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The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of 30 

evolutionary diversification by natural selection
1,2

. Lepidopteran wing colour patterns are a 31 

key innovation, consisting of arrays of coloured scales. We still lack a general understanding 32 

of how these patterns are controlled and if there is any commonality across the 160,000 moth 33 

and 17,000 butterfly species. Here, we identify a gene, cortex, through fine-scale mapping 34 

using population genomics and gene expression analyses, which regulates pattern switches in 35 

multiple species across the mimetic radiation in Heliconius butterflies.  cortex belongs to a 36 

fast evolving subfamily of the otherwise highly conserved fizzy family of cell cycle 37 

regulators
3
, suggesting that it most likely regulates pigmentation patterning through 38 

regulation of scale cell development. In parallel with findings in the peppered moth (Biston 39 

betularia)
4
, our results suggest that this mechanism is common within Lepidoptera and that 40 

cortex  has become a major target for natural selection acting on colour and pattern variation 41 

in this group of insects.  42 

 43 

In Heliconius, there is a major effect locus, Yb, that controls a diversity of colour pattern 44 

elements across the genus. It is the only locus in Heliconius that regulates all scale types and 45 

colours, including the diversity of white and yellow pattern elements in the two co-mimics H. 46 

melpomene (Hm) and H. erato (He), but also whole wing variation in black, yellow, white, 47 

and orange/red elements in H. numata (Hn)
5–7

. In addition, genetic variation underlying the 48 

Bigeye wing pattern mutation in Bicyclus anynana, melanism in the peppered moth, Biston 49 

betularia, and melanism and patterning differences in the silkmoth, Bombyx mori, have all 50 

been localised to homologous genomic regions
8–10

 (Fig 1). Therefore, this genomic region 51 

appears to contain one or more genes that act as major regulators of wing pigmentation and 52 

patterning across the Lepidoptera.  53 
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Previous mapping of this locus in He, Hm and Hn identified a genomic interval of ~1Mb
11–13

 54 

(Extended Data Table 1), which also overlaps with the 1.4Mb region containing the 55 

carbonaria locus in B. betularia
9
 and a 100bp non-coding region containing the Ws mutation 56 

in B. mori
10

 (Fig 1). We took a population genomics approach to identify single nucleotide 57 

polymorphisms (SNPs) most strongly associated with phenotypic variation within the ~1Mb 58 

Heliconius interval. The diversity of wing patterning in Heliconius arises from divergence at 59 

wing pattern loci
7
, while convergent patterns generally involve the same loci and sometimes 60 

even the same alleles
14–16

. We used this pattern of divergence and sharing to identify SNPs 61 

associated with colour pattern elements across many individuals from a wide diversity of 62 

colour pattern phenotypes (Fig 2).  63 

In three separate Heliconius species, our analysis consistently implicated the gene cortex as 64 

being involved in adaptive differences in wing colour pattern. In He the strongest associations 65 

with the presence of a yellow hindwing bar were centred around the genomic region 66 

containing cortex (Fig 2A). We identified 108 SNPs that were fixed for one allele in He 67 

favorinus, and fixed for the alternative allele in all individuals lacking the yellow bar, the 68 

majority of which were in introns of cortex (Extended Data Table 2). 15 SNPs showed a 69 

similar fixed pattern for He demophoon, which also has a yellow bar. These were non-70 

overlapping with those in He favorinus, consistent with the hypothesis that this phenotype 71 

evolved independently in the two disjunct populations
17

.  72 

Previous work has suggested that alleles at the Yb locus are shared between Hm and the 73 

closely related species H. timareta, and also the more distantly related species H. elevatus, 74 

resulting in mimicry between these species
18

. Across these species, the strongest associations 75 

with the yellow hindwing bar phenotype were again found at cortex (Fig 2D, Extended Data 76 

Fig 1A and Table 3). Similarly, the strongest associations with the yellow forewing band 77 

were found around the 5’ UTRs of cortex and gene HM00036, an orthologue of D. 78 
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melanogaster washout gene. A single SNP ~17kb upstream of cortex (the closest gene) was 79 

perfectly associated with the yellow forewing band across all Hm, H. timareta and H. 80 

elevatus individuals (Extended Data Fig 1A, Fig 2 and Table 3). We found no fixed coding 81 

sequence variants at cortex in a larger sample (43-61 individuals) of Hm aglaope and Hm 82 

amaryllis (Extended Data Figure 3, Supplementary Information), which differ in Yb 83 

controlled phenotypes
19

, suggesting that functional variants are likely to be regulatory rather 84 

than coding. We found extensive transposable element variation around cortex but it is 85 

unclear if any of these associate with phenotype (Extended Data Figure 3 and Table 4; 86 

Supplementary Information). 87 

Finally, in Hn large inversions at the P supergene locus (Fig 1) are associated with different 88 

morphs
13

. There is a steep increase in genotype-by-phenotype association at the breakpoint of 89 

inversion 1, consistent with the role of these inversions in reducing recombination (Fig 2E). 90 

However, the bicoloratus morph can recombine with all other morphs across one or the other 91 

inversion, permitting finer-scale association mapping of this region. As in He and Hm, this 92 

analysis showed a narrow region of associated SNPs corresponding exactly to the cortex gene 93 

(Fig 2E), again with the majority of SNPs in introns (Extended Data Table 2). This associated 94 

region does not correspond to any other known genomic feature, such as an inversion or 95 

inversion breakpoint. 96 

To determine whether sequence variants around cortex were regulating its expression we 97 

investigated gene expression across the Yb locus. We used a custom designed microarray 98 

including probes from all predicted genes in the H. melpomene genome
18

, as well as probes 99 

tiled across the central portion of the Yb locus, focussing on two naturally hybridising Hm 100 

races (plesseni and malleti) that differ in Yb controlled phenotypes
7
. cortex was the only gene 101 

across the entire interval to show significant expression differences both between races with 102 

different wing patterns and between wing sections with different pattern elements (Fig 3). 103 
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This finding was reinforced in the tiled probe set, where we observed strong differences in 104 

expression of cortex exons and introns but few differences outside this region (Extended Data 105 

