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Abstract 

Disrupted circadian rhythms and reduced sleep duration are associated with several human 

diseases, particularly obesity and type 2 diabetes, but until recently, little was known about 

the genetic factors influencing these heritable traits. We performed genome-wide association 

studies of self-reported chronotype (morning/evening person) and self-reported sleep 

duration in 128,266 White British individuals from the UK Biobank study. Sixteen variants 

were associated with chronotype (P<5x10-8), including variants near the known circadian 

rhythm genes RGS16 (1.21 odds of morningness, 95% CI [1.15, 1.27], P=3x10-12) and PER2 

(1.09 odds of morningness, 95% CI [1.06, 1.12], P=4x10-10). The PER2 signal has previously 

been associated with iris function. We sought replication using self-reported data from 

89,283 23andMe participants; thirteen of the chronotype signals remained associated at 

P<5x10-8 on meta-analysis and eleven of these reached P<0.05 in the same direction in the 

23andMe study. We also replicated 9 additional variants identified when the 23andMe study 

was used as a discovery GWAS of chronotype (all P<0.05 and meta-analysis P<5x10-8). For 

sleep duration, we replicated one known signal in PAX8 (2.6 minutes per allele, 95% CI [1.9, 

3.2], P=5.7x10-16) and identified and replicated two novel associations at VRK2 (2.0 minutes 

per allele, 95% CI [1.3, 2.7], P=1.2x10-9; and 1.6 minutes per allele, 95% CI [1.1, 2.2], 

P=7.6x10-9). Although we found genetic correlation between chronotype and BMI (rG=0.056, 

P=0.05); undersleeping and BMI (rG=0.147, P=1x10-5) and oversleeping and BMI 

(rG=0.097, P=0.04), Mendelian Randomisation analyses, with limited power, provided no 

consistent evidence of causal associations between BMI or type 2 diabetes and chronotype 

or sleep duration. Our study brings the total number of loci associated with chronotype to 22 

and with sleep duration to three, and provides new insights into the biology of sleep and 

circadian rhythms in humans. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Author Summary 

Numerous studies have identified links between too little or too much sleep and circadian 

misalignment with metabolic disorders such as obesity and type 2 diabetes. However, 

cause-and-effect is not easily determined, because of multiple confounding factors affecting 

both sleep patterns and disease risk. Using the first release of the UK Biobank study, which 

combines detailed measurements and questionnaire data with genetic data, we investigate 

the genetics of two self-report sleep measures, chronotype and average sleep duration, in 

128,266 white British individuals. We replicate previous genetic associations and identify 

seven and two novel genetic variants influencing chronotype and sleep duration, 

respectively. Associated variants are located near genes implicated in circadian rhythm 

regulation (RGS16, PER2), near a serotonin receptor gene (HTR6) and another gene 

(INADL) encoding a protein thought to be important in photosensitive retinal cells, cells 

known to communicate with the brain’s primary circadian pacemaker. Using the genetic risk 

factors, we estimate the unconfounded causal associations of BMI and type 2 diabetes on 

sleep patterns (and vice versa) through Mendelian Randomisation. However, we find no 

evidence for causal associations in either direction. The full UK Biobank release of 500,000 

individuals will boost our power to detect causal associations.  



Introduction 

There are strong epidemiological associations between disrupted circadian rhythms, sleep 

duration and disease. A circadian rhythm refers to an underlying 24-hour physiological cycle 

that occurs in most living organisms. In humans, there are clear daily cyclical patterns in 

core body temperature, hormonal and most other biological systems [1]. These cycles are 

important for many molecular and behavioural processes. In particular, circadian rhythms 

are important in regulating sleeping patterns. While each individual has an endogenous 

circadian rhythm, the timing of these rhythms varies across individuals. Those with later 

circadian rhythms tend to sleep best with a late bedtime and late rising time and are often 

referred to as an “owl” or as an “evening” person. Those with earlier rhythms tend to feel 

sleepy earlier in the night and wake up early in the morning and are referred to as a “lark” or 

“morning” person. The remainder of the population falls in between these extremes. This 

dimension of circadian timing, or chronotype, is one behavioural consequence of these 

underlying cycles. Chronotype can be simply assessed by questionnaire and is considered a 

useful tool for studying circadian rhythms [2,3]. 

 

There is substantial evidence for a relationship between short sleep duration, poor quality 

sleep and obesity and type 2 diabetes [4,5]. Eveningness has been associated with poor 

glycaemic control in patients with type 2 diabetes independently of sleep disturbance [6] and 

with metabolic disorders and body composition in middle-aged adults [7]. There is evidence 

from animal models that disruption to circadian rhythms and sleep patterns can cause 

various metabolic disorders [8-10]. For example, mice homozygous for dominant negative 

mutations in the essential circadian gene, Clock, develop obesity and hyperglycaemia [10] 

and conditional ablation of the Bmal1 and Clock genes in pancreatic islets causes diabetes 

mellitus due to defective β-cell function [9]. Despite this evidence, in humans the causal 

nature of the epidemiological associations between sleep patterns, circadian rhythms and 

obesity and type 2 diabetes is unknown. Identifying genetic variants associated with sleep 

duration and chronotype will provide instruments to help test the causality of epidemiological 

associations [11]. 

 

A previous genome-wide association study (GWAS) in 4,251 individuals identified a single 

genetic variant in ABCC9 associated with sleep duration [12]. A subsequent GWAS meta-

analysis including 47,180 individuals identified a single locus for sleep duration near PAX8 

[13]. Fifteen loci associated with chronotype were recently discovered by 23andMe [14] with 

7 of these found to be in close proximity to known circadian rhythm regulation genes.. The 

UK Biobank is a study of 500,000 individuals from the UK aged between 37 and 73 years 

with genome-wide SNP analysis and detailed phenotypic information, including chronotype 



and sleep duration (http://www.ukbiobank.ac.uk/). The UK Biobank study provides an 

excellent opportunity to identify novel genetic variants influencing chronotype and sleep 

duration which will provide insights into the biology of circadian rhythms and sleep and help 

test causal relationships between circadian rhythm and metabolic traits including obesity. 

