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Abstract

Earth's species are disappearing at a rate unprecedented in human history, yet

whether this loss will make the ecosystem �services� that support our civilisation

more vulnerable to environmental change is poorly understood.

This thesis investigates two di�erent aspects of land surface modelling. It �rstly

models the role of biodiversity in ecosystem resilience using the Lotka-Volterra and

single resource models to model diversity using competition coe�cients, stochastic

noise and evolution inspired trait di�usion and then examines if higher diversity

makes these simple models more resistant to temperature increases.

It secondly develops a theoretical plant demography model, based on the conti-

nuity equation, to robustly represent forest size diversity. This avoids both the

complexity and maintainability issues seen in Forest Gap models and improves the

representation of land use and land cover change and of regrowth time-scales after

disturbance, which can be unrealistic in some of the previous generation of Dynamic

Global Vegetation Models (DGVMs), such as TRIFFID (Cox et al., 2001).

While the Lotka-Volterra with competition coe�cients and the single resource with

stochastic noise approaches are found to be impractical, the single resource model

with trait di�usion successfully shows that higher diversity requires a faster crit-

ical rate of temperature change before system net primary productivity (NPP)

collapses.

The continuity equation model of vegetation demography is solved analytically

with the size dependence of the growth rate approximated �rst by a power law and
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then with a quadratic. The power law solution can be reduced to a �self-thinning�

trajectory, and the quadratic solution gives either a rotated sigmoid or `U-shape'

distribution of plant sizes, depending on the ratio of mortality to maximum growth

gradient.

The model is then extended to produce the basis of a new Dynamic Global Vege-

tation Model (DGVM) called �Robust Ecosystem Demography� (RED), adapting

the plant physiology from TRIFFID DGVM to generate a size-dependent growth

function. A proportion of the NPP from this growth is used for reproduction and

the shading is modelled simply by random overlap. The model is found to better

represent regrowth time-scales compared to TRIFFID and is also found to demon-

strate an optimum proportion of NPP to reproduction which decreases with plant

lifetime.
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Thesis Overview

The Earth's species are disappearing at a rate unprecedented in human history

(Chapin III et al., 2000), so much so that some compare the current rates to

those of the major prehistoric mass extinction events (McCann, 2000). This loss is

thought to be almost completely due to the combined e�ect of both a rapid increase

in the human population, land use change and increasing industrialisation, which

is leading to a greater and greater demand for resources (Chapin III et al., 2000).

As the natural ecosystems support our civilization any collapse of these ecosystem

�services� would be devastating (Dobson et al., 2006; Mooney et al., 2009). So now

it is critical we understand how the stability of ecosystems are maintained and

whether loss of species and corresponding diversity could lead to the loss of, or

�uctuation in, terrestrial ecosystems - which is the subject of this thesis.

Rockström et al. (2009) has suggested that we are operating beyond the safe bound-

aries of our planet in three key areas of biodiversity loss, climate change and in-

terference of the nitrogen cycle (Figure 1). One of the uncertainties in current

knowledge is how two of these, climate change and biodiversity, in�uence each

other.

Of particular importance is understanding the role of biodiversity in �bu�ering�

ecosystems from climate change (Le Quéré et al., 2009; Martin and Watson, 2016).

At the global scale, the carbon uptake of the land biosphere is an important factor

in reducing the amount of human greenhouse gas emissions that stay in the atmo-

sphere and contribute to climate change (Le Quéré et al., 2009; Le Quéré, 2010;

Sitch et al., 2015). So the key question is: can biodiversity protect an ecosystem's
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Figure 1: The inner green shading represents the proposed safe operating space for

nine planetary systems. The red wedges represent an estimate of the current position

for each variable. The boundaries in three systems (rate of biodiversity loss, climate

change and human interference with the nitrogen cycle), are argued in this diagram to

have already been exceeded. Source: Rockström et al. 2009
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ability to absorb greenhouse gases as the climate warms?

This thesis investigates two di�erent aspects of land surface modelling. The �rst

part is concerned with the theoretical analysis of simple ecological models of diver-

sity to see if net primary productivity (net �ux of carbon absorbed by vegetation

from the atmosphere) is more resilient with higher diversity as the temperature

increases. The second part of the thesis develops a theoretical vegetation model to

robustly represent forest size diversity and therefore to improve the representation

of land use and land cover change in Earth Systems Models.

Chapter 1 reviews the current understanding of diversity and stability in ecological

models. The chapter also looks at the historical development of dynamic global veg-

etation models used in climate prediction and discusses the more recent attempts

to improve how these models represent of land use and land cover change.

Chapter 2 uses a Lotka-Volterra based ecological model to model the e�ect of

increasing temperature on the net primary productivity (NPP) of a system which

consists of species with a range of temperature optima.

Chapter 3 uses a simple resource model and maintains by diversity by having the

environmental temperature varying in time. This is achieved via imposed stochastic

temperature �noise�, representing weather variations. The noise is used to �tune�

the diversity to see if increasing the diversity keeps the NPP more stable.

Chapter 4 adapts the resource model to instead maintain diversity by including

micro-evolution via a di�usion process that represents the e�ect of genetic muta-

tion. The di�usion process acts to increase the number of temperature traits in

the system which counteracts the e�ects of competitive exclusion. This model is

then used to compare the e�ect on the NPP as the model undergoes various rates

of temperature increase. By increasing the starting diversity the NPP is shown to

be more resilient at higher initial diversities.

The second part of the thesis starts with Chapter 5. This chapter develops the

theoretical framework for a new vegetation demography model based on the prin-
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ciple of continuity. Analytical solutions are provided for certain simpli�ed cases to

allow comparison with numerical solutions.

Chapter 6 couples the demography model to the plant physiology equations used in

the TRIFFID dynamic global vegetation (DGVM) to create a forest model based

on size classes that compete for light. The model also allocates a proportion of NPP

to reproduction, and it is shown that there is a optimum fraction for productivity

which depends on the species lifetime.

Finally, chapter 7 summarises the main conclusions gained and outlines research

questions that remain outstanding.
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Chapter 1

Background

This chapter provides background information relevant to this thesis, based-on lit-

erature reviews. In particular it summarises existing research on ecosystem stabil-

ity and resistance, biodiversity, and large-scale Dynamic Global Vegetation Models

(DGVMs).

1.1 Stability

It is important to carefully de�ne what measure of stability is used for an ecosystem,

as for example a particular system that is stable according to one de�nition is not

necessarily stable under another de�nition (Ives and Carpenter, 2007).

Stability de�nitions (Figure 1.1) can be split into two groups, either based on a

system's dynamic stability (in essence its ability to return to the state it had before

the perturbation) or how it is a�ected by a perturbation (resistance and resilience)

(McCann, 2000).

The traditional theoretical view of stability is that a system is only stable if it

returns to a de�ned equilibrium state after a perturbation and the faster it returns

to that equilibrium the more resilient the system. This view is hard to verify as

real ecosystems appear to be stochastic so experimentalists instead use the systems
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CHAPTER 1. BACKGROUND

Figure 1.1: De�nitions of Stability. Source: McCann 2000
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1.2. ECOSYSTEM DIVERSITY

variability as an indication of stability (McCann, 2000). An alternative de�nition

of stability is that of general stability (Figure 1.1) which is strongly linked to

population variance.

This thesis is primarily concerned with the resilience of CO2 uptake via primary

production (photosynthesis) to climate change.

1.2 Ecosystem Diversity

Like stability, there is no universal de�nition of diversity (Purvis and Hector, 2000).

Diversity is not just restricted to being a measure of the number of species it

can also measure traits (e.g. drought resistance etc) or the number of ecosystem

functions in a particular system. It can also be de�ned in terms of �evenness�, which

is how equally the individuals are divided between the species, traits or functions.

The most common diversity considered is that of species diversity with the number

of species known as the species richness. Species evenness also accounts for relative

population sizes and can also be considered a measure of the probability of two

randomly selected individuals from the system being of the same species (Purvis

and Hector, 2000) (see Figure 1.2). For example an ecosystem with 1000 species

may still not seem very diverse if 99.9% of individuals are from one species and

the other 999 species are very rare, this would be a high richness but low evenness

ecosystem. Conversely a high evenness, low richness system of 2 species with equal

numbers would also not seem very diverse. Neither richness nor evenness alone can

tell the whole story when comparing diversity of ecosystems.

Yet another de�nition is that of di�erence, measuring how di�erent two randomly

selected species are. This di�erence can be measured in many di�erent ways, by

comparing species traits, functions or genetic makeup.

Most theoretical work has concentrated on how species richness a�ects ecosystem

functioning, the key result being the discovery that rates of ecosystem processes in-
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CHAPTER 1. BACKGROUND

Figure 1.2: Two samples from di�erent locations, illustrating two of the de�nitions of

diversity: species richness and species evenness. Sample A could be described as being

the more diverse as it has more species but there is less chance in sample B than in

sample A that two randomly chosen individuals will be of the same species. Source:

Purvis and Hector 2000

crease strongly with richness at low numbers of species but that this e�ect saturates

at higher species numbers due to overlap in species function (i.e. there appears to

be greater redundancy in a species rich environment) (Chapin III et al., 2000; Diaz

and Cabido, 2001).

1.2.1 Shannon Diversity Index

The most common measure of diversity that combines both richness and evenness is

the Shannon Index H ′, sometimes known as the Shannon-Wiener Index (Shannon,

1948; Krebs, 1989). This is essentially an entropy measure which measures the

complexity of the system. In terms of species, the Shannon Index represents the

uncertainty in the species of an individual selected randomly from a sample; if

there is only one species then the uncertainty is zero, as more species are added the

value of H ′ increases until it reaches a maximum value for the case of a perfectly

even system with all species having the same number of individuals.

A system with S species has a Shannon Index of
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1.2. ECOSYSTEM DIVERSITY

H ′ = −
S∑
i=1

pi ln pi (1.2.1)

where the species proportion pi = ni
N

is the ratio of the number of individuals ni

in that species to the total number N . When the system is even each species has

N
S
individuals and for each species pi = 1

S
, as the probability of �nding any species

is the same. This means the uncertainty and therefore the Shannon Index H ′ are

maximised for any given species richness S.

H ′max = −
S∑
i=1

1

S
ln

1

S
= − ln

1

S
= lnS (1.2.2)

Despite being considered by some �as the most profound and useful of all diver-

sity indices� (Jost, 2006) the Shannon Index is also not always easy to estimate

accurately in the �eld as it is only valid for random samples drawn from a large

community where the total number of species is known (Krebs, 1989).

1.2.2 Mathematical De�nition of Evenness

The evenness, J ′, can be calculated from the Shannon Index by simply dividing by

the maximum value for the number of species in the system.

J ′ =
H ′

H ′max
(1.2.3)

This means a perfectly even system will have an evenness of 1 and a system with

only 1 species will have an evenness of 0, all systems will have an evenness between

these two values.

1.2.3 E�ective Species

It can be shown (MacArthur, 1965; Krebs, 1989; Jost, 2006) that the Shannon

Index can be converted from an Index of diversity (which is not always intuitive)
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to an e�ective number of species, D, using the fact that for any value of the

Shannon Index there is an equivalent ecosystem with equally common (i.e. even)

species. The number of species in this equally common equivalent system can then

be de�ned as the diversity D of any system with that value of H ′.

As H ′max = lnS for an even system then we get an e�ective number of species, D:

D = exp(H ′) = exp

(
−

S∑
i=1

pi ln pi

)
(1.2.4)

1.3 Relationship of Stability to Diversity

1.3.1 Simple Models

Before the 1970s ecologists believed that greater diversity implied increased stabil-

ity, based-on the observation that simple terrestrial ecosystems tend to have greater

�uctuations in population densities than more diverse ones (Odum, 1953; Elton,

1958). MacArthur (1955) showed using a very simple food web model that stability

increased with the number of species as long as the nature of the interactions and

the structure of the web met certain criteria.

May (1974) challenged this by using linear stability analysis on mathematical mod-

els of food webs constructed with random interactions strengths. He showed that

such model systems tend to become less stable as the diversity increases, which is

in direct opposition to the previous theory and observations.

Yodzis (1981) then discovered that models with food-webs constructed from ob-

served data, including reasonable strengths of interaction between species, were

more stable than randomly constructed models. The data used was patchy but

the input of real feeding relationships showed that stability was not purely a result

of greater species richness but that food web structure and interaction strength

were important (McCann, 2000). The exact mechanism or explanation behind this

result was not clear though.

32



1.3. RELATIONSHIP OF STABILITY TO DIVERSITY

1.3.2 Basic Stability Theories

One of the simplest conceptual models of an ecosystem (attributed to Charles Dar-

win, see Purvis and Hector 2000) is one where each species has its own �niche� - a

particular set of optimum conditions unique to itself. This idea of niche di�eren-

tiation means that the resource use of the system is maximised and so the system

is more productive (Naeem, 2002), and therefore it is important in understanding

the stability of system productivity. However, if there is only one species per niche

the lack of redundancy means that such a system is not able to cope with environ-

mental change - if a species goes extinct, there is no ready replacement to perform

its role.

Most ideas on stability through diversity rely on the idea of an �insurance e�ect�

(Naeem, 2002), whereby an ecosystem also has rarer species ful�lling the same

function as more dominant ones but which may be better equipped to thrive if

the environment changes (Purvis and Hector, 2000). This is a form of negative

co-variance (McCann, 2000; Tilman, 2000) which leads to overall stability of the

system as a whole or of a particular ecosystem function. The overall e�ect (known

as the averaging e�ect - McCann 2000) is that the di�erent responses of many

species in a system average out in a changing environment. This is analogous to

the idea of sampling, where the larger a sample the greater the chance of �nding

a particular characteristic out of all those available (Naeem, 2002; Loreau et al.,

2001).

Most experimental work has been limited to small plots with only a few species, so

there has been little veri�cation of stability theories over larger areas and longer

time-scales and with full food webs (Purvis and Hector, 2000; McCann, 2000; Worm

and Du�y, 2003). There does seem to be an indication of a positive relationship

between primary production and species richness in simple synthetic assemblies of

plants, but it is di�cult to infer anything from these results relevant to real and

more complex ecosystems (Diaz and Cabido, 2001). In particular, little work has

been done on functional diversity, even though this may have a greater e�ect on

33



CHAPTER 1. BACKGROUND

ecosystem variability than species richness (Diaz and Cabido, 2001).