Table 2). cortex expression was higher in Hm malleti than Hm plesseni in all three wing 106 

sections used (but not eyes) (Fig 3C; Extended Data Fig 4C). When different wing sections 107 

were compared within each race, cortex expression in Hm malleti was higher in the distal 108 

section that contains the Yb controlled yellow forewing band, consistent with cortex 109 

producing this band. In contrast, Hm plesseni, which lacks the yellow band, had higher cortex 110 

expression in the proximal forewing section (Fig 3F; Extended Data Fig 4J). Expression 111 

differences were found only in day 1 and day 3 pupal wings rather than day 5 or day 7 112 

(Extended Data Fig 4), similar to the pattern observed previously for the transcription factor 113 

optix
20

.  114 

Differential expression was not confined to the exons of cortex; the majority of differentially 115 

expressed probes in the tiling array corresponded to cortex introns (Fig 3). This does not 116 

appear to be due to transposable element variation (Extended Data Table 2), but may be due 117 

to elevated background transcription and unidentified splice variants. RT-PCR revealed a 118 

diversity of splice variants (Extended Data Fig 5), and sequenced products revealed 8 non-119 

constitutive exons and 6 variable donor/acceptor sites, but this was not exhaustive 120 

(Supplementary Information). We cannot rule out the possibility that some of the 121 

differentially expressed intronic regions could be distinct non-coding RNAs. However, qRT-122 

PCR in other hybridising races with divergent Yb alleles (aglaope/amaryllis and 123 

rosina/melpomene) also identified expression differences at cortex and allele-specific splicing 124 

differences between both pairs of races (Extended Data Figs 1 and 5, Supplementary 125 

Information).  126 

Finally, in situ hybridisation of cortex in final instar larval hindwing discs showed expression 127 

in wing regions fated to become black in the adult wing, most strikingly in their 128 
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correspondence to the black patterns on adult Hn wings (Fig 4). In contrast, the array results 129 

from pupal wings were suggestive of higher expression in non-melanic regions. This may 130 

suggest that cortex is upregulated at different time-points in wing regions fated to become 131 

different colours. 132 

Overall, cortex shows significant differential expression and is the only gene in the candidate 133 

region to be consistently differentially expressed in multiple race comparisons and between 134 

differently patterned wing regions. Coupled with the strong genotype-by-phenotype 135 

associations across multiple independent lineages (Extended Data Table 1), this strongly 136 

implicates cortex as a major regulator of colour and pattern. However, we have not excluded 137 

the possibility that other genes in this region also influence pigmentation patterning. A 138 

prominent role for cortex is also supported by studies in other taxa; our identification of 139 

distant 5’ untranslated exons of cortex (Supplementary Information) suggests that the 100bp 140 

interval containing the Ws mutation in B. mori is likely to be within an intron of cortex and 141 

not in intergenic space as previously thought
10

. In addition, fine-mapping and gene 142 

expression also implicate cortex as controlling melanism in the peppered moth
4
. 143 

It seems likely that cortex controls pigmentation patterning through control of scale cell 144 

development. The cortex gene falls in an insect specific lineage within the fizzy/CDC20 145 

family of cell cycle regulators (Extended Data Fig 6A). The phylogenetic tree of the gene 146 

family highlighted three major orthologous groups, two of which have highly conserved 147 

functions in cell cycle regulation mediated through interaction with the anaphase promoting 148 

complex/cyclosome (APC/C)
3,21

. The third group, cortex, is evolving rapidly, with low amino 149 

acid identity between D. melanogaster and Hm cortex (14.1%), contrasting with much higher 150 

identities for orthologues between these species in the other two groups (fzy, 47.8% and 151 

rap/fzr,47.2%, Extended Data Fig 6A). Drosophila melanogaster cortex acts through a 152 
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similar mechanism to fzy in order to control meiosis in the female germ line
22–24

. Hm cortex 153 

also has some conservation of the fizzy family C-box and IR elements (Supplementary 154 

Information) that mediate binding to the APC/C
23

, suggesting that it may have retained a cell 155 

cycle function, although we found that expressing Hm cortex in D. melanogaster wings 156 

produced no detectable effect (Extended Data Fig 6, Supplementary Information).  157 

Previously identified butterfly wing patterning genes have been transcription factors or 158 

signalling molecules
20,25

. Developmental rate has long been thought to play a role in 159 

lepidopteran patterning
26,27

, but cortex was not a likely a priori candidate, because its 160 

Drosophila orthologue has a highly specific function in meiosis
23

. The recruitment of cortex 161 

to wing patterning appears to have occurred before the major diversification of the 162 

Lepidoptera and this gene has repeatedly been targeted by natural selection
1,7,9,28

 to generate 163 

both cryptic
4
 and aposematic patterns.  164 
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 274 

Figure 1. A homologous genomic region controls a diversity of phenotypes across the 275 

Lepidoptera. Left: phylogenetic relationships
29

. Right: chromosome maps with colour pattern 276 

intervals in grey, coloured bars represent markers used to assign homology
5,8–10

, the first and 277 

last genes from Fig 2 shown in red. In He the HeCr locus controls the yellow hind-wing bar 278 

phenotype (grey boxed races). In Hm it controls both the yellow hind-wing bar (HmYb, pink 279 

box) and the yellow forewing band (HmN, blue box). In Hn it modulates black, yellow and 280 

orange elements on both wings (HnP), producing phenotypes that mimic butterflies in the 281 

genus Melinaea. Morphs/races of Heliconius species included in this study are shown with 282 

names. 283 
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 284 

Figure 2. Association analyses across the genomic region known to contain major colour 285 

pattern loci in Heliconius. A) Association in He with the yellow hind-wing bar (n=45). 286 

Coloured SNPs are fixed for a unique state in He demophoon (orange) or He favorinus 287 

(purple). B) Genes in He with direct homologs in Hm. Genes are in different colours with 288 

exons (coding and UTRs) connected by a line. Grey bars are transposable elements. C) Hm 289 

genes and transposable elements: colours correspond to homologous He genes; MicroRNAs
30