 

Results 

Sixteen loci associated with chronotype in UK Biobank 

Using self-reported “morningness”, we generated a binary and a continuous chronotype 

score. We performed genome-wide association studies on 16,760,980 imputed autosomal 

variants. Fig 1 presents the overall results for these GWAS. Table 1 presents details of all 

16 loci associated at P<5x10-8. 

 

Fig 1. Manhattan and quantile-quantile (QQ) plots for Chronotype. Summary information 

plots for inverse-normalised (self-report) Chronotype score vs. ~16.8 million imputed genetic 

variants in 127,898 White British individuals in the UK Biobank study. The manhattan plot 

(top) shows association test (-log10 P-value on the y-axis against physical autosomal location 

on the x-axis. The standard genome-wide significance cutoff of P=5x10-8 is shown by the 

horizontal black line. Variants tested had imputation R2>0.4, a Hardy-Weinberg Equilibrium 

(HWE) P-value > 1x10-6 and minor allele frequency (MAF) > 0.1%. The QQ (quantile-

quantile) plot (bottom) identifies some inflation (λGC = 1.097) but this is consistent with 

expected inflation from a highly polygenic trait in such a large sample size [15]. 

 

Table 1. Genetic variants associated with chronotype (as either a continuous or binary 

trait) at P<5x10-8 in the UK Biobank study. Variants highlighted in bold were not identified 

by the 23andMe study, those in italic did not reach genome-wide significance on meta-

analysis and those not highlighted replicate previously reported loci from 23andMe. Genes 

listed are candidate or nearest genes within 250Kb of the lead SNP. Odds ratios correspond 

to risk of morningness over eveningness. Beta, OR and frequency refers to A1. Replication 

data is based on continuous data and as the replication beta is in different units to the 

discovery GWAS beta, a P-value meta-analysis was performed. 

  

http://www.ukbiobank.ac.uk/


Variant Chr:Pos A1/A2 
A1 

Freq 

GWAS 
Continuous 
Beta (SE) 

GWAS 
Continuous 

P 

GWAS 
Binary OR 

(SE) 

GWAS 
Binary P 

Replication 
Beta (SE) 

Replicati
on P 

Combine
d P 

Genes 

rs516134 1:182,553,693 C/T 0.03 0.081 (0.011) 9.00E-13 1.21 (0.032) 3.00E-12 0.295 (0.035) 2.00E-17 7.00E-28 RGS16 

rs11162296 1:77,700,196 G/C 0.84 -0.037 (0.005) 2.00E-12 0.93 (0.011) 1.00E-12 -0.097 (0.015) 2.00E-10 2.00E-21 PIGK, AK5 

rs10157197 1:150,250,636 G/A 0.6 0.025 (0.004) 1.00E-09 1.05 (0.010) 5.00E-07 0.064 (0.011) 1.00E-08 6.00E-17 
PRPF3, 
TARS2 

rs372229746 * 7:102,158,815 G/A 0.55 0.028 (0.005) 4.00E-09 1.06 (0.012) 7.00E-07 0.068 (0.013) 4.00E-07 8.00E-15 
ORAI2, 
RASA4 

rs75804782 2:239,316,043 T/C 0.88 0.030 (0.006) 3.00E-07 1.09 (0.015) 4.00E-10 0.106 (0.018) 4.00E-09 1.00E-14 PER2 

rs76899638 6:55,147,508 
A/AT

G 
0.22 0.026 (0.005) 4.00E-08 1.05 (0.012) 2.00E-07 0.067 (0.014) 4.00E-06 8.00E-13 HCRTR2  

rs77641763 9:140,265,782 C/T 0.88 0.039 (0.006) 5.00E-11 1.07 (0.015) 7.00E-09 0.065 (0.020) 2.00E-03 2.00E-12 EXD3 

rs9961653 18:56,767,671 T/C 0.42 0.023 (0.004) 1.00E-08 1.04 (0.010) 1.00E-06 0.032 (0.012) 6.00E-03 7.00E-10 
RAX, CPLX4, 

LMAN1 

rs2050122 1:19,989,205 T/C 0.2 0.028 (0.005) 2.00E-08 1.06 (0.012) 3.00E-06 0.030 (0.014) 3.00E-02 1.00E-08 HTR6 

rs70944707 * 2:24,257,444 C/CT 0.23 0.030 (0.005) 3.00E-08 1.05 (0.013) 2.00E-05 0.035 (0.016) 3.00E-02 2.00E-08 FKBP1B 

rs72720396 1:91,191,582 A/G 0.77 -0.025 (0.005) 1.00E-07 0.95 (0.010) 3.00E-08 -0.035 (0.014) 2.00E-02 2.00E-08 CALB1 

rs12140153 1:62,579,891 G/T 0.9 0.039 (0.007) 7.00E-09 1.07 (0.017) 4.00E-06 0.043 (0.025) 8.00E-02 3.00E-08 INADL 

rs1075265 2:54,354,927 C/G 0.48 -0.025 (0.004) 2.00E-10 0.95 (0.009) 4.00E-08 -0.010 (0.011) 4.00E-01 4.00E-08 
PSME4, 
ACYP2 

rs4821940 22:40,659,573 T/C 0.45 0.022 (0.004) 3.00E-08 1.05 (0.010) 4.00E-08 0.006 (0.011) 6.00E-01 5.00E-06 SGSM3 

rs12635074 3:55,982,416 T/G 0.68 -0.023 (0.004) 3.00E-08 0.96 (0.009) 2.00E-06 -0.002 (0.012) 8.00E-01 1.00E-05 ERC2 

rs192534763 8:36,202,946 T/C 0.99 0.100 (0.021) 3.00E-07 1.25 (0.057) 2.00E-08 -0.005 (0.055) 9.00E-01 1.00E-04 UNC5D 

 

* Proxies used for replication cohort: rs4729854 for rs372229746 (r
2
=0.33), and rs12621152 for rs70944707 (r

2
=0.33).



