 

landings), compared with central (29%) and southern (16%) zones with purse 

seine netting accounting for 60% of all landings (40% from the northern zone) 

compared with 33% for longlines and 7% attributable to all other gear (FAO, 

2012a,b) (Figure 6a,b, Supplementary Material, Table S4). 
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DISCUSSION 

 

As far as we are aware, this is the first time ensemble models have been 

applied to satellite tracking data for marine species and so some caution should 

be applied with interpreting results. A range of issues have been identified with 

the analysis of telemetry data associated with habitat modelling and a number 

of potential solutions proposed (Aarts et al. 2008). We attempted to overcome 

limitations within our data through a sample size large enough that animal 

movement converged upon a single foraging region, and by including only a 

single location per day. Furthermore, with the ensemble model approach, we 

were able to create a single model that integrated the strengths of multiple 

models and evaluation metrics simultaneously. Notwithstanding these caveats, 

the concordance across modelling methodologies adds confidence to our 

findings and the management recommendations that we make as a result. 

East Atlantic olive ridley turtles are understudied (Abreu-Grobois & 

Plotkin 2008); as a consequence, little knowledge exists for post-nesting 

migratory behaviour. Post-nesting movement studies from other sites have 

described plasticity in post-nesting movement strategies within populations 

(McMahon et al. 2007; Whiting et al. 2007; Plotkin 2010; Silva et al. 2011; Rees 

et al. 2012). These include spatially discordant movements within populations; 

with individuals displaying local residency and migratory movements (e.g. Rees 

et al. 2012), as well as flexibility in habitat use; with sea turtles utilising coastal, 

continental shelf and deep water habitats (e.g. McMahon et al. 2007; Whiting et 

al. 2007). 

In this study, with the exception of one individual, turtles made expansive 

migratory movements. Despite occasional movements of up to 200 km offshore, 

this 'resident' turtle remained in close proximity to the inter-nesting coastal zone, 

for the 197 days of transmission, generally within 100 km of the nesting beach. 

Two turtles (the only individuals tagged from the 2009/10 nesting period) 

migrated to deep and offshore oceanic waters (3000 to 5000 m). The most 

northerly of these two turtles was tracked west from the inter-nesting beach, 

and was associated with seamounts. The second turtle made similar southerly 

movements to those seen for the 2008/9 nesting cohort, but then continued in a 

south-westerly direction and left the Angolan EEZ. This may represent 

differences in dispersal strategies between years, as has been shown for 
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loggerhead turtles (Hawkes et al. 2006) or specialised foraging strategies of a 

few individuals as has been seen in other wide-ranging marine species 

(Maxwell et al. 2012), but the sample size is small. 

The main assemblage of eighteen turtles made post-nesting movements 

that progressed in a southerly direction and were focused within the EEZs of 

Gabon, Congo and Angola. Mapping highlighted significant habitat use by these 

turtles in waters 200 - 2000 m deep, occurring within 200 km of the coast, with 

individuals from two distinct nesting sites converging in Angolan waters. Pelagic 

foraging olive ridley sea turtles will target jellyfish and salps (Bjorndal 1997). It is  

possible that greater prey availability concentrates these turtles within this 

region. Ensemble ecological niche modelling indicated that suitable 

environmental conditions for olive ridleys were most likely to occur within the 

northern and central section of the Angolan EEZ. The most suitable 

environmental conditions being closely associated with coastal areas of 

persistent frontal activity within 150 km of the coast and in depths of 

approximately 1000 m. 

In addition to the long-term persistent frontal activity identified within this 

study, the coastal waters of the Angolan EEZ benefit from the convergence of 

the warm Angolan current from the north and the cool Benguela current from 

the south; this produces the Angola-Benguela front (Peterson & Stramma, 

1991). This frontal activity brings associated increased productivity for marine 

ecosystems and benefits Angolan fisheries. These fisheries are described by 

three zones; the northern, central and southern fisheries zones (Figure 5c, 

Supplementary Material, Table S3) (FAO 2007). Longline, purse seine, seine, 

trawl and gillnet gear types are deployed throughout all fisheries zones (Table 

S3). The industrial fishery comprises of national and foreign-flagged vessels, 

which operate through leases or in joint venture with Angolan enterprises. 

These primarily operate from four ports; Luanda, Porto Amboim, Benguela and 

Namibe, (Figure 5c) (FAO 2007). In 2002, fisheries in this region had an 

estimated total catch of 170 000 t (Metric Tonnes) from approximately 200 

vessels, mainly using purse-seine and trawl gear types (FAO 2007). However, 

neither catch nor gear type was distributed evenly across the region. Artisanal 

fisheries also contribute a significant fisheries effort. In 2002, it was estimated 

that 3000 to 4500 vessels, operating from 102 regular sites along the length of 
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the coast, landed in excess of 100 000 t (FAO 2007), though significantly, the 

spatial distribution of these fisheries is almost entirely unknown.  

Bycatch is a significant threat to most sea turtle species (Lewison et al. 

2013). However, there is a paucity of reported data for sea turtle bycatch 

(Wallace et al. 2010). Quantification of impact is hampered by gear specificity 

and operational characteristics (Casale et al. 2007). Bycatch is perceived as the 

greatest threat to Eastern Atlantic populations of olive ridley turtles (Donlan et 

al. 2010). Olive ridleys elsewhere can be negatively impacted by coastal and 

offshore trawl (Pandav et al. 1997; Gopi et al. 2006), purse seine (Abreu-

Grobois & Plotkin 2008; Amandè et al. 2010) and longline fisheries (Work & 

Balazs 2002; Polovina et al. 2003; Carranza et al. 2006). Turtles are also at a 

high risk of bycatch from small-scale, artisanal fisheries near to nesting or 

foraging grounds (Parnell et al. 2007; Peckham et al. 2007; Weir et al. 2007; 

Maxwell et al. 2011); olive ridleys have shown flexible inter-nesting behaviour 

involving extensive travelling distances (Hamel et al.2008) which may increase 

exposure to bycatch.   

Given the spatial overlap of olive ridley at-sea distribution and fisheries 

effort this species is at risk from negative interactions with both small-scale and 

industrial fisheries once they leave the nesting grounds. This may be 

particularly so within the northern and central Angolan fisheries zones. 

Increased knowledge of fishing effort and associated levels of sea turtle 

bycatch, attributable to gear types within the Angolan EEZ, would help assist 

the formulation of sustainable and effective bycatch management strategies. 

Further integration of Vessel Monitoring System (VMS) data (Witt & Godley 

2007) together with gear specificity would quantify gear specific fishing effort 

(e.g. Lee et al. 2010) and observer-based programmes could provide gear 

specific bycatch data (Lewison et al. 2004; Finkbeiner et al. 2011). These 

measures are likely to increase our understanding of the potential for impact 

from industrial fisheries. However, impacts from artisanal fisheries are likely to 

remain under assessed (Lewison et al. 2004). This is of considerable concern, 

as increased understanding of the importance of bycatch, and the spatial 

distribution of small-scale artisanal fisheries appears to be critical for the 

management of both catch species and those caught as bycatch (Stewart et al. 

2010). 
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Gear modifications and adjustment to fisheries practice may be 

appropriate to some fisheries (Gilman et al. 2009) (Supplementary Material, 

Table S6). Spatio-temporal gear and effort restrictions may also help mitigate 

impacts in seasonal olive ridley 'hotspot' areas, as may identification and 

establishment of appropriately sited Marine Protected Areas (MPAs), however, 

displacement of fishing effort from these areas may increase bycatch of turtles 

and/or other species of concern in other areas (Abbott & Haynie 2012). 

Addressing bycatch in small-scale and artisanal fisheries may be more complex 

as fishermen are more constrained to regions near to their home, and may be 

operating on a much smaller profit margin, making gear switches more difficult. 

Promotion of bycatch release programmes may be an option in some fisheries 

(Ferraro & Gjertsen 2009), and may be particularly appropriate in smaller scale 

fisheries. Advancement of ecosystem based fisheries management schemes 

that promote responsible and sustainable practice may also be a way forward 

for artisanal fisheries (Casale 2011). The implementation of any measures, 

must also consider the social and economic impact to the industry, particularly 

to subsistence artisanal fisheries (Weir et al. 2007; Lewison et al. 2013).  

Olive ridleys nest throughout the west coast of Africa, between Guinea 

Bissau and Angola, including many of the region's islands (Fretey 2000). This 

study provides an insight into the understudied post-nesting movements of olive 

ridley turtles, and represents the largest satellite tracked analysis of olive ridley 

turtles from the southeast Atlantic to date. While modelling the distribution of a 

far ranging species from two regions, this analysis highlights the coincident 

habitat use of olive ridley turtles, in relation to favourable areas. Additional 

tracking of olive ridleys from other nesting locations may determine the 

importance of these areas for other southeast Atlantic individuals. Given the 

variability in the two animals tracked in 2009/10, it is feasible that not all 

movement patterns have been captured by our study animals and additional 

years may reveal different strategies and habitats. This study also highlights the 

potential for conflict with fishing activities. Increased knowledge of gear specific 

fisheries effort and bycatch, within the Angolan, Congolese, and Gabonese 

EEZs, would help facilitate an integrated approach, both within and between 

countries, to formulate a more dynamic and effective conservation policy.  
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Figure 1. Study area (a). Post-nesting movements based on best daily locations 

for satellite tracked olive ridley turtles released from (b) Gabon (n = 12) and (c) 

Angola (n = 9). Release locations (open stars), 200 m continental shelf isobath 

(broken line). Parts (b) and (c) are drawn to the same spatial scale. EEZ 

maritime boundaries (broken line polygon used throughout all maps). Countries 

and EEZs are labelled as follows: Gabon (GAB), Republic of Congo (COG), the 

Democratic Republic of the Congo (COD) and Angola (AGO). Maps drawn to 

Geographic Coordinate System: WGS 1984. 
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Figure 2. Density mapping of olive ridley post-nesting movements (n = 21) 

based on interpolated best daily location data. Polygon sampling grid (75 x 75 

km) of (a) the sum of spatially coincident olive ridley locations and (b) the sum 

of individuals occupying a grid square. Map features are drawn and labelled in 

accordance with Figure 1. Maps drawn to Geographic Coordinate System: 

WGS 1984.  
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Figure 3. Median and inter-quartile ranges for (a) latitudinal distribution (°), (b) 

distance from shore (m), (c) monthly SST (°C) (3 year mean) and (d) depth (m). 

Data were derived from non-interpolated, best daily locations, excluding 

locations within 25 km inter-nesting zone. Box widths are proportional to the 

square-roots of the number of observations in the box, outliers are not drawn. 

Month order was determined by the start of turtle post-nesting activity. 
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Figure 4. Ecological Niche Models using the (a) Generalised Additive Model 

(GAM), (b) Multivariate Adaptive Regression Splines (MARS) and (c) MaxEnt 

modelling algorithms within the biomod2 package (R Development Core Team 

2008; R package: biomod2; Thuiller et al. 2013). ENMs were run with non-

interpolated location data and with the environmental variables of depth, SST, 

SSH, NPP and proximity to oceanic frontal activity, using long-term averaged 

yearly products. These ENMs describe the relative suitability of oceanic habitat, 

scaled between 0 and 1, where 0.5 represents areas of typical habitat suitability 

and are represented by monochrome shading as follows: white < 0.5, mid grey 

0.5-0.75, dark grey 0.75-0.9 and black > 0.9. Countries are labelled as follows: 

Gabon (GAB), Republic of Congo (COG), the Democratic Republic of the 

Congo (COD) and Angola (AGO). Maps drawn to Geographic Coordinate 

System: WGS 1984. 
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 Figure 5. (a) Ensemble ecological niche model for post-nesting movements 

based on best daily locations for olive ridley turtles (n = 21), depth and the long 

term yearly environmental variables of SST, SSH, NPP and proximity to oceanic 

frontal activity. The relative suitability of oceanic habitat is scaled between 0 and 

1, where 0.5 represents areas of typical habitat suitability, 0 represents lowest 

suitability and 1 highest suitability, is represented by monochrome shading as 

follows: white < 0.5, mid grey 0.5-0.75, dark grey 0.75-0.9 and black > 0.9. (b) 

Shows the location and spatial extent of longer-term persistent oceanic frontal 

activity, the 1000 m isobath is represented as a broken line. (c) Cumulative 

yearly post-nesting movements based on best daily locations satellite tracking 

data for all olive ridley turtles (n = 21) with key fishing ports labelled. The 

northern (NFZ), central (CFZ) and southern (SFZ) Angolan fisheries zones are 

shown as polygons with heavy weight broken black lines. Maps drawn to 

Geographic Coordinate System: WGS 1984. 
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Figure 6. Cumulative tuna and billfish catch data (1995-2009) by Fishing Area 

Cell at 5º by 5º resolution, apportioned by the cell's coincident sea area, as a 

percentage of all data, by (a) gear type and fisheries zone, Angolan EEZ 

fisheries zones identified as: northern (light grey), central (mid grey) and 

southern (dark grey), and b y (b) Angolan EEZ fisheries zone and gear type, 

gear type is identified as: longline (dark grey), purse seine (mid grey) and all 

other gear type (light grey).  
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Table S1. Summary of PTT data detailing nesting season, release site, and 

data start and end dates. Post-nesting periods, including track durations, are 

identified together with post-nesting turtle IDs and habitat classifications. 

 

Release 
site 

ID Post-nesting 
classification 

Nesting 
season 

PTT 
attachment 
date 

Post-
nesting 
start date  

Last 
received 
position 

Post-
nesting 
tracking 
duration 
(days) 

Post-
nesting 
tracking 
distance 
(km) 

Gabon A oceanic (within EEZ) 2007/08 30/10/2007 30/11/2007 10/01/2008 41 1206 

Gabon B coastal 2008/09 23/10/2008 07/01/2009 07/05/2009 120 787 

Gabon C oceanic (within EEZ) 2008/09 12/11/2008 04/12/2008 29/06/2009 207 3362 

Gabon D oceanic (within EEZ) 2008/09 13/11/2008 03/12/2008 20/09/2009 291 6261 

Gabon E oceanic (within  EEZ) 2008/09 14/11/2008 18/11/2008 10/03/2009 112 1985 

Gabon F oceanic (within  EEZ) 2008/09 14/11/2008 05/12/2008 16/08/2009 254 4582 

Gabon G oceanic (within  EEZ) 2008/09 15/11/2008 12/12/2008 01/02/2009 51 1337 

Gabon H oceanic (within  EEZ) 2008/09 15/11/2008 10/12/2008 04/03/2009 84 1149 

Gabon I oceanic (within  EEZ) 2008/09 16/11/2008 14/12/2008 16/01/2009 33 694 

Gabon J oceanic (within  EEZ) 2008/09 19/12/2008 23/01/2009 27/02/2009 35 730 

Gabon K oceanic (within  EEZ) 2008/09 19/11/2008 28/12/2008 09/07/2009 193 3505 

Gabon L oceanic (within  EEZ) 2008/09 19/11/2008 05/12/2008 14/04/2010 495 9182 

Angola M oceanic (within  EEZ) 2008/09 19/11/2008 22/12/2008 24/03/2009 92 1537 

Angola N oceanic (within  EEZ) 2008/09 21/11/2008 30/11/2008 24/01/2009 55 904 

Angola O oceanic (within  EEZ) 2008/09 26/11/2008 29/12/2008 05/07/2009 188 2416 

Angola P oceanic (within  EEZ) 2008/09 03/12/2008 04/12/2008 13/03/2009 98 1305 

Angola Q oceanic (within  EEZ) 2008/09 03/12/2008 28/12/2008 19/04/2009 111 2199 

Angola R oceanic (within  EEZ) 2008/09 14/12/2008 24/12/2008 10/11/2010 686 6880 

Angola S oceanic (within  EEZ) 2008/09 11/01/2009 13/01/2009 07/04/2009 84 2769 

Angola T oceanic (outside EEZ) 2009/10 05/05/2009 07/11/2009 01/03/2010 114 2710 

Angola U oceanic (outside EEZ) 2009/10 05/05/2009 22/11/2009 13/05/2010 172 1572 
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Table S2. Ecological Niche Modelling evaluation metrics for 10-fold cross 

validation.  Algorithm abbreviations: Generalized Additive Model (GAM), 

Multivariate Adaptive Regression Splines (MARS) and Maximum Entropy 

(MaxEnt). Key algorithm modelling parameters and evaluation metric 

descriptions are detailed at the foot of the table. 

 

 

Biomod2 modelling parameters  

One set of 5000 randomly generated 'pseudo absence' locations (background 

data), with no minimum or maximum distance to presence locations were 

generated. All locations that had missing coincident environmental data were 

removed from the analysis (background data locations that were spatially 

referenced on land). Total background data locations used in analysis: n = 

4175. 

 

Evaluation 
metric 

Run Modelling algorithm Run Modelling algorithm 

GAM MARS MaxEnt GAM MARS MaxEnt 

AUC 1 0.95 0.95 0.95 6 0.95 0.95 0.95 

KAPPA  0.78 0.78 0.78  0.78 0.76 0.78 

TSS  0.79 0.80 0.79  0.79 0.78 0.79 

SR  0.98 1.00 0.97  0.99 0.96 1.00 

Accuracy  0.89 0.89 0.89  0.89 0.88 0.89 

         

AUC 2 0.95 0.95 0.95 7 0.96 0.95 0.95 

KAPPA  0.79 0.80 0.79  0.81 0.80 0.80 

TSS  0.80 0.81 0.81  0.82 0.81 0.81 

SR  0.99 0.94 0.97  1.00 0.98 0.98 

Accuracy  0.89 0.90 0.89  0.90 0.90 0.90 

         

AUC 3 0.96 0.96 0.95 8 0.95 0.95 0.95 

KAPPA  0.79 0.79 0.80  0.79 0.77 0.78 

TSS  0.81 0.81 0.81  0.80 0.78 0.79 

SR  1.00 0.98 1.00  0.97 0.97 0.97 

Accuracy  0.90 0.90 0.90  0.90 0.89 0.89 

         

AUC 4 0.96 0.96 0.95 9 0.95 0.95 0.95 

KAPPA  0.80 0.81 0.79  0.79 0.79 0.79 

TSS  0.81 0.82 0.80  0.80 0.81 0.80 

SR  1.00 0.99 0.99  1.00 0.98 0.98 

Accuracy  0.90 0.91 0.90  0.90 0.90 0.90 

         

AUC 5 0.95 0.95 0.95 10 0.95 0.94 0.95 

KAPPA  0.78 0.76 0.78  0.77 0.78 0.78 

TSS  0.79 0.78 0.79  0.79 0.80 0.79 

SR  0.99 0.96 1.00  1.00 0.97 0.99 

Accuracy  0.89 0.88 0.89  0.89 0.89 0.89 
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The algorithm modelling parameters in biomod2 were as follows: 

GAM: package = 'mgcv', family = 'binomial', type = 's' (spline based smooth). 

MARS: package = 'mda', maximum interaction degree = 2, penalty (cost per 

degree of freedom) = 2, thresh (forward stepwise stopping threshold)  = 0.001, 

prune = (TRUE). 

MaxEnt: Run within biomod2, maximum iterations (for training) = 200, 

linear/quadratic/product/threshold/ hinge features (the transformation 

coefficients applied to each environmental variable), default prevalence = 0.5. 

 

Evaluation metrics  

AUC (Area under the curve): a measure of the ratio of true positives out of the 

positives vs. the ratio of false positives out of the negatives. 

KAPPA (Cohen's Kappa, Heidke skill score) and TSS (True Skill Statistic): 

measures of accuracy relative to that of random chance. 

SR (Success Ratio): the fraction of the true positives that were correct. 

Accuracy (fraction correct): the  fraction of the predictions (true and false) that 

were correct. 
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Table S3. Summary of Angolan marine fisheries gear types and fisheries zones 

(FAO 2007). 

 

Fishery Fishing gear Fisheries zone 

Pelagic Trawl, seine Whole coast, but mostly southern zone 

 Purse seine Whole coast, but mostly central and northern zones  

 Longline Whole coast  

Demersal Trawl, gillnet Whole coast  

Crustaceans Trawl Central zone 

 Trap Central and southern zones 

 

Approximate latitudinal banding of fisheries zones: 

Northern zone: Cabinda to Luanda (S 5° to S 9.25°) 

Central zone: Luanda to Benguela/Lobito (S 9.25° to S 13°) 

Southern zone: Benguela/Lobito to the Cunene River (S 13° to S 17.25°) 
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Table S4. Cumulative tuna and billfish catch data (1995-2009) by FAO Major 

Fishing Area Cell (FAO 2012a; 2012b) at 5º by 5º resolution. These data were 

apportioned for the cell's coincident sea area, by fisheries zone and gear type. 

Source data: http://www.fao.org/figis/geoserver/tunaatlas/ 

 

 

Cumulative tuna and billfish catches by fisheries gear (1995-2009) 

 longline  purse seine other gear all gear 

Fisheries 

zone 

tonnes/ 

km
2
 

% of 

total 

tonnes/ 

km
2
 

% of 

total 

tonnes/ 

km
2
 

% of 

total 

tonnes/ 

km
2
 

% by 

zone 

Northern  0.07 12.7 0.22 40.0 0.01 1.8 0.30 55 

Central  0.05 9.1 0.09 16.3 0.02 3.6 0.16 29 

Southern  0.06 10.9 0.02 3.6 0.01 1.8 0.09 16 

     Total all gear 0.55  
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Table S5. Ecological Niche Modelling variable importance for 10-fold cross 

validation. 

 

Model Run Depth Dist. 
to 
front 

NPP SSH SST Run Depth Dist. 
to 
front 

NPP SSH SST 

GAM 1 0.03 0.44 0.05 0.20 0.29 6 0.03 0.44 0.05 0.20 0.29 

MARS  0.00 0.54 0.15 0.20 0.11  0.00 0.56 0.11 0.17 0.15 

MaxEnt  0.04 0.44 0.18 0.17 0.18  0.06 0.44 0.17 0.15 0.18 

mean var. imp.  0.02 0.47 0.13 0.19 0.19  0.03 0.48 0.11 0.18 0.21 

             

GAM 2 0.03 0.44 0.05 0.20 0.29 7 0.03 0.44 0.05 0.20 0.29 

MARS  0.00 0.40 0.22 0.25 0.13  0.00 0.50 0.19 0.20 0.11 

MaxEnt  0.06 0.42 0.18 0.16 0.18  0.05 0.45 0.18 0.16 0.17 

mean var. imp.  0.03 0.42 0.15 0.20 0.20  0.02 0.46 0.14 0.18 0.19 

             

GAM 3 0.03 0.44 0.05 0.20 0.29 8 0.03 0.44 0.05 0.20 0.29 

MARS  0.00 0.54 0.13 0.18 0.15  0.00 0.50 0.24 0.22 0.04 

MaxEnt  0.06 0.43 0.18 0.15 0.18  0.04 0.42 0.19 0.16 0.19 

mean var. imp.  0.03 0.47 0.12 0.18 0.21  0.02 0.45 0.16 0.19 0.17 

             

GAM 4 0.03 0.44 0.05 0.19 0.30 9 0.03 0.44 0.05 0.19 0.29 

MARS  0.00 0.53 0.13 0.18 0.15  0.00 0.50 0.13 0.28 0.09 

MaxEnt  0.05 0.43 0.18 0.16 0.18  0.05 0.41 0.19 0.17 0.18 

mean var. imp.  0.03 0.47 0.12 0.18 0.21  0.03 0.45 0.12 0.21 0.19 

             

GAM 5 0.03 0.44 0.05 0.20 0.29 10 0.03 0.44 0.05 0.20 0.29 

MARS  0.01 0.53 0.17 0.21 0.08  0.00 0.52 0.19 0.19 0.10 

MaxEnt  0.06 0.44 0.17 0.15 0.18  0.06 0.42 0.18 0.16 0.19 

mean var. imp.  0.03 0.47 0.13 0.19 0.18  0.03 0.46 0.14 0.18 0.19 

  mean of means variable importance 0.027 0.461 0.131 0.188 0.193 

 standard deviation of the mean 0.003 0.016 0.014 0.012 0.011 

 

Relative importance of the contribution of an environmental variable is 

calculated using a randomisation process. This procedure calculates the 

correlation between a prediction using all environmental variables and a 

prediction where the independent variable being assessed is randomly re-

ordered. If the correlation is high the variable in question is considered not 

important for the model and conversely, if low, important. A mean correlation 

coefficient for each environmental variable is then calculated over multiple runs. 

This is repeated for each environmental variable. The calculation of the relative 

importance is made by subtracting these mean correlation coefficient from 1 

(Thuiller et al. 2009 ). 
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Table S6. Gear modifications and adjustment to fisheries practice to reduce 

turtle bycatch (Gilman et al. 2009). 

 

Fishery Principal mitigation measures 

Pelagic longlines and bottom set longlines Use circle hooks 

 Set hooks deeper avoiding the upper water column* 

 Reduce gear soak time 

 Use fish as bait, not squid 

 Single hook bait, do not thread hook through the bait 

Purse seine Avoid encircling turtles 

 Monitor Fish Aggregating Devices (FADs)  

 Recover FADs when not in use 

 Modify FADs to reduce/eliminate entanglement risk 

Trawl Use Turtle Excluder Devices (TEDs) 

Set gillnets and drifting gillnets Set nets perpendicular to the shore to reduce interactions with 
nesting females 

 Set nets deeper, avoid the upper water column 

 Use low profile nets 

 Eliminate the use of 'tie-down' ropes 

 
* There is the potential for the interaction rate to be much lower with deeper set nets, although the mortality rate for 
those turtles that are caught is higher  
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Figure S1. Monthly satellite tracked post-nesting movements for olive ridley 

turtles derived from non-interpolated, best daily locations. Months are ordered 

from November (a: top left) to October (l: bottom right). Month order was 

determined by the start of turtle post-nesting activity. The release sites for 

tagged turtles are shown as open stars. Maps drawn to Geographic Coordinate 

System: WGS 1984. 
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Figure S2. Median and inter-quartile ranges for (a) depth (m), (b) NPP (mg C  

m-2 day-1), (c) SSH (cm) and (d) SST (°C) for areas of persistent frontal activity 

(sample n = 887) and the entire study area (sample n = 1000). 
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ABSTRACT  

 

The integration of satellite telemetry, remotely sensed environmental data, and 

habitat/environmental modelling has provided for a growing understanding of 

spatial and temporal ecology of species of conservation concern. The Republic 

of Cape Verde comprises the only substantial rookery for the loggerhead turtle 

(Caretta caretta) in the eastern Atlantic. A size related dichotomy in adult 

foraging patterns has previously been revealed for adult sea turtles from this 

population with a proportion of adults foraging neritically, whilst the majority 

forage oceanically. Here we describe observed habitat use and employ 

ecological niche modelling to identify suitable foraging habitats for animals 

utilising these two distinct behavioural strategies. We also investigate how these 

predicted habitat niches may alter under the influence of climate change 

induced oceanic temperature rises. We further contextualise our niche models 

with fisheries catch data and knowledge of fisheries 'hotspots' to infer threat 

from fisheries interaction to this population, for animals employing both 

strategies. Our analysis revealed repeated use of coincident oceanic habitat, 

over multiple seasons, by all smaller loggerhead turtles, whilst larger neritic 

foraging turtles occupied continental shelf waters. Modelled habitat niches were 

spatially distinct, and under the influence of predicted sea surface temperature 

rises, there was further spatial divergence of suitable habitats. Analysis of 

fisheries catch data highlighted that the observed and modelled habitats for 

oceanic and neritic loggerhead turtles could extensively interact with intensive 

fisheries activity within oceanic and continental shelf waters of northwest Africa. 

We suggest that the development and enforcement of sustainable management 

strategies, specifically multi-national fisheries policy, may begin to address 

some of these issues; however, these must be flexible and adaptive to 

accommodate potential range shift for this species. 

 

Keywords: bycatch, climate change, ensemble ecological niche modelling, 

fisheries, foraging, spatial analysis  
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INTRODUCTION   

 

Continued advancement in marine vertebrate tagging and tracking 

methodologies have allowed for growing insight into movement patterns and 

habitat use across a broad spectrum of mobile marine taxa (Hazen et al. 2012). 

The past decade has seen a proliferation in studies that satellite track marine 

vertebrates (Hart & Hyrenbach 2009). The integration of telemetry and remotely 

sensed environmental data, coupled with species/ecological niche modelling 

has provided for further understanding of spatial and temporal ecology of 

terrestrial and marine species on both a broad and fine spatial scale 

(e.g. Razgour et al. 2011, Gschweng et al. 2012, Matawa et al. 2012, Pikesley 

et al. 2013); multi-scale models, that incorporate animal behaviour, may further 

elucidate behavioural patterns (Lundy et al. 2012). Increased perception of 

species spatio-temporal distributions may inform managers about where and 

when to best place what are often limited resources to achieve effective 

conservation (Hart et al. 2012). However, designation of conservation 

recommendations becomes more challenging as animal space use becomes 

greater, more diverse or more unpredictable (Hamann et al. 2010), 

necessitating the involvement of a greater number of stake-holders and more 

dynamic management.  