 290 

in black. D) Association in the Hm/timareta/silvaniform group with the yellow hind-wing bar 291 

(red) and yellow forewing band (blue) (n=49). E) Association in Hn with the bicoloratus 292 

morph (n=26); inversion positions13 shown below. In all cases black/dark coloured points are 293 

above the strongest associations found outside the colour pattern scaffolds (He p=1.63e-05; 294 

Hm p=2.03e-05 and p=2.58e-05; Hn p=6.81e-06). 295 
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 296 

Figure 3. Differential gene expression across the genomic region known to contain major 297 

colour pattern loci in Heliconius melpomene. Expression differences in day 3 pupae, for all 298 

genes in the Yb interval (A,D) and tiling probes spanning the central portion of the interval 299 

(B,C,E,F). Expression is compared between races for each wing region (A,B,C) and between 300 

proximal and distal forewing sections for each race (D,E,F). C and F: magnitude and 301 

direction of expression difference (log2 fold-change) for tiling probes showing significant 302 

differences (p≤0.05); probes in known cortex exons shown in dark colours. Gene HM00052 303 
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was differentially expressed between other races in RNA sequence data (Supplementary 304 

Information) but is not differentially expressed here.  305 

 306 

 307 

Figure 4. In situ hybridisations of cortex in hind-wings of final instar larvae. B) Hn 308 

tarapotensis; adult wing shown in A, coloured points indicate landmarks, yellow arrows 309 

highlight adult pattern elements corresponding to the cortex staining. D) Hm rosina; adult 310 

wing shown in C, staining patterns in other Hm races (meriana and aglaope) appeared 311 

similar. The probe used was complementary to the cortex isoform with the longest open 312 

reading frame (also the most common, Supplementary Information).  313 

 314 

Methods 315 

He Cr reference 316 

Cr is the homologue of Yb in He (Fig 1). An existing reference for this region was available 317 

in 3 pieces (467,734bp, 114,741bp and 161,149bp, GenBank: KC469893.1)
31

. We screened 318 

the same BAC library used previously
11,31

 using described procedures
11

 with probes designed 319 
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to the ends of the existing BAC sequences and the HmYb BAC reference sequence. Two 320 

BACs (04B01 and 10B14) were identified as spanning one of the gaps and sequenced using 321 

Illumina 2x250 bp paired-end reads collected on the Illumina MiSeq. The raw reads were 322 

screened to remove vector and E. coli bases. The first 50k read pairs were taken for each 323 

BAC and assembled individually with the Phrap
32

 software and manually edited with 324 

consed
33

. Contigs with discordant read pairs were manually broken and properly merged 325 

using concordant read data.  Gaps between contig ends were filled using an in-house 326 

finishing technique where the terminal 200bp of the contig ends were extracted and queried 327 

against the unused read data for spanning pairs, which were added using the 328 

addSolexaReads.perl script in the consed package. Finally, a single reference contig was 329 

generated by identifying and merging overlapping regions of the two consensus BAC 330 

sequences.   331 

In order to fill the remaining gap (between positions 800,387 and 848,446) we used the 332 

overhanging ends to search the scaffolds from a preliminary He genome assembly of five 333 

Illumina paired end libraries with different insert sizes (250, 500, 800, 4300 and 6500bp) 334 

from two related He demophoon individuals. We identified two scaffolds (scf1869 and 335 

scf1510) that overlapped and spanned the gap (using 12,257bp of the first scaffold and 336 

35,803bp of the second).  337 

The final contig was 1,009,595bp in length of which 2,281bp were unknown (N’s). The HeCr 338 

assembly was verified by aligning to the HmYb genome scaffold (HE667780) with mummer 339 

and blast. The HeCr contig was annotated as described previously
32

, with some minor 340 

modifications. Briefly this involved first generating a reference based transcriptome assembly 341 

with existing H. erato RNA-seq wing tissue (GenBank accession SRA060220).  We used 342 

Trimmomatic
34

 (v0.22), and FLASh
35

 (v1.2.2) to prepare the raw sequencing reads, checking 343 

the quality with FastQC
36

 (v0.10.0).  We then used the Bowtie/TopHat/Cufflinks
37–39

 pipeline 344 
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to generate transcripts for the unmasked reference sequence. We generated gene predictions 345 

with the MAKER pipeline
40

 (v2.31). Homology and synteny in gene content with the Hm Yb 346 

reference were identified by aligning the Hm coding sequences to the He reference with 347 

BLAST. Homologous genes were present in the same order and orientation in He and Hm 348 

(Fig 2B,C). Annotations were manually adjusted if genes had clearly been merged or split in 349 

comparison to H. melpomene (which has been extensively manually curated
12

). In addition 350 

He cortex was manually curated from the RNA-seq data and using Exonerate
41

 alignments of 351 

the H. melpomene protein and mRNA transcripts, including the 5’ UTRs.  352 

Genotype-by-phenotype association analyses  353 

Information on the individuals used and ENA accessions for sequence data are given in 354 

Supplementary Table 1. We used shotgun Illumina sequence reads from 45 He individuals 355 

from 7 races that were generated as part of a previous study
31

 (Supplementary Information). 356 

Reads were aligned to an He reference containing the Cr contig and other sequenced He 357 

BACs
11,31

  with BWA
42

 , which has previously been found to work better than Stampy
43

  358 

(which was used for the alignments in the other species) with an incomplete reference 359 

sequence
31

. The parameters used were as follows: Maximum edit distance (n), 8; maximum 360 

number of gap opens (o), 2; maximum number of gap extensions (e), 3; seed (l), 35; 361 

maximum edit distance in seed (k), 2. We then used Picard tools to remove PCR and optical 362 

duplicate sequence reads and GATK
44

 to re-align indels and call SNPs using all individuals 363 

as a single population. Expected heterozygosity was set to 0.2 in GATK. 132,397 SNPs were 364 

present across Cr. A further 52,698 SNPs not linked to colour pattern loci were used to 365 

establish background association levels. 366 

For the Hm / Hn clade we used previously published sequence data from 19 individuals from 367 

enrichment sequencing targeting of the Yb region, the unlinked HmB/D region that controls 368 
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the presence/absence of red colour pattern elements, and ~1.8Mb of non-colour pattern 369 

genomic regions
45

, as well as 9 whole genome shotgun sequenced individuals
18,46

. We added 370 

targeted sequencing and shotgun whole genome sequencing of an additional 47 individuals 371 