Replication and validation of UK Biobank chronotype associations 

Analysing UK Biobank data with that from 23andMe provides evidence that at least 13 of the 

16 are associated with chronotype. Thirteen of the chronotype signals remained at P<5x10-8 

in a meta-analysis including UK Biobank and 89,283 individuals from 23andMe [14], of which 

11 reached P<0.05 in the same direction in 23andMe alone, and 15 of the 16 UK Biobank 

signals were in the same direction (binomial P=0.0002) (Table 1). We also attempted to 

validate the associations in 6,191 European-Ancestry from the Chronogen consortium and 

2,532 Korean Ancestry individuals from the Insomnia, Chronotype and sleep EEG (ICE) 

consortium that used “Gold standard” chronotype questionnaire (Munich Chronotype 

Questionnaire – MCTQ and Morningness-Eveningness Questionnaire - MEQ). Given the 

sample size of 5% of the discovery UK Biobank study we assessed directional consistency 

rather than testing for replication P-values <0.05 or 0.05/16. In the European-Ancestry 

individuals 11 of the 16 signals were represented. Nine of these 11 variants had the same 

direction of effect as the discovery UK Biobank cohort (binomial test P=0.03) and one 

replicated at Bonferroni significance (rs12140153, P=0.003). In the Korean study, 9 signals 

were represented, four of which had the same direction of effect as the discovery UK 

Biobank cohort (binomial test P=1.00). The level of directional consistency in these two 

smaller studies is consistent with what would be expected in cohorts <5% the size of our 

discovery cohort. 

 

Replication of previously reported chronotype associations 

A 23andMe study recently identified 15 loci associated with chronotype [14]. All of the 15 

signals were replicated in our study with P<0.05 in the same direction and had meta-analysis 

P<5x10-8 (S1 Table). We performed a conditional analysis of our lead chronotype variants 

by adjusting for the 15 known signals (S2 Table), in order to identify which of our loci 

coincided with those of Hu et al. [14]. Seven of our 13 replicated signals remained 

associated at P<5x10-8 (see Table 1). The addition of these 7 loci brings the number   

associated with chronotype to 22 (full list in S3 Table). 

 

The chronotype-associated variants occur near genes known to be important in 

photoreception and circadian rhythms 

The variant most strongly associated with chronotype, rs516134 (OR for morningness=1.21, 

95% CI [1.16, 1.26], binary P=3.7x10-12, continuous P=8.9x10-13) occurs near RGS16, which 

is a regulator of G-protein signalling and has a known role in circadian rhythms [16] (Table 1 

and Fig 2). Another signal occurs near PER2 (lead variant rs75804782, OR=1.09, 95% CI 

[1.06, 1.12], binary P=7.2x10-10, continuous P=3.2x10-7; Fig 3). PER2 is a well-known 

regulator of circadian rhythms [17-22] and contains a variant, rs75804782, recently shown to 



be associated with iris formation [23] that is in LD (r2 = 0.65, D’ = 0.97) with our reported lead 

SNP. As there is a reported link between season and reported chronotype [24], we carried 

out a sensitivity analysis in which we adjusted for month of attendance (to assessment 

centre); all associations remained genome-wide significant for the reported variants. We 

tested for enrichment of specific biological and molecular pathways using MAGENTA (Meta-

Analysis Gene-set Enrichment of variaNT Associations) [25] but none had a clear link to 

circadian rhythms (S4 Table). 

 

Fig 2. LocusZoom plot of Chronotype associations in the RGS16 locus. The plot 

displays -log10 P-value on the y-axis and physical position on the x-axis. Points identify 

individual variants whose colour indicates their LD r2 with lead variant rs516134. The blue 

line indicates pre-calculated recombination rates (in cM/Mb) at each position. Variants with 

association P-values > 0.01 were omitted for clarity. 

 

Fig 3. LocusZoom plot of Chronotype associations in the PER2 locus. Variants are 

coloured by their LD r2 with lead variant rs75804782 and those with association P-values > 

0.01 were omitted for clarity. 

 

Three loci associated with sleep duration 

We performed genome-wide association studies on a binary sleep phenotype and a 

continuous sleep duration score for 16,761,225 imputed variants. Fig 4 presents the overall 

results for these GWAS. Three loci reached genome-wide significance. The most strongly 

associated variant was rs62158211 with an average 2.6 minute (95% CI [1.9, 3.2], 

P=5.7x10-16) per-allele change in sleep duration and occurs at the previously reported 

association signal near PAX8 [13]. We identified two, novel, conditionally independent, 

signals that were located ~900kb apart, one upstream and the other downstream of VRK2. 

The downstream variant, rs17190618, has an average per allele effect of 2.0 minutes (95% 

CI [1.3, 2.7], P=1.2x10-9) on sleep duration. The upstream variant, rs1380703 (which is not 

correlated with rs17190618, r2=0.002), has an average per allele effect of 1.6 minutes (95% 

CI [1.1, 2.2], P=7.6x10-9) on sleep duration. On adjusting for month of assessment, we saw 

similar associations for both rs62158211 (P=3x10-16) and rs1380703 (P=6x10-9), with no 

change for rs17190618. Table 2 shows the three sleep duration loci and their lead variants. 

Fig 5 shows locus zoom plots of the VRK2 association signals. We did not replicate the 

association of a previously reported variant in ABCC9 [12] with sleep duration (rs11046205, 

0.1mins, 95% CI [-0.6, 0.7], P=0.83). 