Sea turtles are a group of marine vertebrates that have been extensively 

satellite tracked, with all seven species having been tracked from multiple sites 

(Godley et al. 2008, Pendoley et al. 2014); many studies have identified and 

described hitherto unrecognised foraging patterns, migratory routes and habitat 

use. Loggerhead sea turtles (Caretta caretta Linnaeus 1758) are perhaps the 

best studied species, having been comprehensively researched over several 

decades through multi-disciplinary approaches including, flipper tagging (Arendt 

et al. 2012a, Rees et al. 2013), tracking (Rees et al. 2010, Hawkes et al. 2011, 

Arendt et al. 2012b), genetic (Carreras et al. 2011, Monzón-Argüello et al. 2012) 

and stable isotope (Eder et al. 2012, Pajuelo et al. 2012, Thomson et al. 2012) 

studies.  

A neritic, coastal model for adult loggerhead sea turtle post-nesting 

migratory behaviour was established some decades ago (Bolten & Witherington 

2003); however, recent tracking (Hatase et al. 2002, Hawkes et al. 2006, 

McClellan & Read 2007, Mansfield et al. 2009, Rees et al. 2010) has 
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demonstrated that there is considerably more plasticity than previously thought 

and some loggerhead turtles remain in the oceanic zone (depths > 200 m) as 

adults, only returning to coastal waters during the breeding season. Dichotomy 

in adult foraging patterns has been revealed for both female and male 

loggerheads from the Republic of Cape Verde (Hawkes et al. 2006, Varo-Cruz 

et al. 2013). This may reflect a conditional strategy (Hatase et al. 2013), with 

smaller turtles utilising oceanic habitats, where they may forage epipelagically 

around mesoscale fronts, exploiting profitable foraging opportunities resulting 

from physical aggregation of prey (Scales et al. 2015), and larger turtles utilising 

neritic habitats (although the driver behind this strategy is unknown). Stable 

isotope analysis suggests that oceanic foragers dominate the Cape Verde adult 

female population, although neritic foragers may have higher fitness and may 

be older than oceanic foragers (Eder et al. 2012). 

Here we combine data from Hawkes et al. (2006) and Varo-Cruz et al. 

(2013) together with previously unpublished telemetry data, for both adult male 

and female loggerhead turtles from Cape Verde to: (i) describe observed habitat 

use in oceanic and neritic foraging zones over multiple years; (ii) model likely 

suitable foraging habitats using Ensemble Ecological Niche Models (EENMs); 

(iii) identify key environmental drivers of distribution and (iv) predict how 

distribution may alter under future climate change scenarios. Finaly, (v) we 

integrate available longline and trawl fisheries catch data, apportioned by 

Exclusive Economic Zones (EEZs), to identify areas that have potential for 

conflict with fishing activities known to pose a significant threat (bycatch) to sea 

turtles (Lewison et al. 2013). We propose this novel approach, integrating 

satellite telemetry, ensemble ecological niche modelling and information on 

anthropogenic threats (fisheries and climate change), has the potential for use 

in management planning and practice for other widely dispersed species with 

complex behaviours. 

  



101 

 

METHODS  

 

Satellite tracking data: collection and processing 

 

Platform Transmitter Terminals (PTTs) were attached to thirty-two adult 

loggerhead turtles (male = 4, female = 28) within the Cape Verde archipelago 

over the nesting seasons of 1999 (n = 4), 2004 (n = 10), 2005 (n = 3) and 2006 

(n = 15). Method of turtle capture, transmitter type and process of attachment 

are detailed in Hawkes et al. (2006) and Varo-Cruz et al. (2013). All turtles were 

released at Boa Vista (Figure 1) except turtle ID 7 which was released at Sao 

Vicente (see metadata in Supplementary Material, Table S1). Satellite telemetry 

data were collected using the Argos satellite system (CLS 2011) and 

downloaded with the Satellite Tracking and Analysis Tool (STAT) (Coyne & 

Godley 2005). All locations with accuracy class Z and 0 were removed and a 

speed and azimuth filter applied (Freitas et al. 2008, Witt et al. 2010); filtering 

was undertaken in R (R Development Core Team 2008; R package: argosfilter 

(Freitas 2010)). Six PTTs failed to transmit location data. Filtered location data 

were then reduced to Best Daily Locations (BDLs), which were positions with 

the highest quality location class recorded during a 24 h period. If more than 

one location was determined with equal quality within the 24 h period the first 

received location was retained. These data were used as our response variable 

in our EENMs (see Habitat modelling). Where daily locations were missing, we 

interpolated these linearly, in R (R Development Core Team 2008; R package: 

trip (Sumner 2011)). These data were used to describe observed habitat use 

and to determine a relative scale of spatial habitat use (see Habitat use). 

Location data were imported into the Geographical Information System 

(GIS) ArcMap 10 (ESRI, Redlands, USA http://www.esri.com). These data were 

then assigned to either neritic or oceanic foraging strategies as outlined in 

Hatase et al. (2002) and Hawkes et al. (2006). As such, neritic foraging turtles 

made focused migrations to continental shelf waters (as defined by the 200 m 

isobath) where they remained resident. Oceanic foragers displayed no such 

tendency and were rarely located within depths < 200 m (Figure 1 & 

Supplementary Material, Figure S1).  
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Habitat use 

  

To describe observed habitat use we used a hexagonal grid (edge to 

edge distance of 100 km, hexagon area 8660 km2), to sum the total number of 

individual turtles that had occupied a single grid hexagon for the period of our 

study. This grid resolution was iteratively determined to provide the optimum 

cell size, being a balance between too many polygon samples and therefore 

akin to the original raw data, and too few polygon samples with the density of 

the locations over-smoothed. Minimum Convex Polygons (MCPs) were used to 

determine the total area (km2) occupied by each oceanic and neritic foraging 

turtle. To enable comparison of spatial use between oceanic and neritic turtles 

we divided these MCPs by the respective number of interpolated daily locations 

per turtle to provide a relative scale of spatial habitat use (km2 day-1). 

 

Habitat modelling  

 

For our habitat suitability models we adopted an ensemble ecological 

niche modelling approach (Araújo & New 2007, Rangel & Loyola 2012, Pikesley 

et al. 2013). We prescribed the modelling area to be within latitudes N 35.5º, S 

0.5º, and longitudes W 35.5º, E 10.5º (WGS84) as this extent generously 

bounded all location data within our study area (sea area: 10.1 million km2). 

We extracted spatially coincident physical and biological environmental 

data (2004-2009) using R (R Development Core Team 2008; R package: raster 

(Hijmans & Etten 2012)) from a number of datasets. These data were: (a) 

bathymetric depth (m) (www.gebco.net), (b) monthly averaged MODIS L3 night-

time Sea Surface Temperature (SST: °C) (http://podaac.jpl.nasa.gov), (c) Net 

Primary Production (NPP: mg C m-2 day-1) (http://orca.science.oregonstate.edu) 

and (d) sea surface current velocity (m s-1) (http://hycom.org). Monthly data, for 

SST, NPP and surface current velocity were then averaged into Long-Term 

Yearly Averaged (LTYA) products. 

We used Marine Geospatial Ecological Tools v0.8a49 (MGET; (Roberts 

et al. 2010) to model SST oceanic frontal activity for the study area. Frontal 

features can represent significant areas of enhanced primary productivity that in 

turn may provide areas of increased prey availability for marine vertebrates 

(Scales et al. 2015). To do this we sourced daily MODIS L3 night-time SST (°C) 
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(http://podaac.jpl.nasa.gov) to create SST frontal activity rasters for each day 

between 2004-2009. The MGET software applies the Cayula and Cornillon 

Single Image Edge Detection (SIED) algorithm (Cayula & Cornillon 1992) to 

gridded raster products and produces a binary response raster; a minimum 

frontal edge detection threshold of 0.5°C (SST) was used (Roberts et al. 2010). 

These daily frontal activity rasters were then aggregated into yearly rasters with 

cumulative totals for daily frontal activity; these were in turn averaged into a 

long-term yearly frontal activity raster.  

All environmental data surfaces were sampled to a 9 x 9 km resolution 

using bilinear interpolation (the coarsest resolution of our environmental data). 

To test for correlation within these data coincident environmental data were 

extracted for a random sub-sample of locations (n = 200). A Spearman's rank 

correlation test was then calculated for all unique combinations of 

environmental variables. 

We used the Generalised Linear Model (GLM), Multivariate Adaptive 

Regression Splines (MARS) and MaxEnt modelling algorithms within the 

biomod2 package (R Development Core Team 2008; R package: biomod2 

(Thuiller et al. 2013)) to produce Ecological Niche Models (ENMs) to identify 

favourable oceanic and neritic foraging areas. Our response variables were 

binary, either 'presence' described by our non-interpolated BDL data 

apportioned between oceanic and neritic foragers, or randomly generated 

'pseudo absences'; these background data characterised the 'available' 

ecological niche within the study area. ENMs were run with the environmental 

variables of depth, SST, NPP, SST frontal activity and surface current velocity 

using LTYA products.  

All models were run using 10-fold cross validation with a 75/25% random 

spilt of the location data for calibration, and model testing respectively. All other 

modelling parameters are detailed in Table S2 (in Supplementary Material). 

Model performance was evaluated using five metrics; to evaluate model 

uncertainties within and between models all evaluation metrics were scaled to 

the range 0 to 1 (Supplementary Material, Table S2). Model evaluation metrics 

were concordant across models, therefore, we combined our ENMs to form 

ensemble projections using an un-weighted average across models. These 

EENMs described the Relative Suitability (RS) of neritic and oceanic foraging 

habitats, scaled between 0 and 1, where 0.5 represents areas of typical habitat 
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suitability, 0 represents lowest suitability and 1 indicates greatest suitability. The 

relative importance of each environmental variable to the model was calculated 

using a randomisation process. This procedure calculated the correlation 

between a prediction using all environmental variables and a prediction where 

the independent variable being assessed was randomly re-ordered. If the 

correlation was high the variable in question was considered unimportant for the 

model and conversely, if low, important. A mean correlation coefficient for each 

environmental variable was then calculated over multiple runs  (Supplementary 

Material, Table S3). This was repeated for each environmental variable (Thuiller 

et al. 2009). The calculation of the relative importance was made by subtracting 

these mean correlation coefficients from 1. To investigate spatial autocorrelation 

within model residuals we calculated Moran's I coefficients (Dormann et al. 

2007) for each of our EENMs within ArcMap 10. 

To investigate the potential effect of oceanic temperature rise on our 

EENMs we applied increases of between 0.6º C and 2º C to our LTYA SST 

environmental data surface. These values represent the minimum and 

maximum projected global oceanic surface (top 100 m) temperature increases 

for the end of the 21st century (2081-2100) relative to 1986-2005, based on the 

Coupled Model Intercomparison Project Phase 5 (CMIP5) Representative 

Concentration Pathway (RCP) scenarios RCP 2.6 and RCP 8.5 (IPCC 2013). 

 

Fisheries Data  

 

Bycatch is a significant threat to most sea turtle species (Lewison et al. 

2013). Therefore, to contextualise our observed and modelled areas of habitat 

use for oceanic and neritic foraging turtles with industrial/commercial fisheries 

activity within the EEZs of our study area, we sourced spatio-temporally 

referenced fisheries catch data. First, we downloaded yearly cumulative catch 

data for all marine fish species (excluding tuna and billfish: e.g. tuna, marlin, 

swordfish) by Fishery Committee for the Eastern Central Atlantic (CECAF) 

Major Fishing Area 34 statistical sub-area and division (Supplementary Material, 

Figure S2) using FishStatJ (FAO 2013a). These data were for all 

industrial/commercial fisheries gear types (i.e. trawls, purse seine, pole and 

line). We excluded tuna and billfish species from these data as this database 

did not apportion tuna and billfish fisheries catch by sub-area or division. 
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Second, we sourced yearly cumulative longline tuna and billfish catch data 

(1995-2009) by Food and Agriculture Organization of the United Nations (FAO) 

Major Fishing Area Cell at 5º by 5º resolution for the Eastern Central Atlantic 

Major Fishing Area 34 (FAO 2013b). These data were for longline fisheries only 

and excluded catch attributable to other tuna and billfish fisheries gear types 

such as pole and line or purse seine nets.  

We expressed catch data as tonnes km-2 per EEZ. As some FAO data 

cells contained land we first corrected catch data for coincident sea surface 

area within each cell (FAO cell tonnes km-2). To calculate catch for each EEZ 

(tonnes km-2/EEZ) we: (1) multiplied FAO cell tonnes km-2 by the coincident 

EEZ area (tonnes per EEZ-FAO cell intersect), (2) as EEZs encompassed 

multiple FAO data cells we then summed this for all unique EEZs and then, (3) 

divided the result by total unique EEZ area. This was then compared with the 

spatial distribution of the turtles' observed and modelled oceanic and neritic 

habitats. 
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RESULTS 

 

Satellite tracking 

 

Twenty-six PTTs transmitted location data for 294 ± 249 days (mean ± 

1SD, range 7 - 1125) for two male and 24 female loggerhead turtles. Six PTTs 

failed to transmit foraging location data; reasons may include premature failure 

of the transmitter or the attachment (Hays et al. 2007). In one case, the PTT 

failed to transmit after the female turtle was reported as being captured by a 

fishing boat on her first day of migration (Hawkes, pers. obs.). We classified 16 

turtles as oceanic foragers and five turtles as neritic foragers; only eight oceanic 

BDLs out of 3269 were located within continental shelf waters (Figure 1). Four 

turtles were unassigned to a foraging strategy due to limited transmission 

durations 22 ± 13 days (mean ± 1SD, range 7 - 38). Finally, one male 

(Supplementary Material, Table S1, ID: 10) exhibited a greater degree of 

plasticity than females (Varo-Cruz et al. 2013), foraging neritically for three 

months (July to October, 2006) and subsequently oceanically (December, 2006 

to October, 2007). These data were split and classified neritic/oceanic in 

subsequent habitat use/modelling analyses. 

There was no significant difference in the median tracking durations 

between foraging strategies (Wilcoxon W = 42, p = 0.90: oceanic n = 16 (female 

n = 15, male n = 1), median = 286 d; neritic n = 5 (female n = 5), median = 313 

d). There was a significant difference in the median curved carapace length 

(CCL) for female turtles between foraging strategies, with smaller turtles 

foraging oceanically and larger turtles foraging neritically (Wilcoxon W = 0, p < 

0.05: oceanic n = 15, median = 83 cm; neritic n = 5, median 97 cm) 

(Supplementary Material, Table S1). Oceanic loggerheads primarily foraged 

within the EEZs of Cape Verde, Mauritania, Senegal and Gambia; whereas 

neritic loggerheads foraged in continental shelf waters within the EEZs of 

Mauritania, Guinea-Bissau, Guinea-Conakry and Sierra Leone (Figure1). Data 

for migration routes to these neritic foraging grounds indicated that turtles were 

also likely to traverse the EEZs of Cape Verde, Senegal and Gambia. Our 

telemetry data also indicated that a further two female turtles were captured 

during the period of this study; both turtles were oceanic turtles returning to 

Cape Verde. Bycatch for these turtles was established by a marked increase in 
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the frequency and accuracy of daily satellite uplinks 216 and 627 days after 

deployment, and by analysis of track trajectories that culminated on land where 

the PTT transmitted from a fixed location for several weeks. All three turtles that 

were bycaught were captured within Cape Verdean EEZ waters. 

 

Habitat use  

 

Oceanic turtles occupied large diffuse areas of approximately 177 325 

km2 whilst foraging (median; inter-quartile range (IQR): 145 514 to 292 469 

km2), and were predominantly located in water with a median depth of 3278 m 

(IQR: 2891 to 3629 m) with median distance from shore of 238 km (IQR: 151 to 

325 km) (Figures 1 & 2). Neritic turtles remained within the continental shelf 

waters in median depth of 62 m (IQR: 30 to 94 m) and median 32 km from 

shore (IQR: 24 to 103 km) (Figures 1 & 2). Foraging patterns for neritic turtles 

were confined to more distinct areas (median: 499 km2, IQR: 196 to 1240 km2). 

There was some evidence for overlap in habitat use within the same year 

among individuals (19.7 km2, n = 2 turtles; 1 male, 1 female). Our relative scale 

of habitat use indicated that oceanic turtles utilised a far greater sea area on a 

daily basis (166 km2 day-1) than did neritic turtles (5 km2 day-1). 

 

Habitat modelling 

 

Our oceanic EENM (RS ≥ 0.5 sea area 788 577 km2) overlapped with 

51% of the total oceanic area (water deeper than 200 m) within the EEZs of 

Cape Verde, Western Sahara, Mauritania, Senegal and Gambia (Figure 3). 

EEZs in order of greatest overlap (coincident coverage) of oceanic EENM are 

shown in Table 1. Turtles occupied the entire area that the model deemed 

suitable. Sea surface temperature and NPP were the most important 

contributory variables to these ENMs (Supplementary Material, Table S3) with 

mean Relative Importance of the Contribution to the model Coefficients (RICC) 

of 0.47 (SST) and 0.28 (NPP) respectively. Ocean depth was the least 

important contributory variable (RICC 0.00). There was no significant correlation 

between SST and NPP. 

Our neritic EENM (RS ≥ 0.5 sea area 197 371 km2) overlapped with 52% 

of West African continental shelf waters from Western Sahara to Equatorial 
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Guinea (Figure 3). EEZs in order of greatest coincident coverage of neritic 

EENM are shown in Table 1. The EENM identified neritic foraging areas that 

were not used by our tracked neritic foraging turtles; however, these areas were 

not continuous. Depth and NPP were the most important contributory variables 

to these ENMs (Supplementary Material, Table S3) with mean RICCs of 0.40 

(depth) and 0.36 (NPP) respectively. Sea surface temperature was the third 

most important contributory variable (RICC 0.16). Within the study area NPP 

was greatest within continental shelf waters (Supplementary Material, Figure 

S3). Moran's I coefficients indicated that there was no spatial autocorrelation 

within our models' residuals (oceanic EENM: z = 1.11, p = 0.27; neritic EENM: z 

= 1.37, p = 0.17). There was minimal overlap between oceanic and neritic 

EENMs; 1752 km2 (0.2% of combined oceanic and neritic sea areas). 

Forecast models incorporating oceanic temperature increases of 0.6º C, 

1º C and 2º C, indicated that there would be a progressive northward shift in the 

niche suitable for oceanic turtles with an associated reduction in suitable habitat 

with a RS ≥ 0.5 (Figure 4). Forecast sea areas that would remain suitable for 

oceanic loggerhead turtles, decreased by 6% (EENM + 0.6º C), 11% (EENM + 

1º C) and 20% (EENM + 2º C) respectively. Conversely, forecast models 

indicated that the niche suitable for neritic turtles would expand to the south 

within the confines of the 200 m isobath to provide a near continuous corridor of 

suitable coastal waters habitat to the south of West Africa. Forecast neritic sea 

areas increased by 40% (EENM + 0.6º C), 57% (EENM + 1º C) and 72% 

(EENM + 2º C) respectively. There was minimal overlap between oceanic and 

neritic forecast EENMs within the EEZs of Mauritania and Senegal across all 

modelling scenarios; EENM + 0.6º C: 0.5% of combined oceanic and neritic sea 

areas, EENM + 1º C: 0.7% and EENM + 2º C: 1 %. 

 

Fisheries Data 

 

Catch data for all species (excluding tunas) was greatest throughout the 

coastal EEZs of Morocco to Guinea-Bissau. Longline tuna fisheries catch varied 

across EEZs but was greatest in the EEZs of Western Sahara, Cape Verde, 

Mauritania, Guinea-Conakry, Sierra Leone, and Liberia (Figure 5).  

Observed and modelled oceanic loggerhead turtle habitats were 

coincident with greatest longline fisheries catch data within the EEZs of Western 
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Sahara, Cape Verde and Mauritania, and with all other gear types (i.e. trawls, 

purse seine, pole and line) within the coastal EEZs of Western Sahara, 

Mauritania, Senegal, Gambia and Guinea-Bissau. 

Observed neritic loggerhead turtle habitats were coincident with greatest 

longline fisheries within the EEZs of Mauritania, Guinea-Bissau, Sierra Leone 

and Guinea-Conakry, and with all other gear types within coastal EEZs of 

Mauritania, Guinea-Bissau and Sierra Leone. Modelled neritic loggerhead turtle 

habitats were coincident with greatest catch from all other gears throughout the 

coastal EEZs of Mauritania to Sierra Leone. 
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DISCUSSION  

 

The Republic of Cape Verde hosts a globally significant rookery of 

loggerhead turtles and the only substantial rookery in the eastern Atlantic 

(Marco et al. 2012), which is genetically distinct from other Atlantic and 

Mediterranean units (Monzón-Argüello et al. 2010).  

Our modelling and analysis revealed that smaller, oceanic adult 

loggerhead turtles from the Cape Verde islands forage across almost the entire 

extent of suitable habitat while larger, neritic turtles foraged within discrete 

areas, which comprised only a limited portion of total suitable habitat. However, 

neritic turtle sample size was small and spatial/temporal patterns may not be 

representative of the wider population. There was no overlap in observed 

habitat use between foraging strategies, and minimal overlap between predicted 

oceanic and neritic niche models. Neritic turtles foraged exclusively within 

continental shelf waters bounded by the 200 m isobath; depth was the most 

important contributory variable to our neritic EENM. Analysis of oceanic foraging 

movements showed the opposite; turtles were only located 8 out of 3269 times 

over waters shallower than 200 m (Supplementary Material, Figure S1).  

The driver(s) behind the apparent size/age related foraging dichotomy of 

adult Cape Verdean loggerhead turtles have still not been elucidated. Eder et 

al. (2012) suggested that there may be an ontogenetic shift of use to neritic 

habitats with age, with this shift due to a higher accumulated probability of 

detecting continental shelf waters with time. Hatase et al. (2013) additionally 

suggested that a conditional strategy may maintain this dichotomy, where 

individual turtles can switch between selected habitats i.e. oceanic vs. neritic, in 

response to differing environmental conditions. Dive data collected by Hawkes 

et al. (2006) indicated that larger Cape Verdean neritic turtles likely perform 

deeper and longer dives than smaller oceanic turtles, this being consistent with 

what is known for other species (Mori 2002). In pelagic waters foraging 

loggerhead turtles likely target jellyfish and salps, whilst in shallower, neritic 

waters, they may forage opportunistically on benthic species (Bjorndal 

1997).This increased body size may therefore confer a greater ability to forage 

on benthic species (Hawkes et al. 2006). Regardless of the drivers behind the 

dichotomy it is clear from our modelling that depth is critical in defining the 
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location of suitable foraging habitats for neritic turtles, and that selection of 

these habitats may be associated with increased diving capacity.  

Sea surface temperature can be critical in defining the ecological niche of 

loggerhead turtles (Polovina et al. 2004, Hawkes et al. 2007). Our forecast 

oceanic EENMs indicated that under temperature rises of between 0.6º C and 

2º C there would be a progressive northward shift and overall contraction in 

oceanic loggerhead turtle habitat niche. Conversely, our forecast neritic EENMs 

indicated that neritic loggerhead turtle habitat niche would shift southwards, 

primarily within the confines of the 200 m isobath, and expand. For neritic turtles 

this may eventually facilitate the creation of a near continuous corridor of 

suitable coastal waters habitat along the west African coast. It is likely that the 

presence of the southward flowing Canary Current to the north of our study area 

(Supplementary Material, Figure S4), with associated coastal cold upwellings 

(Marchesiello et al. 2004), restricts the northward shift in forecast neritic habitat 

and the east/west extent of the forecast oceanic habitat. In addition to these 

shifts in habitat niche, an increase in temperature may also impact hatching 

success (Pike 2014). Given the geographic isolation of the Cape Verdean 

rookery, and the philopatric nature of the species, this may further negatively 

impact Cape Verdean loggerheads. 

Our forecast EENMs do not take into account any potential changes to 

other contributory variable within our models, or cumulative impacts. For 

example; equatorial trade winds lead to the offshore transport of surface water 

and subsequent upwelling of cold, nutrient rich waters along the West African 

coast (Marchesiello et al. 2004). Evidence exists for climate change induced 

strengthening of alongshore wind stress that may lead to intensification of these 

upwellings (Bakun 1990, McGregor et al. 2007). This may lead to an in situ 

increase of NPP, along continental shelf waters and the shelf break, which may 

favour turtles that forage within these areas. Conversely, given that SST is an 

important contributory variable to our EENM, intensification of cold coastal 

upwellings along the West African coast, coupled with warming of equatorial 

oceanic waters, may further contract thermally suitable habitats for both oceanic 

and neritic loggerhead turtles. Our forecast SST surfaces do not allow for meso-

scale (10's to 100's of km) nuances across their surface. Ocean warming, on a 

global scale, is greatest near the surface; the upper 75 m warmed, on average, 

by 0.11º C (0.09 to 0.13° C) per decade over the period 1971 to 2010. Tropical 
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and Northern Hemisphere subtropical regions are projected to experience 

greatest oceanic surface warming (IPCC 2013). Our forecast models apply 

generic minimum and maximum projected global oceanic surface (top 100 m) 

temperature increases of between 0.6º C and 2º C, based on CMIP5 RCP 

scenarios (IPCC 2013), uniformly across our study area. However, while our 

approach of handling one aspect of climate change forcing is heuristic, it does 

provide insight on how distribution patterns may alter under various climate 

change pathways/scenarios. 

Loggerhead turtles in Cape Verde, which are protected by law (Loureiro 

2008), face multiple terrestrial threats and impacts such as deliberate take 

(Marco et al. 2012), disturbance and loss of nesting beach habitat (Taylor & 

Cozens 2010), and are likely impacted by fisheries bycatch within near-shore 

waters (López-Jurado et al. 2003). Within the study period three female 

loggerhead turtles were positively identified as being captured (12% of our 

study animals), all three turtles were caught within the EEZ of Cape Verde. 

Bycatch is a considerable threat to loggerhead sea turtles (Lewison et al. 

2004a, b) and is primarily associated with longline, trawl and gillnet fisheries 

(Lewison et al. 2004a). 

Analysis of fisheries catch data highlighted that oceanic and neritic 

loggerhead turtles' observed and modelled habitats could significantly interact 

with fisheries. The central south Atlantic (including the Cape Verde archipelago) 

represents a hotspot of pelagic longline effort from the industrial fishing fleets of 

China, Equatorial Guinea and some Central American fleets (Lewison et al. 

2004b). However, there is a paucity of reported data for sea turtle bycatch 

(Wallace et al. 2010), with significant data gaps around Africa (Wallace et al. 

2013), particularly for longline fisheries. Trawl fisheries of the northwest African 

continental shelf waters have been identified as having significant bycatch rates 

of pelagic megafauna, including sea turtles (Zeeberg et al. 2006). This area is 

described as being amongst the most intensively fished in the world; subject to 

near year round exploitation from European and international industrial 

fisheries, this being orchestrated through international access agreements and 

private arrangements (Zeeberg et al. 2006). Given the spatial overlap of both 

our oceanic and neritic EENMs and foraging patterns with known areas of 

intense industrial longline and trawl fisheries activity, it is clear that both oceanic 

and neritic loggerhead turtles are at risk of bycatch from industrial fisheries. 



113 

 

In addition to bycatch from industrial fisheries, loggerhead turtles are also 

at risk from small scale artisanal fisheries using a variety of gear types as has 

been reported elsewhere (Carreras et al. 2004, Peckham et al. 2007, Echwikhi 

et al. 2010). Assessment of risk posed from artisanal fisheries is difficult due to 

a lack of data. However, given that neritic foraging turtles exploit shallow near-

shore coastal waters, and that artisanal fisheries may employ both longline, 

trawl gear and gillnets, this could result in these fisheries sustaining a high 

loggerhead turtle bycatch rate (Peckham et al. 2007). Turtle bycatch can vary 

depending on many confounding factors such as gear specificity, seasonality or 

other bio-geographic factors (Báez et al. 2010, Álvarez de Quevedo et al. 2010, 

Casale 2011). Nonetheless, measures to improve knowledge of industrial 

fisheries effort and sea turtle bycatch rates may enable quantification of threat 

and may also identify the most appropriate mitigation measures; although, 

artisanal fisheries will potentially remain under assessed. 

Given the expansive range that our study animals occupied, over 

multiple EEZs, the problem of enforcement of independent states' fisheries 

management policies is immense. Many West African coastal countries sell 

fisheries access agreements to Distant Water Fleets (DWFs). These DWFs 

have traditionally been dominated by European, US and Japanese fisheries 

(Gagern & van den Bergh 2013). Within sub-Saharan west Africa coastal 

countries traditional EU access agreements have been neither environmentally, 

economically nor socially sustainable, thereby promoting excessive pressure on 

resources and damaging the marine ecosystems (Kaczynski & Fluharty 2002). 