(Supplementary Information). Alignments were performed using Stampy
43

 with default 372 

parameters except for substitution rate which was set to 0.01. We again removed duplicates 373 

and used GATK to re-align indels and call SNPs with expected heterozygosity set to 0.1.  374 

The analysis of the Hm/timareta/silvaniform included 49 individuals, which were aligned to 375 

v1.1 of the Hm reference genome with the scaffolds containing Yb and HmB/D swapped with 376 

reference BAC sequences
18

, which contained fewer gaps of unknown sequence than the 377 

genome scaffolds. 232,631 SNPs were present in the Yb region and a further 370,079 SNPs 378 

were used to establish background association levels. 379 

The Hn analysis included 26 individuals aligned to unaltered v1.1 of the Hm reference 380 

genome, because the genome scaffold containing Yb is longer than the BAC reference 381 

making it easier to compare the inverted and non-inverted regions present in this species. We 382 

tested for associations at 262,137 SNPs on the Yb scaffold with the Hn bicoloratus morph, 383 

which had a sample of 5 individuals.  384 

We measured associations between genotype and phenotype using a score test (qtscore) in the 385 

GenABEL package in R
47

. This was corrected for background population structure using a 386 

test specific inflation factor, λ, calculated from the SNPs unlinked to the major colour pattern 387 

controlling loci (described above), as the colour pattern loci are known to have different 388 

population structure to the rest of the genome
14,15,18

. We used a custom perl script to convert 389 

GATK vcf files to Illumina SNP format for input to genABEL
47

. genABEL does not accept 390 

multiallelic sites, so the script also converted the genotype of any individuals for which a 391 

third (or fourth) allele was present to a missing genotype (with these defined as the lowest 392 
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frequency alleles). Custom R scripts were used to identify sites showing perfect associations 393 

with calls for >75% of individuals.  394 

Microarray Gene Expression Analyses 395 

We designed a Roche NimbleGen microarray (12x135K format) with probes for all annotated 396 

Hm genes
18

 and tiling the central portion of the Yb BAC sequence contig that was previously 397 

identified as showing the strongest differentiation between Hm races
45

. In addition to the 398 

HmYb tilling array probes there were 6,560 probes tiling HmAc (a third unlinked colour 399 

pattern locus) and 10,716 probes tiling HmB/D, again distanced on average at 10bp intervals. 400 

The whole-genome gene expression array contained 107,898 probes in total.  401 

This was interrogated with Cy3 labelled double stranded cDNA generated from total RNA 402 

(with a SuperScript double-stranded cDNA synthesis kit, Invitrogen, and a one-colour DNA 403 

labelling kit, Niblegen) from four pupal developmental stages of Hm plesseni and malleti. 404 

Pupae were from captive stocks maintained in insectary facilities in Gamboa, Panama. Tissue 405 

was stored in RNA later at -80°C prior to RNA extraction. RNA was extracted using TRIzol 406 

(Invitrogen) followed by purification with RNeasy (Qiagen) and DNase treated with DNA-407 

free (Ambion). Quantification was performed using a Qubit 2.0 fluorometer (Invitrogen) and 408 

purity and integrity assessed using a Bioanalyzer 2100 (Agilent). Samples were randomised 409 

and each hybridised to a separate array. The HmYb probe array contained 9,979 probes 410 

distanced on average at 10bp. The whole-genome expression array contained on average 9 411 

probes per annotated gene in the genome (v1.1
18

) as well as any transcripts not annotated but 412 

predicted from RNA-seq evidence.  413 

Background corrected expression values for each probe were extracted using NimbleScan 414 

software (version 2.3). Analyses were performed with the LIMMA package implemented in 415 

R/Bioconductor
48

. The tiling array and whole-genome data sets were analysed separately. 416 
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Expression values were extracted and quantile-normalised, log2-transformed, quality 417 

controlled and analysed for differences in expression between individuals and wing regions. 418 

P-values were adjusted for multiple hypotheses testing using the False Discovery Rate (FDR) 419 

method 
49

. 420 

In situ hybridisations 421 

Hn and Hm larvae were reared in a greenhouse at 25-30˚C and sampled at the last instar. In 422 

situ hybridizations were performed according to previously described methods
25

 with a cortex 423 

riboprobe synthesized from a 831-bp cDNA amplicon from Hn. Wing discs were incubated in 424 

a standard hybridization buffer containing the probe for 20-24 h at 60°C. For secondary 425 

detection of the probe, wing discs were incubated in a 1:3000 dilution of anti-digoxigenin 426 

alkaline phosphatase Fab fragments and stained with BM Purple for 3-6 h at room 427 

temperature. Stained wing discs were photographed with a Leica DFC420 digital camera 428 

mounted on a Leica Z6 APO stereomicroscope. 429 

De novo assembly of short read data in Hm and related taxa 430 

In order to better characterise indel variation from the short-read sequence data used for the 431 

genotype-by-phenotype association analysis, we performed de novo assemblies of a subset of 432 

Hm individuals and related taxa with a diversity of phenotypes (Extended Data Figure 2). 433 

Assemblies were performed using the de novo assembly function of CLCGenomics 434 

Workbench v.6.0 under default parameters. The assembled contigs were then BLASTed 435 

against the Yb region of the Hm melpomene genome
18

, using Geneious v.8.0. The contigs 436 

identified by BLAST were then concatenated to generate an allele sequence for each 437 

individual. Occasionally two unphased alleles were generated when two contigs were 438 

matched to a given region. If more than two contigs of equal length matched then this was 439 
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considered an unresolvable repeat region and replaced with Ns. The assembled alleles were 440 

then aligned using the MAFFT alignment plugin in Geneious v.8.0.  441 

Long-range PCR targeted sequencing of cortex in Hm aglaope and Hm amaryllis 442 

We generated two long-range PCR products covering 88.8% of the 1,344bp coding region of 443 

cortex (excluding 67bp at the 5’ end and 83bp at the 3’ end, further details in Supplementary 444 