Fig 4. Manhattan and quantile-quantile (QQ) plots for Chronotype. Summary information plots for inverse-normalised (self-report) Sleep 

Duration vs. ~16.8 million imputed genetic variants in 127,573 White British individuals in the UK Biobank study. The manhattan plot (top) 

shows association test (-log10 P-value on the y-axis against physical autosomal location on the x-axis with the standard genome-wide 

significance cutoff of P=5x10-8 shown by the horizontal black line. Variants tested had imputation R2>0.4, a Hardy-Weinberg Equilibrium (HWE) 

P-value > 1x10-6 and minor allele frequency (MAF) > 0.1%. The Sleep Duration QQ plot (bottom) identifies some inflation (λGC = 1.097) but, as 

with Chronotype, this is consistent with expected inflation from a highly polygenic trait in such a large sample size [15]. 

 

Table 2. Three loci associated with sleep duration and their lead variants. Genes listed are candidate genes at each locus. Beta, OR and 

frequency refers to A1. Because the replication beta is in different units to the discovery GWAS beta, a P-value meta-analysis was performed. 

Beta units are in hours. 

Variant Chr:Pos A1/A2 A1 Freq 
GWAS 

Continous 
Beta (SE) 

GWAS 
Continous 

P 

GWAS 
Binary 

OR (SE) 

GWAS 
Binary P 

Replication 
Beta (SE) 

Replication 
P 

Combined 
P 

Gene 

rs62158211 2:114,106,139 G/T 0.79 
-0.039 

6E-16 
0.94 

1E-07 
-0.053 
(0.009) 

4E-9 2E-23 PAX8 
(0.005) (0.011) 

rs17190618 2:58,882,765 A/T 0.84 
-0.033 

1E-09 
0.96 

3E-04 
-0.035 
(0.011) 

1E-3 5E-12 VRK2 
(0.005) (0.013) 

rs1380703 2:57,941,287 A/G 0.62 
0.025 

8E-09 
1.06 

8E-08 
0.021 

(0.008) 
1E-2 3E-10 VRK2 

(0.004) (0.011) 

 

Fig 5. LocusZoom plots of Sleep Duration associations in the VRK2 locus. Both plots show the same locus but each highlights a different 

lead variant: rs1380703 (left) and rs17190618 (right). Variants with association P-values > 0.01 were omitted for clarity. The two leads variants 

represent separate signals. 

 

 



Replication of novel sleep duration hits 

To replicate the two novel sleep duration hits we used data from 47,180 individuals from a 

published study [13]. The variant rs17190618 replicated with effect size = 2.1 minutes (95% 

CI [0.8, 3.3], P=0.001, meta-analysis P=5x10-12). The variant rs1380703 replicated with 

effect size = 1.3 minutes (95% CI [0.3, 2.2], P=0.01, meta-analysis P=3x10-10). 

 

Sleep duration and chronotype are heritable and genetically correlated with BMI and 

psychiatric disease  

Using LD-score regression we estimated the heritability of chronotype and sleep duration 

within UK Biobank to be 0.12 (0.007), and 0.07 (0.007), respectively. There was no evidence 

of a genetic correlation between sleep duration and chronotype (rG=0.0177, P=0.70). 

Chronotype was nominally genetically correlated with BMI (rG=0.056, P=0.048), but not 

Type 2 diabetes (rG=0.004, P=0.99). As the relationship between sleep duration with BMI 

and risk of T2D is U-shaped (see S1 Fig), we defined two further binary phenotypes; 

undersleepers (<7  vs. 7-8 hours) and oversleepers (>8 vs. 7-8 hours). There was a strong 

genetic correlation between undersleeping and BMI (rG=0.147, P=1x10-5), but not T2D 

(rG=0.022,P=0.79). There was also a genetic correlation between oversleeping and both 

BMI (rG=0.097, P=0.039) and T2D (rG=0.336, P=0.001). We also performed LD-score 

regression analyses against a range of other diseases and traits where GWAS summary 

statistics are publically available (S5 Table). Schizophrenia was genetically correlated (after 

adjusting for the number of tests) with hours slept (rG=0.26, P=5x10-10), oversleeping 

(rG=0.35, P=6x10-8), undersleeping (rG=-0.14, P=2x10-3) and chronotype (rG=-0.12, 

P=2x10-4).  

 

Mendelian randomisation analyses provide no consistent evidence that higher BMI 

affects self-reported morningness or vice-versa 

The genetic correlations we observed provide general estimates that capture pleiotropic 

variants (those that affect both traits through different pathways) and associations that are 

secondary to a variant affecting a trait that causally influences the second trait. Using a 

genetic risk score of 69 known BMI variants [26] (listed in S6 Table) as an instrumental 

variable, we next performed Mendelian randomisation analyses in the UK Biobank study to 

test the potential causal role of BMI in chronotype and sleep. Instrumental variables 

analyses using variants and their effect sizes identified by previous studies [26] provided no 

consistent evidence that BMI causally affects  self-reported “morningness” (S7 Table). 

Association statistics of the BMI variants with chronotype are given in S6 Table. We 

repeated these analyses using a genetic risk score consisting of 55 type 2 diabetes SNPs 

[27] and did not find any evidence of causality. Performing the reciprocal Mendelian 



randomization analysis using a genetic risk score of the 13 replicated chronotype variants, 

with effect sizes obtained from 23andMe, we found no consistent evidence in the UK 

Biobank data that morningness or eveningness leads to higher BMI (S7 Table). Association 

of the chronotype-associated variants with BMI are given in S8 Table. 

