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ABSTRACT In this work we study metamaterial enhanced graphene photodetectors operating in 

the mid-IR to THz. The detector element consists of a graphene ribbon embedded within a dual-

metal split ring resonator, which acts like a cavity to enhance the absorption of electromagnetic 

radiation by the graphene ribbon, whilst the asymmetric metal contacts enable photo-

thermoelectric detection. Detectors designed for the mid-IR demonstrate peak responsivity 

(referenced to total power) of ~120mV/W at 1500cm
-1

 and are employed in the spectroscopic 

evaluation of vibrational resonances, thus demonstrating a key step towards a platform for 

integrated surface enhanced sensing. 
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Infrared (IR) spectroscopy is a powerful analytical technique that can be used to gain 

information about the chemical makeup of almost any sample in almost any state
1
. A molecular 

bond will absorb IR light as long as it has vibrational modes which change the electric dipole 

moment of the bond, and IR spectroscopy is therefore widely used across different scientific 

disciplines. As IR spectroscopy is both non-destructive and label-free, it is particularly attractive 

for the analysis of biological samples such as proteins
2
, lipids

3
 and bacteria

4
. In particular, 

Fourier transform infrared (FTIR) spectroscopy allows the rapid, and highly sensitive, 

measurement of transmission and reflection spectra. However, the large mismatch between the 

wavelength of light and the size of the sample of interest limits both the spatial resolution and 

sensitivity of such measurements. 

 

One way to overcome this mismatch is to exploit the localized light fields associated with 

surface plasmon polaritons (plasmons) excited in nanostructures
5
. At mid-infrared (mid-IR) 

wavelengths and longer, surface plasmons are weakly bound to the metal-dielectric interface. 

Nevertheless, plasmonic nanostructures
6
, metamaterials

7
 and tapered waveguides

8
 have been 

employed to confine the electric-field to sub-wavelength volumes and significantly enhance the 

light matter interaction. In contrast to noble metals, graphene has been shown to support tightly 

confined surface plasmon (SP) in the THz to mid-IR spectral range
9,10

, with the significant 

advantage that the plasmon resonance can be tuned by changing the conductivity of graphene, 

which in turn can be modulated using an applied gate voltage. In very recent work, graphene 

plasmonic resonators have been demonstrated as an effective sensing platform
11,12

, where the 

tunability and strong spatial light confinement offer a tangible improvement over conventional 

plasmonic devices for the mid-IR sensing of protein monolayers
12

. 
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In this work we exploit a hybrid graphene metamaterial
13

 as means of significantly enhancing 

the interaction of IR light with the sample under test, but also integrate this metamaterial with 

graphene photodetectors
14

 operating in the IR to THz. We show that the metamaterial enhances 

the response of the detectors, measure a peak responsivity of >100mV/W (defined with respect 

to the incident power falling on the whole area of the detector) at a frequency of ~1500cm
-1

 and 

determine that the photo-response is dominated by the photo-thermoelectric effect. Using the 

integrated detector we are able to reproduce the transmission spectrum of a very thin (~20nm) 

layer of test polymer, where features associated with the vibrational modes within the polymer 

molecules appear as minima in the measured photo-voltage. This is a key step towards the 

realization of a fully integrated, high spatial resolution, surface enhanced sensor and ultimately 

could form the basis of a spectrometer-on-a-chip. 

 

The concept of our device is pictured in Fig. 1(a) and (b) and consists of a graphene ribbon 

positioned in the capacitor gap of a complementary split ring resonator (CSRR), which is also 

split along its horizontal symmetry axis
13

. The upper and lower sections of the CSRR are in 

direct contact with the graphene ribbon and composed from different metals, Cr/Au (5/80nm) for 

the lower section and Al (90nm) for the upper section. Using these two different metals has little 

effect on the electromagnetic response of the CSRR (see supporting information), but the 

asymmetry of the two graphene-metal interfaces facilitates photo-thermoelectric detection
15

. 