1.3.3 Interactions and Networks

As suggested by Yodzis (1981) interactions are important in understanding sta-

bility. Interactions have two main characteristics - they determine which species

in an ecosystem are directly-connected, and they determine the strength of those

connections. Interactions can be bene�cial (facilitation and mutualism, e.g. polli-

nators etc) as well as antagonistic (herbivores eating plants and predators eating

prey, or direct competition).

Ecological food-webs are networks of interactions but the �rich get richer� nature

of network theory used in human social dynamics and internet modelling only par-

tially applies, as competition, abundance, and body size constrain the interactions

(Montoya et al., 2006; Gilbert, 2009). Montoya et al. (2006) has suggested the

distribution of links in an ecological network may be approximated by: -

P (k) ∼ k−γe−k/ξ (1.3.5)

where P (k) is the probability of a species having k links, and γ and ξ are constants.

Another measure of the structure of food webs is their connectance C = L/S2

(S is number of species and L number of links between them), which for random

networks is equivalent to a measure of the clustering of the links (Dunne et al.,

2002). Connectance is de�ned as the proportion of all possible links between species

that actually exist in the network (Gilbert, 2009). Densely clustered webs are nearer

the norm, as aquatic systems tend to have many life history omnivores (species that

feed from more than one trophic level in the food web) and terrestrial systems often

have many host-parasitoid interactions (Montoya et al., 2006).

Gilbert (2009) has also shown that connectance can be used as a measure of ro-

bustness (integrity of a network) and that the loss of a species causes a change in

connectance indicating a loss of robustness. The problem with this study is that it

has no clear measure of robustness - so while the study establishes that any change
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in connectance, even a positive change, makes the system more vulnerable to fur-

ther species loss it is not a quanti�able measure. The degree of the distribution

(number of species with particular number of links) is shown to be important too,

with a more uniform distribution being more stable.

The distance in links between species is quite small with over 80% of species 3 links

or less from any other species (Montoya et al., 2006). This suggests any disturbance

will spread quickly. However, the e�ect of a disturbance is also dependent on

the strength of the interactive links, as the stronger the interaction the bigger

e�ect a change in one species will have on the other. The more types of prey

a species has the weaker each link tends to be. Perhaps slightly less intuitively

the more predators preying on a species the lower its predation rate tends to be.

McCann (2000) suggests that weak interactions may be a stabilising mechanism

and gives an example of two competing herbivore species preyed upon by a common

predator. One of the herbivores is both competitively superior compared to the

other herbivore, but is also the preferred food type of the predator. This setup

is stable as the herbivores negatively co-vary and so a reduction in the stronger

herbivore leads to an increase in the other which reduces predation of the former.

Also the preference of the predator for the superior herbivore keeps it in check and

stops the weaker being out competed to extinction.

Real complex food-webs are observed to have special patterns of interactions. Mod-

els show such complex systems have a smaller parameter range of stability com-

pared to simple ones, but that within this small stability zone the ecosystems are

more resilient (Montoya et al., 2006). This perhaps goes some way to explain the

previous contradiction between observations (suggesting diversity led to stability)

and the theoretical results from May (1974) (suggesting the opposite).

1.3.4 Neutral Theory

One very controversial theory is that of neutrality (Hubbell, 2001; Whit�eld, 2002).

This is a model where all species are treated equal ecologically and di�erences
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between them are ignored with the model only considering random dispersal and

the birth and death of individuals and total population (Whit�eld, 2002). This

means many of the details of species-species interactions are ignored and most

of the results are down to chance. Despite appearing to be based on simplistic

assumptions the theory produces patterns of species distribution, abundance and

co-existence that match those seen in nature.

Neutral theory has limitations as it only applies within one trophic level, fails

at scales larger than a few square kilometres, and is more applicable to plants

and microbes (Whit�eld, 2002). These limitations mean its key use maybe as a

simple model to test basic ideas or as a null hypothesis - models including niche

di�erentiation have to be very complex to match the results of neutral theory.

1.4 Sudden Ecological Shifts

Sudden changes in an ecosystem are the most di�cult to adapt to (Folke et al.,

2004). Such rapid changes can happen when a system is close to a transition

point, as then only a small change can trigger a major shift (Sche�er et al., 2001).

Systems poised on such a transition point may have a highly non-linear response

to perturbations, often associated with multiple stable states and can be hard

to predict but a slowing-down of �uctuations may be an early warning signal of a

sudden change (Dakos et al., 2008; Sche�er et al., 2009). Stable states are associated

with some kind of basin of attraction (very much like potential energy well in a

physical system) and it is changes in the environment that alter the depth of this

basin and increase the chance that a �uctuation will tip the system from one stable

state to another (Sche�er et al., 2001).

Telling if a sudden shift is due to multiple states or if it is just due to a highly

non-linear response is not easy. Firstly, a system must show little change as the

environment gradually changes until the transition. Secondly, it must have a shift

in dominance of species between the two states. It must also be triggered by
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stochastic (random) �uctuation and the states must have some form of stabilising

feedback whether biological, physical or chemical (Sche�er et al., 2001).

Rietkerk et al. (2004) reviews work extending this idea of sudden shifts to systems

which are no longer spatially homogeneous but instead exhibit �patchiness before�

a transition. The theory is that there is a short range positive feedback (usually

due to a consumer concentrating resources) combined with a longer range negative

feedback. The classic example of this is semi-arid regions where water is in short

supply and plants tend to concentrate soil moisture by drawing water from soil

further away, this produces a patchy landscape of clumps or stripes of vegetation

inter-spaced by bare soil (Rietkerk et al., 2004).

There is some debate about whether this patchiness is always indicative of an immi-

nent transition to another state. Pascual and Guichard (2005) suggest the spatial

distribution and scale of both the disturbance triggering a shift and recovery pro-

cesses that occur afterwards are also important. He goes on to propose that a

well-mixed disturbance produces a classical phase transition, a distributed distur-

bance with well-mixed recovery produces self-organised criticality (where internal

dynamics move the system to a critical point where large intermittent �uctuations

occur). If both the disturbance and recovery are locally distributed then there is

no rapid change but instead a broad transition with associated patchiness (known

as robust criticality).

1.4.1 Self-Organised Instability

Solé et al. (2002) suggests that increasing diversity drives ecosystems towards in-

stability. He puts forward the idea that immigration and/or speciation due to

evolution increases the diversity of an ecosystem but that this increases the in-

teractions within the system and that at a certain level of diversity the increased

interactions destabilise the system, leading to extinctions. From this point on the

system maintains its diversity through this mechanism (although with a turnover

in species).
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Solé et al. (2002) suggests that this does not entirely meet the de�nition of self-

organised criticality, as it is not completely internally driven and because the food-

web interactions are not homogeneous. Instead he calls this �Self-Organised Insta-

bility�.

Kau�man (1995) discusses the problem of trying to understand complex, non-

linear systems such as ecosystems and suggests that while we may not be able to

predict the exact evolution or dynamics of such a system that we can investigate

the patterns seen.

1.5 Dynamic Global Vegetation Models and Size

Diversity

The Earth's vegetation plays a crucial role in regulating its carbon and hydrological

cycles (Bonan, 2008b). For this reason, modelling the response of vegetation across

the globe is a critical component of climate change prediction (Fisher et al., 2010).

The land surface has a signi�cant e�ect on climate as the land and atmosphere

exchange energy, carbon and water. The energy exchange depends on both the

surface albedo and also latent heat due to water evaporation. A further e�ect

is the momentum exchange due to interaction of the surface roughness with the

surface winds (Sellers et al., 1992; Pitman, 2003). All these factors are a�ected

by the amount and type of vegetation on the land surface, so it is important for

accurate climate prediction to correctly model both the vegetation atmosphere

interactions and the patterns of global vegetation.

1.5.1 Land Surface Model Development

The earliest climate models (which were derived from weather forecast models)

had �xed unchanging vegetation which did not respond to changes in temperature,

rainfall or wind patterns and purely acted to shield a fraction of ground from solar
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radiation and modify moisture transfer. This meant that such models could not

predict changes in vegetation and the feedback e�ects that can have on climate

change. An example of this is the albedo di�erence between desert (albedo 35%)

and forest (albedo 10%), so if rain patterns change and a forest either dies o� or

starts growing on land that was previously desert there can be signi�cant changes

in patterns of solar energy absorption (Sellers et al., 1997; Pitman, 2003; Bonan,

2008a).

As computing power has increased climate models have become more sophisticated

with more re�ned spatial resolution (Figure 1.3), and it has also become possible

to include more detailed vegetation models. The second generation of models

included detailed empirical models of photosynthesis and stomatal conductance

- which modulates the loss of water to the atmosphere as transpiration (Sellers

et al., 1997; Pitman, 2003). Third generation models further improved the models

of photosynthesis allowing the gross (GPP) and net primary productivities (NPP)

to be calculated. This allowed explicit modelling of land-atmosphere �uxes of CO2

and water within Earth System Models (ESMs), which respond to environmental

conditions.

NPP represents the carbon assimilated by plants that is available for growth, so the

next stage in model development was to represent plants growing by increasing the

vegetation carbon density and/or coverage - leading to �rst generation Dynamic

Global Vegetation Models (DGVMs) (Cramer et al., 2001).

Before the development of DGVMs general circulation models (GCMs) excluded

the feedback between climate and the biosphere, instead using the results from

`o�ine' carbon-cycle models that are separate from the climate model. Cox et al.

(2000) were the �rst to correct for this gap in projections, by introducing a fully

coupled, three-dimensional carbon-climate model into a GCM. They showed that

carbon-cycle feedbacks could signi�cantly accelerate climate change and that under

a 'business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink

until about 2050, but after that turns into a carbon source. It was also found that
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Figure 1.3: Schematic from (Pitman, 2003) that shows the increasing detail in land

surface models.
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by 2100, the ocean carbon uptake is more than compensated for by the land carbon

source, leading to atmospheric CO2 concentrations being 250 p.p.m.v. higher in

the coupled model compared to the uncoupled (Figure 1.4).

Figure 1.4: From Cox et al. (2000). E�ect of climate/carbon-cycle feedbacks on

CO2 increase and global warming. a, Global-mean CO2 concentration, and b, global-

mean and land-mean temperature, versus year. Three simulations are shown; the fully

coupled simulation with interactive CO2 and dynamic vegetation (red lines), a standard

GCM climate change simulation with prescribed (IS92a) CO2 concentration and �xed

vegetation (dot-dashed lines), and the simulation which neglects direct CO2-induced

climate change (blue lines). The slight warming in the latter is due to CO2-induced

changes in stomatal conductance and vegetation distribution.

Later studies investigating this e�ect using a variety of di�erent DGVMs also

showed the carbon balance of the terrestrial biosphere to be a key factor in fu-

ture climate prediction but there was a large di�erence in the predicted atmo-

spheric CO2, due primarily to variation between the models in land carbon uptake

(Friedlingstein et al., 2006).

Sitch et al. (2008) also studied the response of several DGVMs coupled to a sim-

pli�ed version of the Hadley GCM, known as IMOGEN (Huntingford et al., 2010).

While it was found that all the DGVMs consistently accounted for the contem-

porary land carbon budget the models could diverge signi�cantly in their future

predictions under the more extreme emissions scenarios. This was found to be in

part due to di�erent responses of the DGVMs' tropical vegetation to drought and

to di�erences in the responses of boreal vegetation to changes in temperature and
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moisture.

Scheiter et al. (2013) have suggested current DGVMs have two weaknesses. Firstly

most DGVMs classify all vegetation into a small �xed set of PFTs which can hide

the real world variation in traits between individuals, species and local environment.

This may obscure some of the causes of coexistence and as sometimes PFT traits

are used as tuning parameters may not represent maximum-likelihood values. The

number of PFTs or functional types needed to represent ecosystem function is also

an open question and could be a reason for the variation in the Amazon `dieback'

seen in Huntingford et al. (2008) and Sitch et al. (2008). The suggested solutions

are to include more PFTs, and ultimately to model adaptive traits in each PFT.

The second weakness according to Scheiter et al. (2013) is the modelling of compe-

tition in DGVMs. The simplest competition models assume the PFT with highest

NPP is the only one that can occupy open space; this leads to one PFT dominating.

Another approach is to use Lotka-Volterra competition which has the disadvantage

of the number of competition parameters increasing with the square of number of

PFTs and also of not describing the mechanisms of competition. Arguably a better

approach is to explicitly model competition via a resource such as water or light,

where the number of competition parameters scale linearly with number of PFTs.

1.5.2 Bene�ts of Modelling Forest Demography

The early climate DGVMs categorised the vegetation into a number of plant func-

tional types (PFTs) with each type representing an average plant of that group.

Many of these models such as TRIFFID (Cox, 2001), LPJ (Sitch et al., 2003),

CLM (Bonan et al., 2003), She�eld DGVM (Woodward and Lomas, 2004) and

ORCHIDEE (Krinner et al., 2005) for example do not model size, age or species

variation within PFTs. The lack of any di�erentiation in size (and size variation in

growth rate) in these models prevents easy modelling of size dependent processes

such as land use change and also makes it more di�cult to model PFT light com-

petition, succession and PFT coexistence (Fisher et al., 2010; Huntingford et al.,
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2008) and also can contribute to the to poor estimates of time-scales of forest

regrowth in TRIFFID. Sitch et al. (2015) discusses there is a need for improved

representation of ecological processes in DGVMs, in particular nutrient cycling,

demographic dynamics, disturbance (wild�re, windthrow, insects), land use and

land cover change in land models, and better representation of the key functional

diversity. These processes are needed to help reduce the current uncertainty in the

predicting future of the land carbon budget.

To address the lack of any representation of the inherent heterogeneity caused by

mortality of large trees and disturbances such as �re and wind throw (Moorcroft

et al., 2001; Fisher et al., 2010), models such as HYBRID (Friend et al., 1993, 1997)

and SEIB (Sato et al., 2007) have tried to adapt individual based gap models to

a global scale. These models can in principle more accurately capture the small

scale dynamics, but can be prohibitively expensive computationally to simulate

vegetation on a global scale, and thus may have implications for any eventual

inclusion as the land surface module of a GCM.