 

No evidence that BMI and Type 2 diabetes are causally associated with sleep duration 

Using the same genetic risk score of 69 known BMI variants as an instrument, we saw no 

consistent evidence that higher BMI increased an individual’s likelihood of being an 

undersleeper (IVreg2 P=0.95, IVW P=0.04) or an oversleeper (IVreg2 P=0.29, IVW P=0.62) 

in the UK Biobank data (S7 Table). Because there were only three genetic variants of small 

effect associated with sleep duration, we did not perform any Mendelian Randomisation 

analyses of sleep on BMI or type 2 diabetes risk. 

 

 

Discussion 

We performed a genome-wide association study of sleep duration and morningness in 

128,266 individuals from the UK Biobank study. We discovered and replicated two novel loci 

associated with sleep duration. Through replication in a study of 89,823 individuals from 

23andMe we found 13 loci associated with chronotype at P<5x10-8. Together with a recent 

study from 23andMe [14] this takes the number of replicated loci for being a morning person 

to 22 (7 not reported in the 23andMe study). These loci occur in or near circadian rhythm 

and photoreception genes and provide new insights into circadian rhythm and sleep biology 

and their links to disease. 

 

The two novel sleep duration association signals occur upstream and downstream of VRK2 

(vaccinia related kinase 2). VRK2 is a serine/threonine kinase important in several signal 

transduction cascades, and variants near VRK2 are associated with schizophrenia [28] and 

epilepsy [29]. The two sleep duration variants we identified do not represent the same 

signals as those associated with schizophrenia at genome wide significance but one is 

associated with schizophrenia (based on publically available data from the schizophrenia 

genetics consortium (rs1380703) at P=2x10-5, with the allele associated with more sleep 

being associated with higher risk of schizophrenia). Furthermore, the variants associated 

with epilepsy and schizophrenia at genome wide significance in previous studies are 

associated with sleep duration in UK Biobank (epilepsy lead variant rs2947349 [29], P=2x10-

5 and schizophrenia lead variant [28] rs11682175 P=3x10-5) but did not reach genome wide 

significance. We also observed genetic correlation between sleep duration and 

schizophrenia using LD-score regression (rG=0.26, P=5x10-10). Further work is required to 



determine whether variation in VRK2 either has independent associations with both sleep 

and schizophrenia or whether there is some causal link between sleep duration and pattern 

and schizophrenia and epilepsy. 

 

Several of the loci that we identified as associated with chronotype contain genes that have 

a known role in circadian rhythms. The most strongly associated variant, rs516134, occurs 

20kb downstream of RGS16 (regulator of G protein signalling 16). RGS16 has recently been 

shown to have a key role in defining 24 hour rhythms in behaviour [16]. In mice, gene 

ablation of Rgs16 lengthens the circadian period of behavioural rhythm [16]. By temporally 

regulating cAMP signalling, Rgs16 has been shown to be a key factor in synchronising 

intercellular communication between pacemaker neurons in the suprachiasmatic nucleus 

(SCN), the centre for circadian rhythm control in humans. 

 

The association signal with lead SNP rs75804782 occurs ~100kb upstream of PER2 (Period 

2). Per2 is a key regulator of circadian rhythms and is considered one of the most important 

clock genes, and, under constant darkness, Per2 knockout mice show arrhythmic locomotor 

activity [17-22]. This locus also contains a variant that has recently been shown to be 

associated with iris furrow contractions [23]. Our signal is very likely to represent the same 

association and suggests a link between iris function and chronotype (rs75804782 has an 

LD r2 = 0.65 and D’ = 0.97 with the reported lead SNP, rs3739070). Larsson et al. [23] 

suggest TRAF3IP1 as the most likely candidate gene at the locus because of its critical role 

in the cytoskeleton and neurogenesis. Further work is needed to elucidate whether the 

chronotype association at this locus acts through PER2 or TRAF3IP1. 

 

Four of the 22 chronotype loci had missense variants in LD (r2>0.8) with the lead variant 

(RGS16, EXD3, INADL and HCRTR2; see S9 Table). The INADL variant association is 

particularly interesting as INADL (InaD-like) encodes a protein that has been thought to be 

important in organising and maintaining the “intrinsically photosensitive retinal ganglion 

cells”, cells that are known to communicate directly with the suprachiasmatic nucleus, the 

primary circadian pacemaker in mammals [30]. This is compelling evidence that INADL is 

involved in the human circadian rhythm pathway. 

Several of the variants associated with chronotype are also associated with BMI and we 

found genetic correlation between chronotype and sleep duration and BMI. There is 

substantial evidence for a role of sleep disruption and circadian rhythms in metabolic 

disease [1]. Data from animal models and epidemiology provide strong evidence that sleep 

quality or disrupted circadian rhythms can cause metabolic diseases including obesity and 

type 2 diabetes [4-6,8-10]. Our Mendelian Randomisation analyses provided no consistent 



evidence for a role of higher BMI leading to increased self-reported morningness. These 

Mendelian Randomisation results are consistent with those from the recent study from 

23andMe [14]. 

There are some important limitations to our study. First, chronotype and sleep duration were 

self-reported and are subject to reporting bias (e.g. obese individuals may be more likely to 

falsely claim to be morning people). Second, whilst we did not find any evidence that overall 

chronotype or sleep duration causally lead to obesity or type 2 diabetes, it is possible that 

sub-pathways of genes involved in, for example, feeding behaviour may be important in both 

obesity and chronotype regulation. Third, the identified variants only account for a small 

amount of the variation in chronotype and sleep duration and we therefore had limited power 

to detect an effect of these variants on BMI or type 2 diabetes risk. The availability of the full 

UK Biobank study of 500,000 will provide further insight into this relationship. 

 

In conclusion, we have identified novel genetic associations for chronotype and sleep 

duration. The chronotype loci cluster near genes known to be important in determining 

circadian rhythms and will provide new insights into circadian regulation. Our results provide 

new insights into circadian rhythm and sleep biology and their links to disease. 