Information). A product spanning coding exons 5 to 9 (the final exon) was obtained from 29 445 

Hm amaryllis individuals and 29 Hm aglaope individuals; a product spanning coding exons 2 446 

to 5 was obtained from 32 Hm amaryllis individuals and 14 Hm aglaope. In addition, a 447 

product spanning exons 4 to 6 was obtained from 6 Hm amaryllis and 5 Hm aglaope that 448 

failed to amplify one or both of the larger products. Long-range PCR was performed using 449 

Extensor long-range PCR mastermix (Thermo Scientific) following manufacturers guidelines 450 

with a 60˚C annealing temperature in a 10-20µl volume. The product spanning coding exons 451 

5 to 9 was obtained with primers HM25_long_F1 and HM25_long_R4 (see Supplementary 452 

Table 2 for primer sequences); the product spanning coding exons 2 to 5 was obtained with 453 

primers HM25_long_F4 and HM25_long_R2; the product spanning exons 4 to 6 was 454 

obtained with primers 25_ex5-ex7_r1 and 25_ex5-ex7_f1. Products were pooled for each 455 

individual, including 5 additional products from the Yb locus and 7 products in the region of 456 

the HmB/D locus. They were then cleaned using QIAquick PCR purification kit (QIAgen) 457 

before being quantified with a Qubit Fluorometer (Life Technologies) and pooled in 458 

equimolar amounts for each individual, taking into account variation in the length and 459 

number of PCR products included for each individual (because of some PCR failures, ie. 460 

proportionally less DNA was included if some PCR products were absent for a given 461 

individual).  462 
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Products were pooled within individuals (including additional products for other genes not 463 

analysed here) and then quantified and pooled in equimolar amounts for each individual 464 

within each race. The pooled products for each race (Hm aglaope and amaryllis) were then 465 

prepared as two separate libraries with molecular identifiers and sequenced on a single lane 466 

of an Illumina GAIIx. Analysis was performed using Galaxy and the history is available at 467 

https://usegalaxy.org/u/njnadeau/h/long-pcr-final. Reads were quality filtered with a 468 

minimum quality of 20 required over 90% of the read, which resulted in 5% of reads being 469 

discarded. Reads were then quality trimmed to remove bases with quality less than 20 from 470 

the ends. They were then aligned to the target regions using the fosmid sequences from 471 

known races
45

 with sequence from the Yb BAC walk
12

 used to fill any gaps. Alignments were 472 

performed with BWA v0.5.6
42

 and converted to pileup format using Samtools v0.1.12 before 473 

being filtered based on quality (≥20) and coverage (≥10). BWA alignment parameters were 474 

as follows: fraction of missing alignments given 2% uniform base error rate (aln -n) 0.01; 475 

maximum number of gap opens (aln -o) 2; maximum number of gap extensions (aln -e) 12; 476 

disallow long deletion within 12 bp towards the 3'-end (aln -d); number of first subsequences 477 

to take as seed (aln -l) 100. We then calculated coverage and minor allele frequencies for 478 

each race and the difference between these using custom scripts in R
50

.  479 

Sequencing and analysis of Hm fosmid clones 480 

Fosmid libraries had previously been made from single individuals of 3 Hm races (rosina, 481 

amaryllis and aglaope) and several clones overlapping the Yb interval had been sequenced
45

. 482 

We extended the sequencing of this region, particularly the region overlapping cortex by 483 

sequencing an additional 4 clones from Hm rosina (1051_83D21, accession KU514430; 484 

1051_97A3, accession KU514431; 1051_65N6, accession KU514432; 1051_93D23, 485 

accession KU514433) 2 clones from Hm amaryllis (1051_13K4, accession KU514434; 486 

1049_8P23, accession KU514435) and 3 clones from Hm aglaope (1048_80B22, accession 487 
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KU514437; 1049_19P15, accession KU514436; 1048_96A7, accession KU514438). These 488 

were sequenced on a MiSeq 2000, and assembled using the de novo assembly function of 489 

CLCGenomcs Workbench v.6.0. The individual clones (including existing clones 1051-490 

143B3, accession FP578990; 1049-27G11, accession FP700055; 1048-62H20, accession 491 

FP565804) were then aligned to the BAC and genome scaffold
18

 references using the 492 

MAFFT alignment plugin of Geneious v.8.0. Regions of general sequence similarity were 493 

identified and visualised using  MAUVE
51

. We merged overlapping clones from the same 494 

individual if they showed no sequence differences, indicating that they came from the same 495 

allele. We identified transposable elements (TEs) using nBLAST with an insect TE list 496 

downloaded from Repbase Update
52

 including known Heliconius specific TEs
53

. 497 

5’ RACE, RT-PCR and qRT-PCR 498 

All tissues used for gene expression analyses were dissected from individuals from captive 499 

stocks derived from wild caught individuals of various races of Hm (aglaope, amaryllis, 500 

melpomene, rosina, plesseni, malleti) and F2 individuals from a Hm rosina (female) x Hm 501 

melpomene (male) cross. Experimental individuals were reared at 28°C-31°C. Developing 502 

wings were dissected and stored in RNAlater (Ambion Life Technologies). RNA was 503 

extracted using a QIAgen RNeasy Mini kit following the manufacturer’s guidelines and 504 

treated with TURBO DNA-free DNase kit (Ambion Life Technologies) to remove remaining 505 

genomic DNA.  RNA quantification was performed with a Nanodrop spectrophotometer, and 506 

the RNA integrity was assessed using the Bioanalyzer 2100 system (Agilent). 507 

Total RNA was thoroughly checked for DNA contamination by performing PCR for EF1α 508 

(using primers ef1-a_RT_for and ef1-a_RT_rev, Table S2) with 0.5µl of RNA extract (50ng-509 

1µg of RNA) in a 20µl reaction using a polymerase enzyme that is not functional with RNA 510 
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template (BioScript, Bioline Reagents Ltd.). If a product amplified within 45 cycles then the 511 