European, US and Japanese fisheries have, in part, gradually moved towards 

responsible fishing practice. However, these DWFs are now being displaced by 

a rise in other Asian DWFs that can be associated with non-transparent fishing 

agreements and Illegal, Unreported and Unregulated (IUU) fishing 

infringements (Gagern & van den Bergh 2013), which in turn, likely result in 

underestimation of fisheries pressure (Belhabib et al. 2014). This shift in 

fisheries market will only hinder development and enforcement of sustainable 

fisheries policies that recognise the threat of bycatch to marine megafauna. The 

potential modifications to suitable foraging habitats under global climate change 

further exacerbates management policy, and highlights the need for flexibility to 

accommodate potential range shift in species. 
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This study provides an insight into the migration and habitat use of 

loggerhead turtles from Cape Verde in both open oceanic and neritic coastal 

waters of the central eastern Atlantic. Our analyses clearly discriminated habitat 

use for these two foraging strategies, and highlighted the importance of distinct 

key environmental drivers in delineating these habitat preferences within a 

dynamic and diverse environment. Modelled habitat niches were spatially 

differentiated, and under the influence of predicted sea surface temperature 

rises, there was further spatial divergence of suitable habitats. Although oceanic 

and neritic habitat niches may be distinct, loggerhead turtles face homogenous 

threats. Notwithstanding national conservation management policy, Cape 

Verdean loggerhead turtles face multiple anthropogenic threats on land and at 

sea (López-Jurado et al. 2003, Lewison et al. 2004a, Taylor & Cozens 2010, 

Marco et al. 2012). Increased knowledge of gear specific fisheries effort and 

bycatch, within nation states' EEZs, would help facilitate an integrated 

approach, to formulate dynamic and effective conservation policy that begins to 

address the issue of bycatch. However, future conservation management 

strategies must be flexible and adaptive to accommodate potential range shift in 

species. Finally, this study demonstrates the utility of an analytical framework in 

robustly defining the ecological and environmental niche of a marine vertebrate 

of conservation concern that has the potential to be applied to conservation 

management planning and practice for other widely dispersed species with 

complex behaviours. 
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Table 1. Exclusive economic zones (EEZs) in order of greatest overlap of 

oceanic ensemble ecological niche model (EENM) with EEZs, where waters 

shallower than 200 m were excluded; and neritic EENM with EEZs, where 

waters deeper than 200 m were excluded. 

 

Habitat 
model 

Country EEZ Proportion 
of EEZ (%) 

Oceanic 
EENM 

  

 Gambia 100 

 Senegal 99 

 Mauritania 95 

 Cape Verde 51 

 Guinea Bissau 22 

 Western Sahara 9 

Neritic 
EENM 

  

 Guinea 96 

 Sierra Leone 94 

 Cameroon 78 

 Nigeria 75 

 Guinea Bissau 64 

 Gambia 61 

 Benin 54 

 Mauritania 49 

 Liberia 47 

 Senegal 42 

 Equatorial Guinea 40 

 Ghana 17 

 Togo 13 

 Western Sahara 1 

 Ivory Coast 0 
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Figure 1. Satellite tracked, post-

nesting loggerhead turtle 

movements, based on non-

interpolated best daily locations for, 

(a) oceanic foragers: previously 

published data 2004/05/06 (n = 8, 

grey circles), (b) oceanic foragers: 

unpublished data 2006 (n = 9, black 

circles) and (c) neritic foragers: 

previously published data 

2004/05/06 (n = 4, grey circles), 

unpublished data 2006 (n = 2, black 

circles) (see metadata in 

Supplementary Material, Table S1). 

Black lines represent routes taken to 

foraging areas. Release location for 

all turtles (black star). Parts (a), (b) 

and (c) are drawn to the same 

spatial scale and are located 

according to the inset of part (a). 200 

m continental shelf isobath (broken 

line) and EEZ maritime boundaries 

(broken line polygon). Countries are 

identified by their 2 digit sovereign 

state ISO code as follows: Morocco 

(MA), Madeira (PT), Canary Islands 

(ES), Western Sahara (EH), 

Mauritania (MR), Cape Verde (CV), 

Senegal (SN), Gambia (GM), 

Guinea-Bissau (GW), Sierra Leone 

(SL), Guinea-Conakry (GN), Liberia (LR), Ivory Coast (CI), Ghana (GH), Togo 

(TG), Benin (BJ), Nigeria (NG), Cameroon (CM) and Equatorial Guinea (GQ). 

Maps drawn to Geographic Coordinate System: WGS 1984. 
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Figure 2. Density mapping of loggerhead turtle post-nesting movements based 

on interpolated best daily location data summed by hexagonal polygon 

sampling grid (100 km edge to edge). Sum of individuals occupying a single 

hexagon polygon for (a) oceanic and (b) neritic foragers. Turtle densities are 

represented by monochrome shading as detailed in the figure legend. Parts (a) 

and (b) are drawn to the same spatial scale. Exclusive economic zones (EEZs) 

are labelled with ISO codes and all other map features are drawn and labelled 

in accordance with Figure 1. Maps drawn to Projected Coordinate System: 

Africa Albers Equal Area Conic. 
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Figure 3. Ensemble Ecological Niche Models (EENMs) for post-nesting 

loggerhead turtles run with non-interpolated best daily location data, and with 

the environmental variables of depth, SST, NPP, sea surface current velocity 

and SST oceanic frontal activity using Long-Term Yearly Averaged (LTYA) 

products for, (a) oceanic foragers (n = 17), and (b) neritic foragers (n = 6). Parts 

(a) and (b) are drawn to the same spatial scale. The inset (c) of part (b) shows 

the location and extent of our EENMs. The relative suitability of habitats are 

scaled between 0 and 1 (where 0.5 represents areas of typical habitat 

suitability, 0 represents lowest suitability and 1 highest suitability), are 

represented by monochrome shading as detailed in the figure legend. All other 

map features are drawn and labelled in accordance with Figure 1. Maps drawn 

to Geographic Coordinate System: WGS 1984. 
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Figure 4. Forecast Ensemble 

Ecological Niche Models (EENMs). 

Oceanic and neritic EENMs 

(Figure 3) were run with projected 

Long-Term Yearly Averaged 

(LTYA) Sea Surface Temperature 

(SST) increases of between 0.6º C 

and 2º C in accordance with 

Coupled Model Intercomparison 

Project Phase 5 (CMIP5) 

Representative Concentration 

Pathway (RCP) scenarios RCP 2.6 

to RCP 8.5 (IPCC 2013): (a) 

existing conditions, (b) LTYA SST 

+ 0.6º C, (c) LTYA SST + 1º C and 

(d) LTYA SST + 2º C. Habitats with 

a relative suitability ≥ 0.5 for 

foraging loggerhead turtles are 

drawn as filled polygons as 

follows: oceanic turtles (mid grey), 

neritic turtles (dark grey). All parts 

are drawn to the same spatial 

scale. All other map features are 

drawn and labelled in accordance 

with Figure 1. Maps drawn to 

Geographic Coordinate System: 

WGS 1984. 
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Figure 5. Cumulative fisheries catch data (1995-2009). (a) Cumulative longline 

tuna and billfish catch data, and (b) cumulative catch data for all marine species 

(excluding tuna and billfish) expressed as tonnes km-2 per EEZ. All data are 

drawn as filled polygons with a low (white/light grey stipple) to high (dark grey) 

monochrome shaded ramp in accordance with the legend detailed in each part. 

Parts (a) and (b) are drawn to the same spatial scale. All other map features are 

drawn and labelled in accordance with Figure 1. Maps drawn to Projected 

Coordinate System: Africa Albers Equal Area Conic. 
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Table S1. Summary of PTT data for turtles assigned to a foraging strategy, 

detailing: study ID, foraging strategy, sex, nesting season, data start and end 

dates, days tracked, PTT manufacturer and model and curved carapace length 

(CCL) in cm. Turtle IDs: 1-9 (Hawkes et al. 2006), 10 &11 (Varo-Cruz et al. 

2013), 12-22 (unpublished data). All turtles were captured at the nesting beach 

with the exception of turtle IDs 7, 10 & 11 which were captured at sea. All turtles 

were released at Boa Vista except turtle ID 7 which was released at Sao 

Vicente. 

 

ID Strategy Sex Nesting 
season 

Start End Days 
tracked  

PTT manufacturer & 
model 

CCL 

1 oceanic F 2004 2004-08-16 2004-11-06 83 SMRU: SRDL 84 

2 oceanic F  2004-09-13 2005-04-23 223 Sirtrack Ltd: kiwisat 101 76 

3 oceanic F  2004-09-17 2006-06-05 627 Sirtrack Ltd: kiwisat 101 72 

4 oceanic F  2004-09-23 2005-07-09 290 Sirtrack Ltd: kiwisat 101 74 

5 neritic F  2004-10-06 2005-04-27 204 Sirtrack Ltd: kiwisat 101 99 

6 neritic F  2004-10-16 2005-08-24 313 Sirtrack Ltd: kiwisat 101 98 

7 oceanic F  2004-10-24 2005-02-23 123 Telonics: ST-14 79 

8 oceanic F 2005 2005-08-22 2006-03-10 201 Sirtrack Ltd: kiwisat 101 86 

9 neritic  F  2005-10-26 2006-09-19 329 SMRU: SRDL 95 

10 oceanic/neritic M 2006 2006-05-15 2007-11-01 536 Sirtrack Ltd: kiwisat 101 92 

11 oceanic M  2006-07-20 2007-05-01 286 Sirtrack Ltd: kiwisat 101 87 

12 oceanic F  2006-08-29 2007-04-01 216 SMRU: SRDL 74 

13 oceanic F  2006-08-30 2008-04-03 583 Sirtrack Ltd: kiwisat 101 82 

14 oceanic F  2006-08-31 2007-06-11 285 SMRU: SRDL 90 

15 oceanic F  2006-09-03 2007-08-22 354 SMRU: SRDL 86 

16 oceanic F  2006-09-05 2008-03-23 566 Sirtrack Ltd: kiwisat 101 NA 

17 oceanic F  2006-09-06 2007-07-14 312 Sirtrack Ltd: kiwisat 101 88 

18 oceanic F  2006-09-11 2009-10-09 1125 Sirtrack Ltd: kiwisat 101 89 

19 oceanic F  2006-09-14 2007-01-12 121 SMRU: SRDL 76 

20 neritic F  2006-09-20 2008-01-19 487 Sirtrack Ltd: kiwisat 101 91 

21 oceanic F  2006-10-04 2007-05-07 216 Sirtrack Ltd: kiwisat 101 81 

22 neritic F  2006-10-07 2006-12-19 74 Sirtrack Ltd: kiwisat 101 97 
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Table S2. Ecological Niche Modelling evaluation metrics for 10-fold cross 

validation (mean and 1SD). Algorithm abbreviations: Generalised Linear Model 

(GLM), Multivariate Adaptive Regression Splines (MARS) and Maximum 

Entropy (MaxEnt). Key algorithm modelling parameters and evaluation metric 

descriptions are detailed at the foot of the table. 

 

 

Biomod2 modelling parameters 

Randomly generated 'pseudo absence' locations (background data), with no 

minimum or maximum distance to presence locations were generated for each 

habitat model. All locations that had missing coincident environmental data 

were removed from the analysis (background data locations that were spatially 

referenced on land). 

The key algorithm modelling parameters in biomod2 were as follows: 

GLM: package = 'stats', family= 'binomial'. 

MARS: package = 'mda', maximum interaction degree = 2, penalty (cost per 

degree of freedom) = 2, thresh (forward stepwise stopping threshold) = 0.001, 

prune = (TRUE). 

MaxEnt: Run within biomod2, maximum iterations (for training) = 200, 

linear/quadratic/product/threshold/ hinge features (the transformation 

coefficients applied to each environmental variable), default prevalence = 0.5. 

 

Evaluation metrics  

AUC (Area under the curve): a measure of the ratio of true positives out of the 

positives vs. the ratio of false ositives out of the negatives. 

KAPPA (Cohen's Kappa, Heidke skill score) and TSS (True Skill Statistic): 

measures of accuracy relative to that of random chance. 

SR (Success Ratio): the fraction of the true positives that were correct. 

 Oceanic foragers Neritic foragers 

Evaluation 
metric 

Modelling algorithm Modelling algorithm 

GLM MARS MaxEnt mean sd GLM MARS MaxEnt mean sd 

AUC 0.987 0.986 0.987 0.987 0.001 0.991 0.994 0.995 0.993 0.002 

KAPPA 0.913 0.920 0.910 0.914 0.005 0.976 0.981 0.983 0.980 0.004 

TSS 0.920 0.924 0.912 0.919 0.006 0.977 0.981 0.983 0.980 0.003 

SR 0.994 0.995 0.999 0.996 0.003 0.984 0.993 0.996 0.991 0.006 

Accuracy 0.969 0.971 0.968 0.969 0.002 0.988 0.991 0.992 0.990 0.002 
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Accuracy (fraction correct): the fraction of the predictions (true and false) that 

were correct.  

 

To compute the threshold value used  to transform the probability of presence 

model output data to binary data for model evaluation metrics based on the 

comparison of binary data (e.g. True Skill Statistic (TSS)), the algorithm 

calculates the evaluation metric in question (e.g. TSS) for a sequence of 

thresholds from 0 to 1 (100 values). The value that maximises this evaluation 

metric is then selected as the threshold value used (Thuiller et al. 2009 ). 
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Table S3. Ecological Niche Modelling variable importance for 10-fold cross 

validation. 

 

 Oceanic foragers Neritic foragers 

Modelling algorithm Environmental variable Environmental variable 

Current Depth NPP SST 
front 
activity 

SST Current Depth NPP SST 
front 
activity 

SST  

GLM 0.18 0.00 0.05 0.25 0.51 0.00 0.48 0.28 0.02 0.22 mean 

 0.07 0.00 0.05 0.09 0.05 0.00 0.05 0.02 0.03 0.01 sd 

MARS 0.06 0.01 0.50 0.02 0.42 0.19 0.29 0.30 0.00 0.21 mean 

 0.05 0.01 0.07 0.06 0.06 0.06 0.05 0.04 0.00 0.01 sd 

MAXENT 0.11 0.00 0.30 0.10 0.49 0.00 0.45 0.47 0.00 0.07 mean 

 0.01 0.00 0.03 0.03 0.02 0.00 0.02 0.01 0.00 0.02 sd 

mean of means 0.12 0.00 0.28 0.12 0.47 0.06 0.41 0.35 0.01 0.17  

 

 

Relative importance of the contribution of an environmental variable is 

calculated using a randomisation process. This procedure calculates the 

correlation between a prediction using all environmental variables and a 

prediction where the independent variable being assessed is randomly re-

ordered. If the correlation is high the variable in question is considered not 

important for the model and conversely, if low, important. A mean correlation 

coefficient for each environmental variable is then calculated over multiple runs. 

This is repeated for each environmental variable. The calculation of the relative 

importance is made by subtracting these mean correlation coefficient from 1 

(Thuiller et al. 2009). 
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Figure S1. Oceanic loggerhead foraging tracks (n =16). Two tracks are drawn in 

each map part and coloured black and grey respectively. 200 m continental 

shelf isobath (broken line). Maps drawn to Geographic Coordinate System: 

WGS 1984. 
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Figure S2. Fishery Committee for the Eastern Central Atlantic (CECAF) Major 

Fishing Area 34 statistical sub-areas and divisions (FAO 2013a). 
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Figure S3. Ecological Niche Model (ENM) environmental variables. (a) 

Bathymetric depth (m), (b) Sea Surface Temperature (SST: °C), (c) Net Primary 

Production (NPP: mg C m-2 day-1), (d) daily SST frontal activity and (e) sea 

surface current velocity (m s-1). All environmental data surfaces were sampled 

to a 9 km x 9 km resolution using bilinear interpolation. Surfaces (b), (c) and (e) 

are Long-Term Yearly Averaged (LTYA) products. 200 m continental shelf 

isobath (broken line). Maps drawn to Geographic Coordinate System: WGS 

1984. 
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Figure S4. Forecast Ensemble Ecological Niche Models (EENMs) projected 

Long-Term Yearly Averaged (LTYA) Sea Surface Temperature (SST) 

environmental variable surfaces. Increases of between 0.6º C and 2º C were 

made in accordance with Coupled Model Intercomparison Project Phase 5 

(CMIP5) Representative Concentration Pathway (RCP) scenarios RCP 2.6 to 

RCP 8.5 (IPCC 2013). (a) existing conditions, (b) LTYA SST + 0.6º C, (c) LTYA 

SST + 1º C and (d) LTYA SST + 2º C. SST (ºC) are classified into bands and 

drawn with a blue-yellow-red colour ramp in accordance with the legend 

detailed in each part. 200 m continental shelf isobath (broken line). Maps drawn 

to Geographic Coordinate System: WGS 1984. 
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ABSTRACT  

 

The Mediterranean Sea is an area of high biodiversity that is identified as being 

under threat from multiple cumulative impacts. The Convention for Biological 

Diversity calls for 10% of coastal and marine ecosystems to be protected by 

2020 through an integrated network of Marine Protected Areas (MPAs); 

currently only 4.6% of the Mediterranean Sea is protected. Here we identify and 

describe observed and modelled foraging habitats for two species of sea turtle 

within the Mediterranean Sea; the green turtle (Chelonia mydas) and the 

loggerhead turtle (Caretta caretta), and investigate the spatial overlap between 

these habitats and current and speculative MPAs. We investigate how these 

spatial overlaps may alter under the influence of climate change induced sea 

surface temperature rise. Our analysis reveals inadequacies within the current 

Mediterranean MPA network that result in a lack of protection within foraging 

habitats for both species of sea turtle. Appreciable gains in protection for both 

species could be made with the adoption of new suitably designed IUCN 

categorised MPAs within site-specific areas identified in this study, and by 

designating existing MPAs with appropriate IUCN categories. However, 

comprehensive protection may only be afforded to these species if 

consideration is also given to protecting key breeding and migratory habitats. To 

be holistic, we suggest that the Mediterranean MPA network needs to protect 

multiple species with variable residency and migratory spatial patterns , and to 

be suitably flexible to accommodate potential range shifts as the Mediterranean 

basins warm with future climate change. 

 

Keywords: climate change, ensemble ecological niche modelling, foraging 

habitats, Marine Protected Areas, sea turtles, strategic planning, spatial 

analysis 
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INTRODUCTION  

 

The marine environment is under threat from human activities, with a 

large proportion of the world's ecosystems negatively impacted by multiple 

stressors (Halpern et al. 2008, 2015) including fisheries (Pauly, Watson & Alder 

2005) and climate change (Doney et al. 2012; Gattuso et al. 2015; Halpern et 

al. 2015). These drivers are disproportionately distributed among regions and 

ecosystems. Many marine areas with highest predicted cumulative impacts are 

in continental shelf and coastal waters (Halpern et al. 2008, 2015); areas where 

cumulative impacts are also identified as generally increasing (Halpern et al. 

2015). 

Biodiversity loss may be greatest in enclosed basins, such as the 

Mediterranean Sea (Costello et al. 2010), due to cumulative impacts being 

concentrated in a relatively small region with limited water exchange. The 

Mediterranean Sea is identified as experiencing high cumulative impact from 

both land and ocean based sources (Halpern et al. 2008), with on-going decline 

in fish stocks (Vasilakopoulos, Maravelias & Tserpes 2014), and rapid warming 

of surface water across the basin (Philippart et al. 2011). The Mediterranean 

Sea is an area of high biodiversity (Bianchi & Morri 2000) with over 16 500 

marine eukaryotic species (Costello et al. 2010). Fisheries likely represents the 

greatest threat to biodiversity by depleting targeted fish stocks, impacting 

species through bycatch, and directly and indirectly modifying host ecosystems 

(Costello et al. 2010). Climate change may further affect ecosystem structure, 

diversity and function (Doney et al. 2012; Gattuso et al. 2015; Halpern et al. 

2015).  

The revised Convention for Biological Diversity (CBD) targets called for 

10% of coastal and marine biodiversity-important ecosystems to be protected 

by 2020 through an integrated and well-connected system of Marine Protected 

Areas (MPAs) (CBD 2010). Currently, the Mediterranean Sea has 677 MPAs, of 

which 96% are located in the north of both the east and west basins. The total 

sea area covered by extant MPAs is approximately 114 600 km2 (4.6% of the 

Mediterranean). However, less than 0.1% of the total Mediterranean Sea area is 

categorised by strict protection and/or no take zones, and 66% of MPAs are no 

bigger than 50 km² (Gabrié et al. 2012). Typically, small protected areas offer 

limited conservation benefits (Gaines et al. 2010), particularly to mobile species. 
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Moreover, the current network of Mediterranean MPAs is mainly coastal; 86% of 

the surface area of MPAs are within 12 nautical miles of the coast (Gabrié et al. 

2012). Globally, there are initiatives to create large-scale pelagic MPAs that 

could be beneficial to mobile marine species (Maxwell, Ban & Morgan 2014). 

Within the Mediterranean Sea, a single pelagic MPA exists, the Pelagos 

Sanctuary (sea area: 87 500 km2), this accounts for approximately 76% of the 

region's current MPA designations (Gabrié et al. 2012). A formal regional 

process led by the United Nations Environment Programme's Mediterranean 

Action Plan (UNEP/MAP) identified a collection of large Ecologically and 

Biologically Significant Areas (EBSAs), also known as Priority Conservation 

Areas (PCAs), throughout the Mediterranean. These PCAs have since been 

endorsed by all contracting parties to the Barcelona Convention (the 

Convention for the Protection of the Marine Environment and the Coastal 

Region of the Mediterranean, formerly known as the Convention for the 

Protection Of The Mediterranean Sea Against Pollution) and have therefore 

been adopted as areas of priority conservation within the Mediterranean Sea 

(Portman et al. 2013); although other existing and proposed initiatives exist 

(Micheli et al. 2013). 

The design of effective protected areas is especially challenging when 

species are far-ranging and pelagic (e.g. sea turtles, cetaceans, sharks, sea 

birds), as species are likely to migrate between foraging and breeding areas, 

and therefore, requires knowledge of species ecology and habitat variability 

(Hyrenbach, Forney & Dayton 2000). Ecological niche modelling, using 

telemetry and remotely sensed environmental data, can provide insight into 

potential distribution patterns of both terrestrial and marine species at broad and 

fine spatial scales (Razgour, Hanmer & Jones 2011; Gschweng et al. 2012; 

Matawa, Murwira & Schmidt 2012). This increased knowledge of likely spatio-

temporal distributions can help inform management planning and practice to 

achieve effective conservation (Hart et al. 2012).  

The Mediterranean Sea provides favourable habitat for three species of 

sea turtles: the green turtle (Chelonia mydas Linnaeus, 1758) the loggerhead 

turtle (Caretta caretta Linnaeus, 1758), and the leatherback turtle (Dermochelys 

coriacea Vandelli, 1761). The loggerhead turtle is the most common (Casale & 

Margaritoulis 2010). Nesting beaches for both green and loggerhead turtles are 

confined to the east of the Mediterranean. At sea, green turtles predominantly 
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occur in the eastern basin. Loggerhead turtles occur throughout the east and 

west basin, with high densities recorded in the west (Casale & Margaritoulis 

2010). Leatherback turtles are less abundant and can occur throughout the 

Mediterranean, but do not nest in the region (Casale & Margaritoulis 2010). All 

species face multiple threats, both within the marine and terrestrial 

environments of the Mediterranean (Casale & Margaritoulis 2010). But because 

of their high mobility, protection beyond nesting beaches is challenging, and 

requires more knowledge and new approaches. 

In this study, we investigate the pan-Mediterranean habitat niche for 

post-nesting green and loggerhead turtles, satellite tracked from the eastern 

Mediterranean, in the context of protected areas within the Mediterranean 

basin. More specifically, we: (i) identify and describe observed foraging sites of 

satellite tracked green and loggerhead turtles, (ii) model likely areas of suitable 

foraging habitats using Ensemble Ecological Niche Models (EENMs) for both 

species, and determine key areas for both, (iii) model the potential change in 

the distribution of these foraging habitats under future climate change, and (iv) 

integrate available MPA data (current and speculative) to determine the 

protection afforded to these species.  
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METHODS  

 

Satellite tracking data: collection and processing 

 

To determine the location of foraging sites we used satellite tracking 

data. Platform Transmitter Terminals (PTTs) were attached to eighty-eight adult 

female sea-turtles (green turtles n = 35, loggerhead turtles n = 53) over the 

nesting seasons 1998 to 2012 at five nesting locations in the eastern 

Mediterranean (Figure 1). Method of turtle capture, transmitter type and process 

of attachment are detailed in (Godley et al. 2002, 2003; Broderick et al. 2007; 

Zbinden et al. 2008, 2011; Stokes et al. 2015; Snape et al. in review). Satellite 

telemetry data were collected using the Argos satellite system (CLS 2011) and 

downloaded using the Satellite Tracking and Analysis Tool (STAT) (Coyne & 

Godley 2005). All locations with accuracy class Z and 0 were removed and a 

speed and azimuth filter applied (Freitas et al. 2008; Witt et al. 2010); filtering 

was undertaken in R (R Development Core Team 2008; R package: argosfilter 

(Freitas 2010)). Filtered location data were then reduced to best daily locations, 

which were positions with the highest quality location class recorded during a 24 

h period. If more than one location was determined with equal quality within the 

24 h period the first received location was retained. These data were imported 

into the Geographical Information System (GIS) ArcMap 10.1 (ESRI, Redlands, 

USA http://www.esri.com) and visually inspected to determine conclusive 

foraging sites for each turtle. A foraging site was deemed to be an area where 

an individual turtle remained resident for more than 30 days (Blumenthal et al. 

2006) and was less than 150 km in diameter (defined by visual assessment of 

foraging patterns): see PTT metadata in Supplementary Material, Tables S1 

and S2. To minimise the potential for pseudo-replication within our data we 

limited the maximum number of days retained for analysis at any one foraging 

site to 365 d. To define the centre of each foraging site we computed a 50% 

geometric peeled polygon (locations farthest from the arithmetic mean 

coordinates were sequentially excluded) and calculated the centroid. Location 

data for both green and loggerhead turtles were then separated to seasonal 

datasets: (i) winter/spring (December - May), and (ii) summer/autumn (June - 

November). These seasonally grouped data were used as our response 

variable in our EENMs (see Habitat modelling).  
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Habitat modelling  

 

For our habitat modelling we used Ensemble Ecological Niche Models 

(EENMs) (Araújo & New 2007; Rangel & Loyola 2012; Pikesley et al. 2013, 

2014). Our modelling area was described by latitudes N 46 º, N 30º, and 

longitudes W 6º, E 37º (WGS84), this extent bounded the Mediterranean Sea; 

approximately 2.5 million square kilometres. 

We prepared spatially coincident physical and biological environmental 

data (2003-2012) using R (R Development Core Team 2008; R package: raster 

(Hijmans & Etten 2012)) from a number of datasets. These data were: (a) 

bathymetric depth (m) (www.gebco.net), (b) seabed slope (derived from depth 

data), (c) monthly averaged MODIS L3 night-time Sea Surface Temperature 

(SST: °C) (http://podaac.jpl.nasa.gov), (d) Net Primary Production (NPP: mg C 

m-2 day-1) (http://orca.science.oregonstate.edu) and (e) euphotic depth (m) 

(http://oceancolor.gsfc.nasa.gov). We used Marine Geospatial Ecological Tools 

v0.8a49 (MGET; Roberts et al. 2010) to model the presence of SST frontal 

activity for the study area. Frontal features can represent significant areas of 

enhanced primary productivity that in turn may provide areas of increased prey 

availability for marine vertebrates (Scales et al. 2015). We sourced daily MODIS 

L3 night-time SST (°C) (http://podaac.jpl.nasa.gov) to create SST frontal activity 

rasters using the Cayula and Cornillon Single Image Edge Detection (SIED) 

algorithm (Cayula & Cornillon 1992) for each day between 2003-2012. A 

minimum frontal edge detection threshold of 0.5°C (SST) was used (Roberts et 

al. 2010). These daily SST frontal activity rasters were aggregated into monthly 

rasters with cumulative totals for daily frontal activity. Monthly data, for SST, 

NPP, euphotic depth and SST frontal activity were averaged into long-term 

monthly products, and then averaged into long-term biannual seasonally 

aggregated products: winter/spring and summer/autumn. To calculate the 

available biannual thermal niche for each of our species of turtle we extracted 

SST values for our seasonally grouped turtle location data from our long-term 

biannual SST surfaces. We selected the 1st percentile of these data to 

represent the minimum temperature for the thermal niche, no maximum value 

was set. These threshold values were then applied to the long-term biannual 

SST surfaces to create binary surfaces that described species, and seasonal 

specific thermal niches. To investigate the potential effect of sea surface 
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temperature rise on our EENMs we applied an increase of 2º C (skin surface 

temperature) to our species-specific biannual SST thermal niche surfaces. 