Fermi-level pinning at the graphene-metal interfaces breaks the symmetry of the carrier density 

and therefore Seebeck coefficient along the graphene channel, leading to the generation of a net 

thermoelectric voltage. Detector arrays with an area of 600×600µm
2
 consist 120×120 individual 

detector elements connected in parallel along the x-axis and in series along the y-axis as shown 
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in Fig. 1(a), with source and drain contacts to allow read-out of the photo-voltage and for 

electrical characterization of the device. In the following, we present experimental results from 

devices operating in two different frequency ranges. The first device, D1 targets an enhanced 

response in the THz range and operates across a broad frequency range. The second, D2 is 

designed for mid-IR operation, the optimum frequency range for vibrational spectroscopy, and is 

measured with and without a ~20nm thick layer of Poly(methyl methacrylate) (PMMA) in order 

to investigate surface enhanced sensing. The IR spectrum of PMMA, a versatile polymeric 

material, has well known molecular absorption lines at 1730cm
−1

 (corresponding to C=O 

stretching), 1450 and 1380cm
-1

 (O-CH3 bending), 1265cm
−1

 and 1240cm
−1

 (C−C−O stretching), 

1190cm
−1

 (C−O−C bending), and 1145cm
−1

 (CH2 bending) and therefore provides an excellent 

test system
1,16

. 

 

The detector photo-response is measured using the experimental set-up shown in Fig. 1(c). The 

broadband radiation from the FTIR is passed through a chopper wheel and a linear polarizer and 

then focused onto the detector (mounted inside a vacuum chamber with a KRS-5 window) using 

a reflective objective lens (N.A.=0.5). The photo-voltage generated between the source and drain 

contacts of the detector is amplified using a voltage preamplifier and measured with a lock-in 

amplifier referenced to the chopper frequency (~500Hz). The lock-in output voltage is then 

recorded as a function of the FTIR interferometer delay to record an interferogram of the 

detector response, the Fourier transform of which gives the spectral response of the system, ie. 

the photo-voltage generated due to the power spectrum of the FTIR thermal source. To quantify 

the performance of the detector, the photo-response is normalized to the power spectrum of the 

FTIR source using a calibrated Mercury Cadmium Telluride detector with a known spectral 
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response (see supporting information). The response of D2 is further characterized using a 

quantum cascade laser (QCL) with a fixed frequency of ~1200cm
-1

, which has a focused beam 

diameter of ~60µm (measured using a micro-bolometer array), considerably smaller than the 

detector area, and an average power of ~8mW. 

 

To characterize the electromagnetic response of the hybrid metamaterial detectors, we first use 

FTIR spectroscopy to measure the transmission spectrum of the CSRR array (without graphene 

ribbons). When the incident radiation is polarized with the electric-field perpendicular to the 

long-axis of the graphene ribbon, in the corresponding hybrid structure (see Fig. 1(a) for 

orientation), the spectrum, shown in Fig. 1(d) reveals several peaks within the measurement 

frequency range of 100 to 1800cm
-1

. In the orthogonal polarization, with the electrical field 

parallel to the long-axis of the graphene ribbon and also shown in Fig. 1(d), we observe a very 

different spectral response. In both cases, the spectra can be attributed to the interaction of the 

resonant modes of the CSRR with the optical phonons of the underlying SiO2 substrate
17

. This 

can be shown by calculating the expected electromagnetic response using finite difference time 

domain (FDTD) simulations, where the optical phonons are included using a frequency 

dependent dielectric function of the SiO2 layer (see supporting information). Calculated 

transmission spectra are plotted for comparison in Fig. 1(e) and show good agreement with the 

experimental measurements. 
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Figure 1. (a) Optical micrograph and (b) Scanning electron microscope image of the hybrid metamaterial detector. 

The red and black arrows in (a) denote polarization parallel and perpendicular to the graphene ribbon, respectively. 

The dashed white lines in (b) indicate the edge of the graphene ribbon. The scale bar is 10µm in (a) and 2µm in (b). 

(c) Schematic diagram of the experimental set-up. (d) Experimental and (e) FDTD simulated transmission spectra of 

the CSRR array without graphene ribbons. In (d) and (e) the black and red lines represent the case of perpendicular 

and parallel polarized excitation, respectively. 