RNA sample was re-treated with DNase. 512 

Single stranded cDNA was synthesised using BioScript MMLV Reverse Transcriptase 513 

(Bioline Reagents Ltd.) with random hexamer (N6) primers and 1µg of template RNA from 514 

each sample in a 20 µl reaction volume following the manufacturer’s protocol. The resulting 515 

cDNA samples were then diluted 1:1 with nuclease free water and stored at -80˚C.  516 

5’ RACE was performed using RNA from hind-wing discs from one Hm aglaope and one 517 

Hm amaryllis final instar larvae with a SMARTer RACE kit from Clonetech (California, 518 

USA). The gene specific primer used for the first round of amplification was anchored in 519 

exon 4 (fzl_raceex5_R1, Supplementary Table 2). Secondary PCR of these products was then 520 

performed using a primer in exon 2 (HM25_long_F2, Supplementary Table 2) and the nested 521 

universal primer A. Other isoforms were detected by RT-PCR using primers within exons 2 522 

and 9 (gene25_for_full1 and gene25_rev_ex3). We identified isoforms from 5’ RACE and 523 

RT-PCR products by cutting individual bands from agarose gels and if necessary by cloning 524 

products before Sanger sequencing. Cloning of products was performed using TOPO TA 525 

(Invitrogen) or pGEM-T (Promega) cloning kits. Sanger sequencing was performed using 526 

BigDye terminator v3.1 (Applied Biosystems) run on an ABI13730 capillary sequencer. 527 

Primers fzl_ex1a_F1 and fzl_ex4_R1 were used to confirm expression of the furthest 5’ 528 

UTR. For isoforms that appeared to show some degree of race specificity we designed 529 

isoform specific PCR primers spanning specific exon junctions (Extended Data Fig 2, 4, 530 

Supplementary Table 2) and used these to either qualitatively (RT-PCR) or quantitatively 531 

(qRT-PCR) assess differences in expression between races.  532 

We performed qRT-PCR using SensiMix SYBR green (Bioline Reagents Ltd.) with 0.2-533 

0.25µM of each primer and 1μl of the diluted product from the cDNA reactions. Reactions 534 
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were performed in an Opticon 2 DNA engine (MJ Research), with the following cycling 535 

parameters: 95˚C for 10min, 35-50 x: (95˚C for 15sec, 55-60˚C for 30sec, 72˚ for 30sec), 536 

72˚C for 5min.  Melting curves were generated between 55˚C and 90˚C with readings taken 537 

every 0.2˚C for each of the products to check that a single product was generated. At least 538 

one product from each set of primers was also run on a 1% agarose gel to check that a single 539 

product of the expected size was produced and the identity of the product confirmed by direct 540 

sequencing (See Supplementary Table 2 for details of primers for each gene). We used two 541 

housekeeping genes (EF1α and Ribosomal Protein S3A) for normalisation and all results 542 

were taken as averages of triplicate PCR reactions for each sample. 543 

Ct values were defined as the point at which fluorescence crossed a threshold (RCt) adjusted 544 

manually to be the point at which fluorescence rose above the background level. 545 

Amplification efficiencies (E) were calculated using a dilution series of clean PCR product. 546 

Starting fluorescence, which is proportional to the starting template quantity, was calculated 547 

as R0 = RCt (1+E)
-Ct

. Normalized values were then obtained by dividing R0 values for the 548 

target loci by R0 values for EF1α and RPS3A. Results from both of these controls were 549 

always very similar, therefore the results presented are normalized to the mean of EF1α and 550 

RPS3A. All results were taken as averages of triplicate PCR reactions. If one of the triplicate 551 

values was more than one cycle away from the mean then this replicate was excluded. 552 

Similarly any individuals that were more than two standard deviations away from the mean of 553 

all individuals for the target or normalization genes were excluded (these are not included in 554 

the numbers of individuals reported). Statistical significance was assessed by Wilcoxon rank 555 

sum tests performed in R
50

. 556 

RNAseq analysis of Hm amaryllis/aglaope 557 
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RNA-seq data for hind-wings from three developmental stages had previously been obtained 558 

for two individuals of each race at each stage (12 individuals in total) and used in the 559 

annotation of the Hm genome
18

 (deposited in ENA under study accessions ERP000993 and 560 

PRJEB7951). Four samples were multiplexed on each sequencing lane with the fifth instar 561 

larval and day 2 pupal samples sequenced on a GAIIx sequencer and the day 3 pupal wings 562 

sequenced on a Hiseq 2000 sequencer.  563 

Two methods were used for alignment of reads to the reference genome and inferring read 564 

counts, Stampy
43

 and RSEM (RNAseq by Expectation Maximisation)
54

. In addition we used 565 

two different R/Bioconductor packages for estimation of differential gene expression, 566 

DESeq
55

 and BaySeq 
56

. Read bases with quality scores < 20 were trimmed with FASTX-567 

Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html).  Stampy was run with default 568 

parameters except for mean insert size, which was set to 500, SD 100 and substitution rate, 569 

which was set to 0.01. Alignments were filtered to exclude reads with mapping quality <30 570 

and sorted using Samtools
57

. We used the HT seq-count script in with HTseq
58

 to infer counts 571 

per gene from the BAM files.  572 

RSEM
54

 was run with default parameters to infer a transcriptome and then map RNAseq 573 

reads against this using Bowtie
37

 as an aligner. This was run with default parameters except 574 

maximum number of mismatches, which was set to 3.    575 

Annotation and alignment of fizzy family proteins 576 

In the arthropod genomes, some fizzy family proteins were found to be poorly annotated 577 

based on alignments to other family members. In these cases annotations were improved 578 

using well annotated proteins from other species as references in the program Exonerate
41