These values represent the maximum projected global oceanic surface (top 100 

m) temperature increases for the end of the 21st century (2081-2100) relative to 

1986-2005, based on the Coupled Model Intercomparison Project Phase 5 

(CMIP5) Representative Concentration Pathway (RCP) scenario RCP 8.5 

(IPCC 2013). The RCP 8.5 scenario reflects the current trajectory of business-

as-usual CO2 emissions (Gattuso et al. 2015). All environmental data surfaces 

were sampled to a 9 km x 9 km resolution using bilinear interpolation (the 

coarsest resolution of our environmental data). To test for correlation within 

these data a random sample of arbitrary size (locations n = 200) was generated 

and coincident environmental data extracted for each location. A Spearman's 

rank correlation test was then calculated for all unique combinations (n = 10) of 

environmental variables.  

 Our modelling approach followed that detailed in Pikesley et al. (2013, 

2014). We used the Generalised Linear Model (GLM), Multivariate Adaptive 

Regression Splines (MARS) and MaxEnt modelling algorithms within the 

biomod2 package (R Development Core Team 2008; R package: biomod2 

(Thuiller, Georges & Engler 2013)) to produce Ecological Niche Models (ENMs). 

These ENMs were run with both present day and forecast environmental 

surfaces, to identify favourable seasonal (winter/spring, summer/autumn) 

foraging habitats for both green and loggerhead turtles. Our response variables 

were binary, either 'presence' described by our seasonally apportioned location 

data, or randomly generated 'pseudo absences'. ENMs were run with the 

environmental surfaces of depth, slope, SST thermal niche, NPP, euphotic 

depth and SST frontal activity. Preliminary models were run with SST in place of 

the SST thermal niche layer. However, green turtle models produced 

implausible outputs whereby habitats predicted to be suitable in the Eastern 

basin under present day environmental conditions were forecast to become less 

suitable with increases in SST. We therefore chose to incorporate a thermal 

niche layer in place of SST which allowed the forecast model to retain the 

predicted present day surface whilst allowing expansion in suitable habitats with 

the increased thermal niche.   

All models were run using 10-fold cross validation with a 75/25% random 

spilt of the location data for calibration, and model testing respectively. All other 
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modelling parameters are detailed in Supplementary Material Table S3. Model 

performance was evaluated using five metrics; to evaluate model uncertainties 

within and between models all evaluation metrics were scaled to the range 0 to 

1 (Supplementary Material, Table S3). There was little variability in model 

evaluation metrics within seasonal models indicating a good level of consensus, 

therefore, we combined our season-specific ENMs to form ensemble 

projections using an un-weighted average (mean) across each seasonal model 

for both green and loggerhead turtles. These seasonal EENMs described the 

Relative Suitability (RS) of foraging habitats, scaled between 0 and 1, where 0 

represents lowest suitability and 1 indicates greatest suitability. The relative 

importance of each environmental surface to the model was calculated using a 

randomisation process (Thuiller et al. 2009); see Supplementary Material, Table 

S4. To investigate spatial autocorrelation within model residuals we calculated 

Moran's I coefficients (Dormann et al. 2007) for each of our EENMs within 

ArcMap 10.1. As the preliminary green turtle summer/autumn foraging model 

revealed residual spatial autocorrelation, we sub-sampled the location data to 

reduce the spatial structure within these data. This was achieved using a 

stepwise, percentage reduction, random sample of these data, to iteratively 

arrive at a sub-sample of locations (70%) where spatial auto-correlation was no 

longer present in the model's residuals.  

We then aggregated the resultant seasonal EENMs (winter/spring, 

summer/autumn; Supplementary Material, Figure S1) for both present day and 

forecast models to produce predictive surfaces where favourable habitat areas 

were weighted by the number of seasons in which the predicted area was 

suitable. To test the predictive performance of our present day loggerhead 

EENM with previously published tracking data we digitised known foraging sites 

from Schofield et al. (2013) and calculated the percentage coincidence between 

these and our present day loggerhead EENM. 

 

Marine Protected Areas 

 

To contextualise our data with current MPAs and speculative PCAs 

throughout the Mediterranean we sourced spatially referenced MPA data 

(MAPAMED 2014) from the Mediterranean Protected Areas Network 

(MedPAN). MedPAN aim to facilitate the exchange of best practice and 
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development of tools between managers of Mediterranean MPAs in order to 

improve the efficiency of the management of these areas. Secondly, we 

digitised and geo-referenced available PCA map data from the United Nations 

Environment Programme (UNEP 2010). These were compared with our 

observed, modelled and forecast foraging habitats for green and loggerhead 

turtles. 
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RESULTS  

 

Satellite tracking and habitat use 

 

Seventy-six PTTs transmitted location data for 341 days (median), 177 to 

420 days (d) (inter-quartile range (IQR)). Twelve PTTs failed to transmit location 

data; reasons may include premature failure of the transmitter or the 

attachment, or mortality (Hays et al. 2007). Sea turtles were resident for > 30 d 

within eighty-three foraging sites: green turtles n = 27, foraging sites n = 29; 

loggerhead turtles n = 49, foraging sites n = 54 (two green and four loggerhead 

turtles foraged at multiple sites, see metadata in Supplementary Material, 

Tables S1 and S2). All foraging sites were primarily located in continental shelf 

waters (< 200 m depth) (Figure 1). Green turtles were predominantly located in 

shallower waters closer to shore than loggerhead turtles. Foraging habitat 

depths for: (i) green turtles, 9 m (median), 3 to 23 m (IQR), (ii) loggerhead 

turtles, 43 m (median), 22 to 75 m (IQR). Distance from shore for: (i) green 

turtles, 1.4 km (median), 0.5 to 3.7 km (IQR), (ii) loggerhead turtles, 6.9  km 

(median), 1.9 to 34.8 km (IQR). All green turtle, and 74% (n = 40) of loggerhead 

foraging site centroids, were within Mediterranean States' 12 nautical mile 

waters (Figure 1). 

 

Habitat modelling  

 

Green turtles: seasonally aggregated EENMs (RS ≥ 0.5), based on 

present day environmental data (2003-2012), indicated that the continental shelf 

of the eastern Mediterranean basin, from eastern Turkey through to Tunisia 

provided for areas of year-round suitable foraging habitats (Figure 2a, Table 1). 

Depth and thermal niche were the most important contributory variables to 

these EENMs (Supplementary Material, Table S4) with mean Relative 

Importance of the Contribution to the model Coefficients (RICC) for depth: 0.55 

(winter/spring), 0.43 (summer/autumn), and for thermal niche: 0.35 and 0.49 

respectively. Models incorporating increases of 2º C to the thermal niche 

(subsequently referred to as forecast models), indicated that there would be a 

north and westward expansion in suitable foraging habitat for green turtles. 

These areas included waters of the north African coast, the Balearic, 



151 

 

Tyrrhenian, Adriatic and Aegean Sea. There was a notable gain of 153% 

(present day: 36 378 km2, forecast: 91 895 km2) in year-round  suitable foraging 

habitat that was coincident with Mediterranean States' 12 nautical mile waters. 

Countries with greatest gains included: Algeria, Greece, Italy, Libya, Spain, 

Tunisia and Turkey. Countries with greatest coincidence with suitable forecast 

foraging habitats included: Egypt (11% coincidence), Greece (11%), Italy (11%), 

Libya (20%), Spain (10%) and Tunisia (24%) (Figure 2b, Table 1).  

Loggerhead turtles: seasonally aggregated EENMs (RS ≥ 0.5), based on 

present day environmental data (2003-2012), indicated that the continental shelf 

of the eastern Mediterranean basin, from Greece through to Tunisia, including 

southern Sicily, provided near continuous year-round suitable foraging habitat. 

Favourable habitat was also predicted for continental shelf waters to the north 

and west of the Mediterranean. These included areas of the Balearic Sea 

(eastern Spain and the Balearic Islands), the west coast of Italy, Sardinia and 

the Aegean Sea (Figure 3a, Table 1). Depth was the single most important 

contributory variable to these seasonal EENMs (Supplementary Material, Table 

S4) with mean RICCs of: 0.84 (winter/spring) and 0.72 (summer/autumn). The 

second most important contributory variables to these models were: NPP 

(winter/spring, RICC 0.07), and thermal niche  (summer/autumn, RICC: 0.17). 

Ninety-one percent (91%, n = 114) of all loggerhead turtle foraging sites (92% 

female, n = 81; 89% male, n = 33) as found by Schofield et al. (2013) were 

coincident with our present day loggerhead EENM (Supplementary Material, 

Figure S2, Table S5). Forecast models, indicated that the habitat niche would 

likely increase to the north of the Mediterranean basin. With marginal year-

round gains in suitable foraging habitat predicted in the Aegean and Adriatic 

Sea (Figure 3b, Table 1).  

Foraging habitats (present day) with year-round suitability for both 

species principally occurred in 12 nautical mile waters of Egypt (22% 

coincidence) and Libya (51%); total combined sea area: 24 239 km2 (Table 1). 

There were smaller congruencies of habitats in coastal waters of Cyprus, Israel, 

Lebanon, Syria, Tunisia and Turkey. Under forecast models there was a gain of 

144% (present day: 32 807 km2, forecast: 80 181 km2) in year-round suitable 

foraging habitat for both species in Mediterranean States' 12 nautical mile 

waters. These countries included: Greece, Italy, Libya, Spain, Tunisia and 

Turkey (Figure 4. Table 1). Countries with greatest coincidence with suitable 
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forecast foraging habitats included: Egypt (9%), Greece (11%), Italy (10%), 

Libya (23%), Spain (11%) and Tunisia (25%).  

Moran's I coefficients indicated no spatial autocorrelation within the 

residuals of our final seasonal models (green turtles, winter/spring: z = 1.41, p = 

0.16, summer/autumn: z = 1.67, p = 0.09; loggerhead turtles, winter/spring: z = 

0.99, p = 0.32, summer/autumn: z = 0.56, p = 0.58).  

 

Marine Protected Areas   

 

Fourteen (17%, total n = 83) sea turtle foraging site centroids were 

coincident with IUCN classified or un-classified MPAs (classified : green turtles 

n = 0, loggerhead turtles n = 1; un-classified : green turtles n = 8, loggerhead 

turtles n = 5). IUCN protected areas are defined by management category: Ia 

strict nature reserve, Ib wilderness area, II national park, III natural monument 

or feature, IV habitat/species management area, V protected landscape or 

seascape and VI protected areas with sustainable use of natural resources (see 

full IUCN protected area definitions and management categories in 

Supplementary Material, Table S6). In this study 'un-classified' refers to MPAs 

where there was no clear assignment of IUCN category within the MAPAMED 

(2014) metadata (MedPAN pers. comm.). An additional thirteen foraging 

centroids were coincident with UNEP PCAs: green turtles n = 0, loggerhead 

turtles n = 13 (Table 2).  

Of the total footprint of our seasonally aggregated green and loggerhead 

turtle EENMs (RS ≥ 0.5, based on present day environmental data), 1.3% (1830 

km2: green turtles), and 5.3% (28 846 km2: loggerhead turtles), spatially 

overlapped with MPA zones. Under forecast models this coincidence increased 

to 4.0% (13 526 km2) for green turtles and 5.6% (31 100 km2) for loggerhead 

turtles (Table 3), primarily due to the expansion of these habitat niches into the 

western basin. Similarly, 23.8% (33 260 km2) of our green turtle EENM, and 

25.3% (137 206 km2) of our loggerhead EENM spatially overlapped UNEP 

PCAs; under forecast models this percentage marginally decreased to 20.2% 

(69 050 km2) for green turtles, and 24.9% (139 198 km2) for loggerhead turtles. 

Within MPA zones, our green turtle EENM (total footprint: present day 

environmental data) occupied 2.2% (240 km2) of all current IUCN classified 

MPAs, and 1.5% (1590 km2) of all un-classified MPAs. Our forecast models 
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indicated that this would increase to 31.4% (3390 km2) for classified MPAs and 

9.4% (10 136 km2) for un-classified. Our loggerhead turtle EENMs occupied 

40.9% (4428 km2) and 22.6% (24 418 km2) of classified and un-classified MPA 

zones respectively. This increased under forecast models to 45.7% (4946 km2) 

for classified MPAs, 24.2 % (26 154 km2) for un-classified (Table 4). 
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DISCUSSION 

 

The current network of Mediterranean MPAs is mainly located within the 

northern basin and is coastal (Figure 5a, b and c), with the vast majority of all 

MPAs sited within 12 nautical mile waters (Gabrié et al. 2012). However, strict 

protection is potentially limited; approximately only 9% (~ 11 000 km2) of the 

total area of all MPAs (analysis in this study) are known to be assigned an IUCN 

category. Moreover, assignment of an IUCN category to a MPA need not 

necessarily confer protection to specific species within that classified area; see 

IUCN protected area definitions and management categories in Supplementary 

Material, Table S6. Additionally, MPAs may also fail to protect through limited 

size, poor design or inappropriate/lack of management (Agardy, Di Sciara & 

Christie 2011). 

Our analysis revealed that green and loggerhead turtle foraging sites 

were primarily located in coastal shelf waters of the eastern Mediterranean Sea 

in the Levantine and Ionian Basins; with loggerhead turtles also occurring in 

coastal shelf waters to the north in the Adriatic Sea, and in off-shore shelf 

waters in the Gulf of Gabes and off the Nile delta. Green turtles occupied 

shallower water, closer to shore than loggerhead turtles. Foraging sites for 

green turtles occurred exclusively within 12 nautical mile waters from Turkey 

through to Tunisia; hotspots of clustered foraging sites were observed in near-

shore coastal waters of Turkey, Libya and Tunisia. Loggerhead turtle foraging 

sites were more dispersed, extending from northern Italy southwards through 

the Adriatic and around the coasts of Cyprus and Syria through to Tunisia; 26% 

(n = 14) of loggerhead turtle foraging sites were located outside 12 nautical mile 

waters. Hotspots of clustered foraging sites occurred in the northern Adriatic, 

the eastern Levantine Basin and in the Gulf of Gabes.  

Despite being located in near-shore coastal waters, none of our green 

turtle foraging site centroids were within IUCN classified MPAs; eight (28%) 

were located within un-classified areas. Similarly, only one (2%) loggerhead 

turtle foraging site centroids were located within a classified MPA (IUCN 

category VI, the lowest IUCN category); five (9%) were located within un-

classified MPAs. As a consequence, none of our observed green or loggerhead 

turtle foraging sites are afforded any noteworthy protection within the current 

Mediterranean MPA network. 
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Our modelled present day habitat niche for green turtles was confined to 

the south and east of the eastern Mediterranean basin, and highlighted suitable 

year-round foraging sites in Iskenderun Bay, Turkey and Gulf of Sidra, Libya, 

that were not occupied by our tracked turtles. Under forecast models, this niche 

expanded to the north and west. Most notably, forecast models indicated that 

suitable habitat may become available for green turtles in the western basin. 

Areas of year-round suitable habit were predicted in near-shore coastal waters 

of Spain, the Balearic Islands, Algeria, Tunisia, southern Italy, Sicily and 

Greece. Spatial overlap between habitat niche and MPA zones increased with 

forecast models. The majority of this increase was within IUCN category II and 

IV MPAs, which potentially represents greater protection for green turtles within 

these habitats, depending on the management objectives of individual MPAs. 

Our modelled present day habitat niche for loggerhead turtles indicated 

suitable foraging habitats throughout the majority of continental shelf waters in 

the eastern Mediterranean basin, with further, fragmented sections in the 

western basin. This habitat model successfully predicted in excess of 91% (n = 

114) of previously identified foraging locations from an independent tagging 

study (Schofield et al. 2013). Forecast models indicated that this niche would 

likely increase to the north of the Mediterranean basin. There was a marginal 

increase in coincidence between forecast habitat niche and classified and un-

classified MPAs: as such, it is unlikely that there would be a tangible increase in 

protection for loggerhead turtles through the extant MPA network. 

As a step towards establishing a regional, ecologically coherent network 

of MPAs outside 12 nautical mile waters, Priority Conservation Areas (PCAs) 

have been identified throughout the Mediterranean Sea (Portman et al. 2013) 

(Figure 5d). These areas are intended to be core regions in which MPAs may 

be identified and implemented. None of our green turtle foraging site centroids 

were located within PCAs. Notwithstanding, our models did identify the PCA 

within the Gulf of Gabes to host suitable foraging habitat for green turtles 

(Figure S3a, area F). Thirteen loggerhead turtle foraging site centroids were 

located within PCAs, reflecting the greater use of off-shore waters by 

loggerhead than green turtles. Present day and forecast models identified that 

the PCAs within the Adriatic, Straits of Sicily and Gulfs of Gabes and Tunis 

coincided with substantial areas of loggerhead turtle habitat niche (Figure S3b, 

areas E,F and G). These areas could represent very significant areas for future 
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consideration for MPA status for this species. Smaller areas also existed; 

notably, within the Balearic Sea and the east of the Levantine basin (Figure 

S3b, areas B,K and L). 

Under present day environmental conditions, our analysis suggests a 

fundamental lack of protection for both green and loggerhead turtles within 

observed and modelled foraging habitats inside the current Mediterranean MPA 

network. Far-ranging marine species are difficult to protect due to their 

migratory/foraging ecology; however, these distributions need not be random, 

but may be influenced by favourable areas of habitat (Hyrenbach, Forney & 

Dayton 2000). Our analysis revealed distinct hotspots for both green and 

loggerhead turtles. A large proportion of our green turtle foraging site centroids 

(76%, foraging sites: n = 22, green turtles: n = 21) were within four small, well-

defined areas of near-shore coastal waters of Turkey (n = 1), Libya (n = 2) and 

Tunisia (n =1) (Figure 1a: also see Stokes et al. (2015)). Only one of these 

areas lies within a designated MPA (Ain Al-Ghazalah Gulf, Libya); however, this 

is without IUCN classification (MAPAMED 2014). As adult green sea turtles are 

primarily herbivorous (Bjorndal 1997), and forage predominantly on seagrass in 

the Mediterranean (Cardona et al. 2010), it seems likely that food availability 

may concentrate these turtles within these areas. Designation of MPAs that 

bound these foraging areas, together with assignment and enforcement of 

appropriate IUCN classification, could appreciably increase protection to this 

species within these areas. Loggerhead turtle foraging sites were more diverse, 

this probably reflects the more cosmopolitan nature of their diet (Bjorndal 1997); 

it is possible that this trophic plasticity may confere a greater ability for 

loggerhead turtles to adapt to climate change induced shifts in habitat suitability.  

It is difficult to identify site-specific near-shore locations that may benefit 

foraging loggerhead turtles. However, loggerhead turtles foraged coincidently 

with green turtles in near-shore coastal water of Tunisia, and within Lake 

Bardawil, Egypt, the latter being an un-classified MPA.  

Under forecast models, 94% of combined green and loggerhead foraging 

habitat was located outside the boundaries of all current classified and un-

classified MPAs. Fisheries likely represent a significant threat to sea turtle 

populations throughout the Mediterranean Sea by way of bycatch (Casale 

2011), with associated impacts dependent on foraging grounds used and 

fisheries gear type encountered (Clusa et al. 2016). Our analysis indicates that 
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adoption of appropriately designed IUCN categorised pelagic MPAs within the 

northern Adriatic and the Gulfs of Gabes and Tunis could provide notable gains 

in protection for loggerhead turtles; areas previously identified as both important 

foraging habitats for loggerhead turtles (Casale, Laurent & De Metrio 2004; 

Casale et al. 2012; Schofield et al. 2013; Snape et al. in review) and regions 

where turtles may be the subject of bycatch (Casale, Laurent & De Metrio 2004; 

Casale et al. 2007). Large pelagic MPAs, however, may require their own suite 

of management strategies (Maxwell, Ban & Morgan 2014) and may therefore be 

difficult to enforce. In addition, to be acceptable to all stakeholders, such large 

managed areas need to be cost-effective, both in terms of the level of protection 

afforded to species within these zones, and the socio-economic impact that they 

may have (Leathwick et al. 2008).  

Under climate change scenarios, maximum ocean warming is projected 

for the surface in tropical and Northern Hemisphere subtropical regions. On a 

global scale the upper 75 m warmed, on average, by 0.11º C (0.09 to 0.13° C) 

per decade over the period 1971 to 2010 (IPCC 2013). Analysis of satellite 

derived sea surface temperature data for the Mediterranean Sea (Skliris et al. 

2012) indicated a mean annual warming of 0.037°C year–1 for the whole basin 

(1985-2008). However, magnitude of warming and warming rate were not 

homogeneous across basins, with short-term (decadal) shifts in warming rates 

between basins. Our forecast models apply a generic projected global sea 

surface (top 100 m) temperature increase of 2º C, based on CMIP5 RCP 

scenarios RCP8.5 (IPCC 2013), uniformly across our study area. Therefore, our 

models may not capture any nuances in spatio-temporal variability of habitat 

niche associated with variable warming rates. Our approach does, however, 

allow for basin-wide modelling of forecast habitats under realistic sea surface 

temperature increases within the basin. 

This study provides further insight into the habitat use of post-nesting 

green and loggerhead turtles across the Mediterranean Sea. Our analyses 

clearly discriminate key foraging areas for both species, under present day 

environmental conditions and under predicted sea surface temperature rises. 

We suggest that there are profound shortcomings within the current 

Mediterranean MPA network that result in a notable lack of protection within 

foraging habitats for both green and loggerhead sea turtles. However, 

appreciable gains in protection for both species could be made by designating 
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new MPAs within key foraging areas identified in this analysis; and by 

designating current MPAs with appropriate IUCN classifications and ensuring 

effective management and enforcement. Adoption of suitably designed IUCN 

categorised pelagic MPAs within the northern Adriatic, the Gulf of Gabes and 

the Gulf of Tunis as part of the UNEP/MAP PCAs could also provide a notable 

increase in protection for sea turtles, in particular loggerhead turtles. Our 

analysis focuses on a single facet of species life-history in assessing the 

present and future protection afforded by the current, and speculative, 

Mediterranean MPA network. As such, comprehensive protection will only be 

afforded to these species if consideration is also given to protecting key 

breeding habitats (on land and at sea) and migratory routes (e.g. Schofield et al. 

2013; Stokes et al. 2015; Snape et al. in review). In addition, to be holistic, this 

network needs to protect multiple species with variable residency and migratory 

spatial patterns; moreover, this network needs to be flexible enough to 

accommodate potential range shifts as the Mediterranean basins warm under 

climate change. As such, we believe that the analytical process that we have 

developed here has utility in defining critical areas for other species of concern 

within the Mediterranean Sea. 
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Table 1. Table 1. Sea area (km2) of Mediterranean state 12 nautical mile waters coincident with seasonally aggregated green and 

loggerhead turtle Ensemble Ecological Niche Models (EENMs), with year-round relative suitability ≥ 0.5 (areas with category 2 (red) in 

Figures 2 and 3), based on present day environmental data, and forecast models. Sea area (km2) also expressed as a % of total 

coincident sea area. Net gain or no change in coincidental sea area indicated by + or 0 respectively.  

 

Country 12 nautical 
mile waters: 
total sea area 
(km

2
) 

Green  
turtles:  
present day 

Green  
turtles: forecast 
+2°C 
 

gain (+)  
no change (0) 
in sea area 
(km

2
) 

Loggerhead 
turtles:  
present day 

Loggerhead 
turtles: forecast 
+2°C 

gain (+)  
no change (0) 
in sea area 
(km

2
) 

Green & 
Loggerhead 
turtles: 
present day 

Green & 
Loggerhead 
turtles: forecast 
+2°C 

gain (+)  
no change (0) 
in sea area 
(km

2
) 

(km
2
) (%)  (km

2
) (%)  (km

2
) (%)  (km

2
) (%)  (km

2
) (%)  (km

2
) %   

                 Albania 6024 0 0 600 1 + 1779 1 1779 1 0 0 0 470 1 + 

Algeria 28034 0 0 2794 3 + 1351 1 1351 1 0 0 0 654 1 + 

Croatia 31569 0 0 0 0 0 15233 8 17456 8 + 0 0 0 0 0 

Cyprus 13561 1134 3 1134 1 0 2006 1 2006 1 0 1070 3 1070 1 0 

Egypt 25340 10096 28 10096 11 0 10141 5 10141 5 0 7375 22 7375 9 0 

France 24509 0 0 0 0 0 2484 1 3220 2 + 0 0 0 0 0 

Gaza strip 218 137 0 137 0 0 59 0 59 0 0 59 0 59 0 0 

Gibraltar 412 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Greece 114036 22 0 9817 11 + 27945 14 30669 15 + 0 0 8455 11 + 

Israel 3897 2003 6 2003 2 0 2718 1 2718 1 0 2003 6 2003 2 0 

Italy 154802 0 0 9854 11 + 43735 22 46939 23 + 0 0 8153 10 + 

Lebanon 4710 632 2 632 1 0 624 0 624 0 0 576 2 576 1 0 

Libya 38673 17006 47 18744 20 + 32742 17 32742 16 0 16864 51 18600 23 + 

Malta 3991 0 0 276 0 + 1905 1 1905 1 0 0 0 276 0 + 

Monaco 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Morocco 9431 0 0 181 0 + 226 0 249 0 + 0 0 111 0 + 

Serbia and Montenegro 2324 0 0 0 0 0 677 0 677 0 0 0 0 0 0 0 

Slovenia 236 0 0 0 0 0 62 0 174 0 + 0 0 0 0 0 

Spain 56583 0 0 8873 10 + 19454 10 19932 10 + 0 0 8568 11 + 

Syria 3902 428 1 428 0 0 554 0 554 0 0 357 1 357 0 0 

Tunisia 36904 2018 6 22452 24 + 25053 13 25053 12 0 1875 6 19968 25 + 

Turkey 49271 2902 8 3874 4 + 7718 4 9944 5 + 2628 8 3486 4 + 

UK sovereign base (Cyprus) 377 0 0 0 0 0 24 0 24 0 0 0 0 0 0 0 

Total  36378  91895   196490  208216   32807  80181   
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Table 2. Green and loggerhead turtle foraging site centroids, counts (n) and 

expressed as a percentage of conspecific foraging site centroids coincident with 

classified and un-classified Marine Protected Areas (MPAs), and proposed 

United Nations Environment Programme (UNEP) Priority Conservation Areas 

(PCAs). Total turtles tracked: green turtles n = 27, loggerhead turtles n = 49. 

Total foraging sites: green turtles n = 29, loggerhead turtles n = 54. 

 

 Green turtle 

foraging sites 

 Loggerhead turtle 

foraging sites 

 n %  n % 

Classified MPAs 0 0  1
a
 2 

Un-classified MPAs 8
b
 28  5

c
 9 

UNEP PCA 0 0  13
d
 24 

 

 

a MPAs: n = 1. Amvrakikos Wetlands, National Park, Greece, IUCN category VI.  

b MPAs: n = 3. 

c MPAs: n = 3. 

d UNEP PCAs: n = 4. Areas; F: Southern Strait of Sicily, G: Northern and 

Central Adriatic, K: North-eastern Levantine Sea and Rhodes Gyre, L: Nile 

Delta Region (Figure 5d).  
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Table 3. Area (km2), and percentage, of the total footprint of species-specific 

aggregated EENMs (relative suitability ≥ 0.5), for present and forecast models, 

coincident with classified and un-classified Mediterranean Marine Protected 

Areas (MPAs). 

 

  Present  Forecast 

  Greens Loggerheads  Greens Loggerheads 

  km
2
 % km

2
 %  km

2
 % km

2
 % 

Classified 
MPAs 

240 0.2 4428 0.8  3390 1.0 4946 0.9 

Un-classified 
MPAs 

1590 1.1 24418 4.5  10136 3.0 26154 4.7 

Total 1830 1.3 28846 5.3  13526 4.0 31100 5.6 
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Table 4. Area (km2), of classified and un-classified protected areas coincident 

with of the total footprint of species-specific aggregated EENMs (relative 

suitability ≥ 0.5), for present and forecast models. Areas (km2) are also 

expressed as a % of total area of either; classified areas or un-classified areas. 

 

  Present  Forecast 

Greens Loggerheads Greens Loggerheads 

km
2
 % km

2
 %  km

2
 % km

2
 % 

Classified MPAs IUCN category  II 15 0.1 1758 16.3  1939 17.9 1890 17.5 

  III < 1 < 0.1 25 0.2  21 0.2 25 0.2 

  IV 225 2.1 2523 23.3  1362 12.6 2898 26.8 

  V 0 0 80 0.7  40 0.4 80 0.7 

  VI 0 0 42 0.4  28 0.3 53 0.5 

 Total  240 2.2 4428 40.9 3390 31.4 4946 45.7 

Un-classified MPAs  1590 1.5 24418 22.6  10136 9.4 26154 24.2 

 

IUCN protected areas are defined by management category: Ia strict nature 

reserve, Ib wilderness area, II national park, III natural monument or feature, IV 

habitat/species management area, V protected landscape or seascape and VI 

protected areas with sustainable use of natural resources (see full IUCN 

protected area definitions and management categories in Supplementary 

Material, Table S6).  
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Figure 1. Post-nesting foraging site centroids (1998 to 2013) (black circles), 

based on satellite tracked, best daily locations for, (a) green turtles (foraging 

sites n = 29; turtles n = 27), (b) loggerhead turtles (foraging sites n = 54; turtles 

n = 49). The total number of foraging sites at grouped locations are numbered 

in bold. Twelve nautical mile limit (broken line). Release locations (grey stars). 