The Ecosystem Demography (ED) model (Moorcroft et al., 2001; Fisher et al.,

2010) is one solution to this requirement for a less computationally demanding

model which allows the e�ects of size and gaps to be included. The ED model

uses a set of partial di�erential equations that represent a size and age-structured

approximation of a gap model. Unfortunately, so far ED has not yet been found to

be practical in climate modelling applications as it needs many dynamically created

age classes which need to be constantly merged to avoid an ever increasing number

of patches. This has led to problems with complexity and maintainability of the

model.

So there is a strong need for a DGVM model that incorporates forest demography,

but is robust and easy to maintain within an ESM.
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1.6 Discussion

Ecological research has come a long way in understanding the principles of diversity

and how competing species coexist, but there is still no de�nitive theory. Trade-o�s,

complexity, niches, and neutral theory all seem to have a role to play in creating

the diversity we see.

In understanding the resilience of an ecosystem to environmental change this thesis

will simplify the question down to how well a system containing a diversity in

temperature optima copes with an increasing environmental temperature. The

resilience will be measured by comparing the NPP of the system undergoing the

temperature change to a system that has a constant temperature.

The later part of the thesis will look to include diversity of plant size, to better

model land use and land cover change through forest demography, while avoiding

the problems of complexity and maintainability seen in some previous attempted

solutions to this problem.
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The Lotka-Volterra Diversity Model

The TRIFFID (Cox, 2001) dynamic global vegetation model (DGVM) (used in the

Joint UK Land Environment Simulator (JULES) (Clark et al., 2011)) describes the

terrestrial biosphere in terms of the carbon density of the soil and the carbon density

and area coverage of �ve competing plant functional types (PFTs), representing

broadleaf trees, needleleaf trees, C3 grass, C4 grass and shrub.

The particular mathematical form of TRIFFID used to model the change in PFT

fractional coverage was �rst used to describe the spread of plants by Carter and

Prince (1981) and then later in the Daisyworld (DW) model of (Watson and Love-

lock, 1983; Wood et al., 2008). Mathematically it is very similar to the Lotka-

Volterra competition Model (LV Model), but only applies competitive e�ects to its

growth term whereas in the standard LV model applies competition e�ects to the

di�erence of the growth and mortality terms.

The TRIFFID/DW model approach is more applicable to modelling vegetation

from the perspective of the carbon cycle, as the speci�c e�ect of competition on the

growth term is crucial to correctly account for carbon use through photosynthesis

and is therefore superior to the LV model approach in this context.

The limited number of PFTs in TRIFFID does not capture the range of temper-

ature traits (such as optimum temperature for growth) available to an ecosystem
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undergoing potential environmental change. To study the e�ect on resilience to

an increasing environmental temperature, the LV model used in TRIFFID will be

modi�ed to have a large range of species, forming a continuum of temperature

traits. For each trait a very simple model with just temperature dependent growth

will be used. This a simplifying assumption to limit the number of parameters.

The chapter will �rst present the model equations and then the dynamical proper-

ties of the system before moving onto methods for getting equilibrium coexistence

of species. The chapter will also the look at the e�ect of rate of temperature change

on net primary productivity.

2.1 Model Equations

The equation governing the change in the fractional coverage νi of each plant species

is

dνi
dt

= νi (s gi(T )− γ) (2.1.1)

where s = 1 −
∑
j

νj is the bare soil fraction, γ the death rate and gi the growth

rate.

To allow �extinct� species to reappear (simulating species dormant as seeds or from

outside the region re-entering when conditions are right) the νi on the right hand

side is set to a small value νseed for any extinct species when conditions allow that

species to grow and spread.

dνi
dt

= ai (s gi(T )− γ) (2.1.2)

ai =

 νseed, νi < νseed and (s gi(T )− γ) > 0

νi, otherwise
(2.1.3)
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Symbol Variable / Parameter Unit

νi Fractional coverage species i -

ai Seed adjusted fractional coverage species i -

νseed Minimum fractional coverage due to seeding -

s Fractional coverage of unvegetated space -

gi Temperature dependent coverage growth rate

species i

yr−1

gmax Maximum growth rate yr−1

Γi Non-dimensional temperature dependent cov-

erage growth rate species i

-

γ Mortality rate yr−1

τ Non-dimensional time (per lifetime) -

T Environmental temperature ◦C

TOPT,i Optimum temperature species i ◦C

Tw Temperature growth curve width ◦C

θ Non-dimensional temperature (per Tw) -

θopt,i Non-dimensional optimum temperature

species i

-

Cv Carbon density of species i kg C m−2

λ Fraction of the NPP utilised in increasing the

fractional coverage

-

Π Net Primary Productivity (NPP) kg C m−2 yr−1

ΠN Normalised gridbox mean NPP yr−1

α Rate of temperature increase dθ
dτ

-

c Inter-species competition coe�cient -

k Intra-species competition coe�cient -

Table 2.1: List of variables and parameters for Chapter 2
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2.1.1 Temperature Dependent Species Growth Rate

In the model ecosystem we use a very simple model where the growth rate of a

species is maximum at its optimum temperature and declines away from this opti-

mum according to the Gaussian function (Figure 2.1). This model is a reasonable

approximation of the temperature dependence of the net CO2 �ux as both pho-

tosynthesis and respiration are temperature dependent processes (Bonan, 2008a),

the net e�ect of which is a symmetric peak.

gi(T ) = gmax exp

[
−1

2

(
T − TOPT,i

Tw

)2
]

(2.1.4)

Figure 2.1: Each species has an optimum temperature where its growth rate is at

its maximum. This curve shows how the growth rate falls away as the environmental

temperature gets further from the plant's optimum temperature. Plot is scaled in terms

of the growth curve width Tw in the x-axis, and scaled by gmax in the y-axis.

The model has an array of species with optimum temperatures uniformly dis-

tributed in temperature. If the number of species is in�nite and the di�erence

in optimum temperature between adjacent species in�nitely small then we would
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have an idealised case, which would be expected to be able to maintain its produc-

tivity under any temperature change. To simplify and aid mathematical analysis

the model the range of temperature traits is allowed to extend inde�nitely. Most

plants typically have an optimum temperature in the range 15-30◦C, but the tem-

perature range over which plants can photosynthesise is quite large, even as far as

below freezing and greater than 40◦C for some species in extreme habitats (Bonan,

2008a).

Figure 2.2: Species have uniformly arranged optimum temperatures. Each line is the

growth curve of one species; the species with optimum temperature equal to environ-

mental temperature of 25◦C is shown as a solid line. If the environmental temperature

increases the optimum species will move with it as indicated by the arrow.

2.1.2 Net Primary Productivity

The Net Primary Productivity Π (NPP) is de�ned in Cox (2001) as the rate of car-

bon uptake per unit vegetated area due to photosynthesis minus plant respiration

for species i: -

Π =
gi(T )Cv,i

λ
(2.1.5)
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where Cv,i is the vegetation carbon density and λ the fraction of the NPP utilised

in increasing the fractional coverage.

As each species covers a fractional area νi, the mean NPP over the gridbox is: -

Π =
gi(T ) νiCv,i

λ
(2.1.6)

For the work in this chapter NPP is normalised so NPP of 1 corresponds to the

NPP of a species with maximum growth rate (optimum) and fractional coverage

of 1 (i.e. entire area of the system).

ΠN =
gi(T )

gmax
νi (2.1.7)

2.1.3 Non-Dimensional Form

For simplicity all species/traits in this chapter are assumed to have the same death

rate γ and the same growth curve width Tw. These two variables can then be

divided out of the equations and replaced by non-dimensional variables to aid

analysis. Using a non-dimensional form is useful as itreduces the number of degrees

of freedom to be investigated, and highlights what the important parameter clusters

are.

τ = tγ

θ = T
Tw

θopt,i =
TOPT,i
Tw

(2.1.8)

This has the bene�t of not limiting the models to any particular time-scale or

temperature scale so the results can apply not just to forests but also to any living

system facing a change in its environment.

dνi
dτ

= ai (sΓi(θ)− 1) (2.1.9)
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ai =

 νseed, νi < νseed and (sΓi(θ)− 1) > 0

νi, otherwise
(2.1.10)

The new growth rate is then de�ned as

Γi(θ) =
gmax
γ

exp

[
−1

2
(θ − θopt,i)2

]
(2.1.11)

The normalised NPP is then

ΠN =
Γi(θ)

Γmax
νi (2.1.12)

2.2 Equilibrium at Constant Temperature

The system is at steady-state when all fractional coverages are at steady-state.

From 2.1.9 it can be seen that any species i is at equilibrium when either:-

or

νi = 0

∑
j

νj = 1− 1

Γi(θ)

(2.2.13)

If Γi di�ers between species, only one species can have non-zero coverage when all

species are at steady-state. This is because the dominant species will keep growing

and reducing the bare soil fraction below the equilibrium threshold for all other

species, until only the dominant species remains with a steady-state coverage of: -

νj = 1− 1

Γj(θ)
(2.2.14)

If gmax = 0.1 and γ = 0.01 then Γj = 10 (assuming the dominant species is at its

optimum temperature) we expect the dominant species to have a coverage of 0.9

and all other species zero.
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(a) Fractional Coverage (b) Productivity (NPP)

Figure 2.3: Evolution of the system for Γmax = 10, starting from a (non-equilibrium)

state where all species have equal coverage to steady-state, where only one dominant

species remains. a) Shows the time evolution of species coverage. b) Shows the

evolution of the total system NPP. The green productivity curve shows (for comparison)

the productivity of single species at steady-state at its optimum temperature.

Figure 2.3 shows the model behaves as expected, this behaviour is also seen for

di�erent numbers of species. Interestingly, the NPP appears on visual inspection

to reach steady-state faster so it may be useful to investigate the e-folding time-

scales of both the dominant species and the total system NPP.

In section 2.3 this constant temperature steady-state solution will be used as an

initial condition for changing environmental temperature by assuming the model

starts in steady-state with its initial starting temperature.

2.2.1 E�ect of Interspecies Competition

The speed at which the system reaches steady-state is determined by the spacing

of the species. A larger spacing between the species allows the system to reach

steady-state much faster than if they are more closely spaced (Figure 2.4).

The dynamics of this set of equations are that all species will grow and that as

they grow the amount of bare soil is reduced which reduces the growth of all species
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Figure 2.4: Shows the e�ect of the species spacing on the time-scale of the NPP as

the system approaches steady-state. The time-scale is assumed to be time it takes for

the NPP to be within 1/e of the �nal NPP, when Γmax = 10. The curve shows that

the closer the spacing the longer the system takes to reach steady-state.
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equally. Once the bare soil is reduced enough the species with the lowest growth

rate will start to lose coverage (i.e. when s < 1
γi
then dνidτ < 0), which in turn will

increase the bare soil to be used by species with higher growth rates. This process

carries on until only the species with the highest growth rate is still growing.

This means that a greater spacing of the species optimum temperatures will cause

the species that are further from their optimum temperature to have a lower growth

rate. Hence their coverage will therefore decline much sooner than if they are closely

spaced.

2.3 Response to Linear Temperature Increase

To investigate the e�ect of increasing temperature on the model a simple linear

increase is used.

T (t) = Tinitial +

(
dT

dt

)
t (2.3.15)

Converting to non-dimensional form gives: -

θ(τ) = θinitial + ατ (2.3.16)

where α is

α =

(
dT
dt

)
γ Tw

=
dθ

dτ
(2.3.17)

The value of α represents the ratio of temperature and biological time-scales, in

terms of the number of grow curve widths that the temperature increases by in

a species lifetime ( 1
γ
). So an alpha value of 1 would mean that in time 1

γ
the

temperature has increased by Tw.
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The system is initialised to the steady-state described by equation 2.2.14 and then

the temperature is increased linearly. The increasing temperature changes the dom-

inant species, as this is the species with its optimum temperature closest to the

current environmental temperature (as it has the highest growth rate). As soon as

the environmental temperature increases to the point where another species has a

closer optimum temperature then the dominant species changes. The steady-state

of the system is always for the system to evolve towards a state with only the dom-

inant species with coverage given by equation 2.2.14. The increasing temperature

means the system never reaches steady-state as this is always moving away from

the current system state.

An example of the model response for a particular rate of temperature increase is

shown in Figure 2.5. The model has 16 species with relative optimum temperatures

arranged linearly from 0 to 0.4Tw.

The model is initially started with the temperature at that of the optimum tem-

perature of the �rst species θ = θopt,0 and the system in steady-state at that

temperature (only optimum species has any coverage). As the temperature starts

to increase the growth rate of the �rst dominant species slowly declines. Once

the temperature reaches the half way point between the optimum temperatures of

the �rst and second species then the model transitions to the second species being

dominant (i.e. having largest growth rate). At this point the original dominant

species starts to decline more rapidly and increase the bare soil allowing the second

species to increase.

It takes a long time for the �rst species to decline due to mortality. The �rst species

will start to decline as soon as its growth rate drops and this will increase the space

allowing the second species to start to grow and gain ground on the �rst species.
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CHAPTER 2. THE LOTKA-VOLTERRA DIVERSITY MODEL

(a) Fractional Coverage (b) Productivity (NPP)

(c) Fractional Coverage (d) Productivity (NPP)

Figure 2.5: Evolution of the system starting from steady-state when temperature

increases linearly by 0.4Tw at a rate α = 0.0004, with max growth:death ratio Γmax =

10. a) b) Plotted in terms of time. c) d) Plotted in terms of temperature.
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2.3. RESPONSE TO LINEAR TEMPERATURE INCREASE

2.3.1 Dynamic Pseudo-Equilibrium

There is a transient phase at the start of the temperature increase as the initially

dominant species takes time to decline to the point where other species can get a

foothold. This can be seen in Figure 2.5 b) and d) as an overshoot oscillation in

NPP with a decaying amplitude. This suggests that the system is in a transient

state as it transitions from a steady-state with static temperature to a dynamic

pseudo-equilibrium with linearly increasing temperature.

If the temperature is allowed to increase it can be seen more clearly that the NPP

oscillation decreases in amplitude and the NPP converges on a �xed level even

though the system is still undergoing temperature change (Figure 2.6).