 579 

and the outputs were manually curated. Specifically, the annotation of B. mori fzr was 580 

extended based on alignment of D. plexippus fzr; the annotation of B. mori fzy was altered 581 

http://hannonlab.cshl.edu/fastx_toolkit/index.html
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based on alignment of Drosophila melanogaster and D. plexippus fzy; H. melpomene fzy was 582 

identified as part of the annotated gene HMEL017486 on scaffold HE671623 (Hmel v1.1) 583 

based on alignment of  D. plexippus fzy; the Apis mellifera fzr annotation was altered based 584 

on alignment of D. melanogaster fzr; the annotation of Acyrthosiphon pisum fzr was altered 585 

based on alignment of D. melanogaster fzr. No one-to-one orthologues of D. melanogaster 586 

fzr2 were found in any of the other arthropod genera, suggesting that this gene is Drosophila 587 

specific. Multiple sequence alignment of all the fizzy family proteins was then performed 588 

using the Expresso server
59

 within T-coffee
60

, and this alignment was used to generate a 589 

neighbour joining tree in Geneious v8.1.7. 590 

Expression of H. melpomene cortex in D. melanogaster wings 591 

D. melanogaster Cortex is known to generate an irregular microchaete phenotype when 592 

ectopically expressed in the posterior compartment of the adult fly wing
24

.  We performed the 593 

same assay using H. melpomene cortex in order to test if this functionality was conserved. 594 

Following the methods of Swan and Schüpbach
24

 a UAS-GAL4 construct was created using 595 

the coding region for the long isoform of Hm cortex, plus a Drosophila cortex version to act 596 

as positive control. The HA-tagged H. melpomene UAS-cortex expression construct was 597 

generated using cDNA reverse transcribed (Revert-Aid, Thermo-Scientific) from RNA 598 

extracted (Qiagen RNeasy) from pre-ommochrome pupal wing material. An HA-tagged 599 

D.melanogaster UAS-cortex version was also constructed, following the methods of Swan 600 

and Schüpbach, (2007). Expression was driven by hsp70 promoter. Constructs were injected 601 

into ϕC31-attP40 flies (#25709, Bloomington stock centre, Indiana; Cambridge University 602 

Genetics Department, UK, fly injection service) by site directed insertion into CII via an attB 603 

site in the construct. Homozygous transgenic flies were crossed with w,y’;en-GAL4;UAS-604 

GFP (gift of M. Landgraf lab, Cambridge University Zoology Department) to drive 605 
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expression in the engrailed posterior domain of the wing, and adult offspring wings 606 

photographed (Extended Data Fig 6B-D). Expression of the construct was confirmed by IHC 607 

(standard Drosophila protocol) of final instar larval wing discs using mouse anti-HA and goat 608 

anti-mouse alexa-fluor 568 secondary antibodies (Abcam), imaged by Leica SP5 confocal. 609 

Successful expression of Hm_Cortex was confirmed by IHC against an HA tag inserted at the 610 

N terminal of either protein (Extended Data Fig 6E).  611 

 612 
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 684 

Extended Data  685 

686 
Extended Data Figure 1. A) Exons and splice variants of cortex in Hm. Orientation is 687 

reversed with respect to figures 2 and 4, with transcription going from left to right. SNPs 688 

showing the strongest associations with phenotype are shown with stars. B) Differential 689 

expression of two regions of cortex between Hm amaryllis and Hm aglaope whole hindwings 690 

(N=11 and N=10 respectively). Boxplots are standard (median; 75
th

 and 25
th

 percentiles; 691 

maximum and minimum excluding outliers – shown as discrete points) C) Expression of a 692 
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cortex isoform lacking exon 3 is found in Hm aglaope but not Hm amaryllis hindwings. D) 693 

Expression of an isoform lacking exon 5 is found in Hm rosina but not Hm melpomene 694 

hindwings. Green triangles indicate predicted start codons and red triangles predicted stop 695 

codons, with usage dependent on which exons are present in the isoform. Schematics of the 696 

targeted exons are shown for each (q)RT-PCR product, black triangles indicate the position 697 

of the primers used in the assay. 698 
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 699 

Extended Data Figure 2. Alignments of de novo assembled fragments containing the top 700 

associated SNPs from Hm and related taxa short-read data. Identified indels do not show 701 

stronger associations with phenotype that those seen at SNPs (as shown in Extended Data 702 

Table 2), although some near-perfect associations are seen in fragment C. Black regions = 703 
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missing data; yellow box = individuals with a hindwing yellow bar; blue box = individuals 704 

with a yellow forewing band. 705 

 706 

Extended Data Figure 3. Sequencing of long-range PCR products and fosmids spanning 707 

cortex. A) Sequence read coverage from long-range PCR products across the cortex coding 708 

region from 2 Hm races. B) Minor allele frequency difference from these reads between Hm 709 

aglaope and Hm amaryllis. Exons of cortex are indicated by boxes, numbered as in Extended 710 

Data Figure 2. C) Alignments of sequenced fosmids overlapping cortex from 3 Hm 711 

individuals of difference races. No major rearrangements are observed, nor any major 712 

differences in transposable element (TE) content between closely related races with different 713 



35 
 

 
 

colour patterns (melpomene/rosina or amaryllis/aglaope). Hm amaryllis and rosina have the 714 

same phenotype, but do not share any TEs that are not present in the other races. Hm_BAC = 715 

BAC reference sequence, Hm_mel = melpomene from new unpublished assembly of Hm 716 

genome
51

, Hm_ros = rosina (2 different alleles were sequenced from this individual), 717 

Hm_ama = amaryllis (2 non-overlapping clones were sequenced in this individual), Hm_agla 718 

= aglaope (4 clones were sequenced in this individual 2 of which represent alternative 719 

alleles). Alignments were performed with Mauve: coloured bars represent homologous 720 

genomic regions. cortex is annotated in black above each clone. Variable TEs are shown as 721 

coloured bars below each clone: red = Metulj-like non-LTR, yellow = Helitron-like DNA, 722 

grey = other. 723 
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 724 

Extended Data Figure 4. Expression array results for additional stages, related to Figure 4. A-725 

G: comparisons between races (H. m. plesseni and H. m. malleti) for 3 wing regions. H-N: 726 
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comparisons between proximal and distal forewing regions for each race. Significance values 727 

(-log10(p-value)) are shown separately for genes in the HmYb region from the gene array 728 