In part (a) maritime areas are labelled as follows: Mediterranean basins (roman 

capitals), seas, gulfs and straits (italics). In part (b) countries are identified using 

their 2 digit sovereign state ISO code (roman capitals) as follows: Spain (ES), 

France (FR), Italy (IT), Slovenia (SI), Croatia (HR), Bosnia (BA), Montenegro 

(ME), Albania (Al), Greece (GR), Turkey (TR), Syria (SY), Lebanon (LB), Israel 

(IL), Egypt (EG), Libya (LY), Tunisia (TN), Algeria (DZ) and Morocco (MA). 

Islands (bold italics) labelled in full. All parts are drawn to the same spatial 

scale. Maps drawn to Projected Coordinate System: Europe Albers Equal Area 

Conic. 
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Figure 2. Aggregated seasonal Ensemble Ecological Niche Models (EENMs) for 

post-nesting green turtles run with: (a) present day and (b) forecast, 

environmental data. Parts (c), (d) and (e) are located according to the insets of 
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part (b). Present day models were run with best daily location data, and with the 

environmental surfaces of depth, slope, euphotic depth, Sea Surface 

Temperature (SST) thermal niche, net primary productivity (NPP), and SST 

frontal activity using long-term biannual seasonally aggregated products. 

Forecast models were run with an increase of 2º C to species-specific biannual 

SST thermal niche surfaces in accordance with Coupled Model 5 

(Intercomparison Project Phase CMIP5) Representative Concentration Pathway 

(RCP) scenario RCP 8.5 (IPCC 2013). Seasonal EENMs: (i) winter/spring 

(December - May), and (ii) summer/autumn (June - November) with a relative 

suitability ≥ 0.5 were aggregated to form a predictive surface where habitat 

niches were weighted by the number of seasons in which the predicted area 

was suitable. These surfaces are drawn in accordance with the figure legend in 

part (a). Countries, islands and seas are labelled in accordance with Figure 1, 

200 m isobath drawn and labelled. Parts (a) and (b) are drawn to the same 

spatial scale, all other parts are drawn to differing spatial scales. Maps drawn to 

Projected Coordinate System: Europe Albers Equal Area Conic. 
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Figure 3. Aggregated seasonal Ensemble Ecological Niche Models (EENMs) for 

post-nesting loggerhead turtles run with: (a) present day and (b) forecast, 

environmental data. Part (c) is located according to the inset of part (b). See 

Figure 2 for modelling details. Countries, and seas are labelled in accordance 

with Figure 1, 200 m isobath drawn and labelled. Parts (a) and (b) are drawn to 

the same spatial scale. Maps drawn to Projected Coordinate System: Europe 

Albers Equal Area Conic. 
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Figure 4. Combined foraging habitats (relative suitability ≥ 0.5) suitable for both 

species under: (a) present day and (b) forecast, environmental data. Year-round 

habitat (red polygons), seasonally dependent habitat (mid grey polygons). 

Countries are labelled in accordance with Figure 1, 12 nautical mile waters 

(broken line). Both parts drawn to the same spatial scale. Maps drawn to 

Projected Coordinate System: Europe Albers Equal Area Conic. 
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Figure 5. Marine Protected Areas (MPAs) within the Mediterranean. (a) Current 

IUCN classified and un-classified MPAs (blue cross-hatched polygons) 

(MAPAMED 2014). MPA centroids (black circles) for, (b) IUCN classified and (c) 
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un-classified MPAs. (d) United Nations Environment Programme (UNEP) 

Priority Conservation Areas (PCAs) (blue hatched polygons). A: Alborán 

Seamounts, B: Southern Balearic, C: Gulf of Lions shelf and slope, D: Central 

Tyrrhenian, E: Northern Strait of Sicily, F: Southern Strait of Sicily, G: Northern 

and Central Adriatic, H: Santa Maria di Leuca, I: North-eastern Ionian, J: 

Thracian Sea, K: North-eastern Levantine Sea and Rhodes Gyre, L: Nile Delta 

Region (UNEP 2010). In part (a) countries are labelled in accordance with 

Figure 1. All parts are drawn to the same spatial scale. Maps drawn to 

Projected Coordinate System: Europe Albers Equal Area Conic. 
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Table S1. Summary of PTT data for foraging post-nesting female green turtles, 

detailing: PTT ID, nesting season, release location and date, days tracked, days 

at foraging site and PTT manufacturer and model. A foraging site was deemed 

to be an area where an individual turtle remained resident for more than 30 

days (Blumenthal et al. 2006) and was less than 150 km in diameter. To 

minimise the potential for pseudo-replication within our data we limited the 

maximum number of days retained for analysis at any one foraging site to     

365 d. 

 

Id PTT Season Release location Release date Days tracked Days foraging PTT make Model 

1 4148 1998 Cyprus 1998-08-01 288 282 Wildlife Computers SDR-SSC3 

2 4149  Cyprus 1998-07-29 222 199 Wildlife Computers SDR-SSC3 

3 4150  Cyprus 1998-07-27 295 269 Wildlife Computers SDR-SSC3 

4 6598 1999 Cyprus 1999-07-17 244 178 Telonics ST-18 

5 4405 2002 Cyprus 2002-07-27 404 121 Telonics ST-6 

6 36638 2003 Cyprus 2003-07-12 348 247 Sirtrack KiwiSat 101 

7 36639 2004 Cyprus 2004-06-24 385 284 Sirtrack KiwiSat 101 

8 49813  Cyprus 2004-07-23 312 236 Sirtrack KiwiSat 101 

9 49815  Cyprus 2004-07-09 60 55 Sirtrack KiwiSat 101 

10 49816  Cyprus 2004-07-22 359 328 Sirtrack KiwiSat 101 

11 49822  Yumurtalik, Turkey 2004-07-15 99 84 Sirtrack KiwiSat 101 

12 49823  Yumurtalik, Turkey 2004-07-18 113 101 Sirtrack KiwiSat 101 

13 49824  Yumurtalik, Turkey 2004-07-19 131 119 Sirtrack KiwiSat 101 

14 49825  Yumurtalik, Turkey 2004-07-21 53 38 Sirtrack KiwiSat 101 

15 93699 2009 Israel 2009-06-27 55 50 Sirtrack KiwiSat 101 

16 93702  Israel 2009-06-20 355 308 Sirtrack KiwiSat 101 

17 95097  Cyprus 2009-07-04 487 421 Sirtrack KiwiSat 101 

18 95098  Cyprus 2009-07-15 117 54 Sirtrack KiwiSat 101 

19 95101  Cyprus 2009-07-05 716 673 Sirtrack KiwiSat 101 

20 95102  Cyprus 2009-07-24 111 93 Sirtrack KiwiSat 101 

21 52820 2010 Cyprus 2010-06-16 752 693 Sirtrack KiwiSat 101 

22 52949  Cyprus 2010-07-07 479 445 Sirtrack KiwiSat 101 

23 86898  Cyprus 2010-06-26 476 280 Sirtrack KiwiSat 101 

24 86900  Cyprus 2010-07-13 413 410 Sirtrack KiwiSat 101 

25 52827  Cyprus 2010-07-01 408 225 | 101 * Sirtrack KiwiSat 101 

26 52846  Cyprus 2010-06-28 349 53 | 99 * Sirtrack KiwiSat 101 

27 52888  Cyprus 2010-07-21 123 42 Sirtrack KiwiSat 101 

* multiple foraging locations  
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Table S2. Summary of PTT data for foraging post-nesting female loggerhead 

turtles, detailing: PTT ID, nesting season, release location and date, days 

tracked, days at foraging site and PTT manufacturer and model. A foraging site 

was deemed to be an area where an individual turtle remained resident for 

more than 30 days (Blumenthal et al. 2006) and was less than 150 km in 

diameter. To minimise the potential for pseudo-replication within our data we 

limited the maximum number of days retained for analysis at any one foraging 

site to 365 d. 

 

Id PTT Season Release location Release date Days tracked Days foraging PTT make Model 

1 29359 2001 Cyprus 2001-06-13 59 38 Telonics ST-14 

2 4206 2002 Cyprus 2002-07-04 138 68 SMRU SRDL 

3 4242  Cyprus 2002-07-08 422 57 | 137 | 42 * SMRU SRDL 

4 4406  Cyprus 2002-08-03 86 71 Telonics ST-14 

5 4407  Cyprus 2002-07-17 391 89 Telonics ST-14 

6 15340  Cyprus 2002-06-05 226 190 Telonics ST-6 

7 15414 2003 Cyprus 2002-07-04 375 348 Telonics ST-6 

8 29034  Cyprus 2003-07-21 627 611 Telonics ST-18 

9 29050  Cyprus 2003-06-14 1404 1402 Telonics ST-18 

10 49193a 2004 Zakynthos 2004-06-26 130 50 Sirtrack KiwiSat 101 

11 49194a  Zakynthos 2004-06-27 398 81 Sirtrack KiwiSat 101 

12 49195a  Zakynthos 2004-06-28 761 83 Sirtrack KiwiSat 101 

13 57389 2005 Cyprus 2005-07-01 137 83 Sirtrack KiwiSat 101 

14 49194b  Zakynthos 2005-08-10 118 79 Sirtrack KiwiSat 101 

15 49196a  Zakynthos 2005-06-16 189 30 Sirtrack KiwiSat 101 

16 49197  Zakynthos 2005-06-19 419 345 | 157 * Sirtrack KiwiSat 101 

17 49198  Zakynthos 2005-06-21 392 43 | 49 * Sirtrack KiwiSat 101 

18 53182 2006 Cyprus 2006-06-21 351 262 SMRU SRDL 

19 53184  Cyprus 2006-06-05 389 272 SMRU SRDL 

20 68561 2007 Cyprus 2007-06-20 166 102 SMRU SRDL 

21 72128  Dalyan, Turkey 2007-07-19 333 277 Sirtrack KiwiSat 101 

22 75969  Zakynthos 2007-07-22 143 51 Sirtrack KiwiSat 101 

23 75970  Zakynthos 2007-07-26 450 408 Sirtrack KiwiSat 101 

24 75971  Zakynthos 2007-07-27 671 571 Sirtrack KiwiSat 101 

25 75998  Zakynthos 2007-07-10 112 57 Telonics A-2010 

26 75999  Zakynthos 2007-07-13 428 390 Telonics A-2010 

27 76022  Zakynthos 2007-07-14 410 377 Telonics A-2010 

28 76024  Zakynthos 2007-07-12 384 328 Telonics A-2010 

29 76025  Zakynthos 2007-07-21 202 201 Telonics A-2010 

30 76026  Zakynthos 2007-07-11 323 279 Telonics A-2010 

31 76027  Zakynthos 2007-07-12 218 198 Telonics A-2010 

32 68557  Cyprus 2007-06-08 260 189 SMRU SRDL 

33 76023  Zakynthos 2007-07-18 416 375 | 46 * Telonics A-2010 

34 77171 2008 Cyprus 2008-07-16 707 699 SMRU SRDL 

35 86392  Israel 2008-07-19 474 391 Sirtrack KiwiSat 101 

36 77172 2009 Cyprus 2009-07-02 267 244 SMRU SRDL 

37 86390  Israel 2009-05-28 628 527 Sirtrack KiwiSat 101 

38 86393  Israel 2009-02-22 180 159 Sirtrack KiwiSat 101 

39 93698  Israel 2009-07-08 328 316 Sirtrack KiwiSat 101 

40 93700  Israel 2009-07-05 179 95 Sirtrack KiwiSat 101 

41 86391 2010 Israel 2010-06-23 427 393 Sirtrack KiwiSat 101 

42 52813 2011 Cyprus 2011-06-17 836 806 Sirtrack K2G 

43 52816  Cyprus 2011-06-23 403 382 NA NA 

44 52819  Cyprus 2011-06-05 440 370 Sirtrack K2G 

45 43755 2012 Cyprus 2012-06-05 174 99 Sirtrack F4 

46 52815  Cyprus 2012-06-01 334 245 Sirtrack K2G 

47 52817  Cyprus 2012-06-01 219 180 Sirtrack K2G 

48 118184  Cyprus 2012-06-01 212 72 Wildlife Computers SPOT 

49 118185  Cyprus 2012-05-31 499 406 Wildlife Computers SPOT 

* multiple foraging locations 

NA: data not available  



181 

 

Table S3. Ecological Niche Modelling evaluation metrics for 10-fold cross 

validation (mean and 1SD). Algorithm abbreviations: Generalised Linear Model 

(GLM), Multivariate Adaptive Regression Splines (MARS) and Maximum 

Entropy (MaxEnt). Key algorithm modelling parameters and evaluation metric 

descriptions are detailed at the foot of the table. 

 

Model Evaluation 
metric 

Modelling 
algorithm 

   

  GLM MARS MaxEnt mean sd 

Greens: winter - spring  AUC 0.994 0.996 0.998 0.996 0.001 

 KAPPA 0.980 0.983 0.982 0.982 0.002 

 TSS 0.980 0.983 0.982 0.982 0.002 

 SR 0.988 0.995 0.999 0.994 0.002 

 ACCURACY 0.990 0.991 0.991 0.991 0.001 

Greens: summer - autumn AUC 0.993 0.995 0.998 0.995 0.003 

 KAPPA 0.978 0.971 0.970 0.973 0.003 

 TSS 0.978 0.971 0.970 0.973 0.003 

 SR 0.990 0.994 0.999 0.995 0.004 

 ACCURACY 0.989 0.986 0.985 0.986 0.002 

Loggerheads: winter - spring AUC 0.956 0.969 0.969 0.965 0.008 

 KAPPA 0.842 0.873 0.863 0.859 0.015 

 TSS 0.835 0.866 0.862 0.854 0.017 

 SR 0.969 0.985 0.995 0.983 0.013 

 ACCURACY 0.925 0.939 0.935 0.933 0.007 

Loggerheads: summer - autumn AUC 0.962 0.968 0.970 0.967 0.004 

 KAPPA 0.854 0.878 0.865 0.865 0.012 

 TSS 0.848 0.859 0.849 0.852 0.006 

 SR 0.985 0.996 0.998 0.993 0.007 

 ACCURACY 0.945 0.953 0.949 0.949 0.004 

 

 

Biomod2 modelling parameters  

Randomly generated 'pseudo absence' locations (background data), with no 

minimum or maximum distance to presence locations were generated for each 

habitat model. All locations that had missing coincident environmental data 

were removed from the analysis (background data locations that were spatially 

referenced on land). 

The key algorithm modelling parameters in biomod2 were as follows: 

GLM: package = 'stats', family= 'binomial'. 
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MARS: package = 'mda', maximum interaction degree = 2, penalty (cost per 

degree of freedom) = 2, thresh (forward stepwise stopping threshold) = 0.001, 

prune = (TRUE). 

MaxEnt: Run within biomod2, maximum iterations (for training) = 200, 

linear/quadratic/product/threshold/ hinge features (the transformation 

coefficients applied to each environmental variable), default prevalence = 0.5. 

 

Evaluation metrics  

AUC (Area under the curve): a measure of the ratio of true positives out of the 

positives vs. the ratio of false positives out of the negatives. 

KAPPA (Cohen's Kappa, Heidke skill score) and TSS (True Skill Statistic): 

measures of accuracy relative to that of random chance. 

SR (Success Ratio): the fraction of the true positives that were correct. 

Accuracy (fraction correct): the fraction of the predictions (true and false) that 

were correct.  

 

To compute the threshold value used to transform the probability of presence 

model output data to binary data for model evaluation metrics based on the 

comparison of binary data (e.g. True Skill Statistic (TSS)), the algorithm 

calculates the evaluation metric in question (e.g. TSS) for a sequence of 

thresholds from 0 to 1 (100 values). The value that maximises this evaluation 

metric is then selected as the threshold value used. (Thuiller et al. 2009). 
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Table S4. Ecological Niche Modelling variable importance for 10-fold cross 

validation. 

 

Model Modelling 
algorithm 

Environmental variable     

Depth Euphotic  
depth 

NPP SST  
thermal  
niche 

Slope SST  
frontal  
activity 

        Greens: winter - spring GLM 0.48 0.06 0.05 0.32 0.04 0.04 

 MARS 0.58 0.03 0.03 0.34 0.01 0.00 

 MAXENT 0.60 0.00 0.00 0.37 0.00 0.01 

 mean 0.55 0.03 0.03 0.35 0.02 0.02 

 sd 0.06 0.03 0.02 0.03 0.02 0.02 

        

Greens: summer - autumn GLM 0.34 0.07 0.02 0.51 0.03 0.05 

 MARS 0.52 0.00 0.00 0.43 0.02 0.02 

 MAXENT 0.44 0.00 0.01 0.54 0.01 0.00 

 mean 0.43 0.02 0.01 0.49 0.02 0.02 

 sd 0.09 0.04 0.01 0.05 0.01 0.02 

        

Loggerheads: winter - spring  GLM 0.84 0.02 0.06 0.00 0.07 0.01 

 MARS 0.78 0.06 0.10 0.00 0.06 0.00 

 MAXENT 0.90 0.03 0.05 0.00 0.02 0.00 

 mean 0.84 0.04 0.07 0.00 0.05 0.00 

 sd 0.06 0.02 0.03 0.00 0.03 0.00 

        

Loggerheads: summer - autumn GLM 0.67 0.07 0.06 0.16 0.04 0.00 

 MARS 0.69 0.04 0.06 0.17 0.04 0.01 

 MAXENT 0.80 0.00 0.01 0.17 0.02 0.00 

 mean 0.72 0.04 0.04 0.17 0.03 0.00 

 sd 0.07 0.03 0.03 0.01 0.01 0.00 

 

The relative importance of each environmental variable to the model was 

calculated using a randomisation process. This procedure calculated the 

correlation between a prediction using all environmental variables and a 

prediction where the independent variable being assessed was randomly re-

ordered. If the correlation was high the variable in question was considered 

unimportant for the model and conversely, if low, important. A mean correlation 

coefficient for each environmental variable was then calculated over multiple 

runs. This was repeated for each environmental variable. The calculation of the 

relative importance was made by subtracting these mean correlation 

coefficients from 1 (Thuiller et al. 2009). 
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Table S5. Loggerhead turtle foraging sites and foraging records apportioned by 

sex (Schofield et al. 2013) coincident with Loggerhead EENM based on present 

day environmental variables. 

 

 Foraging sites  Foraging records 

 M F Combined 

Total (n) 32 37 88 125 

Within EENM (n) 26  33 81 114 

Within EENM (%) 81 89 92 91 
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Table S6. Summary of IUCN protected area definition and management 

categories.IUCN defines a protected area as: A clearly defined geographical 

space, recognised, dedicated and managed, through legal or other effective 

means, to achieve the long-term conservation of nature with associated 

ecosystem services and cultural values. The definition is expanded by six 

management categories (one with a sub-division), summarised below. 

 

IUCN category Definition 

Ia Strict nature reserve  Strictly protected for biodiversity and also possibly geological/ 
geomorphological features, where human visitation, use and impacts are 
controlled and limited to ensure protection of the conservation values. 

Ib Wilderness area Usually large unmodified or slightly modified areas, retaining their natural 
character and influence, without permanent or significant human 
habitation, protected and managed to preserve their natural condition. 

II National park Large natural or near-natural areas protecting large-scale ecological 
processes with characteristic species and ecosystems, which also have 
environmentally and culturally compatible spiritual, scientific, educational, 
recreational and visitor opportunities. 

III Natural monument or 
feature 

Areas set aside to protect a specific natural monument, which can be a 
landform, sea mount, marine cavern, geological feature such as a cave, 
or a living feature such as an ancient grove. 

IV Habitat/species 
management area 

Areas to protect particular species or habitats, where management 
reflects this priority. Many will need regular, active interventions to meet 
the needs of particular species or habitats, but this is not a requirement of 
the category 

V Protected landscape or 
seascape 

Where the interaction of people and nature over time has produced a 
distinct character with significant ecological, biological, cultural and scenic 
value: and where safeguarding the integrity of this interaction is vital to 
protecting and sustaining the area and its associated nature conservation 
and other values 

VI Protected areas with 
sustainable use of natural 
resources  

Areas which conserve ecosystems, together with associated cultural 
values and traditional natural resource management systems. Generally 
large, mainly in a natural condition, with a proportion under sustainable 
natural resource management and where low-level non-industrial natural 
resource use compatible with nature conservation is seen as one of the 
main aims. 

The category should be based around the primary management objective(s), which should apply to at least 
three-quarters of the protected area – the 75 per cent rule. 
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Figure S1. Seasonal Ensemble Ecological Niche Models (EENMs) for post-

nesting green and loggerhead turtles run with best daily location data, and with 

the environmental surfaces of depth, slope, euphotic depth, Sea Surface 

Temperature (SST) thermal niche, net primary productivity (NPP), and SST 

frontal activity using long-term biannual seasonally aggregated products. 

Seasonal figure parts: (a,b,c,g,h,i) winter/spring, (d,e,f,j,k,l) summer/autumn. 

(a,d,g,j) Location data. EENMs run with, (b,e,h,k) present day environmental 

data, and (c,f,i,l) forecast models with an increase of 2º C to species-specific 

biannual SST thermal niche surfaces in accordance with Coupled Model 5 

(Intercomparison Project Phase CMIP5) Representative Concentration Pathway 

(RCP) scenario RCP 8.5 (IPCC 2013). The relative suitability of habitats are 

scaled between 0 and 1 (where 0 represents lowest suitability and 1 highest 

suitability). Habitats with relative suitability ≥ 0.5 are drawn as red polygons. In 

part (a) countries and islands are labelled in accordance with Figure 1, 200 m 

isobath drawn (broken line). All parts are drawn to the same spatial scale. Map 

drawn to Projected Coordinate System: Europe Albers Equal Area Conic. 
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Figure S2. Discrete loggerhead foraging sites digitised from Schofield et al. 

(2013) (black circles) with present day loggerhead EENM (light blue polygons). 

Map drawn to Projected Coordinate System: Europe Albers Equal Area Conic. 
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 Figure S3. Spatial coincidence of modelled green and loggerhead turtle habitat 

niche (based on present day and forecast environmental data) with United 

Nations Environment Programme (UNEP) Priority Conservation Areas (PCAs). 

Present day (blue), forecast model (red). Countries are labelled in accordance 

with Figure 1, UNEP PCAs are drawn and labelled in accordance with Figure 

5d. 200 m isobath drawn and labelled. Map drawn to Projected Coordinate 

System: Europe Albers Equal Area Conic. 
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ABSTRACT 

 

The African country of Gabon has seen decadal increases in commercial 

logging. An unforeseen consequence of this has been that many coastal areas, 

including several National Parks and Reserves, have suffered severe pollution 

from beached timber. This has the potential to adversely affect nesting sea 

turtles, particularly the leatherback turtle (Dermochelys coriacea) for which 

Gabon constitutes the world’s largest rookery. In this study, we analyse aerial 

survey data (2003, 2007 and 2011) to determine the temporal persistence and 

spatial extent of beached timber, and by integrating spatial data on nesting, 

ascertain regions where beached timber poses the greatest threat to nesting 

leatherback turtles. There was no marked difference in the number of beached 

logs recorded across the study area during the period, with 15 160, 13 528 and 

17 262 logs recorded in the three years, respectively. There was, however, a 

significant difference in abundance of beached logs among geographical areas. 

Analysis highlighted two coastal areas where nesting leatherback turtles were 

likely to be at greatest risk from beached timber. At one such site, Kingere, 

within Pongara National Park, where both logs and turtle densities are high, 

monitoring in 2006/07 and 2007/08 suggested that between 1.6% and 4.4% of 

leatherback turtles could be entrapped at this site. Given the dynamic nature of 

Gabon’s coastal environment, and the potential limitations of aerial surveys, 

densities of beached timber could be greater than this analysis reveals. We also 

propose, that despite recent export restrictions of whole logs, their 

environmental persistence potentially represents a long term problem. 

 

Keywords: aerial survey, beach, logs, leatherback turtle, threat, timber 
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INTRODUCTION 

 

Industrial logging in Central Africa has shown decadal increases and now 

contributes to a large proportion of land use in the region (Laporte et al. 2007). 

Historically, Gabon was able to resist such commercial pressure due to its 

natural oil and mineral reserves, but recently, pressure to expand commercial 

logging activities has increased (Laurance et al. 2006). Export revenue from 

timber and associated products contributed an average of 6.5% to Gabon’s 

Gross Domestic Product (GDP) from 1995 to 2010 (World Bank 2011). The 

commercial value of all exported timber products more than tripled in the 

decade up to 2008, although the exported cubic volume remained consistent 

since the peak export years of 1997 and 2000 (ITTO 2010a). The fast-growing 

hardwood, okoumé (Aucoumea klaineana) is a key forest species in Gabon 

(Medzegue et al. 2007), and is the principal species associated with the export 

market (Collomb et al. 2000).  

Traditionally, as part of the commercial export process, roundwood 

(whole logs) were transported by barge, or as rafts of timber, downriver towards 

the coast; Gabon's river systems have been associated with the transportation 

of cut timber since the onset of commercial logging at the beginning of the 20th 

century (Gray and Ngolet 1999). However, logs that broke free during transport, 

were carried to coastal waters and some became beached, forming large 

aggregations in several areas (Laurance et al. 2008). In a move towards 

sustainable forest management policies and steps to diversify the economy of 

Gabon, the export of roundwood was formally banned in May 2010 (ITTO 

2010b) thereby promoting the processing of timber beyond sawn lumber and 

veneers towards finished products. 

In 2002, a system of National Parks was created with the aim of 

protecting key areas of Gabon’s biodiversity-rich coastal and terrestrial habitats 

(Figure 1). In total, 13 National Parks encompassing more than 25 000 km2 or 

10% of its territory were designated. These protected coastal zones, together 

with many other beaches of Gabon, represent some of the world’s most 

important nesting sites for sea turtles. These include the globally important 

breeding aggregation for the leatherback turtle (Dermochelys coriacea), with the 

northern and southern extremes of the Gabonese coast (Pongara and 

Mayumba National Park) receiving the highest densities of nesting activity (Witt 
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et al. 2009): 23 and 33 percent respectively of all nesting activity (this study: 

2003 aerial survey data), as well as olive ridley (Lepidochelys olivacea) and 

green sea turtles (Chelonia mydas) (Fossette et al. 2008; Maxwell et al. 2011).  

Beached logs represent a threat to nesting sea turtles through 

obstruction, entrapment and disorientation (Laurance et al. 2008; Bourgeois et 

al. 2009). An initial assessment of the threats posed to Gabon's nesting sea 

turtles by beached timber was made by Laurance et al (2008) using a single 

year's aerial survey data (January 2003), together with ground surveys of a 4.2 

km section of Pongara National Park (March 2005). This analysis suggested 

that beached log densities were highest in the vicinity of Pongara and Mayumba 

National Parks and that 8 - 14% of all nesting attempts (97.6% involving 

leatherback turtles) at Pongara Natonal Park were negatively affected.  

Our study builds upon this initial assessment with rigorous and 

comprehensive statistical analyses of multiple year aerial survey data over a 

nine year period (February 2003, 2007 and 2011). We couple this analysis with 

ground surveys (38 km) of leatherback/log interaction impact assessments from 

three disparate coastal regions over two nesting seasons. In addition, we 

formulate a threat index for interaction between nesting leatherbacks and 

beached timber for the majority of the Gabonese coast.  

We demonstrate that the temporal and spatial extent of beached timber, 

and therefore the threat from beached timber to leatherback turtles, alluded to 

by Laurance et al. (2008), is persistent and has the potential to remain so, until 

remedial action to remove beached timber is taken. We concur with the initial 

findings of Laurance et al. (2008) regarding impacts to leatherback turtles at 

Pongara National Park, but also demonstrate that this threat is a national issue 

within both protected and unprotected areas. 
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METHODS 

  

Aerial surveys and data management 

 

Aerial surveys were flown along the Gabonese coast using a variety of 

high wing light aircraft on 12th February 2003, 23rd / 24th February 2007 and 23rd 

/ 24th February 2011; these surveys were timed to coincide with leatherback 

turtle nesting activities (Witt et al. 2009). To quantify the potential for 

discrepancies between counts derived from aerial survey analysis and ground 

counts, a further limited aerial survey was flown on 30th January 2012 that was 

spatially concordant with a ground-based validation survey. The aircraft were 

flown at an approximate groundspeed of 180 to 190 km hr-1 at an altitude of 50 

to 60 m, with the aircraft positioned 100 to 200 m offshore. Surveys were flown 

in a southeast direction from northern to southern Gabon, parallel to the 

coastline. The start location for all surveys was Pointe Pongara, south of the 

capital, Libreville (Figure 1). The survey end location in 2003 was 42 km 

northwest of the southern limit of Mayumba National Park’s border with the 

Republic of Congo. Aerial survey end locations for 2007 and 2011 were further 

to the southeast near the Gabon-Congo border. A 50 km section of coast to the 

east of Cap Lopez, Port Gentil was excluded from all surveys as this area 

consisted of mangroves and mudflats that would not support nesting 

leatherback turtles (Figure 1).  