Figure 2.6: Shows the transient oscillation in Normalised total system NPP for rate

of temperature increase α = 0.0004 (total linear increase in temperature of 3.2 Tw).

Species spacing 0.04 Tw and Γmax = 10.

This pattern is seen for many di�erent rates of temperature increase (Figure 2.7)

with faster rates of change giving rise to lower NPP and more heavily damped

transient.

The behaviour at this pseudo-equilibrium is that each species' fractional coverage
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Figure 2.7: Normalised NPP plots for all di�erent temperature increase scenarios.

The system in each case has undergone a �xed temperature rise of 6.4 Tw but at

di�erent rates. The colour-bar shows the value of α (rate of temperature increase in

Tw per lifetime) for each colour curve. Species spacing 0.04Tw and Γmax = 10.
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2.3. RESPONSE TO LINEAR TEMPERATURE INCREASE

has a Gaussian like shape when plotted against time or environment temperature

and the species coverage curves have similar shapes, just translated in time to each

other (Figure 2.8). In the early transient phase this behaviour is not seen and while

species do have coverages with similar Gaussian like shapes they vary considerably

in height and width.

Figure 2.8: Shows the fractional coverage undergoing a temperature rise of rate

α = 0.001 for 6.4 growth curve widths (6.4 Tw). Each colour curve represents one

species with its optimum temperature shown in the colour-bar. Species spacing 0.04Tw

and Γmax = 10.

Figure 2.9 shows that the shape of the dynamic pseudo-equilibrium varies with the

rate of temperature increase. As the rate of temperature becomes faster the delay

between the environment reaching a particular species optimum temperature and

the species coverage reaching a peak increases. Also the height tends to decrease

(although an initial increase is brie�y seen) and the width increases. This is because

the previously dominant species have to die �rst to allow the newly dominant

species to take over and as this time-scale is �xed the system lags behind the

environmental temperature more and more as the temperature rate increases.

This suggests that there is a rate dependence in the coverage and NPP with both
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Figure 2.9: Shows how the rate of temperature increase a�ects the fractional coverage

of one species relative to its optimum temperature. The position of the peak moves to

higher and higher temperatures as the rate of temperature change is increased. This is

because there is a lag in the system created by the time needed for previously dominant

species to die o�. The colour-bar shows the value of α (rate of temperature increase

in Tw per lifetime) for each colour curve. Species spacing 0.04Tw and Γmax = 10.
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2.3. RESPONSE TO LINEAR TEMPERATURE INCREASE

being suppressed more and more by increasing temperature rates. This can be

seen in Figure 2.7 as the pseudo-equilibrium NPP values are reduced as the rate of

temperature increase becomes faster.

Figure 2.10 shows this more clearly and shows that there is a critical rate of tem-

perature change where the NPP suddenly falls rapidly. The curves for changes in

temperature of less than 8 Tw show di�erent critical rates but these are dependent

on the transient phase, so the NPP for any particular rate will initially decrease

and then recover somewhat for rates less than the critical rate corresponding to

the dynamic pseudo-equilibrium.

Figure 2.10: Shows the fractional change in normalized NPP for di�erent rates of

temperature increase.
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CHAPTER 2. THE LOTKA-VOLTERRA DIVERSITY MODEL

2.4 Response to Non-Linear Temperature Increase

The simple linear model switches abruptly from constant temperature steady-state

state to a linearly increasing temperature scenario. This creates a temperature

gradient discontinuity which may be a cause of the large transient NPP oscillations

seen in the model.

To investigate this a new temperature increase model is used based on the simplest

possible climate model (Equation 2.4.18). This represents a linearly increasing

radiative forcing ∆Q with heat capacity Cp and sensitivity λ. The heat capacity

acts to delay any changes and allows the model to more smoothly transition from

static to increasing temperature without a discontinuity. This model represents

the real world where oceanic di�usion is protecting us at the moment from the real

e�ects of CO2 at 400ppm.

Cp
d∆T

dt
+ λ∆T = ∆Q = βt (2.4.18)

If we then non-dimensionalise this and solve we get the solution

θ = θ0 + ∆θ = θ0 + α
[
τ − τT

(
1− e−τ/τT

)]
(2.4.19)

where

τT =
Cpγ

λ
(2.4.20)

α =
βγ

λ
(2.4.21)

In the above α is equivalent to the linear α in section 2.3 and is the rate of increase

seen when τ >> τT .

The e�ect of the non-linear temperature increase can be seen in Figure 2.11. The

only e�ect of having a smoother transition of static to increasing temperature

62



2.4. RESPONSE TO NON-LINEAR TEMPERATURE INCREASE

is to reduce the transient oscillations. The model still converges on the pseudo-

equilibrium state seen before but with smaller magnitude oscillations.

Figure 2.11: Shows the e�ect of the non-linear model of temperature increase com-

pared to the linear. Both linear and non-linear start with the system in steady-state

with the starting temperature. The non-linear model has reduced transient oscillations

but still converges on the same pseudo-equilibrium state. Species spacing 0.04Tw,

Γmax = 10, τT = 5000 lifetimes and α = 0.004. a) Temperature as function of time

b) NPP as a function of time c) NPP as a function of temperature.

Overall this suggests the best comparison of the e�ect of rate of change on the

system is to always compare after any transient e�ects have died down and to look

at the pseudo-equilibrium state.
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CHAPTER 2. THE LOTKA-VOLTERRA DIVERSITY MODEL

2.5 Generating Diversity via Competition Coe�-

cients

It is a standard result of Lotka-Volterra competition theory that to get stable coex-

istence of species, the members of each species must compete more strongly among

themselves than with other species (May and McLean, 2007). This is the same

idea as that of each species having a `niche' where it dominates. The advantage of

this is that it is easy to achieve but this section shows that this also risks breaking

conservation of the coverage.

Details are developed more fully in Appendix A but for an n species system the

equations are: -

dνi
dτ

= ai

[(
1− kνi − c

∑
j 6=i

νj

)
Γi(θ)− 1

]
(2.5.22)

where k is the competition coe�cient between members of the same species and c

the competition coe�cient between di�erent species.

This system can be solved to �nd an equilibrium solution where all species coexist:

-

νi =
1

(k + (n− 1)c)(k − c)

[
(k + (n− 2)c)

(
1− 1

Γi

)
− c

∑
j 6=i

(
1− 1

Γj

)]
(2.5.23)

This requires that k > c, which is just the standard result of Lotka-Volterra com-

petition theory but also requires that all species in the system are growing: -

(
1− kνi − c

∑
j 6=i

νj

)
Γi(θ)− 1 ≥ 0 (2.5.24)

Any species that does not meet this requirement will be competitively excluded

but unless the system is reduced by excluding the uncompetitive species then the

above solution will not necessarily hold.
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The total coverage is

νtot =
∑
i

νi =
1

k + (n− 1)c

∑
i

(
1− 1

Γi

)
(2.5.25)

This equation highlights that this type of system has a problem of conserving

fractional coverage. The above equation does not naturally constrain either the

individual or total coverage between 0 and 1.

As it is di�cult to �nd simple constraints that naturally keep particularly the

total coverage below 1 it makes this system di�cult to use for simulating the

e�ect of diversity on resilience the environmental change. The conservation issue

also highlights the problems in general with the use of competition coe�cients, in

particular as they do not model any speci�c mechanism of competition then they

cannot be estimated in advance of any instance of competition in the �eld (Grover,

1997).

2.6 Discussion and Conclusions

The Lotka-Volterra model is an established model of population growth and com-

petition. This chapter has used a form of this model to look at a simple system of

plants with di�erent temperature traits.

The simplest version of this model will, for a given temperature, have a steady-state

where the species which is most suited to the conditions remains and all others are

excluded. The speed of the system reaching steady-state depends on the spacing

of species, with more widely spaced species reaching steady-state faster, as the

non-optimal species are less competitive and are therefore excluded much quicker.

Once this model undergoes a linear temperature increase the NPP will initially

collapse as the previously dominant species dies o�. Then, once this species has

declined enough, other species which are more suited to the higher temperature

can then start to grow. However, further in time as the temperature continues to
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increase they too will decline and be replaced by yet another species. The NPP

after its initial collapse will follow a transient oscillation before the NPP settles

down to a new constant level, albeit lower than the the starting steady-state. This

suggests the possibility of a "pseudo-equilibrium", that while the species coverages

are constantly changing, the overall NPP is constant in time.

If the system undergoes di�erent rates of temperature increase from 10−4 to 100 Tw

per lifetime, it can be seen the faster the temperature increases the more the system

struggles to maintain its NPP in the �pseudo-equilibrium� state. There seems to

be critical range of rates as at 0.1 Tw per lifetime the system is maintaining 80%

of its steady-state NPP, by 1 Tw per lifetime it is down to 40% NPP and by 10 Tw

per lifetime it is down to 10%.

By changing the temperature increase from linear to one involving a heat capacity,

so the system has a lag analogous to the Earth undergoing climate change, it can

be seen that the transient oscillations in the NPP are reduced. This suggests the

transient is a result of the system being pushed out of its initial steady state when

the temperature increase suddenly starts. The system then takes awhile to settle

down into the dynamic �pseudo-equilibrium�, once the temperature is increasing.

This study had originally been intended to look at the e�ect of introducing diversity,

to see if having coexisting temperature traits would make the system more resilient

to a given rate of temperature increase. The current TRIFFID formulation of the

Lotka-Volterra competition model can be adapted, using competition coe�cients,

to achieve coexistence. Unfortunately it is di�cult to keep both the individual

species coverages and the total coverage in the range 0 to 1 as the competition

coe�cients break the conservation of coverage. This suggests the competition co-

e�cients are too abstract and have no mechanism of competition to both conserve

coverage and allow coexistence.

In TRIFFID itself competitive coexistence (i.e. coe�cients other than 1 or 0) only

occurs for competition between the two tree PFTs and the two grass PFTs and

the sum of coe�cients of each competing pair is always equal to 1. While it is
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theoretically possible for the PFT fractional coverages in TRIFFID to drop below

0 or become greater than 1, the limitations just mentioned restrict this to values of

the growth and competition coe�cients that are never reached in practice. It would

still be worthwhile adding guard clauses to the code to make sure PFT coverages

always remain in the range 0 to 1, to prevent future changes to TRIFFID possibly

causing the coverages to no longer always being in the desired range.

The next chapter will avoid these issues by using a resource based model rather

than Lotka-Volterra and to use temperature stochasticity instead of competition

coe�cients as a means to maintaining coexistence of species with di�erent temper-

ature traits.
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Chapter 3

Stochastic Resource Model

The Lotka-Volterra model (hereafter the LV model), initially applied to predator-

prey mammal populations was amongst the �rst mathematical models of species

competition and coexistence (May, 1974; May and McLean, 2007). In the LV

model competition takes place through competition coe�cients which are chosen

empirically to reproduce observed features of the ecosystem, such as its species-

mix. However, there is typically no mechanism that can be used to determine the

competition coe�cients, which introduces an arbitrary element to the LV model

that makes prediction di�cult (Grover, 1997). Arguably, a better alternative is

to model competition mechanistically in terms of the competition for limiting re-

sources, such as nutrients or light. A process basis is also always more appropriate

for prediction, as this allows the e�ects of any driver changes on competition pa-

rameterisation to be explicitly modelled, and in a way not possible with �tted

competition co-e�cients.

Tilman and co-workers have extensively studied resource competition both for

species competing for a single resource and for multiple resources (Tilman, 1982;

Grover, 1997). Resource competition models are based on the assumption that

competition happens purely via the limiting resource and not through direct com-

petition (Grover, 1997; May and McLean, 2007). Resources are typically modelled

as a scalar without spatial dimension or environmental heterogeneity. With these
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simplifying assumptions, the multiple resource case allows coexistence, but com-

petition for a single resource always results in a single dominant species (Tilman,

1982; Grover, 1997).

Lehman and Tilman (2000) also studied a single resource model with a varying

environmental temperature and growth rates for each species that are temperature

dependent, with each species having a unique optimum temperature for growth.

All species are otherwise identical except for their optimum temperature. Growth

rate is modelled as a Gaussian function of temperature with the peak corresponding

to the species optimum temperature. Whichever species is closest to its optimum

temperature will have superior growth and if the temperature is constant that

species will exclude all others.

However, by including temperature variability Lehman and Tilman (2000) found

that coexistence could be achieved as the species with the growth advantage was

constantly changing as the temperature varied. As long as the temperature change

is fast enough and over a big enough range, several species can be maintained in

coexistence. This is an intriguing result that hints at one possible mechanism (i.e.

environmental temporal variability) to maintain species diversity.

This chapter extends the mathematical analysis of the Lehman and Tilman (2000)

model to examine the sensitivity of its diversity and productivity to the stochastic

nature of the temperature variability. To address the key question of whether a

more diverse ecosystem is likely to be more resilient to climate change the model

is also further extended by including a linearly increasing trend on the varying

temperature.
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CHAPTER 3. STOCHASTIC RESOURCE MODEL

3.1 Model Equations

The equations of the resource model system (Lehman and Tilman, 2000) are: -

dR

dt
= a(S −R)−Q R

R +K

∑
j

gj(T )Bj

dBi

dt
=

[
gi(T )

R

R +K
− γ
]
Bi

gi(T ) = gmax exp

[
−1

2

(
T − TOPT,i

Tw

)2
] (3.1.1)

Symbol Variable / Parameter Unit

Bi Biomass species i t ha−1

gi Temperature dependent biomass growth rate species i year−1

gmax Maximum growth rate year−1

γ Species i mortality year−1

T Environmental temperature ◦C

TOPT,i Optimum temperature species i ◦C

Tw Temperature growth curve width ◦C

R Resource availability t ha−1

S Resource supply t ha−1

Q Unit biomass resource cost -

K Resource half saturation constant t ha−1

a Conversion rate unavailable to available resource year−1

R∗ Equilibrium resource level t ha−1

B∗i Equilibrium biomass level of dominant species t ha−1

Table 3.1: List variables and parameters for Chapter 3

The term
R

R +Ki

is known as the Monod formulation (see Figure 3.1). This model

gives a saturation in growth as R increases, which is known to be a simplistic yet
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good approximation for microbial and plankton growth but is also reasonable for

higher plants (Grover, 1997; Tilman, 1982).