 

 

Materials and Methods 

Ethics Statement 

This study was conducted using the UK Biobank resource. Details of patient and public 

involvement in the UK Biobank are available online (www.ukbiobank.ac.uk/about-biobank-

uk/ and https://www.ukbiobank.ac.uk/wp-content/uploads/2011/07/Summary-EGF-

consultation.pdf). No patients were specifically involved in setting the research question or 

the outcome measures, nor were they involved in developing plans for recruitment, design, 

or implementation of this study. No patients were asked to advise on interpretation or writing 

up of results. There are no specific plans to disseminate the results of the research to study 

participants, but the UK Biobank disseminates key findings from projects on its website. 

 

Discovery Samples 

We used 128,266 individuals of British descent from the first UK Biobank genetic data 

release (see http://biobank.ctsu.ox.ac.uk). British-descent was defined as individuals who 

both self-identified as white British and were confirmed as ancestrally Caucasian using 

principal components analyses (http://biobank.ctsu.ox.ac.uk). Of these individuals, 120,286 

were classified as unrelated, with a further 7,980 first- to third-degree relatives of these. As 

the association tests were carried out in BOLT-LMM [31], which adjusts for relationships 

http://biobank.ctsu.ox.ac.uk/


between individuals and corrects for population structure, we included all 128,266 related 

white British individuals in the association analyses.  

 

Genotyping and quality control 

We used imputed variants provided by the UK Biobank. Details of the imputation process are 

provided at the UK Biobank website (see http://biobank.ctsu.ox.ac.uk). For this study we only 

included the ~16.8M imputed variants with an imputation R2 ≥ 0.4, MAF ≥ 0.001 and with a 

Hardy–Weinberg equilibrium P>1x10-5. 

 

Phenotypes 

Chronotype 

UK Biobank provides a single measure of Chronotype, from which we produced a 

continuous and a dichotomous phenotype. Chronotype (or morningness) is a self-reported 

measure and asks individuals to categorise themselves as “Definitely a ‘morning’ person”, 

“More a ‘morning’ than ‘evening’ person”, “More an ‘evening’ than a ‘morning’ person”, 

“Definitely an ‘evening’ person” or “Do not know”, which we coded as 2, 1, -1, -2 and 0 

respectively, in our raw continuous “score”. Individuals had the option not to answer; these 

individuals were set to missing. We then produced a normally distributed phenotype by 

adjusting the raw phenotype for age, gender and study centre (categorical) and inverse 

normalising the resulting residuals. The dichotomous chronotype trait defines morning 

people (“Definitely a ‘morning’ person” and “More a ‘morning’ than ‘evening’ person”) as 

cases and evening people (“Definitely an ‘evening’ person” and “More an ‘evening’ than a 

‘morning’ person”) as controls. All other individuals are coded as missing. All results reported 

for continuous chronotype refer to the inverse-normalised residualised chronotype “score”. 

For interpretable results, however, we report effect sizes using the odds ratios of the 

dichotomous chronotype phenotype. A total number of 127,898 and 114,765 individuals 

were available with non-missing continuous and binary chronotype phenotypes, respectively, 

for the association tests; for the Mendelian Randomisation this became 119,935 and 

107,634 respectively. 

 

Sleep duration 

The UK Biobank also provides self-reported “sleep duration”, in which individuals were 

asked to provide the average number of hours slept in a 24-hour period. The phenotype was 

derived by first excluding individuals reporting greater than 18 hours sleep, then adjusting for 

age, gender and study centre (categorical) and obtaining the model residuals and finally 

inverse-normalising to assure a normally distributed phenotype. When reporting results for 



the continuous sleep duration phenotype, we are referring to the inverse-normalised 

phenotype, though we report effect sizes of the residualised phenotype to allow easier 

interpretation of results. There were 127,573 individuals with reported sleep duration 

available for the association tests, with 119,647 available for the MR analyses. 

 

“Oversleepers” and “Undersleepers” 

These two dichotomous phenotypes share the same set of controls; those individuals that 

reported sleeping either 7 or 8 hours (81,204 individuals). In oversleepers, cases (10,102 

individuals) are those reporting 9 or more hours sleep on average, whereas undersleeper 

cases (28,980 individuals) are those reporting 6 or fewer hours. 

 

BMI 

The UK Biobank provided a BMI (weight (kg)/height2) measurement and an estimate based 

on electrical impedance analyses. To help avoid reporting error we excluded individuals with 

significant differences (>4.56 SDs) between these two variables where both were available. 

If only one of these measurements was available this was used. We corrected BMI by 

regressing age, sex, study centre, and the first 5 within-British principal components and 

taking residual values. We then inverse normalised the residuals. A total of 119,684 white-

British individuals with BMI and genetic data were available for the Mendelian 

Randomisation analyses. 

 

Type 2 diabetes 

Individuals were defined as having T2D if they reported either T2D or generic diabetes at the 

interview stage of the UK Biobank study. Individuals were excluded if they reported insulin 

use within the first year of diagnosis. Individuals reportedly diagnosed under the age of 35 

years or with no known age of diagnosis were excluded, to limit the numbers of individuals 

with slow-progressing autoimmune diabetes or monogenic forms. Individuals diagnosed with 

diabetes within the last year of this study were also excluded as we were unable to 

determine whether they were using insulin within this time frame.  A total of 4,040 cases and 

113,735 controls within the white British subset of UK Biobank were identified with genetic 

data available.  