Continuous video footage was captured using an analogue video camera 

recording to tape in 2003 and 2007 (subsequently digitised to .avi format) and in 

High Definition (HD) using a digital video camera in 2011 and 2012 (.m2ts 

format). A hand held Global Positioning System (GPS) receiver (Garmin 

GPS60) was used to record waypoints of the aerial survey comprising 

longitude, latitude, altitude, date/time, distance from start and speed. 

Differences occurred in total distances flown between survey years; these small 

differences arose due to discrepancies in aircraft flight path or where the video 

recording was stopped to change tape (2003 and 2007) or memory card (2011) 

or if surveys occurred across two days (2007 and 2011). Date and time stamps 

were burnt to the recorded video footage, this was then viewed at half frame 

speed, or where log densities required, with the frame paused. All logs that lay 

on the shore between the surf-zone/foreshore interface and back-shore/coastal 
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vegetative terrain were counted. Logs that lay further inland were deemed to be 

outside of the area of extreme storm activity and therefore, as they had little 

potential to be re-mobilised into the marine/beach environment, were not 

included in the count. The method for counting leatherback turtle nests from 

aerial surveys is fully described in Witt et al. (2009).  

Log counts and leatherback turtle nesting counts were imported into the 

Geographical Information System (GIS) ArcView 9.2 (ESRI, Redlands, USA 

http://www.esri.com). This was used to generate distribution maps and to 

identify protected and unclassified land areas, as well as to perform spatial 

analysis. GPS waypoint data were used to partition the flown survey route into 

sections, or data bins, for analytical purposes. Mean data bin length varied 

slightly among survey years; 2003: 617 m (standard deviation (SD) 46 m), 

2007: 516 m (SD 15 m) and 2011: 525 m (SD 16 m). Therefore, direct 

comparisons between years using log counts per data bin were not conducted.  

To facilitate statistical analysis, the 2007 and 2011 surveys were clipped 

to the same spatial extent of the 2003 survey. To standardise data to a common 

spatial resolution we created a raster of discrete 25 km2 coastal polygons that 

encompassed the spatial extent of the 2003 aerial survey path. The aerial 

survey raw data bins for 2003, 2007 and 2011 surveys were then aggregated 

into the raster squares to which they were spatially coincident. Log densities 

km-1, and leatherback turtle nest densities km-1, for each 25 km2 were then 

calculated.  

A threat index ((logs km-1 * nests km -1) / Σ (logs km-1 * nests km -1)) was 

formulated from the 2003 raw bin count data to represent the potential for 

interaction between nesting leatherback turtles and beached logs. To identify 

coastal areas with the highest threat indices we calculated relative estimates of 

density using a kernel smoothing approach (Worton 1989; Laver & Kelly 2008). 

This provides an estimate of the probability density function for a spatially 

referenced variable using a defined smoothing parameter and optional 

weighting to the variable. So as not to over-smooth the resulting kernel a 

smoothing parameter of 5 km was chosen. 

All statistical analysis was undertaken with R (R Development Core 

Team 2008). A Linear Mixed Effect (LME) model (R package: nlme (Pinheiro et 

al. 2012)) was used to investigate the relationships of year and 
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classified/unclassified area on log densities. Results were validated using 

residuals vs. fitted values diagnostic plots. 

  

Ground-based surveys  

 

Ground-based log surveys were conducted for a 9 km section of Pongara 

National Park on 18th / 19th September 2010 (N 0.306, E 9.301 to N 0.226, E 

9.314; all coordinates given as decimal degrees according to WGS 1984), on 

13th / 14th July 2011 (N 0.306, E 9.302 to N 0.223, E 9.313) and on 9th February 

2012 (N 0.294, E 9.304 to N 0.228, E 9.313); the latter being carried out within 

ten days of an aerial survey. For 2012, all logs that lay on the shore between 

the surf-zone/foreshore interface and back-shore/coastal vegetative terrain 

within this 9 km section were counted. For 2010 and 2011, the lengths and 

diameters of all beached logs within the first 2 km of this section were recorded. 

Where measurement of length was not possible due to the log, or portion of the 

log, being embedded in the sand, the log was recorded as ‘buried’.  

Daily counts of leatherback turtle tracks were made during the early 

morning by beach patrols at three coastal regions during the nesting seasons 

2006/07 to 2010/11. Counts were made at Pongara National Park (N 0.352, E 

9.355 to N 0.221, E 9.313) (19 km), Sette Cama Reserve, (S 2.798, E 10.027 to 

S 2.825, E 10.065) (5 km), and Mayumba National Park (S 3.729, E 10.975 to S 

3.782, E 11.017) (7 km) and (S 3.908, E 11.080 to S 3.863, E 11.028) (7 km). 

All encountered tracks were assessed for whether they had been impacted by 

logs, each track being categorised: 0) no impact, 1) nesting was definitely 

abandoned due to logs, 2) nesting was probably abandoned due to logs, 3) the 

turtle was blocked by logs but was able to nest above the High Tide Line (HTL), 

4) the turtle was blocked by logs but was able to nest below the HTL, 5) the 

turtle was blocked by logs after nesting, whilst returning to sea. Additional 

monitoring of turtle entrapment was undertaken in the 2006/07 and 2007/08 

season at Kingere, (S  0.298 E 9.303 to S 0.221 E 9.313) (a 7 km section of 

Pongara National Park). 
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RESULTS 

 

Spatial density patterns and threat index 

 

In total, 15 160, 13 528 and 17 262 logs were recorded in 2003, 2007 

and 2011, respectively, along the ca. 550 km coastline (Supplementary 

Material, Table S1).  Log densities were greatest in the north and towards the 

south of the Gabonese coastline; areas both associated with river estuaries 

(Figure 1). Within protected areas, Pongara National Park had the highest 

recorded number of logs km-1 for all years; whereas, Mayumba National Park 

had the lowest (Supplementary Material, Table S1).  

Spatial mapping of standardised log densities (logs km-1 / 25 km2) 

showed that across all survey years, there was a consistently high density of 

beached logs within Pongara National Park and unclassified area 1 (Figures 2, 

3). Log densities for Wonga Wongue Reserve and for unclassified area 2 were 

greater to the north of these areas (Figure 2). Log densities for the Gamba 

Complex of reserves (including Loango National Park, Sette Cama Reserve and 

Ouanga Reserve) were greater in the centre and to the south of this complex 

(Figure 2). Mayumba National Park demonstrated a consistently low density of 

beached logs (Figure 2). Standardised log densities were not influenced by the 

main effect of year (Chi21 = 0.40, p = 0.53) or by any relationship with survey 

year and area (Chi28 = 5.38, p = 0.72). There was, however, a significant 

difference in the density of beached logs recorded among areas (Chi28 = 77.56, 

p < 0.001) (Figure 3).  

Mapping of leatherback turtle nest densities indicated that Mayumba 

National Park, the northern end of unclassified area 1 and Pongara National 

Park had the highest densities of leatherback turtle nests (Figure 2) with 33, 24 

and 23 percent of all leatherback nesting activity occurring in these areas 

respectively.  

Risk mapping, however, identified the 75% volume contour of the 

kernelled density distribution of the threat index as including: 22 km of Pongara 

National Park, 16 km of unclassified area 1, and 21 km (non-contiguous) of 

Sette Cama Reserve (Figure 4). 
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Ground-based surveys  

 

Within the ground surveyed section of Pongara National Park, a total of 

1561 (212 logs km-1) were recorded for 2012. This compared with 1254 logs 

(170 logs km-1) for the 2012 aerial survey analysis, with the aerial survey being 

specifically undertaken temporally close to the ground survey; this represents 

an aerial survey undercount of 20%. 

Within a 2 km sub-section, for 2010, mean log length was 9.31 m (SD 

2.32) with a mean diameter of 0.73 m (SD 0.25); 219 logs (68.7%) out of a total 

of 319 could not be measured and were classified as buried. In 2011, for the 

same 2 km sub-section, mean log length was 8.52 m (SD 3.02) with a mean 

diameter of 0.66 m (SD 0.20); 210 logs (57.2%) out of a total of 367 could not 

be measured and were classified as buried. 

Daily counts of leatherback turtle activities and impacts to nesting 

associated with beached logs indicated that, on average, across 2006/07 to 

2010/11 nesting seasons, 17% (Pongara National Park), 6% (Sette Cama 

Reserve) and < 1% (Mayumba National Park) of all recorded leatherback turtle 

beach movements were likely to have been impacted in some way by beached 

logs (Supplementary Material, Table S2). At Kingere, however, (a 7 km section 

of Pongara National Park), where there was a high density of logs and nests, 

the impact was greatest. In 2006/07, 22 females were discovered entrapped in 

logs (8 dead, 14 rescued). This number was lower in 2007/08 (2 dead, 2 

rescued) but nesting was at a lower level in the latter season. A total of 3043 

and 1506 leatherback turtle tracks were counted at Kingere in 2006/07 and 

2007/08 respectively, likely resulting in 3013 and 1491 clutches, respectively 

(Witt et al 2009). If we assume all females lay approx. 6 clutches (Miller 1997) 

then we can estimate that mortality, without intervention, at this site would have 

been 4.4% of all nesting females in 2006/07 and 1.6% in 2007/08.  
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DISCUSSION 

 

River transportation and storage of timber represents an inexpensive 

logistic solution for the industry (Sedell et al. 1991), however, this practise may 

bring changes to channel structure and other allied habitat degradation. The 

impacts to marine and coastal habitats from beached timber related with this 

practise are understudied. Gabon's river systems have been associated with the 

transportation of harvested timber for over a century, and therefore the coastline 

of Gabon, its species and habitats, have had the potential to have been be 

impacted by beached timber for a considerable time.  

Analysis of aerial survey data obtained from the Gabonese coast 

indicated that there has been no significant change in the relative density of 

beached logs amongst 2003, 2007 and 2011. With a ban on the export of 

roundwood in May 2010 (ITTO 2010b) it would be reasonable to expect the 

fresh input of whole logs to the marine environment to have largely ceased. 

Timber experts have indicated that 35% of the logs examined in the 2 km 

ground survey area in Pongara National Park were still of exploitable quality in 

2010, with an 11% reduction by 2011 (Cardiec unpublished data). Given the 

durability of this timber, this relatively consistent density of logs potentially 

represents a long term problem.  

Spatial variation in the relative density of logs does exist among coastal 

areas. Log densities were highest in areas adjoining river estuaries. To the 

north of the country, the rivers of the Komo (the Gabon Estuary) and the 

Ogooué discharge to the coastal regions of Pongara National Park, Wonga 

Wongue Reserve, unclassified area 1 and the northern part of unclassified area 

2. Likewise, to the south of the country, the Nyanga River discharges to the 

coastal regions of Sette Cama Reserve, Ouanga Reserve and the northern end 

of unclassified area 3. The Ogooué River is the principal river of Gabon and 

drains the vast majority of the country (McShane 1990) and for decades, has 

served as a significant internal transport link to the main Gabonese port of Port 

Gentil (Gray & Ngolet 1999). The increased spatial density of beached logs, 

associated with river mouths, is likely an artefact of the historic transportation 

practice related to the movement of felled timber, allied with the coastal 

morphology of these regions. Predominant wind direction is southerly (Peterson 

and Stramma, 1991) and both the Southern and Northern Equatorial Counter 
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currents flow in an easterly direction. Mean tidal ranges are small (1.0 – 1.2 m) 

and the swell has a long period, generally from a south-westerly direction 

(Giresse 2010). These factors may singularly, or collectively, increase the 

likelihood for logs to remain in situ after becoming beached and limit their 

propensity for remobilisation.  

The beaches of Gabon are subject to alteration by storm wave erosion 

and fine weather accretion; where remobilisation and transport of sand occurs, 

this is generally in a northerly direction (Giresse 2010). Ground-based surveys 

gave clear evidence of the effect of this accretion process on beached timber, 

with more than half of all logs surveyed unable to be measured. Aerial video 

footage also highlighted this accretion and erosion process; in some coastal 

sections, only small radial segments of log circumference would be visible, or if 

burial and erosion had occurred, part buried logs would protrude from the sand. 

This process of concealment and exposure could account, in part, for the 

fluctuation in the relative densities of logs within areas, between aerial surveys; 

although, the potential for some remobilisation and shift in log distribution 

should not be dismissed. 

Leatherback turtle nesting densities were highest in Mayumba National 

Park, the northern end of unclassified area 1 and Pongara National Park. Areas 

identified as posing the highest threat to nesting leatherback turtles through 

beached logs were Pongara National Park, the 16 km northern end of 

unclassified area 1, and sections of Sette Cama Reserve. Of the three sites 

subject to long term monitoring, impacts of beached logs on leatherback turtle 

nesting were highest within Pongara National Park and Sette Cama Reserve. It 

is clear that there is the potential for increased mortality in high impact areas 

such as Kingere and possibly other areas not yet subject to ground survey. 

Logs have the potential for multiple impacts on marine turtles. Harder to 

quantify is the reduced nesting success as a result of a higher numbers of 

clutches being laid lower down the beach. Logs are also a problem for 

hatchlings when making their way to the sea, not only physically but also 

through blocking visibility of the sea and increasing predation and dehydration 

risk due to extended dispersal time on the beach. Buried logs have been seen 

to hinder females digging nest chambers, and the decomposition of logs may 

influence the chemical and biochemical composition of beaches thereby 
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affecting incubation conditions. Finally, the presence of logs has the potential to 

affect erosion/accretion dynamics with unknown impacts.   

As the method of data capture from the video footage requires the 

images to be interpreted by eye there is the potential for a degree of observer 

error. This interpretation can be hindered by variation in video quality, with loss 

of image definition and contrast. Image interpretation is also compromised by 

variation in aircraft height, look angle and camera zoom. The physical character 

of the logs, i.e. size, part buried or in stacks, and the beach environment i.e. 

shadows, flotsam or overhanging trees, can also contribute to the potential for 

undercounts of logs; particularly in areas of higher log densities. 

Underestimates of log density from aerial surveys, as compared to ground-

based surveys, were highlighted by the 20% undercount between the two 

methods in 2012. Given this potential for aerial survey underestimation it must 

be considered that the assessment of threat from logs to nesting leatherback 

turtles may be conservative, particularly in areas of higher log densities. 

Similarly, there is no way to quantify the number of fully buried logs that may 

exist within the beach environment, or the threat that these may pose to nesting 

turtles. Notwithstanding these caveats, this analysis clearly demonstrates the 

advantage of using aerial surveys where large areas need to be surveyed over 

a limited time-frame. 

Laurance et al. (2008) suggest that initiatives to remove timber from 

critical nesting beaches may be the most effective way to reduce impacts to sea 

turtles. However, this would require support from the Gabon government due to 

legal restrictions (Laurance et al. 2008). To have the greatest effect initiatives 

should be focussed on the areas of Pongara National Park, Sette Cama 

Reserve and unclassified area 1 where threat to nesting leatherback turtles is 

greatest. Due to the general inaccessibility of the coastline and scale of the 

problem, > 5900 logs lay along 43 km of the coastline within Pongara National 

Park and unclassified area 1 (this study: 2011 aerial survey data), removal may 

be difficult to achieve. However, this may be a solution in areas where 

immediate local access is available and log densities are modest e.g. Sette 

Cama Reserve and unclassified area 3. If commercially viable extraction using 

access from the sea were plausible, and limited in respect of its negative 

impacts to nesting beaches and turtles, this may prove a worthwhile 

consideration in higher impacted areas. Although costly, an alternative solution 
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in high impact areas may be to dismember logs and remove sections to behind 

the beach to decay. 

International awareness has increased over the direct and indirect, 

regional and global impacts of unsustainable harvesting of timber from tropical 

rainforests. Deforestation and its associated impacts to ecosystems are well 

documented; downstream effects on marine and coastal species and habitats 

are less so, but are clearly an unforeseen consequence of these terrestrial 

activities. The aggregation of many thousands of logs along the biodiversity-rich 

coastal habitats of the central African Atlantic coast attributable to rainforest 

logging has led to insidious implications for nesting sea turtles, particularly the 

leatherback turtle, for which the beaches of Gabon support globally important 

breeding aggregations. 
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Figure 1. Gabon National Parks, Reserves and Rivers. National Parks and 

Reserves are shown in mid grey, unclassified areas in light grey; PNP: Pongara 

National Park, UA1: unclassified area 1, WWR: Wonga Wongue Reserve, UA2: 

unclassified area 2, LNP: Loango National Park, SCR: Sette Cama Reserve, 

OR: Ouanga Reserve, UA3: unclassified area 3, MNP: Mayumba National Park. 

The river mouths of the Komo, Ogooué and Nyanga are indicated by solid black 

lines and labelled in italics. The start and end locations for all surveys are 

shown as a filled circle and filled triangle respectively. Maps drawn to 

Geographic Coordinate System: WGS 1984. 
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Figure 2. Spatial density patterns by latitude. (a) Leatherback turtle nests for 

2003 (Witt et al. 2009). Beached logs km-1 for (b) 2003, (c) 2007 and (d) 2011. 

Data were standardised to a common spatial resolution of discrete 25 km2 

squares derived from the 2003 survey. National Parks and Reserves are shown 

as black bars and unclassified areas as mid grey bars. For abbreviations see 

Figure 1.  
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Figure 3. Mean logs km-1 (Mean ± SE) for 2003 (dark grey bars), 2007 (mid 

grey bars) and 2011 (light grey bars). A LME indicated that log densities were 

not influenced by the main effect of year  (Chi21 = 0.40, p = 0.53) or by any 

relationship with survey year and area (Chi28 = 5.38, p = 0.72). There was a 

significant difference in the density of beached logs recorded among areas 

(Chi28 = 77.56, p < 0.001). For abbreviations see Figure 1.  
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Figure 4. Threat maps for nesting leatherback turtles. Weighted kernelled 

distribution of threat indices with a 5 km smoothing factor for (a) Pongara 

National Park and unclassified area 1 and (b) Sette Cama Reserve. 25%, 50% 

and 75% polygons of the density distribution are shown with black, mid and light 

grey fill respectively. National Parks and Reserves are shown in mid grey and 

unclassified areas in light grey. Maps (a) and (b) are drawn to the same spatial 

scale and are located according to the inset of part (a). Maps drawn to 

Geographic Coordinate System: WGS 1984. 

  



210 

 

Table S1. Total log counts, distance flown and number of logs km-1 for the 

survey years 2003, 2007 and 2011 assigned to their respective classified or 

unclassified status. 

 

 Survey Year: 2003 Survey Year: 2007 Survey Year: 2011 

 log 
count 

distance 
(km) 

mean  
logs 
km

-1
 

log 
count 

distance  
(km) 

mean 
logs 
km

-1
 

log 
count 

distance 
(km) 

mean  
logs 
km

-1
 

Pongara National Park 2061 26 79 2245 26 85 3062 25 121 

Unclassified area 1 3492 36 97 2191 36 61 3858 37 104 

Wonga Wongue Reserve 1274 48 26 1031 50 21 1524 42 36 

Unclassified area 2 1257 163 8 1683 162 10 2136 152 14 

Loango National Park 1247 83 15 1391 84 17 1679 83 20 

Sette Cama Reserve 3252 80 40 2567 77 33 2720 79 34 

Ouanga Reserve 1258 42 30 1433 42 34 1434 42 34 

Unclassified area 3 1257 55 23 905 56 16 776 55 14 

Mayumba National Park 62 20 3 82 23 4 73 23 3 

Entire coast  15 160 554 27 13 528 555 24 17 262 539 32 
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Table S2. Mean proportion (percentage, standardised for survey effort) of 

leatherback turtle beach movements impeded by logs, at sites for the nesting 

seasons 2006/07 to 2010/11 within Pongara National Park, Sette Cama 

Reserve and Mayumba National Park. Impacts to leatherback turtles were 

assessed using the following criteria: (0) no impact, (1) nesting was definitely 

abandoned due to logs, (2) nesting was probably abandoned due to logs, (3) 

the turtle was blocked by logs but was able to nest above the High Tide Line 

(HTL), (4) the turtle was blocked by logs but was able to nest below the HTL, (5) 

the turtle was blocked by logs after nesting, whilst returning to sea. 

 

Park / Reserve Category Mean 
proportion 
as 
 % of all 
categories 

Range 

Pongara National Park 1 1.6 0.4-2.5 

 2 0.5 0.1-1.2 

 3 9.5 4.1-17.0 

 4 2.9 1.7-3.5 

 5 2.7 1.6-4.0 

 total 1-5 17.2  

Sette Cama Reserve 1 0.5 0.0-0.9 

 2 0.6 0.0-1.2 

 3 3.6 0.0-7.2 

 4 0.2 0.0-0.3 

 5 1.3 0.0-2.6 

 total 1-5 6.2  

Mayumba National Park 1 < 0.1 0.0-0.1 

 2 < 0.1 0.0-0.1 

 3 0.2 0.0-0.4 

 4 < 0.1 0.0-0.1 

 5 0.1 0.0-0.2 

 total 1-5 0.3  
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ABSTRACT  

 

Formulating management strategies for mobile marine species is challenging, 

as knowledge is required of distribution, density, and threats. As a step towards 

assimilating knowledge, ecological niche models may identify likely suitable 

habitats for species, but lack the ability to enumerate species densities. 

Traditionally, this has been catered for by sightings based distance sampling 

methods which may have practical and logistical limitations. Here we describe a 

novel method to estimate at-sea distribution and densities of a centrally-placed 

marine vertebrate (leatherback turtles: Gabon), using historic aerial surveys of 

nesting beaches and satellite telemetry data of females at-sea. We 

contextualise resultant modelled patterns of distribution with putative threat 

layers of boat traffic, including fishing vessels and large ship movements, using 

Vessel Monitoring System (VMS) and Automatic Identification System (AIS) 

data. We identify key at-sea areas in which protection for inter-nesting 

leatherback turtles should be considered within the Gabonese Exclusive 

Economic Zone (EEZ). Our approach offers an holistic technique that merges 

multiple datasets to build a deeper and more useful knowledge base with which 

to manage known activities at-sea in an effective manner. Although our analysis 

focuses on a single species, we suggest that threats identified within this study 

(fisheries, seismic activity, general shipping) likely apply to other mobile marine 

vertebrates of conservation concern within Gabonese waters such as olive 

ridley sea turtles (Lepidochelys olivacea), humpback dolphins (Sousa teuszii) 

and humpback whales (Megaptera novaeangliae).  

 

Keywords: AIS, inter-nesting, leatherback turtles, MPA, spatial analysis, VMS 
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INTRODUCTION  

 

Multiple modelling techniques exist to build an understanding of habitat 

niches for species in the marine environment (Matthiopoulos et al. 2004; Aarts 

et al. 2008; Edrén et al. 2010; Pikesley et al. 2014). These methods are 

challenged by the issue of enumerating species densities, which has 

traditionally relied upon sightings based distance sampling (Buckland et al. 

2001), with data being collected primarily by way of boat or aerial surveys 

(Hammond et al. 2002; Aerts et al. 2013). As such, aerial based surveys have 

helped elucidate density patterns across a broad spectrum of marine species 

'at-sea' (Lauriano et al. 2011; Scheidat, Verdaat & Aarts 2012) and have also 

proved their efficacy in enumerating densities of marine species whilst on land 

(Witt et al. 2009; Stapleton, Peacock & Garshelis 2015). Increased 

understanding of spatial and temporal habitat use, together with associated 

densities, may facilitate successful management strategies. However, effective 

design, implementation and regulation of protection for mobile marine species is 

challenging; particularly for far ranging, pelagic and migratory species 

(Hyrenbach, Forney & Dayton 2000). Defining appropriate spatial and temporal 

bounds to managed areas is more tractable when animals may seasonally 

aggregate (Witt et al. 2008; Maxwell et al. 2011).  

The use of Vessel Monitoring System (VMS) data, primarily as a tool for 

providing at-sea densities of fisheries (Witt & Godley 2007; Vermard et al. 2010; 

Hintzen et al. 2012) has revolutionised the process of mapping, analysing and 

interpreting fisheries activity patterns. The advent of Automatic Identification 

System (AIS) data may prove to provide additional capabilities due to time 

resolution of data (Natale et al. 2015) and inclusion of multiple vessel types 

(Shelmerdine 2015). The installation and operation of VMS is discretional 

among maritime nations; the requirement to fit AIS systems is however 

mandatory aboard vessels making international voyages with gross tonnage ≥ 

300 t, cargo vessels ≥ 500 t, and all passenger ships regardless of size 

(Shelmerdine 2015).  

In 2002, the central African country of Gabon created a system of coastal 

and terrestrial National Parks with the aim of protecting key areas of 

biodiversity-rich habitats. Thirteen National Parks were designated, including a 

single marine park to the south of the country at Mayumba (Figure 1). Gabon's 
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beaches support important nesting sites for sea turtles, including globally 

important breeding aggregations for the leatherback turtle (Dermochelys 

coriacea), with the northern and southern extremes of the Gabonese coast 

(Pongara and Mayumba National Park) receiving the highest densities of 

nesting activity (Witt et al. 2009). Additionally, the olive ridley (Lepidochelys 

olivacea) and green sea turtles (Chelonia mydas) also nest (Fossette et al. 

2008; Maxwell et al. 2011; Metcalfe et al. 2015).  

The leatherback turtle is highly migratory with expansive post-nesting 

dispersal patterns (Hays, Houghton & Myers 2004; Fossette et al. 2014; Roe et 

al. 2014), but may seasonally aggregate off nesting beaches (Witt et al. 2008). 

Protection of large scale aggregations likely represents a significant 

management target within coastal waters (Hitipeuw et al. 2007; Witt et al. 2008; 

Nel, Punt & Hughes 2013; Roe et al. 2014); however, to be effective, relevant 

threats need to be identified, and if possible quantified, preferably in space and 

time. 

In this study we combine aerial survey nest count data for leatherback 

turtles together with satellite telemetry data from nesting females and 

contextualise these with VMS and AIS data. Our aims were to: (i) model 

leatherback turtle distribution and relative density at-sea using a method that 

was independent of the need to sight species at-sea, (ii) identify potential at-sea 

threat from vessels associated with multiple industry categories, and (iii) identify 

key areas for inter-nesting leatherbacks within the Gabonese Exclusive 

Economic Zone (EEZ) that may benefit from application of appropriately 

designated Marine Protected Areas (MPAs). 
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METHODS  

 

Aerial survey data 

 

Aerial surveys were flown along the Gabonese coast using a variety of 

high-wing light aircraft (Supplementary Material, Table S1). Surveys were 

organised to coincide with the main period of leatherback turtle nesting activity 

(December-February; Witt et al. (2009)). Multiple surveys were conducted in 

2002/03, 2005/06 and 2006/07, with no surveys in 2003/04 and 2004/05. Each 

survey represented a 600 km flight path (approximate straight-line distance). 

Flights commenced at dawn. Surveys were timed to coincide with periods when 

the maximum width of the nesting beach was unaffected by tide during early 

morning daylight hours, hence ensuring the greatest number of nesting 

activities could be recorded after sunrise and before the next high tide removed 

traces of activity. Surveys were typically split over two days to take advantage 

of morning low sun angle, which aids detection of marine turtle nesting tracks 

during video analysis. 

Survey aircraft were flown at an approximate groundspeed of 180 to 190 

km hr-1 at an altitude of 50 to 60 m, with the aircraft positioned 100 to 200 m 

offshore. Surveys were flown in a southeast direction from north to south, 

parallel to the coastline. The survey start location was northern most limit of 

Pongara National Park (Figure 1). The survey end location was the southern 

limit of Mayumba National Park’s border with the Republic of Congo. A 50 km 

section of coast to the north and east of Port Gentil was excluded from all 

surveys as this area consisted of mangroves and mudflats, which is unlikely to 

support appreciable levels of leatherback turtle nesting activity. 