Figure 3.1: The Monod Growth Function

The variation of
1

dBi

dBi

dt
with R and g is shown in Figure 3.2 (note the plot uses

r = R
S
).

From equation 3.1.1 it can be seen that there is a unique resource level R∗ (Tilman,

1982; Grover, 1997) that gives zero growth dBi
dt

= 0 for each species.

R∗ =
Kγ

gi (T )− γ
(3.1.2)

As
R

R +K
is a continuously increasing function of R (see Figure 3.1), any resource

level below R∗ will give
dBi

dt
< 0 and any resource level above R∗ will give

dBi

dt
> 0.

This means the species with the lowest R∗ will dominate and will displace all others

in time. This is because as species' populations grow they reduce the resource

availability R (see Equations 3.1.1) and so a species with a low R∗ will still be

growing when species with higher R∗ have stopped growing.

Once all other species go extinct the dominant species has an equilibrium biomass

level of: -
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Figure 3.2: Variation of
1

dBi

dBi

dt
with growth rate g(T) and r = R

S
. The red line

indicates where
1

dBi

dBi

dt
= 0.
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3.2. NON-DIMENSIONALISED SYSTEM

B∗i =
a(S −R∗i )(R∗i +K)

gQR∗i
=
a (S −R∗i )

Qγ
(3.1.3)

3.2 Non-Dimensionalised System

To aid analysis and identi�cation of timescales then the system can be non-di-

mensionalised. All quantities in equation 3.1.1 can be dimensionalised in terms of

dimensions of time [t], resource [R], temperature [T ] or species biomass [B].

B = [B]

a, gi(T ), γ = [t−1]

R, S, K = [R]

Q = [RB−1]

T, Tw, TOPT,i = [T ]

(3.2.1)

This allows to re�ne our variables in terms of a new dimensionless set:-

k =
K

S
r =

R

S
bi =

QBi

S

θ =
T

Tw
θOPT,i =

TOPT,i
Tw

τ = tγ

µ =
a

γ
Γi =

g

γ

(3.2.2)

Giving us a new set of equations: -

dr

dτ
= µ(1− r)− r

r + k

∑
j

Γj(θ) bj

dbi
dτ

= bi

[
Γi(θ)

r

r + k
− 1

]
Γi(θ) = Γmax exp

[
−1

2
(θ − θOPT,i)2

] (3.2.3)

3.3 Dynamics of One Species with One Resource

The simplest system is one species growing with one limiting resource and having

a �xed growth rate (corresponding to a �xed temperature).
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dr

dτ
= µ(1− r)− r

r + k
Γ b

db

dτ
= b

[
Γ

r

r + k
− 1

] (3.3.1)

This system has 2 equilibria: -

(r, b) = (1, 0)

(r, b) = (r∗, b∗)
(3.3.2)

where r∗ =
k

Γ− 1
and b∗ = µ(1− r∗).

There are three regimes which depend on the value of Γ (See Appendix B.1). These

are shown in Table 3.2.

Table 3.2: Dynamical regimes

Regime (r, b) = (1, 0) (r, b) = (r∗, b∗) r∗

Γ > (k + 1) Unstable Stable r∗ < 1

1 < Γ ≤ (k + 1) Stable Doesn't Exist r∗ > 1

Γ ≤ 1 Stable Doesn't Exist r∗ < 0

To understand the model behaviour under the three regimes then it is necessary

to look at the nullclines and model trajectories on phase plot for each case. The

nullclines for resource is given by equation (3.3.3) and for biomass by equation

(3.3.4) below.

b =
µ(1− r)(r + k)

Γr
(3.3.3)

r = r∗ =
k

Γ− 1
(3.3.4)
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3.3.1 Stable regime Γ > (k + 1)

This regime is the only one where a population can be maintained as it has both

enough resource supply and high enough growth rate.

The phase plot with nullclines for Γ > (k+ 1) can be seen in Figure 3.3(a). Where

the nullclines cross there is a stable equilibrium with the unstable equilibrium at

(r, b) = (1, 0). The green line on Figure 3.3(a) shows the variation of the position

of the stable equilibrium with changing growth rate g, this will be discussed in

section 3.3.4.

The dynamics can be seen in Figure 3.3(b). The system always heads towards the

resource nullcline and from there then follows that nullcine to the stable equilib-

rium.

The same dynamics can be seen in terms of the biomass and resource levels as a

function of time in Figure 3.4.

3.3.2 Insu�cient Resource Regime 1 < Γ ≤ (k + 1)

In this regime while the single species has an intrinsic growth rate that is higher

than its mortality the resource supply is not high enough to maintain growth and

reduces the intrinsic growth rate below mortality even when the available resource

is at its maximum.

The direction �elds and nullclines for 1 < Γ ≤ (k+1) are shown in Figure 3.5. Again

the system heads �rst to the resource nullcline and then to the equilibrium, this

time to (r, b) = (1, 0) which the only equilibrium and is stable. The (r, b) = (r∗, b∗)

equilibrium doesn't exist as r∗ > 1, meaning the resource supply S is smaller than

the equilibrium resource level and hence cannot supply enough resource for growth

to balance mortality.
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(a) Nullclines

(b) Typical trajectories

Figure 3.3: Phase plot including direction �elds of the system for Γ > (k + 1). In a)

where the nullclines cross is the stable equilibrium and the green lie shows how stable

point changes with growth rate g. b) Shows typical trajectories starting from di�erent

initial points, all head towards the nullcline and then follow it to the stable equilibrium

point.
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Figure 3.4: Plot of resource and species biomass with time. Show the system achieving

equilibrium state from initial state of low biomass and high resource availability.

3.3.3 Mortality Dominated Regime Γ ≤ 1

In this regime the intrinsic growth rate is below the mortality, so none of the

species can survive regardless of how much resource supply the ecosystem can

provide. Hence in Figure 3.6, all trajectories travel to the stable equilibrium (red

dot), corresponding to zero biomass.

For Γ ≤ 1 (Figure 3.6) the system again heads to (r, b) = (1, 0). As Γ ≤ 1 and
r

r + k
< 1 so

1

b

db

dt
< 0 always.

3.3.4 E�ect of Varying Γ

As we are interested in studying the e�ects of temperature on coexistence, it is

useful to understand how the simple one species system responds to a change in the

growth:death ratio term Γ, as this typically is a function of temperature. The most

logical place to start is to understand how a change in Γ changes the equilibrium

of the system.
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(a) Nullclines

(b) Typical trajectories

Figure 3.5: Showing the direction �elds of the system for 1 < Γ ≤ (k + 1). In a)

only the resource nullcline can be seen as the biomass nullcline is now higher than r=1

and so can no longer cross the resource nullcline. The equilibrium at (r, b) = (1, 0)

is stable. b) Shows typical trajectories starting from di�erent initial points, all head

towards the nullcline and then follow it to the stable equilibrium point at (r, b) = (1, 0).
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(a) Nullclines

(b) Typical trajectories

Figure 3.6: Showing the direction �elds of the system for Γ ≤ 1. In a) only the

resource nullcline can be seen as the biomass nullcline is now negative and so cannot

cross the resource nullcline. b) Shows typical trajectories starting from di�erent initial

points, all head towards the nullcline and then follow it to the stable equilibrium point

at (r, b) = (1, 0).

79



CHAPTER 3. STOCHASTIC RESOURCE MODEL

The equations for the equilibrium resource and biomass levels are: -

r∗ =
k

Γ− 1
(3.3.5)

b∗ =
µ(1− r∗)(r∗ + k)

Γr∗
= µ(1− r∗) =

µ(Γ− (1 + k))

(Γ− 1)
(3.3.6)

Figure 3.7 shows these equations graphically.

The values of equilibrium resource and biomass are only meaningful when positive

and also the equations governing the system do not allow negative values to be

reached. So this shows again that Γ > (k + 1) must be true for the non-trivial

equilibrium (r, b) = (r∗, b∗) to exist. When Γ ≤ (k + 1) then system goes to

(r, b) = (1, 0). A corrected version taking this into account can be seen in Figure

3.8.

For Γ > (k + 1) as Γ changes the position of the equilibrium changes and this is a

straight line from (r, b) = (1, 0) to (r, b) = (0, µ) as is seen in Figure 3.9.

So any change in Γ will move the equilibrium along this line, with the magni-

tude depending non-linearly on Γ. From this we can more easily understand any

dynamics changing Γ, such as Γ(θ) with θ varying in time.

3.4 Dynamics of Two Species with One Resource

This system has three equilibria: -

(r, b1, b2) = (1, 0, 0)

(r, b1, b2) = (r∗1, b
∗
1, 0)

(r, b1, b2) = (r∗2, 0, b
∗
2)

(3.4.1)

where r∗i =
k

Γi − 1
and b∗i = µ(1− r∗i ) (See Appendix B.2).

80



3.4. DYNAMICS OF TWO SPECIES WITH ONE RESOURCE

(a)

(b)

Figure 3.7: Shows a) The variation of equilibrium resource availability r∗ with Γ, and

b) the variation of the equilibrium species biomass b∗ with Γ.
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(a) (b)

Figure 3.8: This is a adjusted version of Figure 3.7, showing the equilibrium values

of a) r and b) b. For Γ > (k + 1) this is identical to Figure 3.7, but for Γ ≤ (k + 1)

the system goes to (r, b) = (1, 0).

Figure 3.9: The equilibrium resource availability is linearly related to the equilibrium

biomass. The position on this line is determined by the value of the growth:death ratio

Γ.
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Only one equilibrium is ever stable. If Γ ≤ (k + 1) for all species then (r,b1,b2)

= (1,0,0) is stable and the system will evolve towards this one and all species go

extinct. If Γ > (k + 1) then which ever species has the higher growth rate will

exclude the other species and remain as the sole dominant species with biomass

b∗i =
µ(Γi − (k + 1))

(Γi − 1
.

Figure 3.10: Shows the evolution of this system from di�erent initial conditions. The

red spot represents the stable equilibrium of the dominant species, the blue dot the

unstable equilibrium of the other species. The green surface represents the surface

where the
dr

dτ
= 0, while the red line shows where r∗1 (the plane of

db1

dτ
= 0) crosses

the surface. The black lines show the di�erent paths towards the stable equilibrium.

Figure 3.10, shows that when Γ > (k + 1) and Γ1 > Γ2 the system evolves to

the equilibrium of species 1 as expected. The general evolution is that �rst the

resource changes rapidly towards the resource null-surface (i.e.
dr

dτ
= 0) and then

heads towards the line connecting the two equilibria of the two species and from

this line heads towards the dominant equilibrium.
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3.5 Resource Model with Varying Temperature

3.5.1 Maintaining Diversity with Temperature Noise

There is a comprehensive literature surrounding why we can observe extensive

biodiversity in many land regions of the world. Currently proposed explanations

can be grouped in to four main hypotheses. These are: -

1. Heterogeneity (either spatial or temporal) in the environmental forcing (May

and McLean, 2007; Tilman, 2000, 2004). The extreme case of this is Neutral

Theory (Hubbell, 2001), where all species in a trophic level have identical

properties and it is purely random �uctuations that determine the abundance

of species.

2. Trade-o�s such as competition (long term superiority) vs colonization ability

(ability to colonize an area after disturbance to the ecosystem) or trade-o�s

in acquiring di�erent resources.

3. Interactions between trophic levels, eg predators tending to prey on more

numerous species and allowing otherwise inferior competitors to coexist.

4. Niches, where each species is adapted to particular conditions. This would

correspond to any imposed spatial variability in imposed meteorological con-

ditions; for example one species may thrive in cool conditions another in

warm.

The model of Lehman and Tilman (2000) uses temporal heterogeneity as species

are only di�erentiated by their temperature properties and as the environmental

temperature �uctuates due to temperature �noise�. If the noise properties are

such that the temperature will change fast enough that species do not experience

temperatures they are not suited to long enough to die out, then species will co-exist

and trait diversity will be maintained.

Lehman and Tilman (2000) and the work in this chapter ignore other interactions

such as trade-o�s or spatial variability. We also do not model directly allelopathy
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(suppression of competitors by release of biochemicals) nor directly model space or

light competition.

3.5.2 Comparison with Previous Work

Lehman and Tilman (2000) used a resource system of several species competing

for one resource to study ecosystem stability. They used a system where the tem-

perature changed at the beginning of every simulation year to a new random value

chosen from a uniform distribution on the interval [20, 30]◦C. The equations used

were: -

dR

dt
= a(S −R)−Q R

R +K

∑
j

gj(T )Bj

dBi

dt
=

[
gi(T )

R

R +K
− γ
]
Bi

gi(T ) = gmax exp

[
−1

2

(
T − TOPT,i

Tw

)2
] (3.5.1)

A typical result from (Lehman and Tilman, 2000) is shown in Figure 3.11.

a = 1.0 gmax = 1.0 Tw = 1.0

S = 100.0 K = 10.0 Tmean = 25.0◦C

γ = 0.1 Q = 2.0

Table 3.3: Tilman's Model Parameters

This system shows clear coexistence as the system never reaches equilibrium before

the temperature changes. This result was easily replicated using the Euler method

for solving di�erential equations numerically (Figure 3.12).

The problem with this model is that the temperature variation is crude with the

temperature held constant for a �xed period of time (every simulation �year�) and

then a new temperature taken from a uniform temperature distribution on the
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Figure 3.11: Simulations of the resource model from Lehman and Tilman (2000).

The system is that of equation (3.5.1) using parameters of Table 3.3. A, Maximal

growth rates of three species as a function of the environmental factor T. Here the

points of maximal growth are approximately TOPT,1 = 21.78◦C, TOPT,2=23.35◦C, and

TOPT,3=26.00◦C B, Sample trajectory for the above three species competing. The top

curve shows the environmental factor as a function of time (a driving variable); the

lower three curves show biomass of individual species (response variables). The �rst 50

time units in all the resource simulations allowed the system to settle but did not take

part in further calculations.
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Figure 3.12: Shows replication of the result from Lehman and Tilman (2000)

interval [20, 30]◦C for the next time period. This creates a series of temperature

�steps� with the value of each step randomly taken from the distribution.

This is crude and not a true stochastic simulation, which hinders analysis and is

less representative of real world systems.