 

 

We then measure the photo-response of detector D1, which is presented in Fig. 2. Firstly, we 

consider the response to radiation polarized perpendicular to the graphene ribbons. The photo-

response spectrum is shown in Fig. 2(a), recorded with VG≈VCNP (where VCNP is the bias voltage 
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corresponding to the charge neutral point). There are three main features; a broad response peak 

between 1500 and 4000cm
-1

, and two narrow response peaks at ~530 and 1250cm
-1

. The 

transmission spectrum for the perpendicular polarization is plotted in Fig. 2(b) for comparison 

and it can be seen that, in general, the photo-voltage maxima correspond to the transmission 

maxima (the lowest frequency resonance, at ~300cm
-1

, is not observed in the photo-response 

because the KBr beamsplitter used in the FTIR has a cut-off frequency of 400cm
-1

). A similar 

observation is made when the polarization is parallel to the graphene ribbon, as shown in Figures 

2(c) and 2(d), but with a different frequency response. 

 

A correlation between the transmission and photo-response spectra can be expected for our 

detector design if the CSRR confines the electric field from the incident radiation within the 

capacitor gap, therefore enhancing absorption within the graphene ribbon. To investigate this, we 

use the FDTD simulations to visualize the electric field profiles at the different resonant 

frequencies of the CSRR, shown for perpendicularly polarized light of three frequencies in Fig. 

2(e) – Fig. 2(g). Enhancement of the photo-response is observed at frequencies of 530cm
-1

 and 

1250cm
-1

, which results from the strongly enhanced electric field within the capacitor gap of the 

CSRR as shown in Figures 2(e) and (g), respectively. In both polarizations however, there are 

resonant modes which occur in the transmission spectra but not the photo-response, for example 

in the perpendicular polarization there is no peak in photo-response corresponding to the mode at 

1035cm
-1

. Referring again to the FDTD simulations, we observe that in this case the resonant 

mode does not significantly enhance the electric field within the capacitor gap (Fig. 2(f)). These 

observations provide strong evidence that the photo-response is dominated by absorption of 

radiation by the graphene ribbon and enhanced by the CSRR. 
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Figure 2. (a, c) Photo-voltage spectra of the hybrid metamaterial detector in response to excitation with (a) 

perpendicular and (c) parallel polarized light. The green line in (a) shows the calibrated response spectrum. (b, d) 

Transmission spectra of the metamaterial array with (b) perpendicular and (d) parallel polarization. (e) – (g) 

Simulated electric field profile of the CSRR for perpendicular polarization at frequencies of (e) 530cm
-1

, (f) 1035cm
-

1
 and (g) 1170cm

-1
. (h) Extinction spectrum of an array of 400nm wide monolayer graphene ribbons, the plasmon-

phonon modes are labelled P1-P4. Inset shows an SEM image of graphene ribbon array, the scale bar is 1µm. The red 

dashed line in (a), (b) and (h) indicates the frequency of the plasmon-phonon resonance in the graphene ribbon. 
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We also note that the resonance in the photo-response at 1250cm
-1

 is significantly narrower 

than the transmission resonance. This is attributed to an enhanced absorption in the graphene 

ribbon as a result of plasmon-phonon coupling
18,19

. The extinction spectrum (1-T/TCNP, where T 

is the transmission through the ribbon array biased to give a hole density of ~1×10
13

cm
-2

 and 

TCNP is the transmission through the array biased to the charge neutral point) of an array of 

400nm wide graphene ribbons (see inset to Fig. 2(h) for SEM image) is shown in Fig. 2(h) and 

shows resonant modes, labelled P1-P4, resulting from increased absorption due to the 

hybridization of the plasmon resonance in the graphene ribbons with optical phonons in the 

underlying SiO2 susbstrate
19

. The plasmon-phonon mode at 1250cm
-1

, labelled P4, overlaps in 

frequency with the CSRR mode centered at 1170cm
-1

, which concentrates the field within the 

capacitor gap, thus coupling to the graphene plasmon-phonon resonance
13

 and the enhanced 

absorption associated with this resonance is observed as a peak in the thermoelectric voltage
20

. 