 

Genome-wide association analysis 

To perform the association tests, we used BOLT-LMM [31] to perform linear mixed models 

(LMMs) in the 128,266 individuals. We used BOLT-LMM as it adjusts for population structure 

and relatedness between individuals whilst performing the association tests with feasible 

computing resources. As it adjusts for population structure and relatedness, it allowed us to 



include the additional 7,980 related individuals and therefore improved our power to detect 

associations. To calculate the relationships between individuals, we provided BOLT-LMM a 

list of 328,928 genotyped SNPs (MAF>5%; HWE P>1x10-6; missingness<0.015) for the 

individuals included in the association analysis and used the 1000 Genomes LD-Score table 

provided with the software. 

 

As the continuous phenotypes were derived by adjusting for age, gender and study centre, 

the LMM only included chip (BiLEVE vs. UKBiobank arrays) as a covariate at run-time (see 

http://www.ukbiobank.ac.uk/wp-

content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf). The binary 

phenotypes were unadjusted and so included age, gender and chip at run-time. BOLT-LMM 

reported no improvement of the non-infinitesimal mixed model test over the standard 

infinitesimal test and so all association results reported in this paper are for the infinitesimal 

model [31]. 

  

http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf


Chronotype replication analyses 

Participants (N=89,283) were from the customer base of 23andMe, Inc. The descriptions of 

the samples, genotyping and imputation are in [14]. Of the 16 chronotype-associated 

variants for which we attempted replication, 10 were available from imputation from the 1000 

Genomes imputation panel phase 1 pilot. An additional 4 were imputed from the phase 1 

version 3 1000 Genomes imputation panel. The final two could not be imputed. We used 

http://analysistools.nci.nih.gov/LDlink/ to find proxies --the best available were rs4729854 for 

rs372229746 (r2=0.33), and rs12621152 for rs70944707 (r2=0.33). We meta-analysed P-

values from the discovery and replication samples using sample size weighting implemented 

in METAL [32]. 

 

Chronotype validation analyses 

Genotypes consisting of both directly typed and imputed SNPs were used for the individual 

GWAS [12]. To avoid over-inflation of test statistics due to population structure or 

relatedness, we applied genomic control for the independent studies and meta-analysis. 

Linear regression for associations with normalised chronotype was performed (see [12] for 

packages used) under an additive model, with SNP allele dosage as predictor and with age, 

age2, gender, normalised sleep duration, season of assessment (dichotomized based on 

time of the year, and day-light savings time – DST or standard zone time assessments) as 

covariates. A fixed-effects meta-analysis was conducted with GWAMA (Genome-Wide 

Association Meta-Analysis) [33] using the inverse-variance-weighted method and low 

imputation quality (Rsq/proper_info < 0.3) were dropped from the meta-analysis.  

Pathway and functional annotation analyses 

Pathway analyses were carried out in MAGENTA[25] using all available libraries provided 

with the software. We included all imputed variants with association P<1x10-5 from the 

continuous chronotype trait. For the results presented in S4 Table, we used gene upstream 

and downstream limits of 250Kb, excluded the HLA region (default setting) and set the 

number of GSEA (Gene Set Enrichment Analysis) [34,35] permutations at 10,000 (default). 

We used HaploReg v4.1[36] to annotate any coding variants within LD r2 > 0.8 of the lead 

variant at each locus. 

 

LocusZoom Plots 

LocusZoom plots (Figs 2, 3 and 5) were created using the LocusZoom tool [37] (found at 

http://locuszoom.sph.umich.edu/locuszoom/) by uploading summary statistics from the 

Chronotype and sleep duration GWAS. For the background LD structure, we selected the 

“1000 Genomes Nov 2014 EUR” panel.  

http://locuszoom.sph.umich.edu/locuszoom/


Genetic correlation analyses 

Genetic correlations (see [38] for methodology) between traits were calculated using the LD 

Score Regression software LDSC (available at https://github.com/bulik/ldsc/) [39]. Summary 

statistics of our traits outputted by BOLT-LMM were first “munged”, a process that converts 

the summary statistics to a format that LDSC understands and aligns the alleles to the 

Hapmap 3 reference panel, removing structural variants and multi-allelic and strand-

ambiguous SNPs. Genetic correlations were then calculated between our phenotypes and a 

set of 101 phenotypes for which summary statistics are publicly available (full list in S5 

Table). We used precomputed LD structure data files specific to Europeans of HAPMAP 3 

reference panel, obtained from (http://www.broadinstitute.org/~bulik/eur_ldscores/) as 

suggested on the LDSC software website. 

 

Mendelian Randomisation IV analysis 

The 13 variants in Table 1 which reached P<5x10-8 in combined analyses were used as 

chronotype instruments in the Mendelian Randomisation analyses. Where binary and 

continuous traits shared a locus, we selected the top variant of the continuous trait over that 

of the binary. For loci that reach GW-significance in the binary trait only, we selected the top 

variant but used the effect size from the continuous trait. 

 

To test for a causal effect of BMI on chronotype and sleep-duration, we selected 69 of 76 

common genetic variants that were associated with BMI at genome wide significance in the 

GIANT consortium in studies of up to 339,224 individuals (S6 Table) [26]. We limited the 

BMI SNPs to those that were associated with BMI in the analysis of all European ancestry 

individuals and did not include those that only reached genome-wide levels of statistical 

confidence in one sex or one stratum only. Variants were also excluded if known to be 

classified as a secondary signal within a locus. Three variants were excluded from the score 

due to potential pleiotropy (rs11030104 [BDNF reward phenotypes], rs13107325 [SLC39A8 

lipids, blood pressure], rs3888190 [SH2B1 multiple traits]), three due to being out of HWE 

(rs17001654, rs2075650 and rs9925964) and the last variant due to not being present in the 

imputed data (rs2033529). 

 

For testing reverse causality of type 2 diabetes on our sleep phenotypes, we used 55 of 65 

common variants (listed in S6 Table) known to be associated with type 2 diabetes at 

genome wide significance in a meta-analysis of 34,840 cases and 114,981 [27], excluding 

those known or suspected to be pleiotropic. 