A video camera was used to record footage of the nesting beach during 

each aerial survey. Counts of leatherback turtle nesting activity were then 

enumerated from this video footage in accordance with the methodology 

described by (Witt et al. 2009). These counts were aggregated into approximate 

500 m linear sectors of beach (data bins) that were defined by waypoint data 

collected continuously by hand-held Global Positioning System (GPS) receivers 

aboard the aircraft at the time of the aerial surveys. A longitude/latitude (World 

Geodetic System (WGS)1984 format) midpoint was determined for each of 

these data bins to which the counts were then associated.  
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Satellite tracking data 

 

Platform Transmitter Terminals (PTTs) were attached to thirty-seven 

adult female leatherback turtles at nesting locations in Gabon throughout the 

nesting season (October to February). Turtles were instrumented within the 

National Parks of Pongara (n = 18) and Mayumba (n  = 19; inter-nesting 

movements of 7 of these turtles were previously published in Witt et al. (2008)) 

over 2005/06 (Mayumba n = 8), 2006/07 (Mayumba n = 2), 2007/08 (Mayumba 

n = 5), 2008/09 (Mayumba n = 4, Pongara n = 6), 2009/10 (Pongara n = 2), and 

2012/13 (Pongara n = 10) (Figure 1, and see metadata in Supplementary 

Material, Table S2). Methods of turtle capture, transmitter type and process of 

attachment are detailed in Witt et al. (2011). Satellite telemetry data were 

collected using the Argos satellite system (CLS 2011) and downloaded with the 

Satellite Tracking and Analysis Tool (STAT) (Coyne & Godley 2005). All 

locations with accuracy class Z and 0 were removed (Witt et al. 2010). Data 

were imported into the Geographical Information System (GIS) ArcMap 10.1 

(ESRI, Redlands, USA http://www.esri.com) and visually assessed to determine 

individual-specific nesting events. Nesting events typically occurred every 9 to 

11 days, the night-time location with the highest accuracy location class and 

located on, or nearest to land within this time-frame was chosen as the 

definitive nesting event. Location data were then apportioned by these inter-

nesting periods. Five turtles departed the Gabon coast immediately after 

attachment of the PTT.   

 

Modelling leatherback turtle distribution and relative density at-sea 

 

Estimating leatherback turtle inter-nesting footprint at-sea 

 

For each set of inter-nesting data (inter-nesting datasets n = 121: turtles 

n = 32) we applied a speed and azimuth filter (Freitas et al. 2008; Witt et al. 

2010); filtering was undertaken in R (R Development Core Team 2008; R 

package: argosfilter (Freitas 2010)). Working in a projected coordinate system 

(Africa Albers Equal Area Conic (AAEAC)) the geometric centroid of these data 

was determined together with the distance of each location from the centroid; to 

remove spatial outliers we peeled data to the 95th quantile. The ellipsoid hull of 
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these data was then calculated (R Development Core Team 2008; R package: 

cluster (Maechler et al. 2015)), this being the minimum area such that all given 

points lay inside, or on the boundary of the ellipsoid. The length (km) of the 

semi-major and semi-minor axes, the area (km2) of the bounding ellipse, 

together with the shortest distance (km) (great-circle-distance: Haversine 

formula) of the centroid to the nearest coastal vertex were determined. All 

metrics were expressed as a single value per turtle, averaging (mean) where 

necessary for multiple inter-nesting periods. There was no significant difference 

in the median semi-major, semi-minor, or offshore distance for leatherback 

turtles between the nesting locations of Pongara and Mayumba National Parks 

(Supplementary Material, Table S3). As a result, we calculated grand means 

irrespective of release location, to give a single country-wide value for each 

ellipse metric.  

 

Linking inter-nesting footprint to aerial survey data 

 

We set out to calculate the annual mean average number of leatherback 

turtles km-2 using the following approach. We produced a smoothed coastline 

vector using a 40 km smoothing window. For each aerial survey dataset we 

used a spatial join in ArcMap to assign ellipse metrics and smoothed coastal 

bearings to the midpoint coordinates of the data bins (data were joined to the 

nearest existing location). These coordinates (projected coordinate system: 

AAEAC) were then transposed offshore, perpendicular to the coast, using 

distance of centroid to the coast (offshore distance) and coastal bearing.  

For each offshore coordinate pair we projected an ellipsoid polygon 

(major axis parallel to the coast), using grand averaged semi-major/minor axes 

and azimuth (coastal bearing). Each individual polygon surface was rasterized 

to a 1 x 1 km resolution and each raster cell assigned a turtle density at-sea 

(km-2) which was calculated as follows. (i) We divided the number of tracks 

recorded on the day of the aerial survey by the proportion of nesting activities 

expected for the day of the aerial survey. This proportion was determined from 

a seasonal nesting curve (Witt et al. 2009). This calculation provided for an 

annual estimate of the total number of nesting activities attributable to the data 

bin. (ii) Annual nesting effort was then divided by a clutch frequency of 6.17 

(Miller 1997), to provide the total number of turtles nesting within the data bin for 
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the season. (iii) Finally, we divided this total by the sea area of the propagated 

ellipse to provide an at-sea density of leatherbacks turtles (turtles km-2). 

Resulting rasters were then summed to provide a raster surface (for each aerial 

survey) that described an annual estimate of the at-sea density (km-2) of inter-

nesting leatherback turtles.  

These raster surface were then apportioned into two that reflected: (i) the 

peak months of the Gabonese leatherback nesting season (December, 

January, February) and, (ii) the pre and post-peak months  (October, 

November, and March, April) using a ratio derived from the seasonal nesting 

curve. Where multiple aerial surveys had been flown within a nesting season 

these surfaces were then averaged (mean); a grand average (mean) raster was 

then calculated across all nesting seasons.  

 

VMS data: density mapping 

 

We sourced Vessel Monitoring System (VMS) data from the Government 

of Gabon, for Gabon flagged trawl vessel fishing activity within the Exclusive 

Economic Zone (EEZ) of Gabon for 2010, 2011 and 2012. These data 

represented the best possible continuous dataset available and contained 1 053 

923 records (2010: n = 209 033, 2011: n = 452 531, 2012: n = 392 359). All 

vessel identifications were anonymised, as such each VMS  record consisted of 

a pseudo-vessel identity, date/time stamp (UTC), geographic coordinates in 

decimal degrees (WGS 1984) and vessel type (by fishing gear). Data were 

apportioned annually; 1st October to 30th September to reflect the seasonality 

of leatherback turtle nesting: 2010/11: n = 429 554, 2011/12: n = 420 807.  

For each annual dataset, data were ordered by vessel Id. and date/time 

stamp. Distance and time elapsed were calculated between each location, and 

vessel speed calculated in knots. A speed rule was used to distinguish fishing 

from steaming or near-stationery movement (Witt & Godley 2007); only data 

with speeds ≥ 1 or ≤ 5 knots were retained. Locations within 10 km of the ports 

of Libreville and Port Gentil were removed to reduce the influence of port traffic 

on our analysis. One random location a day for each vessel was extracted and 

these data were summarised (counts) to a 10 x 10 km resolution raster. This 

raster resolution was iteratively determined to provide an optimum cell size that 

facilitated meaningful map interpretation. This process was repeated for both 
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annual datasets and the resultant rasters averaged. Data were then 

apportioned into three seasonal groups: (i) October and November (pre-peak 

leatherback nesting season), (ii) December to February (peak) and (iii) March 

and April (post-peak).  

 

AIS data: density mapping 

 

We sourced ground and space merged Automatic Identification System 

(AIS) data from ExactEarth (http://www.exactearth.com) for 2012, 2013 and 

2014 for the EEZ of Gabon (space-borne AIS data are not available prior to 

2012). This dataset contained 22 791 353 records (2012: n = 3 719 235, 2013: 

n = 7 043 142, 2014: n = 12 028 976). Each record consisted of Maritime Mobile 

Service Identity (MMSI) number, date/time stamp (UTC), geographic 

coordinates in decimal degrees (WGS 1984) and speed (knots). Records with 

speed = 0 knots, as well as data within 10 km of the ports of Libreville and Port 

Gentil were removed. Vessels were assigned into one of five categories: cargo 

n = 2240 (39%), oil (support vessels: including tankers carrying crude/refined oil 

and other petrochemical related products) n = 1535 (27%), oil (seismic 

research) n = 45(1%), fishing n = 106 (2%) and miscellaneous (e.g. tug, 

passenger, recreational: n = 1150 (20%)); 685 (12%) vessels could not be 

assigned to a category due to insufficient metadata. Data were apportioned 

annually, 1st October to 30th September to reflect the seasonality of 

leatherback turtle nesting: 2012/13: n = 4 637 128, 2013/14: n = 6 327 527.  

For each annual dataset location data for the categories, cargo, oil 

(support vessels), oil (seismic research) and fishing were treated as follows. A 

speed rule was used to remove locations where vessels were not 'under-way' or 

exhibited near-stationery movement; only data with speeds ≥ 1 knot were 

retained. For each vessel category we extracted one random location a day for 

each vessel. These data were summarised (counts) to a 10 x 10 km resolution 

raster. This process was repeated for both annual datasets and the resultant 

rasters averaged. Data were then apportioned into seasonal groups. 
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Calculating leatherback turtle vs. shipping threat indices 

 

We calculated surfaces that described relative threat to inter-nesting 

leatherback turtles as follows. Vessel density rasters were re-scaled to 0-1 and 

summed. These were then multiplied with our leatherback density rasters. To 

provide data at the same spatial resolution we re-sampled our leatherback turtle 

at-sea density raster to the same resolution (10 x 10 km) as our VMS and AIS 

layers using bilinear interpolation.  
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RESULTS   

 

Leatherback turtle satellite tracking and spatial density patterns 

 

Thirty-two leatherback turtles (Pongara n = 18, Mayumba n = 14) were 

tracked for 121 inter-nesting periods (Pongara n = 101, Mayumba n = 20) with 

an average time between nest events of 10 ± 1days (mean ± 1 SD; range 7 - 13 

days). Turtles primarily remained within continental shelf waters (depths ≤ 200 

m), with 93.8% (Pongara; n = 9530) and 93.1% (Mayumba; n = 1504) of all 

recorded locations in these waters. Turtles principally occupied the Exclusive 

Economic Zone (EEZ) of Gabon, with 91.3% (n = 10749) of all locations within 

the EEZ (Figure 1). 

The modelled spatial pattern of inter-nesting leatherback turtles at-sea 

indicated that the coastal waters of Pongara and Mayumba National Parks had 

high densities of inter-nesting leatherbacks, with a smaller hotspot offshore from 

Sette Cama Reserve and to the south of Port Gentil; greatest density was within 

and neighbouring the Mayumba Marine Park (Figure 1).  

 

VMS and AIS density mapping 

 

Fisheries 

 

Mapping of VMS data for Gabon trawl vessels (October to April) 

indicated presence of vessels across the majority of coastal waters, with peaks 

in density to the south of Pongara National Park, and in near-shore waters of 

Loango National Park. There was negligible activity off the continental shelf 

(Figure 2a). Analysis of AIS fishing vessel data for longline and purse seine 

fisheries, in general, indicated higher density of vessels in offshore waters, 

approximately 100 - 200 km southwest of Loango National Park (Figure 2e). 

There was relatively little activity on the continental shelf, with the exception of a 

small high density area to the south of Mayumba National Park. These 

distinctions in spatial patterns largely reflect the difference in gear type used by 

these fisheries. There was no duplication of vessels among AIS and VMS 

datasets.  
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Apportioning fisheries data by leatherback nesting season revealed 

patterns of seasonality for both these datasets. Mapping of VMS data indicated 

a north/south shift in fishing activity. Maximum densities occurred in 

October/November in the vicinity of Pongara and Loango National Park. 

Densities remained high at Loango within the months of 

December/January/February, but decreased at Pongara. There was an 

indication of an increase in fisheries activity immediately to the north of 

Mayumba Marine Park in March/April (Figure 2b,c,d). Mapping of AIS data 

indicated that October/November were peak months for longline and purse 

seine fisheries (Figure 2f,g,h). 

 

Oil industry and cargo vessels 

 

Density mapping of AIS data (October to April) for oil industry vessels 

revealed marked differences between aspects of the industry. Oil support 

vessels revealed obvious traffic routes between the ports of Libreville and Port 

Gentil, as well as westward from Port Gentil (Figure 3a). Hotspots of seismic 

vessel activity occurred in continental shelf waters, and were primarily 

concentrated to the south of Port Gentil and also in coastal waters of Loango 

National Park and Sette Cama Reserve (Figure 3e). There was high seismic 

vessel activity to the southwest of Mayumba Marine Park at the beginning of the 

nesting season and evidence of seismic vessels within the park during peak 

season (Figure 3f,g). Mapping the distribution of cargo vessels (i.e. bulk 

carriers, container vessels) identified two routes. The first lay north to the south 

of the county and broadly mirrored the 200 m isobath, the second ran westward 

from the port of Libreville (Figure 3i). There was no marked differences among 

seasonal density mapping for oil support vessels, or for cargo vessels (Figure 

3b,c,d,j,k,l). There were clear differences among seasonal density mapping for 

seismic vessel activity, which may reflect seasonal legislative limitations or 

indicate interest in exploitation (Figure 3f,g,h).  

 

Leatherback turtle relative threat mapping 

 

Relative threat mapping indicated that coastal waters of Pongara and 

Mayumba National Park were subject to high levels of putative threat 
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throughout the leatherback nesting season (Figure 4b). There were also 

isolated areas of moderate/high threat within coastal waters from Port Gentil to 

Sette Cama Reserve, primarily due to inshore fisheries and seismic vessels 

operating within the area. There was variation in severity and timing of threat 

among locations. Spatially, threat was greatest at Pongara at the beginning of 

the season (October/November) (Figure 4d), principally due to the heightened 

level of inshore fisheries activity, and at Mayumba during peak season 

(December/January/February) and post-peak (March/April). Threat mapping 

identified areas within the Mayumba Marine Park to be at risk throughout this 

period, as a result of both inshore fisheries and oil industry vessels (support and 

seismic) being present within the park boundaries (Figure 4f,h).  
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DISCUSSION  

 

Sightings based distance sampling (Buckland et al. 2001) is likely the 

most widely used method to determine densities of animals at-sea, relying on 

data being collected either by way of boat or aerial transect (e.g. Hammond et 

al. 2002; Aerts et al. 2013). However, many marine species are challenging to 

sight as a result of their cryptic nature, or due to restrictions imposed by 

environmental conditions (Evans & Hammond 2004). To provide for an 

alternative process to estimate at-sea distributions and relative densities, we 

formulated a method that was independent of the need to sight species at-sea, 

that instead utilised existing available data: aerial surveys of leatherback turtle 

nest counts and satellite tracking data.  

Ecosystem based impact assessments are able to identify areas where 

cumulative threat may be at its greatest within the marine environment (Halpern 

et al. 2008), but may not take into account distribution and densities of species 

within these areas. As a result, it is possible that areas subject to relatively 

moderate threat, but with high species densities, may fail to attract conservation 

effort. Indeed, identifying key areas where species aggregate may facilitate the 

decision process of where and when to best place conservation resources to 

achieve maximum benefit (Hart et al. 2012). With this analysis we sought to 

further the process of impact assessment by formulating a cumulative threat 

index that assessed multiple threats, whilst at the same time integrating 

modelled distribution and densities of a target species. Our analysis makes no 

attempt to differentiate threat by magnitude, or relative importance. It remains 

likely that many 'threats' require further knowledge or assessment to quantify 

probable impacts. To do so effectively, species sensitivity to threats needs to be 

assessed, which in turn, would additionally allow assignment of weights for 

calculating cumulative impact. 

In the marine environment sea turtles may negatively interact with a 

broad suite of vessel activity. These interactions may lead to a range of 

potential impacts to turtles including bycatch from oceanic (Lewison, Freeman & 

Crowder 2004; Huang 2015) and coastal fisheries (Lum 2006; Alfaro-Shigueto 

et al. 2007; Witt et al. 2011), boat strike (Nabavi, Zare & Vaghefi 2012; 

Denkinger et al. 2013), crude oil contamination (Follett, Genschel & Hofmann 

2014), or seismic surveying (Nelms et al. in press). Our analysis revealed that 
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within the peak leatherback nesting season (December to February), when 

approximately 80% of the season's nesting takes place, greatest densities of 

leatherback turtles likely occur in coastal waters adjacent to Pongara and 

Mayumba National Parks, with a smaller 'hotspot' to the west of Sette Cama 

Reserve. Contextualising these at-sea density and distribution patterns, with 

vessel movements derived from VMS and AIS location data, suggests that 

shipping associated with various industries has the potential to interact with 

inter-nesting leatherback turtles within Gabonese coastal waters, throughout the 

nesting season.  

Density mapping of the Gabon inshore trawl fisheries fleet (for which 

VMS data were available) indicated that this fleet could interact with at-sea 

leatherbacks at all high density leatherback areas. In coastal waters adjacent to 

Pongara National Park, the potential for this was greatest at the start of the 

nesting season. There was a subsequent southerly shift in vessel densities for 

inshore fisheries with nesting leatherback season. Analysis of AIS fisheries 

data, which predominantly comprised of large Distant Water Fleet (DWF) 

vessels suggested that there was no activity for this category of vessel within 

coastal waters of Pongara National Park. There was however, a hotspot of 

DWF vessel activity just within, and adjoining the southwest/south-easterly 

border of Mayumba Marine Park at the start of the nesting season. The coastal 

waters of Pongara National Park had the highest density of vessels associated 

with shipping routes; for both oil industry and cargo vessels. There were notable 

hotspots of shipping movements both between the ports of Libreville and Port 

Gentil in coastal waters, and offshore from these ports to the open ocean, 

throughout the nesting season. Seismic vessel activity was confined to the 

coastal waters south of Port Gentil and to the southwest of Mayumba Marine 

Park. The coastal waters of Pongara National Park had high levels of 

cumulative threat throughout the nesting season. Cumulative threat mapping 

indicated the coastal waters from south of Port Gentil to Mayumba National 

Park had greatest levels of  cumulative threat through the peak and post-peak 

nesting season. 

Several caveats must be considered when interpreting the findings from 

this study. Our method does not account for any temporal variability in nesting 

season that may be present between the north and south of the country (Witt et 

al. 2009). However, this would be unlikely to affect the modelled at-sea 
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densities of leatherbacks, but should be considered when interpreting threat 

mapping. Similarly, our method uses a normally distributed nesting curve to 

calculate annual estimates of the total number of nesting activities for each data 

bin, with approximations for the beginning and end of the nesting season of 1st 

October to 30th April respectively. These estimates would be slightly modified 

under alternative curve scenarios.  

It is also probable that our vessel densities represent underestimations. 

Our analysis only considers vessels that are legally required to transmit their 

locations by way of VMS or AIS. Similarly, these systems need to be enabled 

and transmitting, and satellites need to be in line of sight to receive data. 

Applying a slow speed filter to all AIS data to remove vessel traffic that was not 

'under-way' may have the effect of removing some locations for vessels 

deploying purse seine gear; although, it is highly unlikely that a vessel will 

remain motionless 'at-sea' given the influence of wind and or tide and currents. 

For inshore fisheries we only evaluate data for the Gabon fleet. Vessel 

movements for DWFs and artisanal fisheries are not considered, therefore 

much of the associated threat from inshore fisheries likely remains un-

assessed. In addition, our VMS data are sourced prior to September 2012, 

subsequent changes to management regimes within Gabon may have impacted 

associated vessel movement patterns. Finally, whilst some of our component 

data layers do not necessarily overlap temporally they represent the best 

available data from which to formulate this analysis. 

Notwithstanding these caveats, this analysis clearly identifies at-sea 

areas in which protection for inter-nesting leatherback turtles should be 

considered. Although this analysis focuses on a single species, much of the 

associated threats will apply to other air-breathing mobile marine vertebrates in 

Gabonese coastal waters including olive ridley sea turtles (Lepidochelys 

olivacea) (Maxwell et al. 2011; Metcalfe et al. 2015), humpback dolphins (Sousa 

teuszii) (Collins 2012) and humpback whales (Megaptera novaeangliae) 

(Rosenbaum et al. 2014). As such, (if data were available) the methodology 

presented in this study could be applied to other species of sea turtles for 

cumulative assessments; and with adaptation, may have utility in defining 

critical habitats for other central-place foragers such as pinnipeds, or sea bird 

species (Grecian et al. 2010; Sharples et al. 2012; Cronin, Pomeroy & Jessopp 

2013). Presently, Mayumba Marine Park is the only designated MPA within the 
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Gabon EEZ and is confined to a 15 x 60 km strip of coastal waters to the far 

south of the Gabonese EEZ. Protection for species within MPAs may be 

compromised for a number of reasons. Typically, small protected areas offer 

limited conservation benefits (Gaines et al. 2010) particularly to mobile species. 

Marine Protected Areas may also fail to protect through poor design, 

inappropriate/lack of management or through degradation of unprotected 

surrounding ecosystems (Agardy, Di Sciara & Christie 2011). Recently 

announced proposals to designate approximately 23% of Gabon's territorial 

waters and EEZ as MPAs, in which commercial fishing will be excluded, may go 

some way to securing protection for species within these zones 

(http://www.wcs.org/press/press-releases/world-parks-congress-2014.aspx). 

Indeed, associated management strategies protecting marine habitats and 

improving fisheries management, may already influence some vessel 

movements in key areas identified in this study. Ultimately, with increased 

spatio-temporal understanding of other categories of threat and species 

interaction (e.g. seismic surveying, boat strike) MPA design and management 

strategies may be tailored and fine-tuned to provide an holistic network of 

protected areas that provide protection for a suit of Gabon's biodiversity rich 

marine species. 

  



229 

 

ACKNOWLEDGEMENTS  

 

We thank the following for support and funding: CARPE (Central African 

Regional Program for the Environment, Darwin Initiative, EAZA ShellShock 

Campaign, Gabon Sea Turtle Partnership with funding from the Marine Turtle 

Conservation Fund (United States Fish and Wildlife Service, U.S. Department of 

the Interior), Harvest Energy, Large Pelagics Research Centre at the University 

of New Hampshire, NERC, Vaalco, Waitt Foundation and the Wildlife 

Conservation Society. We are sincerely grateful to the field teams and logistics 

staff who assisted in the aerial and ground surveys and with field-site 

assistance. BJG and MJW receive funding from the Natural Environment 

Research Council, the European Union and the Darwin Initiative.  



230 

 

References  

 

Aarts, G., MacKenzie, M., McConnell, B., Fedak, M. & Matthiopoulos, J. (2008) 

Estimating space‐use and habitat preference from wildlife telemetry data. 

Ecography, 31, 140–160. 

 

Aerts, L.A.M., McFarland, A.E., Watts, B.H., Lomac-MacNair, K.S., Seiser, P.E., 

Wisdom, S.S., Kirk, A.V. & Schudel, C.A. (2013) Marine mammal distribution 

and abundance in an offshore sub-region of the northeastern Chukchi Sea 

during the open-water season. Continental Shelf Research, 67, 116–126. 

 

Agardy, T., Di Sciara, G.N. & Christie, P. (2011) Mind the gap: Addressing the 

shortcomings of marine protected areas through large scale marine spatial 

planning. Marine Policy, 35, 226–232. 

 

Alfaro-Shigueto, J., Dutton, P.H., Van Bressem, M. & Mangel, J. (2007) 

Interactions between leatherback turtles and Peruvian artisanal fisheries. 

Chelonian Conservation and Biology, 6, 129–134. 

 

Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D. & 

Thomas, L. (2001) Introduction to Distance Sampling Estimating Abundance of 

Biological Populations. Oxford University Press, Oxford. 

 

CLS (2011) Argos user’s manual. 

http://www.argossystem.org/documents/userarea/argos_manual_en.pdf. 

 

Collins, T. (2012) Progress Report for Atlantic Humpback Dolphin Work in 

Gabon and Congo Funded by the IWC Small Cetacean Conservation Research 

Fund. Document SC/64/SM22. Available from Secretariat, International Whaling 

Commission, Cambridge, UK. 

 

Coyne, M.S. & Godley, B.J. (2005) Satellite Tracking and Analysis Tool (STAT): 

an integrated system for archiving, analyzing and mapping animal tracking data. 

Marine Ecology Progress Series, 301, 1–7. 

 



231 

 

Cronin, M., Pomeroy, P. & Jessopp, M. (2013) Size and seasonal influences on 

the foraging range of female grey seals in the northeast Atlantic. Marine 

Biology, 160, 531–539. 

 

Denkinger, J., Parra, M., Muñoz, J.P., Carrasco, C., Murillo, J.C., Espinosa, E., 

Rubianes, F. & Koch, V. (2013) Are boat strikes a threat to sea turtles in the 

Galapagos Marine Reserve? Ocean & Coastal Management, 80, 29–35. 

 

Edrén, S., Wisz, M.S., Teilmann, J., Dietz, R. & Söderkvist, J. (2010) Modelling 

spatial patterns in harbour porpoise satellite telemetry data using maximum 

entropy. Ecography, 33, 698–708. 

 

Evans, P.G. & Hammond, P.S. (2004) Monitoring cetaceans in European 

waters. Mammal Review, 34, 131–156. 

 

Follett, L., Genschel, U. & Hofmann, H. (2014) A graphical exploration of the 

Deepwater Horizon oil spill. Computational Statistics, 29, 121–132. 

 

Fossette, S., Kelle, L., Girondot, M., Goverse, E., Hilterman, M.L., Verhage, B., 

de Thoisy, B. & Georges, J.-Y. (2008) The world’s largest leatherback 

rookeries: A review of conservation-oriented research in French 

Guiana/Suriname and Gabon. Journal of Experimental Marine Biology and 

Ecology, 356, 69–82. 

 

Fossette, S., Witt, M., Miller, P., Nalovic, M., Albareda, D., Almeida, A., 

Broderick, A., Chacón-Chaverri, D., Coyne, M. & Domingo, A. (2014) Pan-

Atlantic analysis of the overlap of a highly migratory species, the leatherback 

turtle, with pelagic longline fisheries. Proceedings of the Royal Society B: 

Biological Sciences, 281, 20133065, DOI: 10.1098/rspb.2013.3065 

 

Freitas, C. (2010) argosfilter: Argos locations filter. R package version 0.62. 

 

Freitas, C., Lydersen, C., Fedak, M.A. & Kovacs, K.M. (2008) A simple new 

algorithm to filter marine mammal Argos locations. Marine Mammal Science, 

24, 315–325. 



232 

 

Gaines, S.D., White, C., Carr, M.H. & Palumbi, S.R. (2010) Designing marine 

reserve networks for both conservation and fisheries management. Proceedings 

of the National Academy of Sciences, 107, 18286–18293. 

 

Grecian, W.J., Inger, R., Attrill, M.J., Bearhop, S., Godley, B.J., Witt, M.J. & 

Votier, S.C. (2010) Potential impacts of wave‐powered marine renewable 

energy installations on marine birds. Ibis, 152, 683–697. 

 

Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, 

C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., 

Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, 

R. & Watson, R. (2008) A Global Map of Human Impact on Marine Ecosystems. 

Science, 319, 948–952. 

 

Hammond, P., Berggren, P., Benke, H., Borchers, D., Collet, A., 

Heide‐Jørgensen, M., Heimlich, S., Hiby, A., Leopold, M.F. & Øien, N. (2002) 

Abundance of harbour porpoise and other cetaceans in the North Sea and 

adjacent waters. Journal of Applied Ecology, 39, 361–376. 

 

Hart, K.M., Lamont, M.M., Fujisaki, I., Tucker, A.D. & Carthy, R.R. (2012) 

Common coastal foraging areas for loggerheads in the Gulf of Mexico: 

Opportunities for marine conservation. Biological Conservation, 145, 185–194.  

 

Hays, G.C., Houghton, J.D. & Myers, A.E. (2004) Endangered species: pan-

Atlantic leatherback turtle movements. Nature, 429, 522–522. 

 

Hintzen, N.T., Bastardie, F., Beare, D., Piet, G.J., Ulrich, C., Deporte, N., 

Egekvist, J. & Degel, H. (2012) VMStools: open-source software for the 

processing, analysis and visualisation of fisheries logbook and VMS data. 

Fisheries Research, 115, 31–43. 

 

Hitipeuw, C., Dutton, P.H., Benson, S., Thebu, J. & Bakarbessy, J. (2007) 

Population Status and Internesting Movement of Leatherback Turtles, 

(Dermochelys coriacea), Nesting on the Northwest Coast of Papua, Indonesia. 

Chelonian Conservation and Biology, 6, 28–36. 



233 

 

Huang, H.-W. (2015) Conservation Hotspots for the Turtles on the High Seas of 

the Atlantic Ocean. PloS one, 10, e0133614. 

 

Hyrenbach, K.D., Forney, K.A. & Dayton, P.K. (2000) Marine protected areas 

and ocean basin management. Aquatic Conservation: Marine and Freshwater 

Ecosystems, 10, 437–458. 

 

Lauriano, G., Panigada, S., Casale, P., Pierantonio, N. & Donovan, G. (2011) 

Aerial survey abundance estimates of the loggerhead sea turtle (Caretta 

caretta) in the Pelagos Sanctuary, northwestern Mediterranean Sea. Marine 

Ecology Progress Series, 437, 291–302. 

 

Lewison, R.L., Freeman, S.A. & Crowder, L.B. (2004) Quantifying the effects of 

fisheries on threatened species: the impact of pelagic longlines on loggerhead 

and leatherback sea turtles. Ecology Letters, 7, 221–231. 