3.5.3 Stochastic Model

This model uses the system from the previous section but exchanges the �stepped�

temperature noise of that system for one with a constant mean temperature with

�red� noise. The noise is generated using the Orstein-Uhlenbeck process often seen

in �nancial analysis (Uhlenbeck and Ornstein, 1930; Onalan, 2009; Sura and Gille,

2003). This process is a modi�ed continuous time random walk (Wiener process),

where there is now a term that tends to return the process back towards the centre

with a greater attraction the further the system is from the centre.

This allows the whole system to be represented as a stochastic di�erential equation

and more easily be analysed.

The equation for the temperature with �red� noise and having mean To is: -
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dT = α(To − T )dt+ σdW (3.5.2)

where α is the relaxation parameter, that governs how quickly the temperature

returns to the mean To, and σ the noise magnitude and W denotes the Wiener

process (dW e�ectively being Gaussian noise).

Simulations (example in Figure 3.13) were run using equations (3.5.1) and (3.5.2),

for a variety of values of the parameters α, Tw and σ. Each simulation used four

species having optimum temperatures of 22.5, 24.5, 26.5 and 28.5 ◦C and a mean

environmental temperature T0 = 25 ◦C. The resulting diversity was plotted on two

dimensional pseudo-colour plots with each block of colour representing the diversity

at those particular parameter values. As there were three parameters then several

�slices� through the three dimensional parameter space were plotted for each of the

three available orientations (see Figures 3.14, 3.15, 3.16).

The diversity was measured using the Shannon Index (which is a measure of in-

formation entropy, see Equation 1.2.1) and then converted to e�ective species (see

Equation 1.2.4) (Jost, 2006; Dewar and Porté, 2008). The e�ective species shows

the equivalent number of evenly (i.e. same number of each species) coexisting

species needed for the same Shannon Index. As the Shannon Index is maximised

for a given number of species, when all species have equal abundance (i.e. the

system is even) then the e�ective species will be less than the number of actual

species unless the system being measured is actually even.

Clear patterns of diversity can be seen as the properties of the noise change. The

diversity follows an arrowhead shape in σ − Tw space (Figure 3.14) with medium

levels of diversity in the middle of the arrow and high diversity at the edge and low

levels outside.

Analysing this system though, to explain the patterns is not trivial because of

the coupled nature of the biomass and resource equations. The resource level is

the same for all species and the resource level is in�uenced by all species, this
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Figure 3.13: For each combination of noise parameters, the system was run for a long

enough time for the diversity to settle down. The �nal quarter of the Shannon diversity

index (Equation 1.2.1) time series was then averaged to obtain a measure of diversity

corresponding to the noise parameters. This plot shows an example of the �nal quarter

of the time series for α = 3.0, σ = 17.5◦C, Tw = 5.0◦C.

89



CHAPTER 3. STOCHASTIC RESOURCE MODEL

Figure 3.14: Each plot is a �slice� of constant α and shows how the diversity in

e�ective species varies with the parameters Tw and σ. The ecosystem has four species

identical apart from their optimum temperatures (22.5, 24.5, 26.5 and 28.5 ◦C) and

has mean temperature of 25◦C. (See Appendix C for larger versions)
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Figure 3.15: Each plot is a �slice� of constant σ and shows how the diversity in

e�ective species varies with the parameters Tw and α. The ecosystem has four species

identical apart from their optimum temperatures (22.5, 24.5, 26.5 and 28.5 ◦C) and

has mean temperature of 25◦C. (See Appendix C for larger versions)
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Figure 3.16: Each plot is a �slice� of constant Tw and shows how the diversity in

e�ective species varies with the parameters σ and α. The ecosystem has four species

identical apart from their optimum temperatures (22.5, 24.5, 26.5 and 28.5 ◦C) and

has mean temperature of 25◦C. (See Appendix C for larger versions)
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creates complex dynamics as the temperature dependent growth rates vary with

the �uctuating temperature.

3.5.4 Diversity Patterns in Terms of Resonant Frequency

As stated explaining the patterns directly is di�cult due to the complex coupling

of resource and biomass di�erential equations, making analytic assessment di�cult.

Instead we adopt a numerical approach, and see if the system can be forced in to

resonant modes. To see if the system has resonant frequencies the temperature

can be varied sinusoidally with no noise. If the frequency and amplitude are then

changed then any resonance will be seen and hopefully the frequencies can be

related to time-scales in the system.

An initial study was done using the 4 species used in the study of noise on diver-

sity (optimum temperatures of 22.5, 24.5, 26.5 and 28.5 ◦C). This showed a clear

resonance at frequencies 2.4 and 3.6 (arbitary time units)−1. These correspond to

time periods of approximately 0.42 time units and 0.278 time units respectively

(see Figure 3.17). The time-scales of the biomass equations are 1
gm

and 1
γ
which are

1.11 time units and 10 time units respectively. So the resonances are of the right

order to be related to these timescales.

Time series of both the low (o� peak) and high (on peak) evenness cases (see

Figures 3.18 and 3.19), show a complex pattern of species dynamics which cannot

be easily explained.

If instead we choose optimum temperatures for 7 species symmetric around the

mean temperature (optimum temperatures of 22, 23, 24, 25, 26, 27 and 28 ◦C), we

instead one resonance peak at frequency of 2.9 (see Figure 3.20). This peak occurs

at a position that is exactly between the two peaks in �gure 3.17.
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Figure 3.17: Evenness versus frequency of sinusoidal temperate variation for Tw =

5.0◦C and amplitude = 8.0◦C. The evenness is simply the Shannon Index divided by

the natural logarithm of the number of species present. Two clear resonances are seen

at frequencies 2.4 and 3.6.
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(a) (b)

(c) (d)

(e)

Figure 3.18: Shows the time series for freq 3.6 (high diversity), amplitude 8◦C and

Tw = 5◦C. In each panel, the same simulation is shown, but covering decreasing time

intervals from 0 to a) 50000 b) 10000 c) 5000 d) 1000 e) 250. Shows the complex

pattern of di�erent minima and maxima of the di�erent species and how they coexist.
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(a) (b)

(c) (d)

(e)

Figure 3.19: Shows the time series for freq 2.9 (low diversity), amplitude 8◦C and

Tw = 5◦C. In each panel, the same simulation is shown, but covering decreasing time

intervals from 0 to a) 50000 b) 10000 c) 5000 d) 1000 e) 100. Shows the complex

pattern of di�erent minima and maxima of the di�erent species and how they coexist.
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Figure 3.20: Evenness versus frequency of sinusoidal temperate variation. Reso-

nance when species optimum temperatures symmetrically arranged around the mean

temperature.

Simple Two Species Case

As the previous examples are complex and have multiple species it seems sensi-

ble to now instead consider the simplest case of two species, one whose optimum

temperature matches the mean of (25◦C) and one whose optimum temperature is

displaced from the mean temperature (26◦C). Then we can study how the dynamics

change as we change the amplitude and frequency of the temperature oscillation

and the separation of the two species optimum temperatures.

This system doesn't have the sharp resonance (Figure 3.21) seen in the previous

more complex example, but as it still exhibits coexistence it is still useful to un-

derstand the mechanism of how the temperature oscillation allows this.

A phase plot (Figure 3.22) shows how the evolution of the system changes from the

constant temperature to oscillating temperature case. The system broadly follows

the same pattern as the constant temperature case but with species 2 having non-

97



CHAPTER 3. STOCHASTIC RESOURCE MODEL

Figure 3.21: Shows there is no sharp resonance for a simple 2 species system (optimum

temperatures 25◦C and 26◦C) but there is still coexistence.

zero biomass and higher resource levels, whereas the constant temperature case

leads to species 1 excluding species 2.

The growth rate oscillates (Figure 3.23) as the temperature oscillates. As this is

purely a function of temperature, the shape of the growth rate oscillation for each

species is unchanging in time.

The time series (Figure 3.24) clearly shows that the trend of the sub-dominant

species (26◦C) goes through several clear stages. Firstly, it is growing then it levels

o� and then decreases strongly with the decrease tailing o� until it just oscillates

around a static mean. Meanwhile the dominant species is always increasing but

with the rate of increase declining.

To understand this more fully, we consider the system in terms of its behaviour

over one temperature oscillation at di�erent stages of its evolution (Figure 3.25).

The key e�ect on a species is the resource level and the shape of the factor r
r+k

over

a cycle. Only this and the growth rate e�ect the species biomass in this model,

as the death rate γ is the same for all species and the growth rate oscillation is
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Figure 3.22: Phase plot of two species with temperature oscillation compared to same

species with constant temperature. The oscillation amplitude is 8◦C, the optimum

temperatures are 25 and 26◦C and Tw = 8.0◦C.

Figure 3.23: Shows how the growth rate varies during one temperature oscillation.
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(a) (b)

Figure 3.24: Time series for case where Frequency 3.6, amplitude of 8 and Tw=5 as

shown in Figure 3.22. a) Shows the system to its 'pseudo equilibrium' with 26◦C species

still coexisting with dominant one. b) Close up of early part of time-series showing the

turning point in the 26◦C species. The top R
R+K

curve has very high frequency at the

scale shown, so the individual cycles cannot be seen.

unchanging as it depends only on temperature.

This means all the dynamics we see are purely due to the multiplication of its

growth rate oscillation with the oscillation in R
R+K

. Figure 3.25 shows that change

in shape of the R
R+K

oscillation produces the stages we see in the sub-dominant

species 26◦C.

Initially the resource level is dropping strongly and the oscillation in R is relatively

small compared to the background trend, and the net e�ect when multiplied by

the growth rate curves (see Figure 3.23) is of both species increasing.

At t=60 the background resource level has stopped dropping so strongly and we

get an oscillation with a smaller peak followed by a larger peak. As we progress

to t=100 and t=9000 the �rst peak grows bigger so that by t=9000 they are of

similar size.

The increase in size of the �rst peak will mean the rate of change of the dominant

species 25◦C will diminish, as is seen, as it has a lower growth rate in this region.

Conversely the rate of change of the sub-dominant species 26◦C is boosted by this
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(a) (b)

Figure 3.25: Shows a) The the shape of factor R
R+K

over one cycle at di�erent points

in the evolution of the system. b) Shows dB
dt

for the 26◦C species. The four time

points chosen are t=10 where both species are increasing, t=60 where 26◦C species

has stopped growing, t=100 where 26◦C species is decreasing and t=9000 where that

species has almost stopped decreasing again. Frequency 3.6, amplitude of 8 and Tw=5.

and both species reach a pseudo equilibrium, oscillating around constant mean

biomass.

This behaviour may well be due to the fact that as each species grows it reduces the

resource level. Over one cycle the sub-dominant species will reduce the resource

rate the least in the early part of its cycle. When the level of this species increases

this e�ect is more pronounced and as it decreases less so. This explains the increase

in the �rst peak as the sub-dominant species declines.

Frequency Limits

There are two limits to frequency, �rstly the limit where the frequency approaches

in�nity and secondly the limit where it approaches zero. In either case the equilib-

rium biomass B∗ would be reached at each point in the temperature cycle. If we

then multiply this function by the probability distribution function of a sine wave

we can in theory calculate the expected value of each species biomass in this case.
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The growth rate varies with temperature:-

g(T ) = gmexp

(
−1

2

(
T − TOPT,i

Tw

)2
)

(3.5.3)

The equilibrium species biomass is:-

b∗(g) =
a(g − γ(k + 1))

d(g − γ)
(3.5.4)

PDF of a sine wave

p(T ) =
1

π
√
A2 − (T − Tmean)2

(3.5.5)

So expectation of biomass undergoing a sine oscillation in T is :-

E{b∗} =

∫
b∗(g(T )) p(T ) dT (3.5.6)

This integral cannot be easily solved directly so the only way to solve it would

be to take a Taylor series of b and integrate this to get an approximation of the

expected value of b.

If the integral is simpli�ed by assuming a continuous range of species with all

possible optimum temperatures then at each point on the sine oscillation the species

with an optimum temperature equal to the the temperature at that point will be

dominant. The expectation value of the biomass will then be: -

b∗o =
a(gmax − γ(k + 1))

γ(gmax − γ)
(3.5.7)
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3.6 E�ect of Temperature Trend on Noise Main-

tained Diversity

We now return to considering the situation where temperature contains noise. The

single resource model so far has a static mean temperature, but in a climate change

scenario this mean temperature trend would increase. The simplest possible trend

is a linear increase in temperature.

T (t) = T0 +
dT

dt
t (3.6.8)

The rate dT
dt

is determined by the required change in temperature ∆T = T (tfinal)−

T0 from t0 to t = tfinal.

dT

dt
=

∆T

tfinal − t0
(3.6.9)

Species ranged uniformly in their optimum temperatures from 14◦C to 81◦C, with

a spacing of 1◦ C between species. Noise parameters were chosen as ones that seem

�reasonable� and give high starting diversity (α = 5.25, σ = 30.0◦C, Tw = 5.0◦C).

The biomass of all species is not allowed to fall below the seed value of 0.001 to

represent re-population from dormant seeds or from outside the model �area� when

conditions are favourable for re-population.

If the model is only run once then the noise hides some of the e�ect (�gure 3.26).

Instead multiple runs can be averaged (Figure 3.27) and this averages out the single

run deviations and show the expected dynamics in much the same way that many

tosses of a dice will converge on the expected probability distribution.

The diversity varies in an oscillating pattern while the NPP and total ecosystem

biomass is fairly constant. This suggests that such a system with noise maintained

diversity is stable under the temperature change scenario used. The oscillation of
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Figure 3.26: Shows the result of 1 run of the model with a temperature trend, with

10◦ C increase in mean temperature. Model has been run with 67 species spaced by

1◦C with α = 5.25, σ = 30.0◦C, TW = 5.0◦C.

Figure 3.27: Averaged results of 100 runs of the model, with 10◦ C increase in mean

temperature using same parameters as Figure 3.26.
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the diversity can be seen to arise from the pattern of individual species biomasses

as the system undergoes the temperature change (Figure 3.28).

(a) (b)

Figure 3.28: Shows a) The variation of species biomass during 1 run of the model

and b) the average of 100 runs. The colour corresponds to the optimum temperature

of the species.