This observation is supported by the linewidth of the plasmon-phonon mode, which is ~110cm
-1

, 

in close agreement with the ~105cm
-1

 measured linewidth of the photo-response peak. The 

responsivity of D1 is plotted in Fig. 2(a) for the perpendicular polarization. A peak responsivity 

of 23mV/W is measured at 530cm
-1

, corresponding to the LC resonance of the CSRR. Similarly, 

for the cavity enhanced plasmon-phonon mode at 1250cm
-1

 the responsivity peaks at ~9mV/W. 

 

We now move onto D2 and show that the combination of metamaterial with graphene 

detection can form the basis of an integrated sensor for surface enhanced molecular 

spectroscopy. D2 is designed for operation in the mid-IR with the ribbon width reduced to 

200nm and the CSRR dimensions scaled to give an LC resonance at ~1500cm
-1

 (see inset of Fig. 

4(c) for SEM image). The polarization sensitive photo-response spectra are plotted in Fig. 3(a), 

which result from the near-field enhancement of the CSRR modes, as seen previously. When the 
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polarization is perpendicular to the graphene ribbon the photo-response is dominated by the LC 

mode of the CSRR, which hybridizes with a SiO2 surface phonon mode resulting in a pair of 

narrow resonances at ~970 and 1550cm
-1

. Calibrating the response of this detector with the 

procedure outlined above results in a maximum responsivity of ~110mV/W, as shown in the 

inset to Fig. 3(a). 

 

Fig. 3(b) plots the responsivity of D2 to the QCL with fixed frequency of ~1200cm
-1

 as a 

function of gate bias, which peaks at ~12mV/W close to the charge neutral voltage, in good 

agreement with the FTIR response measurement which gives a responsivity of 13mV/W at 

1200cm
-1

 (see inset to Fig. 3(a)). The gate characteristic is used to identify the dominant 

detection mechanism as the photo-thermoelectric effect arising from the asymmetric metal 

contacts
15,21,22

. Using the FDTD simulated electric field enhancement (see inset to Fig. 3(b)) and 

a one dimensional finite element model of the carrier density and temperature distribution along 

the graphene channel, good qualitative agreement is found between the experimental results and 

the simulated responsivity, as shown in Fig. 3(b) (see supporting information for simulation 

details). Assuming a Johnson noise floor of ~√4𝐾𝐵𝑇𝑅, where R is the resistance, the room 

temperature noise equivalent power (NEP) can be estimated as ~200nW/Hz
1/2

. However, the 

measured responsivity of the detector array is two orders of magnitude smaller than for a single 

unit cell, due to the parallel connection of the columns of detector unit cells (see supporting 

information). Therefore, we estimate that the responsivity of a single unit cell should peak at 

~1.5V/W at 1200cm
-1

, in good agreement with the simulated value shown in Fig. 3(b), and a 

maximum of ~10V/W at 1550cm
-1

. This leads to a room temperature NEP of the detector unit 

cell of ~2nW/ Hz
1/2

. 
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To investigate surface enhanced sensing with the hybrid metamaterial detector, we deposit a 

~20nm thick layer of PMMA directly on to the detector surface and Fig. 3(c) shows the modified 

photo-response spectra of the detector. The detector incorporates two sensing mechanisms; 

refractive index sensitivity, and the resonant coupling of molecular vibrations to the modes of the 

CSRR. Firstly, the modification of the dielectric constant in the vicinity of the CSRR results in a 

red-shift of the resonant modes. This is clearly observed by comparing the resonant frequencies 

of the LC mode with (Fig. 3(c)) and without (Fig. 3(a)) the PMMA layer. The shift of ~150cm
-1

, 

~10% of the resonant frequency, compares well to the refractive index sensitivity demonstrated 

with graphene plasmonic resonators
11,12

. Secondly, as shown by the photo-response spectra in 

Fig. 3(c), for both parallel and perpendicular excitation the detector response is modified by the 

coupling of the resonant modes of the CSRR to the vibrational modes of the PMMA molecules. 