 

Lum, L.L. (2006) Assessment of incidental sea turtle catch in the artisanal gillnet 

fishery in Trinidad and Tobago, West Indies. Applied Herpetology, 3, 357–368. 

 

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. (2015) cluster: 

Cluster Analysis Basics and Extensions. R package version 1.15.2. 

 

Matthiopoulos, J., McConnell, B., Duck, C. & Fedak, M. (2004) Using satellite 

telemetry and aerial counts to estimate space use by grey seals around the 

British Isles. Journal of Applied Ecology, 41, 476–491. 

 

Maxwell, S.M., Breed, G.A., Nickel, B.A., Makanga-Bahouna, J., Pemo-Makaya, 

E., Parnell, R.J., Formia, A., Ngouessono, S., Godley, B.J., Costa, D.P., Witt, 

M.J. & Coyne, M.S. (2011) Using satellite tracking to optimize protection of 

long-lived marine species: olive ridley sea turtle conservation in central Africa. 

PloS one, 6, e19905. 

 

Metcalfe, K., Agamboué, P.D., Augowet, E., Boussamba, F., Cardiec, F., Fay, 

J.M., Formia, A., Kema, J.R.K., Kouerey, C. & Mabert, B.D.K. (2015) Going the 



234 

 

extra mile: Ground-based monitoring of olive ridley turtles reveals Gabon hosts 

the largest rookery in the Atlantic. Biological Conservation, 190, 14–22.  

 

Miller, J.D. (1997) Reproduction in sea turtles. In: Lutz, P.L., Musick, J.A. (Eds.), 

The Biology of Sea Turtles. CRC Press, Boca Raton, p. 432. 

 

Nabavi, S.M.B., Zare, R. & Vaghefi, M.E. (2012) Nesting Activity and 

Conservation Status of the Hawksbill Turtle (Eretmochelys imbricata) in Persian 

Gulf. Journal of Life Sciences, 6, 74–79. 

 

Natale, F., Gibin, M., Alessandrini, A., Vespe, M. & Paulrud, A. (2015) Mapping 

Fishing Effort through AIS Data. PloS one, 10, e0130746. 

 

Nel, R., Punt, A.E. & Hughes, G.R. (2013) Are coastal protected areas always 

effective in achieving population recovery for nesting sea turtles? PloS one, 8, 

e63525. 

 

Nelms, S.E., Piniak, W.E.D., Weir, C.R. & Godley, B.J. (in press) Seismic 

surveys and Marine Turtles: an underestimated global threat? Biological 

Conservation. 

 

Pikesley, S.K., Broderick, A.C., Cejudo, D., Coyne, M.S., Godfrey, M.H., 

Godley, B.J., Lopez, P., López-Jurado, L.F., Elsy Merino, S., Varo-Cruz, N., 

Witt, M.J. & Hawkes, L.A. (2014) Modelling the niche for a marine vertebrate: a 

case study incorporating behavioural plasticity, proximate threats and climate 

change. Ecography, DOI: 10.1111/ecog.01245 

 

Roe, J.H., Morreale, S.J., Paladino, F.V., Shillinger, G.L., Benson, S.R., Eckert, 

S.A., Bailey, H., Tomillo, P.S., Bograd, S.J. & Eguchi, T. (2014) Predicting 

bycatch hotspots for endangered leatherback turtles on longlines in the Pacific 

Ocean. Proceedings of the Royal Society B: Biological Sciences, 281, 

20132559. 

 



235 

 

Rosenbaum, H.C., Maxwell, S.M., Kershaw, F. & Mate, B. (2014) Long‐Range 

Movement of Humpback Whales and Their Overlap with Anthropogenic Activity 

in the South Atlantic Ocean. Conservation Biology, 28, 604–615. 

 

Scheidat, M., Verdaat, H. & Aarts, G. (2012) Using aerial surveys to estimate 

density and distribution of harbour porpoises in Dutch waters. Journal of Sea 

Research, 69, 1–7. 

 

Sharples, R.J., Moss, S.E., Patterson, T.A. & Hammond, P.S. (2012) Spatial 

variation in foraging behaviour of a marine top predator (Phoca vitulina) 

determined by a large-scale satellite tagging program. PLoS one, 7, e37216. 

 

Shelmerdine, R.L. (2015) Teasing out the detail: how our understanding of 

marine AIS data can better inform industries, developments, and planning. 

Marine Policy, 54, 17–25. 

 

Stapleton, S., Peacock, E. & Garshelis, D. (2015) Aerial surveys suggest 

long‐term stability in the seasonally ice‐free Foxe Basin (Nunavut) polar bear 

population. Marine Mammal Science. DOI: 10.1111/mms.12251 

 

Vermard, Y., Rivot, E., Mahévas, S., Marchal, P. & Gascuel, D. (2010) 

Identifying fishing trip behaviour and estimating fishing effort from VMS data 

using Bayesian Hidden Markov Models. Ecological Modelling, 221, 1757–1769. 

 

Witt, M.J., Akesson, S., Broderick, A.C., Coyne, M.S., Ellick, J., Formia, A., 

Hays, G.C., Luschi, P., Stroud, S. & Godley, B.J. (2010) Assessing accuracy 

and utility of satellite-tracking data using Argos-linked Fastloc-GPS. Animal 

Behaviour, 80, 571–581. 

 

Witt, M.J., Baert, B., Broderick, A.C., Formia, A., Fretey, J., Gibudi, A., 

Mounguengui, G.A.M., Moussounda, C., Ngouessono, S., Parnell, R.J., 

Roumet, D., Sounguet, G.-P., Verhage, B., Zogo, A. & Godley, B.J (2009) Aerial 

surveying of the world’s largest leatherback turtle rookery: a more effective 

methodology for large-scale monitoring. Biological Conservation, 142, 1719–

1727. 



236 

 

Witt, M.J., Bonguno, E.A., Broderick, A.C., Coyne, M.S., Formia, A., Gibudi, A., 

Mounguengui Mounguengui, G.A., Moussounda, C., NSafou, M., Nougessono, 

S., Parnell, R.J., Sounguet, G.-P., Verhage, S. & Godley, B.J. (2011) Tracking 

leatherback turtles from the world’s largest rookery: assessing threats across 

the South Atlantic. Proceedings of the Royal Society B: Biological Sciences, 

278, 2338–2347. 

 

Witt, M.J., Broderick, A.C., Coyne, M.S., Formia, A., Ngouessono, S., Parnell, 

R.J., Sounguet, G.-P. & Godley, B.J. (2008) Satellite tracking highlights 

difficulties in the design of effective protected areas for Critically Endangered 

leatherback turtles (Dermochelys coriacea) during the inter-nesting period. 

Oryx, 42, 296–300. 

 

Witt, M.J. & Godley, B.J. (2007) A Step Towards Seascape Scale Conservation: 

Using Vessel Monitoring Systems (VMS) to Map Fishing Activity. PloS one, 2, 

e1111. 

 



237 

 

 

Figure 1. Location data (black circles) for satellite tracked inter-nesting 

leatherback turtles tracked from, (a) Pongara National Park (n = 18) and (b) 

Mayumba National Park (n = 14). Tagging locations (white stars). (c) Modelled 

leatherback turtle density at-sea October-April. Densities (turtles 100 km-2 

apportioned by percentiles) are drawn in accordance with the figure legend. 200 

m continental shelf isobath (broken line) and EEZ maritime boundaries (broken 

line polygon). In part (c) coastal National Parks and reserves (mid grey 

polygons) and the ports of Libreville and Port Gentil are labelled. Mayumba 

National Park (Marine Protected Area (MPA)), hatched grey polygon. Part (c) is 

located according to the inset. All parts are drawn to differing spatial scales. 

Map drawn to Projected Coordinate System: Africa Albers Equal Area Conic. 
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Figure 2. Mean seasonal density of fisheries activity derived from Vessel 

Monitoring System (VMS) and Automatic Identification System (AIS) data. (a-d) 

VMS data for leatherback nesting seasons 2010/11 and 2011/12. A speed rule 

was applied to distinguish fishing from steaming or near-stationery movement 

(Witt & Godley 2007); only data with speeds ≥ 1 or ≤ 5 knots were retained. (e-

h) AIS data for leatherback nesting seasons 2012/13 and 2013/14. A speed rule 

was applied to remove near-stationery movement; only data with speeds ≥ 1 

knot were retained. For each dataset one random location a day for each vessel 

was extracted. Data were summarised (counts) to a 10 x 10 km resolution 

raster. Data for the complete nesting season (a,e) were then apportioned into 

three seasonal groups: (b,f) October and November, (c,g) December to 

February and (d,h) March and April. Parts (a,b,c,d) and (e,f,g,h) are drawn to 

differing spatial scales. All other map features are drawn and labelled in 

accordance with Figure 1. Map drawn to Projected Coordinate System: Africa 

Albers Equal Area Conic. 
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Figure 3. Mean seasonal density of vessel activity categorised as, (a-d) oil 

support vessels, including tankers carrying crude/refined oil and other 

petrochemical related products, (e-h) seismic research vessels and (i-l) cargo 

vessels, derived from Automatic Identification System (AIS) data for leatherback 

nesting seasons 2012/13 and 2013/14. A speed rule was applied to remove 
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near-stationery movement; only data with speeds ≥ 1 knot were retained. One 

random location a day for each vessel was extracted. Data were summarised 

(counts) to a 10 x 10 km resolution raster. Data for the complete nesting season 

(a,e,i) were then apportioned into three seasonal groups: (b,f,j) October and 

November, (c,g,k) December to February and (d,h,i) March and April. All parts 

drawn to the same spatial scale. All other map features are drawn and labelled 

in accordance with Figure 1. Map drawn to Projected Coordinate System: Africa 

Albers Equal Area Conic. 
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Figure 4. Cumulative seasonal 

shipping densities (a,c,e,g). 

Vessel density rasters were re-

scaled 0-1and summed. Threat 

index for inter-nesting 

leatherback turtles (b,d,f,h). 

Cumulative shipping density 

rasters were multiplied by 

leatherback density rasters. To 

provide for data at the same 

spatial resolution leatherback 

turtle at-sea density raster were 

re-sampled to the same 

resolution (10 x 10 km) as the 

VMS and AIS layers using 

bilinear interpolation. Data for 

the complete nesting season 

(a,b) were then apportioned into 

three seasonal groups: (c,d) 

October and November, (e,f) 

December to February and (g,h) 

March and April. All parts drawn 

to the same spatial scale. All 

other map features are drawn 

and labelled in accordance with 

Figure 1. Map drawn to 

Projected Coordinate System: 

Africa Albers Equal Area Conic. 
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Table S1. Aerial survey schedule for the Gabonese coast 2002/03, 2005/06 and 

2006/07. 

 

Nesting 
season 

Survey Aerial survey dates 

Start End 

2002/03 1 2003-01-11 2003-01-12 

 2 2003-01-25 2003-01-26 

2005/06 1 2005-12-08 2005-12-09 

 2 2006-01-23 2006-01-25 

 3 2006-02-21 2006-02-22 

2006/07 1 2006-12-12 2006-12-14 

 2 2007-01-25 2007-01-26 

 3 2007-02-23 2007-02-24 
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Table S2. Summary of PTT data for inter-nesting leatherback turtles, detailing: 

PTT Id., nesting season, release location, deployment date, inter-nesting 

periods (n), PTT manufacturer and model. 

 

 

  

Id PTT Nesting  
season 

Release  
location 

Deployment  
date 

Inter-nesting 
periods 
(n) 

Inter-nesting  
duration 
(mean)  

(days) 

PTT  
make 

Model 

1 57666 2005-2006 M 2005-12-10 1 11 Sirtrack KiwiSat 101  

2 57383  M 2005-12-11 0 no data Sirtrack KiwiSat 101 

3 57381  M 2006-02-23 0 no data Sirtrack KiwiSat 101 

4 57378  M 2006-02-24 1 10 Sirtrack KiwiSat 101 

5 57390  M 2006-02-24 1 13 Sirtrack KiwiSat 101 

6 65693  M 2006-03-09 0 no data SMRU SRDL 

7 57663  M 2006-03-19 0 no data Sirtrack KiwiSat 101 

8 65694  M 2006-03-22 1 11 SMRU SRDL 

9 68562 2006-2007 M 2007-02-03 2 10 SMRU SRDL 

10 68563  M 2007-02-09 1 11 SMRU SRDL 

11 80621 2007-2008 M 2008-02-12 0 no data Sirtrack KiwiSat 202 

12 80622  M 2008-02-12 1 7 Sirtrack KiwiSat 202 

13 80623  M 2008-02-12 2 10 Sirtrack KiwiSat 202 

14 80620  M 2008-02-12 2 12 Sirtrack KiwiSat 202 

15 80624  M 2008-02-12 1 11 Sirtrack KiwiSat 202 

16 89072 2008-2009 P 2008-12-08 3 12 Wildlife Computers MK10-AF 

17 89071  P 2008-12-09 6 12 Wildlife Computers MK10-AF 

18 89075  P 2008-12-11 5 11 Wildlife Computers MK10-A  

19 89073  P 2008-12-15 4 11 Wildlife Computers MK10-AF 

20 89074  P 2008-12-16 3 10 Wildlife Computers MK10-AF 

21 89076  P 2008-12-16 7 10 Wildlife Computers MK10-A  

22 92577  M 2009-02-18 3 10 Wildlife Computers MK10-A  

23 92578  M 2009-02-18 2 10 Wildlife Computers MK10-A  

24 92579  M 2009-02-21 1 10 Wildlife Computers MK10-A  

25 92580  M 2009-02-21 1 12 Wildlife Computers MK10-A  

26 92581 2009-2010 P 2009-12-07 5 11 Wildlife Computers MK10-A  

27 92582  P 2009-12-07 7 10 Wildlife Computers MK10-A  

28 122425 2012-2013 P 2012-10-25 7 10 Wildlife Computers SPLASH10-AF 

29 122426  P 2012-10-26 6 11 Wildlife Computers SPLASH10-AF 

30 122427  P 2012-10-26 7 11 Wildlife Computers SPLASH10-AF 

31 122428  P 2012-10-27 7 10 Wildlife Computers SPLASH10-AF 

32 122429  P 2012-10-27 6 9 Wildlife Computers SPLASH10-AF 

33 122430  P 2012-10-28 1 9 Wildlife Computers SPLASH10-AF 

34 122431  P 2012-10-28 5 10 Wildlife Computers SPLASH10-AF 

35 122432  P 2012-10-28 7 11 Wildlife Computers SPLASH10-AF 

36 122433  P 2012-10-28 8 10 Wildlife Computers SPLASH10-AF 

37 122434  P 2012-10-28 7 11 Wildlife Computers SPLASH10-AF 

    mean 3 10   

    total 121    
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Table S3. Summary of output from Wilcoxon test of semi-major, semi-minor and 

distance of centroid to the coast for leatherback turtles between the nesting 

locations of Pongara and Mayumba National Parks. 

 

Ellipse metric Wilcoxon z score p value Median value (km) 

Pongara Mayumba 

Semi-major axis length 1.29 0.20 36.25 45.19 

Semi-minor axis length 0.23 0.82 16.74 17.80 

Distance of ellipse centroid to coast  0.91 0.36 16.37 19.03 
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Discussion 

 

Sea turtles face multiple threats, both within marine and terrestrial environments 

(e.g. Salmon 2003; Taylor & Cozens 2010; Kamrowski et al. 2012; Marco et al. 

2012; Lewison et al. 2013; Tanner 2013; Katselidis et al. 2014). Threats to sea 

turtles will vary in space and time, and may be species and region specific 

(Casale & Marco 2015). Categories of threat include fisheries bycatch 

(incidental capture in fisheries), direct take (e.g. targeted fisheries, egg 

harvesting), impact to nesting beaches (e.g. coastal development, disturbance), 

pollution, pathogens, and climate change (Wallace et al. 2011). In an 

assessment of the relative impacts of threats, fisheries bycatch was classified 

as the highest threat to sea turtles globally, followed by climate change 

(Wallace et al. 2011). 

 

The analyses presented in this thesis clearly demonstrate the potential for 

negative associations between multiple species of sea turtle, across a diverse 

range of geographic regions and habitat niches, with a number of human 

activities. The potential for interaction with fisheries, and by inference the 

prospect of bycatch, is highlighted for many Exclusive Economic Zone (EEZ) 

regions of the west coast of Africa. These studies emphasise it is imperative for 

countries to develop marine conservation policies that not only recognise the 

spatial extent of highly migratory species, but that also consider the effect of 

climate change on the future distribution of species. The analysis of threat to 

nesting sea turtles, associated with the downstream consequence of industrial 

deforestation, emphasises that it is not only the more obvious 'threats' that 

should be considered when defining conservation management strategies and 

goals. This analysis also highlights the potential logistical difficulties in dealing 

with long-term persistent habitat degradation.  

 

Analysis of coincidence between observed habitat use and modelled sea turtle 

habitat niche with the extant Mediterranean Marine Protected Area (MPA) 

network indicated profound shortcomings in the adequacy of spatial protection 

for sea turtle species in this region. Appreciable gains in protection for species 

could be made with the adoption of new suitably designed IUCN categorised 

MPAs within site-specific areas identified by the analysis, and by designating 
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existing MPAs with appropriate IUCN categories. This analysis again highlights 

the need  to accommodate potential range shifts in species associated with 

climate change when considering conservation strategies, and further illustrates 

the need for multi-country development of conservation policies. Similarly, the 

analysis presented of inter-nesting sea turtles in coastal waters of Gabon clearly 

identifies spatially explicit areas that would benefit from the adoption of 

appropriately designed MPAs.  

 

The Convention for Biological Diversity calls for 10% of coastal and marine 

ecosystems to be protected by 2020 through an integrated network of MPAs. 

The modelling framework presented within this thesis likely represents a 

valuable tool for identifying key areas to protect, and could be a significant asset 

to help inform marine spatial planning. Ultimately, with increased spatio-

temporal understanding of the distribution of species, favourable habitat and 

threat, it is likely that MPA design and management strategies may be tailored 

and fine-tuned to provide a holistic network of protected areas that may provide 

protection for many marine species.  

 

Throughout the first three chapters of this thesis habitat models were developed 

and the modelling process refined; with each successive model building on the 

previous. An ensemble, or consensus, modelling approach was adopted for all 

modelling scenarios (Araújo & New 2007; Rangel & Loyola 2012). This 

approach allowed for the integration of multiple single-algorithm model 

predictions and evaluation metrics, that in turn allowed for reduction in potential 

bias and increased confidence in predictions (Scales et al. 2015). The response 

variable in these models were satellite tracking data collected using the Argos 

satellite system (CLS 2011). These data have inherent spatial accuracy errors 

(Witt et al. 2010), however with removal of locations with low spatial accuracy, 

and judicial filtering of maximum speed and azimuth between successive 

locations, representative reconstruction of animal tracked movements may be 

achieved (Witt et al. 2010). As such, within the first three chapters of this thesis, 

analyses of these data have allowed identification of distinct regions of habitat 

use, as well as enabling identification of areas where habitats may be most 

suitable. Future tracking studies that incorporate Global Positioning System 

(GPS) enabled transmitters, and therefore with the ability to collect data with a 
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greater degree of spatial accuracy, would likely enable development of habitat 

models at a far finer spatial scale, and allow greater confidence in identification 

of threat, and where possible, protection.  

 

Where practicable (when sufficient data were available), tracking data were 

apportioned seasonally (spring/summer, autumn/winter) or by behaviour 

(oceanic/neritic foraging turtles). With the inclusion of additional tracking data, 

gathered from future satellite tracking studies, habitat models could be further 

refined to enable construction of fine-scale temporal and spatial models (e.g. 

Razgour et al. 2011, Gschweng et al. 2012), that may allow greater insight into 

likely sea turtle habitat use. Similarly, the application of State Space Modelling 

(SSM) techniques (e.g. Breed et al. 2009; Maxwell et al. 2011) to infer animal 

behavioural state from the satellite tracking data, would enable construction of 

behaviour-specific habitat models to be developed, both for migratory and 

residency tracking data. 

 

An important consideration to be made when analysing spatio-temporal data is 

to consider bias that may be introduced through spatial and temporal auto-

correlation or pseudo-replication (Franklin 2010). Failure to account for such 

bias may result in the importance of some environmental variables being over-

inflated (variable selection may be pre-disposed towards more strongly auto-

correlated predictors). As a result either a variable may be retained when it 

should not have been, or more variables may be selected (Franklin 2010). To 

reduce the potential for spatial and temporal autocorrelation, all data used to 

construct habitat models were reduced to best daily locations. Similarly, to 

minimise pseudo-replication within data (where long-term sea turtle residency 

patterns were analysed) the maximum number of days retained for analysis at 

any one foraging site per turtle was limited to 365 d.  

 

Spatial auto-correlation (or spatial auto-correlation in the residuals of the model) 

does not necessarily make the model unsound, but rather inflates the degrees 

of freedom and makes parameter estimates and associated tests uncertain and 

flawed (Thuiller pers. com.). Therefore, checking for, and where necessary 

correcting, residual spatial auto-correlation makes for robust model predictions 

(with confidence in the level of  importance of key model predictors) that in turn 
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allows for forecast models (through time) to be made with confidence. Where 

forecast models were run, spatial autocorrelation within model residuals was 

investigated using Moran's I coefficients (Dormann et al. 2007). If spatial 

autocorrelation was present, location data were sub-sampled to reduce the 

spatial structure within these data. This was achieved using a stepwise, 

percentage reduction, random sample of these data, to iteratively arrive at a 

sub-sample of locations where spatial auto-correlation was no longer present in 

the model's residuals. As a result, the forecast models presented within this 

thesis likely represent robust future predictions of habitat suitability, based on 

key environmental variables most likely to be of importance in defining sea turtle 

habitat niche.  

 

Selection of environmental variable surfaces to be included within a habitat 

modelling framework may depend on the geographic location of the habitat 

being modelled, and the spatial and temporal resolution of available 

environmental data. Within the habitat models presented in this thesis these 

data included environmental surfaces such as sea surface temperature and 

bathymetric depth, as well as proxies for prey availability such as net primary 

productivity and oceanic sea surface temperature frontal activity. It is important 

to minimise the use of strongly correlated environmental variables within habitat 

models, as this will make ecological interpretation of the model difficult, but not 

necessarily affect accuracy (Franklin 2010). As such, inclusion of strongly 

correlated covariates was avoided within the modelling framework. The use of 

remotely sensed environmental data products within a Geographical Information 

System (GIS) can also be subject to inherent errors (Lunetta 1991). These may 

be introduced at various stages of collecting and collating data and can include: 

acquisition error (e.g. no data pixels (attributable to cloud cover) or progressive 

inaccuracies with measurements (sensor degradation)), processing error (e.g. 

conversion from swath images to continuous data surface), or interpolation to 

raster or vector products (Lunetta 1991). In addition, some remote sensing data 

products will have product specific biases. Within the modelling framework 

presented in this thesis steps were taken to overcome, or minimise many of 

these potential sources of error. For example, nightime SST 4 µm products 

were selected in analyses (against daytime products) to reduce bias introduced 

by diurnal warming of the skin surface attributable to solar insolation. Similarly, 
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seasonal or annual average composites were used to provide for consistent, 

near cloud-free, images for the spatial extent of the modelled area.  

 

Many of the analyses presented within this thesis identify fisheries to be a 

potential source of threat to both post and inter-nesting sea turtles. However, 

detailed analysis of sea turtle/fisheries interaction is hampered by a paucity of 

data for fisheries effort and reported data for sea turtle bycatch (Wallace et al. 

2010). Chapters I and 2 highlight this need to increase knowledge of fishing 

effort and associated levels of sea turtle bycatch, attributable to gear types for 

both industrial and artisanal fisheries. This knowledge would help assist the 

formulation of sustainable and effective bycatch management strategies for 

both fisheries. In Chapter V analysis is made of Vessel Monitoring System 

(VMS) and Automatic Identification System (AIS) data with the specific aim of 

quantifying potential interactions between at-sea inter-nesting sea turtles and 

vessel movement patterns. Further analysis of fisheries distributions derived 

from VMS and AIS data could be augmented with knowledge of gear 

deployments, as well as records of gear specific bycatch data obtained from 

observer-based programmes (Lewison et al. 2004; Finkbeiner et al. 2011). It is 

also likely that habitat models developed within this thesis for identifying 

suitable foraging habitat for sea turtles, could be adapted to provide for fisheries 

distribution models. These models could be based on point data derived from 

either VMS or AIS datasets, together with appropriate physical and biological 

environmental variables (e.g. NPP or distance from port (for smaller vessels)). It 

may also be feasible to develop similar fisheries models for artisanal fisheries if 

vessel movement data were captured, perhaps by way of location data being 

recorded by GPS units attached to artisanal fishing vessel. Again, these data 

could be augmented with data detailing gear specificity and bycatch rates. 

 

The analysis of interaction between vessel movements derived from AIS data 

and at-sea inter-nesting sea turtles is made difficult without quantification of 

threat. Therefore, the analysis presented within this thesis makes no attempt to 

differentiate threat by magnitude, or relative importance. Further knowledge of 

'threats' to sea turtles, such as seismic surveying, underwater noise and boat 

strike, together with quantification of probable impacts is required. This would 

require the sensitivity of species to threats to be assessed, which in turn, would 
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allow assignment of weights for formulating cumulative impact assessments. 

This field of research should likely be a priority for sea turtle ecologists, as well 

as researchers of other species. 

 

Many of the chapters presented within this thesis highlight the need for 

stakeholder engagement at local, national and international levels. This is 

particularly so with regulation of fisheries. Gear modifications and adjustment to 

fisheries practice and/or effort restrictions may be appropriate to some fisheries 

and may help mitigate impacts (Gilman et al. 2009). However, enforcement of 

independent states' fisheries management policies is immense. This may be 

exacerbated where countries sell fisheries access agreements to Distant Water 

Fleets (DWFs) as these can be associated with non-transparent fishing 

agreements and Illegal, Unreported and Unregulated (IUU) fishing 

infringements (Gagern and van den Bergh 2013). Promotion of bycatch release 

programmes could be an option in some fisheries (Ferraro & Gjertsen 2009), 

and may be particularly appropriate in smaller scale fisheries. Coupling bycatch 

release programmes with 'no-blame' reporting schemes would also help inform 

bycatch rates. Advancement of ecosystem based fisheries management 

schemes that promote responsible and sustainable practice may also be a way 

forward for artisanal fisheries (Casale 2011). 

 

For smaller-scale artisanal fisheries engagement with local communities could 

also bring conservation benefits. Sea turtle conservation projects can create 

local jobs and attract tourism into the area (Tanner 2013). Indeed, increasing 

the perceived value of sea turtle species above and beyond their immediate 

value as food, or end products, may bring significant conservation gains. 

Similarly, raising local awareness of conservation issues, particularly through 

the education of local children, may also bring benefits (Tanner 2013).  

 

Much of the presented analyses integrate previously unpublished and published 

data, or data from multiple sources. This assimilation of data provides large 

datasets that incorporate observations of numerous animals over many years, 

allowing analyses to be made that would be otherwise unfeasible. However, sea 

turtle tracking data has the potential to be inherently biased, as data is 

frequently gathered disproportionally between sexes, with males very often 
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being under-represented. Similarly, many satellite tracking studies focus on 

adult sea turtles, leaving much of the life history model of juvenile sea turtles to 

be inferred (Varo-Cruz et al. 2016). Given these limitations, it is feasible that not 

all movement patterns have been captured by our study animals, and different 

patterns of distribution and habitat use may be seen with the inclusion of male 

and juvenile sea turtles. As such, it would be beneficial if future tracking studies 

focused on instrumenting males and juvenile sea turtles to help fill these 

knowledge gaps. Many of the satellite tagging studies presented in this thesis 

would also benefit from collection of further data, over additional years, as this 

would help facilitate validation of the findings presented in this thesis. This may 

be particularly so where there is currently a sparseness of data (e.g. neritic 

foraging Cape Verde loggerhead sea turtles). 

 

Notwithstanding these caveats, the analyses presented in this thesis emphasise 

the need to proactively develop marine conservation policies that will actively 

protect highly migratory species, whilst at the same time factoring in flexibility, 

as our knowledge of the distribution of species and kowledge of habitat use 

grows. Much of the presented analyses 'add value' to previous studies and 

increase knowledge of the species. A good deal of archived satellite telemetry 

data remains un-analysed (Luschi & Casale 2014), much of which may benefit 

from application of methodologies presented here, that in turn, would ultimately 

bring further understanding of sea turtle ecology, helping to further fill 

knowledge gaps. Finally, this thesis demonstrates the utility of developing and 

applying novel analytical methodologies to large datasets to investigate the 

spatial ecology of a marine vertebrate of conservation concern. As such, it is 

likely that many of these analytical techniques presented within this thesis could 

be adapted and applied to other widely dispersed marine vertebrate species, 

therby helping to inform global conservation management planning and 

practice. 
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