3.6.1 E�ect of Seed value and Optimum Temperature spac-

ing

To check how much e�ect the seed parameter and the optimum species temperature

spacing have on the results of the temperature trend a range of simulations were

run using a di�erent parameter values.

The e�ect of the seed parameter (�gure 3.29) is quite signi�cant on the diversity

but unless the parameter is increased to 0.1 it has little e�ect on the biomass and

the NPP appears unchanged for all values of the seed parameter.

The optimum species temperature spacing (�gure 3.30) again has a profound e�ect

on diversity magnitude, although the curve shapes are similar. Meanwhile there is

no e�ect on NPP and although it does have some slight e�ect on the total biomass,

in that the phase of the oscillation is shifted in time, the mean and amplitude

appear to be very similar.
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(a) Diversity (b) Total biomass

(c) NPP

Figure 3.29: Variation in response with di�erent seed parameters (other parameters

same as Figure 3.26).
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(a) Diversity (b) Total Biomass

(c) NPP

Figure 3.30: Variation in response with di�erent optimum temperature spacing of 14

species (other parameters same as Figure 3.26).
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3.6.2 E�ect of Rate of Temperature Change

The rate of climate change has shown to be critical factor in whether an ecosystem

is resilient or if it will reach a �tipping point� and collapse (Lenton et al., 2008).

To test the resilience of this particular system the model was run with di�erent

temperature changes over the same period of time (50000 time units). The seed

value of 0.001 and species spacing of 1◦C were used for each simulation.

(a) Diversity (b) Total biomass

(c) NPP

Figure 3.31: Variation in response with di�erent rates of temperature change (mea-

sured as change in temperature for a run of 50,000 time units).

It can be seen in �gure 3.31 that the NPP and biomass remain resilient up to a

temperature increase of 40◦C. Again there are signi�cant e�ects on the diversity

but overall very little clear indication that greater rates of change cause any worse
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e�ects on the diversity than slower rates of change. In fact the lowest rate of change

(5◦C) has the biggest drop in diversity before recovering, this though could be down

to the choice of a linear trend as the system goes from spinning up with a constant

mean temperature to suddenly experiencing an increasing mean temperature. This

discontinuity could lead to some transient e�ects.

3.7 Conclusions and Discussion

The model presented in this section has been successful in generating a diversity of

temperature traits, maintained by temperature noise. Furthermore, such diversity

in these circumstances is robust (in terms of NPP and biomass), to any additional

imposed climate change.

However, it is not trivial to understand the relationship between the nature of

the temperature noise properties and the diversity seen. Certainly there are some

interesting patterns in the diversity with respect to the noise parameters (�gures

3.14, 3.15, 3.16) but so far e�orts to fully understand the nature of the diversity

mathematically have not been fully successful and is left as an avenue for future

work. All that can said is that the fate of a species depends on it never being so

far from its optimum temperature long enough to die out.

To get meaningful results the model must be run several times and the results

averaged to get the expected mean dynamics. This is costly in time as the model

needs to be run 100 times or more. This is could be impractical for use in time

critical modelling such as the land surface components of climate models due to the

computational cost and complexity but is still useful in advancing the theoretical

understanding of how diversity arises.

The work in this chapter has three possible of avenues of future work. Firstly, the

complex relationship between diversity and the noise parameters needs to be better

understood to allow this model to more de�nitively study the relationship between

diversity and stability. Secondly, it would also be interesting to compare the noise
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seen in real temperature observations to see if there is any correlation between

real world temperature variability and diversity. Finally it may be interesting to

investigate a resource model without the temperature noise but instead have species

compete for more than one resource which can allow coexistence and then assign

each species environmental traits either randomly or from observational data.
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Chapter 4

Trait Di�usion Model

In Chapters 2 and 3 it was seen that both the Lotka-Volterra (LV) and single

resource models will competitively exclude all but the dominant species and there-

fore do not produce ecosystem diversity. If heterogeneity is added in the form of

temperature �noise� to the single resource model then species with di�erent tem-

perature traits can coexist. This latter model su�ered from being complex and

di�cult to analyse and computationally intensive, which in a larger model such as

a climate model would be harder to adapt, maintain and evaluate.

On the longer time-scales of evolution species will constantly diversify through ge-

netic mutation and in a given ecosystem new species may invade from neighbouring

areas. This means new species constantly appear and compete with already estab-

lished species. As long as the rate of speciation matches the loss of species through

competition diversity will be maintained (Rabosky, 2013).

The time-scale of anthropogenic climate change is quite short in evolutionary terms,

so long-lived species will not have time to evolve into a completely distinct new

species but there is time for micro-evolution, where new traits within species can

evolve (Hendry and Kinnison, 2001). This means it is more useful to model

traits (such as optimum growth temperature) rather than species. So the ques-

tion changes from �what e�ect does species diversity have on ecosystem resilience

111



CHAPTER 4. TRAIT DIFFUSION MODEL

to environmental change?� to �what e�ect does existing trait diversity have on

ecosystem resilience to climate change?�.

As well as evolving, species undergoing climate change can also respond to cli-

mate change via plasticity/acclimation or by migration (Ho�mann and Sgrò, 2011;

Gienapp et al., 2008). These processes are not mutually exclusive with evolution

(Nicotra et al., 2010) and have led to di�culty in interpreting the mechanism of

observed changes in traits (Ho�mann and Sgrò, 2011).

In this chapter the resource model used in Chapter 3 is modi�ed to instead represent

a set of temperature traits rather than species. Diversity of traits is modelled

through a balance between traits evolving and competitively excluding each other.

This model is then used to study the resilience of the system to increasing rates of

temperature change.

The work in this chapter only includes the e�ects of trait evolution and leaves

the e�ects of migration and acclimation for future work. The model also is kept

simple by ignoring the temperature limitations seen in plants (i.e. in�nite range

of temperature traits). This allows the dynamics of the model to be more easily

explored.

4.1 Model Equations

To model trait diversity the non-dimensionalised resource model from Chapter 3 is

adapted by assuming that now each species is instead a di�erent temperature trait

value (optimum growth temperature) and that the biomass of any trait will di�use

into neighbouring traits at a constant rate ε.

The number of traits is �xed and each trait, as in the previous chapter, has a

biomass value representing the total biomass of all individual members of the

ecosystem with that trait.

The di�usion of trait biomass is a way of modelling the micro-evolution of traits
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through mutation or cross breeding between diverse traits within a given species or

set of species. As the resource model does not model individuals directly the only

way of representing the evolution is by assuming that a proportion of biomass of

any one trait �evolves� at a given rate to adjacent traits. The process assumes the

population is large enough that the micro-evolution can be modelled as a continuous

rather than a discrete process, i.e. the birth of individuals with speci�c mutations

are not modelled, just the changes in relative total ecosystem biomass of each

trait. The model assumes that most �mutations� are small changes and so limits

the di�usion to adjacent traits.

This gives a modi�ed equation set for n di�erent trait values: -

db0

dτ
= b0

[
Γ0(θ)

r

r + k
− 1− ε

]
+ εb1 (4.1.1)

dbi
dτ

= bi

[
Γi(θ)

r

r + k
− 1− 2ε

]
+ ε(bi+1 + bi−1) (4.1.2)

dbn
dτ

= bn

[
Γn(θ)

r

r + k
− 1− ε

]
+ εbn−1 (4.1.3)

dr

dτ
= µ(1− r)− r

r + k

∑
j

Γj(θ) bj (4.1.4)

This is for an n trait value system (where 1 ≤ i ≤ n).

As in Chapter 3, this chapter uses non-dimensional variables 4.1.5 including time

which is multiplied by the death rate γ to give a non-dimensional time variable

where 1 unit is one trait lifetime 1
γ
. All traits are assumed to have the same death

rate.

k =
K

S
r =

R

S
bi =

QBi

S

θ =
T

Tw
θOPT,i =

TOPT,i
Tw

τ = tγ

µ =
a

γ
Γi =

gi
γ

(4.1.5)
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The de�nitions of the dimensional variables such as R, S and K etc, which are not

used in this chapter, can be found in Table 3.1 in Chapter 3.

Symbol Variable / Parameter Unit

bi Non-dimensional biomass trait i -

Γi Temperature dependent biomass growth:death rate ratio trait i -

Γmax Maximum growth:death rate ratio -

θ Non-dimensional temperature (per Tw) -

θOPT,i Non-dimensional optimum temperature of trait i -

Tw Temperature growth curve width ◦C

r Resource availability:supply ratio -

k Non-dimensional resource half saturation constant -

µ Conversion rate unavailable to available resource (per lifetime) -

ε Trait di�usion parameter (per lifetime) -

Table 4.1: List of symbols for Chapter 4

The equations for the rate of change of resource availability:supply ratio r and the

growth:death rate ratio of a trait Γi(θ) are unchanged from the previous chapter.

The −2ε term inside the square brackets represents the proportion of biomass lost

per lifetime to traits adjacent in optimum temperature, while the ε(bi+1 + bi−1)

term represents biomass gained by traits either side di�using into this one.

4.2 Equilibrium Solution

Running the model numerically, using the Runge-Kutta 4th order method, shows

that the numerical model always converges to a single equilibrium solution (see

�gures 4.1 and 4.2). The model was initialised by only the optimum trait having

biomass at the start and all others zero.
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4.2.1 E�ect of Di�usion Rate and Trait Spacing

The di�usion rate changes the equilibrium solution. In �gure 4.1 we can see that

the equilibrium solution has a shape that appears very similar to a Gaussian. The

equilibrium curve is sharper for low di�usion rates and �atter for higher di�usion

rates. The di�usion e�ect means that biomass is transferred from a trait to the

adjacent traits until a balance is reached as traits with an inferior growth rate will

have a higher db
dτ

due to the di�usion from adjacent traits with superior growth

rate. So higher di�usion will tend to reduce the dominance of traits with a higher

growth rate.

Figure 4.1: Equilibrium solutions to the trait di�usion model for di�ering values of

di�usion rate ε. The model was run with 401 traits evenly spaced 0.05Tw apart for

1000 lifetimes to allow the model to reach equilibrium.

Lower di�usion rates take longer to come to equilibrium as the biomass will take

longer to move from trait to trait (Figure 4.2a). The total biomass of the system

though appears to remain constant (Figure 4.2b).

The di�usion therefore has an e�ect on diversity as the higher di�usion case has

more evenly distributed biomass and is therefore more diverse (�gure 4.3).
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CHAPTER 4. TRAIT DIFFUSION MODEL

(a) (b)

Figure 4.2: a) Time evolution of the biomass of trait matching environmental tem-

perature (optimum trait) b) Time evolution of total system biomass.

Figure 4.3: Shannon diversity at equilibrium for di�erent di�usion rates, demonstrat-

ing that greater di�usion leads to greater diversity.
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The di�usion rate has a very small in�uence on the system biomass (Figure 4.4)

but a very pronounced e�ect on the biomass of the optimum trait, with larger

di�usion reducing its magnitude.

(a) (b)

Figure 4.4: E�ect of di�usion rate on a) Total system biomass b) biomass of optimum

trait.

The NPP (which is de�ned as Bigi) and the total system biomass both slightly

reduce with increasing di�usion rate. Meanwhile the resource availability increases

with increasing di�usion as the total biomass has decreased, meaning less resource

has been used (Figure 4.5).

(a) (b)

Figure 4.5: E�ect of di�usion rate on a) NPP b) resource availability.

The spacing of the optimum temperatures of the traits (Figure 4.6) has the e�ect

to reduce the biomass of the dominant trait as the spacing is reduced. This is
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CHAPTER 4. TRAIT DIFFUSION MODEL

due to traits closer to the dominant trait have optimum temperatures closer to the

environmental temperature and therefore have a higher growth rate than a trait

further away.

Figure 4.6: Equilibrium solutions to the trait di�usion model for di�ering spacing of

trait optimum temperatures for di�usion rate of 0.1 dimensionless biomass per lifetime.

The trait spacing also has an e�ect on how quickly the optimum trait biomass

achieves equilibrium (Figure 4.7a) with bigger spacing achieving equilibrium faster.

The diversity decreases with increasing trait spacing (Figure 4.8) as the biomass

becomes more evenly spread across traits (Figure 4.6).

The total biomass decreases and the optimum trait biomass increases as the trait

spacing increases (Figure 4.9).

Again the NPP correlates with the total system biomass and slightly reduces with

increasing trait spacing, while the resource availability increases with increasing

trait spacing as the total biomass has decreased, meaning less resource has been

used (Figure 4.10).
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4.2. EQUILIBRIUM SOLUTION

(a) (b)

Figure 4.7: a) Time evolution of optimum trait biomass b) Time evolution of total

system biomass for di�erent trait spacings.

Figure 4.8: Shannon diversity (Equation 1.2.1) at equilibrium for di�erent trait spac-

ings.
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(a) (b)

Figure 4.9: E�ect of trait spacing on a) Total system biomass b) biomass of optimum

trait.

(a) (b)

Figure 4.10: E�ect of trait spacing on a) NPP b) resource availability.
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4.2.2 Range of Traits

Before testing the e�ect of a temperature increase (e.g. climate change) on this

model it important to know how many traits are needed to accurately model the

biomass and NPP. It is assumed that the traits are arranged symmetrically around

the environmental temperature and the trait range is the di�erence between the

environmental temperature and the trait furthest from the environmental tempera-

ture. If the range of traits is too small then large inaccuracies would be introduced

as the last trait would have a signi�cant biomass relative to the optimum trait. As

the trait biomass distribution is similar to a Gaussian in shape then as traits are

added each one will have a smaller and smaller biomass until the e�ect of adding

more traits becomes negligible.

This e�ect can be seen in Figure 4.11 where the biomass distribution converges

as more traits are added. It is important that the trait range is large enough to

accurately model both the total biomass and the individual trait biomasses.

Figure 4.11: Shows the e�ect of trait range on biomass for di�usion rate 0.1 and trait

spacing of 0.4 Tw. As the trait range increases then the biomass distribution converges.

If the range is too short the result can deviate quite signi�cantly.
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CHAPTER 4. TRAIT DIFFUSION MODEL

Di�erent values of di�usion and trait spacing will need a di�erent number of traits

to get an accurate representation. Figure 4.12 shows that the trait range needed

increases as the di�usion rate is reduced as the biomass distribution becomes wider.