This coupling results in sharp features, which can be identified from the known vibrational 

resonances of PMMA as labelled in Fig. 3(c). Particularly clear are the C=O stretch mode at 

~1730cm
-1

 and the bending vibration of the O-CH3 bonds at ~1450cm
-1

 (ref. 1). The dip in 

photo-voltage corresponding to the frequency of the vibrational modes represents a decrease in 

absorption due to the destructive interference of two mutually coupled excitations in a process 

known as plasmon-induced transparency
11

. 

 

The number of C=O bonds, within the detection volume of a single CSRR is estimated to be 

~20 attomole, following the procedure outlined by Adato et al.
23

 and assuming a molecular 

density of 1.17g/cm
3
 and mass of 100g/mol. The difference in the responsivity of the detector 

with and without the PMMA layer is estimated from Fig. 3 to be ~1.2V/W for a single unit cell, 
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which gives a change in responsivity, Δℛ of 7.2×10
16

V/Wmol. From the ratio of the Johnson 

noise and the change in responsivity, we then estimate an equivalent measurement noise 

(√4𝐾𝐵𝑇𝑅/Δℛ) of ~3×10
-25

Wmol/Hz
1/2

. This equivalent measurement noise describes the power 

that is required to be incident upon a single unit cell for the detection of 1mol of material with a 

S/N ratio of 1 in 1Hz bandwidth. Or, in other words, a power of ~0.3mW is required for a 

detection sensitivity of 1 zeptomol. 

 

Finally, Fig. 3(c) shows that the resonant response of the detector is polarization dependent, 

with the perpendicular polarization covering the frequency range 600-2000cm
-1

 and the parallel 

polarization 1100-3000cm
-1

. This polarization sensitivity can provide an additional degree of 

freedom in identification of unknown molecules, which is highlighted by the detection of the C-

H stretch mode at ~2900cm
-1

 in the photo-response spectrum to parallel polarization (Fig. 3(c)). 

 

In conclusion, we have demonstrated cavity enhanced graphene based photo-thermoelectric 

detectors spanning the mid-IR and THz frequency range, with broadband operation and resonant 

enhancement. Furthermore, the strong enhancement of the electric field combined with the 

electrical read-out can be used in the detection and identification of surface adsorbed molecules, 

which has potential for integrated surface enhanced sensing. An increase in responsivity of 1-2 

orders of magnitude can be expected if a p-n junction is created in the graphene channel. This 

can be achieved by differentially doping the two halves of the graphene channel using buried or 

top gates or with a selective doping process, such as electron beam irradiation
24

. Importantly, this 

would also enable high responsivity at high carrier density in the absorption region
21,25

 and 

therefore be compatible with enhanced absorption due to plasmonic resonances
10,18,19

 and strong 
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coupling of the hybrid metamaterial
13

. The tunability of the hybrid modes
13

, also provides a route 

towards spectrometer free sensing
26

, which combined with the integrated detector opens up the 

possibility of highly sensitive, low cost and miniaturized sensors for point-of-care medical 

applications.  

 

  

Figure 3. (a) Photo-voltage spectra of hybrid metamaterial detector designed for mid-IR. The inset to (a) shows 

the calibrated response spectrum of the detector to perpendicular polarized light and the dotted blue line indicates 

the frequency of the QCL. (b) Experimental and calculated responsivity for the metamaterial enhanced graphene 

detector as a function of gate voltage. The inset to (b) shows the calculated electric field profile of the CSRR at the 

QCL frequency of 1200cm
-1

. (c) Photo-voltage spectra of the mid-IR hybrid metamaterial enhanced graphene 

detector with ~20nm thick coating of PMMA. In (a) and (c) the black (red) line shows the response to excitation 
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with perpendicular (parallel) polarized light. The strong absorption line at ~2400cm
-1

 is a result of atmospheric CO2 

absorption. The inset to (c) shows an SEM image of a single unit cell of the detector and the scale marker is 1µm. 
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