(A,D,F,H,K,M) and for the HmYb tiling array (B,E,G,I,L,N) for day 1 (A,B,H,I), day 5 729 

(D,E,K,L) and day 7 (F,G,M,N) after pupation. The level of expression difference (log fold 730 

change) for tiling probes showing significant differences (p≤0.05) is shown for day 1 (C and 731 

J) with probes in known cortex exons shown in dark colours and probes elsewhere shown as 732 

pale colours. 733 



38 
 

 
 

 734 

Extended Data Figure 5. Alternative splicing of cortex. A) Amplification of the whole cortex 735 

coding region, showing the diversity of isoforms and variation between individuals. B) 736 
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Differences in splicing of exon 3 between H. m. aglaope and H. m. amaryllis. Products 737 

amplified with a primer spanning the exon 2/4 junction at 3 developmental stages. The lower 738 

panel shows verification of this assay by amplification between exons 2 and 4 for the same 739 

final instar larval samples (replicated in Extended Data Figure 2C) C) Lack of consistent 740 

differences between H. m. melpomene and H. m. rosina in splicing of exon 3. Top panel 741 

shows products amplified with a primer spanning the exon 2/4 junction, lower panel is the 742 

same samples amplified between exons 2 and 4. D) Differences in splicing of exon 5 between 743 

H. m. melpomene and H. m. rosina. Products amplified with a primer spanning the exon 4/6 744 

junction at 3 developmental stages. E) Subset of samples from D amplified with primers 745 

between exons 4 and 6 for verification (middle, 24hr pupae samples are replicated in 746 

Extended Data Figure 2D). F) Lack of consistent differences between H. m. aglaope and H. 747 

m. amaryllis in splicing of exon 5. Products amplified with a primer spanning the exon 4/6 748 

junction. G) H. m. cythera also expresses the isoform lacking exon 5, while a pool of 6 H. m. 749 

malleti individuals do not. H) Expression of the isoform lacking exon 5 from an F2 H. m. 750 

melpomene x H. m. rosina cross. Individuals homozygous or heterozygous for the H. m. 751 

rosina HmYb allele express the isoform while those homozygous for the H. m. melpomene 752 

HmYb allele do not.  I) Allele specific expression of isoforms with and without exon 5. 753 

Heterozygous individuals (indicated with blue and red stars) express only the H. m. rosina 754 

allele in the isoform lacking exon 5 (G at highlighted position), while they express both 755 

alleles in the isoform containing exon 5 (G/A at this position). 756 
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 757 

Extended Data Figure 6. Phylogeny of fizzy family proteins and effects of expressing cortex 758 

in the Drosophila wing. A) Neighbour joining phylogeny of Fizzy family proteins including 759 

functionally characterised proteins (in bold) from Saccharomyces cerevisiae, Homo sapiens 760 

and Drosophila melanogaster as well as copies from the basal metazoan Trichoplax 761 

adhaerens and a range of annotated arthropod genomes (Daphnia pulex, Acyrthosiphon 762 

pisum, Pediculus humanus, Apis mellifica, Nasonia vitripennis, Anopheles gambiae, 763 

Tribolium castaneum) including the lepidoptera H. melpomene (in blue), Danaus plexippus 764 

and Bombyx mori. Branch colours: dark blue, CDC20/fzy; light blue, CDH1/fzr/rap; red, 765 

lepidoptran cortex.  B-E) Ectopic expression of cortex in Drosophila melanogaster. 766 

Drosophila cortex produces an irregular microchaete phenotype when expressed in the 767 

posterior compartment of the fly wing (C) whereas Heliconius cortex does not (D), when 768 

compared to no expression (B). A, anterior; P, posterior. Successful Heliconius cortex 769 

expression was confirmed by anti-HA IHC in the last instar Drosophila larva wing imaginal 770 

disc (D, red), with DAPI staining in blue.  771 
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Extended Data Table 1. Genes in the Yb region and evidence for wing patterning control in 772 

Heliconius 773 

 774 

Yb
I
, within the previously mapped Yb interval

12
. Sb

I
, within the previously mapped Sb 775 

interval
12

. Sb controls a white/yellow hindwing margin and is not investigated in this study. 776 

The N locus has not been fine-mapped previously. A
Yb

, number of above background SNPs 777 
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associated with the hindwing yellow bar in this study. A
N
, number of above background 778 

SNPs associated with the forewing yellow band in this study. E
1
, detected as differentially 779 

expressed between Hm aglaope and amaryllis from RNAseq data in this study 780 

(Supplementary Information). E
gw

, detected as differentially expressed between forewing 781 

regions in the gene array in this study. E
gr

, detected as differentially expressed between Hm 782 

plesseni and malleti in in the gene array in this study. E
tw

, numbers of probes showing 783 

differential expression between forewing regions in the tilling array in this study. E
tr
, 784 

numbers of probes showing differential expression between Hm plesseni and malleti in in the 785 

tiling array in this study. Cr
I
, within the previously mapped HeCr interval

11
. A

pet
, number of 786 

SNPs fixed for the alternative allele in He demophoon. A
fav

, number of SNPs fixed for the 787 

alternative allele in He favorinus. P
I
, within the previously mapped P interval

13
. A

bic
, number 788 

of above background SNPs associated with the Hn bicoloratus phenotype in this study. 789 

  790 
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Extended Data Table 2. Locations of fixed/above background SNPs and differentially 791 

expressed (DE) tiling array probes 792 

 793 

 794 

Extended Data Table 3. SNPs showing the strongest phenotypic associations in the H. 795 

melpomene/timareta/silvaniform comparison.  796 
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 797 

*downstream of cortex, †between exons 3 and 4 of cortex, ‡upstream of cortex, §between 798 

exons U4 and U3 of cortex. None of these SNPs are within known TEs. Colours show 799 

phenotypic associations: yellow = yellow hindwing bar; pink = no yellow hindwing bar; 800 
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green = yellow forewing band; blue = no yellow forewing band; grey = allele does not match 801 

expected pattern. 802 

 803 

Extended Data Table 4. Transposable Elements (TEs) found within the Yb region.  804 

 805 