 

https://github.com/bulik/ldsc/
http://www.broadinstitute.org/~bulik/eur_ldscores/


We performed the Mendelian Randomisation analysis two ways; firstly using instrumental 

variables (IV) using STATA’s “IVreg2” function [40] and secondly through the inverse-

variance weighted (IVW) and MR-Egger methods described in [41]. Analyses were 

performed in STATA 13.1 (StataCorp. 2013. Stata Statistical Software: Release 13. College 

Station, TX: StataCorp LP.). 

 

In the instrumental variables method, we generated genetic risk scores (GRS) for BMI and 

type 2 diabetes using the published list of associated variants and their respective betas. For 

Chronotype, we generated a GRS using the thirteen replicated variants and their respective 

betas from 23andMe summary statistics. Using the IVreg2 command, we performed two-

stage least squares estimation to calculate the effect of predicted exposure (through the 

GRS) on the continuous outcome traits. For binary outcomes (type 2 diabetes, undersleeper 

and oversleeper), we manually carried out the two-stage process by regressing the exposure 

trait on its GRS and storing both predicted values and residuals. We then used these 

predicted values and residuals as independent variables in a logistic regression where the 

dependent variable was the binary outcome. 

 

The inverse-variance weighted (IVW) method is equivalent to a meta-analysis of the 

associations of the individual instruments and uses associations between the instruments 

and both the exposure and the outcome to estimate the additive effect of the instruments 

combined [41]. The MR-Egger method is a modification to the IVW method that allows the 

inclusion of “invalid” instruments (i.e. those that don't satisfy all three conditions), by 

performing Egger regression using the summary data of the variants. The IVW and Egger 

methods operate under the assumption that all instruments are valid, in that they satisfy the 

three IV conditions: the genetic variants are 1) independent of confounders, 2) associated 

with the exposure and 3) independent of the outcome.  The MR-Egger method, however, 

accounts for the fact that genetic variants could be pleiotropic and may influence the 

outcome via pathways other than through the exposure and therefore the resulting 

association between genetic instruments and the outcome should not be biased by invalid 

instruments and pleiotropy. The MR-Egger method was used purely as a sensitivity test for 

the IVW method and so MR-Egger results were not considered if the IVW result did not 

reach nominal significance. 

 

For the IVW and MR-Egger methods, associations of genetic instruments (variants) with 

both exposure and outcome phenotypes were generated in STATA by regressing the 

phenotype against the instrument while adjusting for covariates. As a further sensitivity test, 

we also repeated these analyses by replacing exposure phenotype-variant associations with 



their respective published betas and found only slight differences in betas and P-values, 

though all exposure-outcome associations remained non-significant. 
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Supporting Information 

S1 Table. Replication of 23andMe lead GW-significant variants (see Hu et al., 2015). 

The combined P-value was generated by meta-analysing the 23andMe and UKB continuous 

chronotype P-values in the meta-analysis software METAL. 

S2 Table. Conditional analysis to identify loci independent to those reported in Hu et 

al., 2015. We retested our lead chronotype variants while adjusting for all 15 previously 

described variants. LD r2 was calculated between our lead variant and those of 23andMe if 

they were within 500kb of one another by using the 120,286 unrelated white British 

individuals in UK Biobank. Significance is lost for variants rs516134, rs11162296, 

rs75804782, rs10157197, rs12140153 and rs76899638 and so we consider these to belong 

to the same loci as previously reported variants. Our remaining variants are still genome-

wide significant. 

S3 Table. List of 22 loci, including 15 previously described by 23andMe and 7 in this 

study. Where a locus is shared between studies, meta-analysis P-values were compared 

between the lead variants and the one with lowest P-value selected. 

S4 Table. MAGENTA pathways reaching nominal GSEA P-value (95% cutoff) of 0.05 or 

smaller, ordered by GSEA P-value (95% cutoff). 

S5 Table. LD Score genetic trait correlations (rG) and P-values. Correlations with P-

values < 4.95E-4 (0.05/101) are highlighted green. Those with P-values < 4.95E-3 are 

highlighted yellow. 

S6 Table. Summary of the 76 body mass index (BMI) and 65 type 2 diabetes (T2D) 

SNPs used in the Mendelian Randomisation analyses. GIANT (BMI) and DIAGRAM 

(T2D) betas were used as weights in the genetic risk scores. UK Biobank betas (SEs) and P-

values are reported for inverse-normalised BMI and Chronotype; log-odds ratios (SEs) and 

P-values are reported for T2D. 

S7 Table. Results of Mendelian Randomisation analyses performed in the UK Biobank 

dataset. External betas (log-ORs) were used as weights to generate the genetic risk scores 

used in IVreg2. SNP-phenotype associations were generated in STATA using 120,286 

unrelated white British individuals. 

S8 Table. Assocations statistics of the 16 Chronotype variants with BMI and type 2 

diabetes in the UK Biobank. Type 2 diabetes ORs and SEs were generated in a smaller 



subset of unrelated individuals as compared to the P-values, owing to limitations of Linear 

Mixed Models method. 

S9 Table. Output from the Broad Institute's HaploReg tool 

(http://www.broadinstitute.org/mammals/haploreg/haploreg.php) identifying missense 

coding variants within LD r2 ≥ 0.8 of four of the 22 lead chronotype variants. Only 

missense, nonsense, non-frameshift and frameshift variants are given in this table. No 

coding variants were found for sleep duration. 

S1 Fig. U-shaped association between sleep duration and both self-report BMI and 

type 2 diabetes prevalence. Average self-report BMI (left) and type 2 diabetes prevalence 

(right) over each of the sleep duration categories, calculated using the full UK Biobank 

cohort of 502,665 individuals. Error bars indicate standard error. Average BMI or type 2 

diabetes prevalence values with standard errors exceeding the plot limits were omitted. 

 