When the temperature is increased in a temperature change scenario then the trait

range needed will have to be asymmetric with the lowest trait starting at starting

temperature - trait range and the highest trait having temperature equal to �nal

temperature + trait range. If a big enough trait range is used then the e�ect of

the asymmetry will be negligible.

Figure 4.12: Shows the variation of total ecosystem biomass as the number of traits

is increased in range with a trait spacing of 0.2 of the growth curve width Tw. For each

value of trait di�usion the biomass converges as the number of traits increases. The

variation in total biomass is quite small.
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4.3 E�ect of Temperature Change on the Trait Dif-

fusion Model

To study the e�ects of temperature change the model was �rst spun up to equilib-

rium at the starting temperature and then the temperature was increased linearly

for a �xed time period of 75 lifetimes (Figure 4.13). By repeating this for di�erent

temperature rates it is possible to see if there are any rate dependent e�ects on the

total system biomass and NPP. To keep the model simple the range of traits is not

limited, and so ignores the temperature limitations seen in real plants.

Figure 4.13: Shows the range of rates of temperature increase used to study rate

dependent e�ects on the model. A total of 299 scenarios from 0.02 Tw per lifetime to

5.98 Tw per lifetime were used. In the plot each scenario has a colour as shown in the

colour bar.

The rate of temperature increase has a critical value where the biomass collapses.

In �gure 4.14a the time evolution of the total system biomass can be seen, each

scenario appears to settle down to �xed value despite the constantly increasing

temperature and constantly changing trait biomasses. If the �nal biomass value

of each scenario is plotted against the rate of temperature increase as in 4.14b a
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CHAPTER 4. TRAIT DIFFUSION MODEL

collapse of the system biomass can be seen around a rate of 0.6 Tw per lifetime.

(a)

(b)

Figure 4.14: a) Shows the evolution of the system biomass for each rate of temperate

change for di�usion of 0.1 (per lifetime) and spacing of 0.2 Tw. The colourbar shows

the rate of temperate change for each plot. b) Shows the �nal biomass vs rate of

temperature change, shows that there is a critical rate of 0.6 Tw per lifetime.
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A very similar pattern is seen with NPP as this is closely related to the biomass

(Figure 4.15).

Figures 4.14 and 4.15 only showed results for one particular choice of trait di�usion

and trait spacing. The simulation was run many times for a range of di�usion

and spacing values with over 2500 traits used to be sure of covering the range of

temperatures. For each run the critical rate was de�ned as the rate where the NPP

dropped to half its original value.

The critical rate can then be plotted against di�usion rate for a range of spacing

values (Figure 4.16).

A higher di�usion rate makes the system more resilient to temperature changes as

can be seen by systems with higher di�usion being able to withstand higher rates

of temperature change before the NPP collapses.

We already know there is a relationship between the equilibrium diversity and the

trait di�usion and trait spacing (�gures 4.3 and 4.8). So we can replot �gure 4.16

as critical rate vs starting diversity (�gure 4.17), which shows that systems with

a higher starting Shannon Diversity and evenness are for any particular spacing

value more resilient to temperature change.

This result makes sense intuitively. More ability to di�use allows better ability to

keep up with imposed change.

4.3.1 Predictions of Critical dT
dt based on species lifetime and

di�usion

The results so far have all been plotted in terms of the non-dimensional equations

and variables. To make real predictions of critical rates of change we can calculate

dT
dt

from dθ
dτ

if we know the mortality rate γ and the growth curve width Tw and

assume that growth rate g(T) = Γγ with a �xed value of Γ.

Figure 4.18 presents the results for dT
dt

in the case where Tw = 2.0◦C and Γ = 10.
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(a)

(b)

Figure 4.15: a) Shows the evolution of the system NPP for each rate of temperate

change for di�usion of 0.1 (per lifetime) and spacing of 0.2 Tw. The colourbar shows the

rate of temperate change for each plot. b) Shows the �nal NPP vs rate of temperature

change, shows that there is a critical rate of 0.6 Tw per lifetime.
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Figure 4.16: Shows the critical
dθ

dτ
vs di�usion rate. Higher di�usion rate allows the

system to maintain biomass and NPP with higher rates of temperature change.

The critical rate dT
dt

is proportional to the mortality rate and therefore reciprocal

of the lifetime.

The results in Figure 4.18 suggest that for a tree of lifetime of 100 years the critical

rate of change would be 0.054◦C year−1, for an annual plant 5.4◦C year−1 and for

a short-lived bacteria (lifetime 0.01 year / 3 days) would be 540◦C year−1. Obvi-

ously these results will change in di�erent values are chosen for the trait spacing,

di�usion/diversity, growth curve width and growth:death rate ratio Γ.

As forest ecosystems are of key importance, Figure 4.19 shows the critical rates of

change for species with lifetime of order of 100 years, range from 0.01 to 0.3 ◦C

year−1 for a di�usion rate in range 10−2 to 100.25 per lifetime and spacing in range

1 to 5◦C and Tw = 5.0◦C.

The lower values of these predicted critical rates are within the rates of change

predicted for anthropogenic warming (see IPCC (2013), temperature increase of

between 2◦C and 6◦C globally by 2100 with maybe as much as 11◦C for the arctic
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(a) (b)

(c)

Figure 4.17: Shows the critical dθ
dτ

vs diversity. Measured by a) Shannon diversity

b) Evenness. c) E�ective number of traits. Higher diversity and evenness allows the

system to maintain biomass and NPP with higher rates of temperature change.
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(a) (b)

(c)

Figure 4.18: Shows the reciprocal relationship between critical dT
dt

and lifetime for

Tw = 5.0◦C, spacing 2.5◦C and Γ = 10. a) Critical dT
dt

vs Lifetime for di�erent

di�usion rates b) same as a) with y axis also plotted logarithmically. c) dT
dt

vs di�usion

for di�erent lifetimes.

129



CHAPTER 4. TRAIT DIFFUSION MODEL

(a) (b)

(c)

Figure 4.19: Critical rates of change for species of lifetime 100 years, which is rep-

resentative of forest trees. a) Plotted vs di�usion b) Plotted vs Shannon diversity c)

Plotted vs e�ective number of traits.
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by this date - gives warming rates of 0.02, 0.0667 and 0.122 ◦C yr−1 respectively).

So whether our forests can adapt to warming depends on the trait diversity, growth

curve width and trait spacing of real forest ecosystems.

4.4 Discussion and Conclusions

The trait di�usion model is a simple yet e�ective way of representing diversity and

avoids the di�culties of using stochastic e�ects to maintain diversity as in Chapter

3. The di�usion represents the natural tendency of an ecosystem to increase in

trait diversity due to genetic mutation and evolution, while the single resource

competition will reduce the biomass of traits less well suited to the environment.

This trade o� between the di�using and competitive e�ects leads to a distribution

with a Gaussian like shape, with the peak centred around the temperature of the

environment. Larger di�usion rates lead to a �atter and wider distribution and low

di�usion rates give a sharper and taller distribution. So greater di�usion leads to

higher trait diversity.

Due to the Gaussian like shape of the distribution the traits further from the

environmental temperature have smaller and smaller biomass and so there comes a

point where the e�ect of adding more traits on the total system biomass becomes

negligible and converges on the biomass that would be obtained with an in�nite

range of traits. This allows the number of traits needed to accurately model the

total system properties to be established.

If the environmental temperature is increased linearly for a system that has pre-

viously come to equilibrium at the starting temperature then the system will �nd

a new constant lower level of biomass and NPP even though the temperature and

the trait biomasses are constantly changing. The new biomass level is increasingly

lower for higher rates for temperature increase.

Beyond a certain critical rate of temperature change the biomass and NPP collapse

down to zero. This suggests that the system has an adaptation limit where it can
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only keep up with temperature change if it is below the critical rate, as above this

rate it can no longer adapt. This chapter has shown that an ecosystem with higher

trait diversity maintains its biomass better for a given rate of temperature increase

and therefore suggests that trait diversity makes an ecosystem more resilient to

environmental changes.

This conclusion has implications for real ecosystems, suggesting that the ability of

an ecosystem to adapt to environmental change and the rate of the change are the

key factors in determining if a particular ecosystem can survive the changes.

For forest ecosystems the critical rates range from 0.01 to 0.3 ◦C year−1 for a

di�usion rate in range 10−2 to 100.25 per lifetime and spacing in range 1 to 5◦C

and Tw = 5.0◦C. This means that if real forest ecosystems have critical rates that

correspond to the lower end of this range, they could very well experience rates of

change that are greater than their critical rate.

Hence understanding the di�usion rates, growth curve widths and trait spacing

of real ecosystems would allow this model to make more speci�c predictions as

to whether ecosystems can withstand current and forecast rates of change. So

understanding the real values of these parameters is a very important avenue of

future work.

This is especially true if on-going industrialisation causes faster warming rates, or

as the planet emerges from what some have called the warming �hiatus� (Kosaka

and Xie, 2013).

The model assumes that only temperature trait di�usion determines the trait diver-

sity and ignores any other possible mechanisms that may in�uence the temperature

trait diversity. It would be useful validation of this model to perform an in-depth

study of plant traits to see if there is a link between the range of environmental

traits (such as temperature) in an ecosystem and the variance of the corresponding

environmental variable.

Currently the trait spacing has an e�ect on the diversity and also on the resilience
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that cannot be explained purely through the diversity alone. This suggests that the

model might be more or less resilient in a continuous form where the trait spacing

is no longer a factor but this isn't a trivial thing to do, so is very much an avenue

of future work.
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Chapter 5

Theory of Vegetation Demography

This chapter is the start of the second part of the thesis, which develops a new

Dynamic Global Vegetation Model (DGVM). This �rst chapter of this part of the

thesis focuses on the theoretical basis for the model.

Estimating the rate forests accumulate (or lose) carbon is an important issue for

large-scale land surface models whose purpose is estimating the land carbon sink

(Moorcroft et al., 2001; Fisher et al., 2010). Stephenson et al. (2014) have shown

that the rate of carbon accumulation tends to increase with tree size and so this

has implications for the accuracy of predictions of large-scale vegetation models

which do not model di�erent plant sizes, especially should such models be used for

policy applications to determine how much terrestrial ecosystems are capable of

o�setting anthropogenic emissions.

Many forests are subject to the e�ects of land use and land cover change and forest

management (Lambin et al., 2003). These processes can selectively remove trees of

some sizes and leave others or result in an area being cleared for crops but then later

falling out of use and forest regrowing (Bellassen et al., 2010; Lambin et al., 2003;

Zaehle et al., 2006). So it is desirable to be able to account for such size-dependent

processes in DGVMs.

This chapter will present the underlying theoretical concept of a vegetation demog-
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raphy model that includes size dependent growth and also analyses some idealised

analytical solutions to the model. Chapter 6, will then expand upon this theoretical

basis to create a full numerical vegetation model.

5.1 Basic Model Concept - Continuity

The distribution of tree sizes in a forest is shaped by three factors in the form of

growth, death and recruitment of seedlings. This means that the change in number

of trees in a particular size range is simply governed by the number of trees smaller

than that range growing into it minus the number of trees lost from that size range

to death or by growing bigger. This is simple case of continuity or conservation

with an additional loss term associated with mortality.

Figure 5.1: The growth of each size class is determined by the �ow of trees into and

out of the class. Trees can grow from smaller size classes into this one, can grow out

of this size class or be lost due to mortality.

To model such a system we can use the continuity equation from physics, often

used in �uid �ow as well as areas such as electromagnetic theory. The continuity

equation simply describes the transport of a conserved quantity. In the case of

�uid �ow, the �uid is conserved and also �ows spatially.

∂ρ

∂t
+ ∇ · (ρu) = 0 (5.1.1)
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where ρ is the �uid density and u is the velocity vector �eld. If �ow is just in

one dimension, then we can simplify to the below, which is the one-dimensional

advection equation: -

∂ρ

∂t
+

∂

∂x
(ρu) = 0 (5.1.2)

For a forest the equation is modi�ed so the state variable becomes the tree density

n with units of trees m−2 kg−1. The spatial variable is m, and this is the tree dry

carbon mass with units kg of carbon, hereafter denoted kg C. The velocity becomes

the carbon mass growth rate of trees as a function of size m. In addition there is

a loss or sink term, on the right hand side, representing tree mortality γ.

This is very similar to the model used in Kohyama (1991) except the size variable

chosen is the tree dry carbon massm rather than trunk diameter. This is convenient

for modelling both tree physiology and the carbon cycle. The physiology model

can just directly calculate the rate of CO2 �xation to give dm
dt
. A tree's carbon

mass is in the range 46% to 50% of kiln dry mass for hardwood trees and 47% to

55% for softwood (conifer) trees (Lamlom and Savidge, 2003).

∂n

∂t
(m, t) +

∂

∂m

(
n(m, t)

∂m

∂t
(m, t)

)
= −γn(m, t) (5.1.3)

The recruitment of new seedlings to the lowest mass class m0, determines the lower

boundary condition: -

[
n(m, t)

∂m

∂t
(m, t)

]
m=m0

= Recruitment (5.1.4)

To convert the size distribution from in terms of mass m to another size variable

y (such as trunk diameter or height), then the following relation is used as derived

in Appendix D.

n(y, t) =
dm

dy
n(m, t) (5.1.5)
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5.2 Equilibrium Solution to Continuity Equation

To understand the dynamics of the forest continuity equation, the model is sim-

pli�ed to have time independent growth rate that is approximated by a simple

mathematical function of mass and to assume the recruitment is constant.

These solutions assume no shading of shorter trees by taller ones, so these solutions

are more applicable to open canopies. The next chapter will add recruitment and

shading competition to the model but the extra complexity will require them to be

solved numerically.

At equilibrium the forest continuity equation is: -

∂n

∂t
(m, t) = − ∂

∂m

(
n(m, t)

∂m

∂t
(m, t)

)
− γn(m, t) = 0 (5.2.6)

This can be written more compactly using g(m) = ∂m
∂t

(m) and then multiplying

out by the product rule.

n(m)
dg

dm
(m) + g(m)

dn

dm
(m) = −γn(m) (5.2.7)

Which simpli�es to : -

1

n(m)

dn

dm
(m) = − 1

g(m)

[
dg

dm
(m) + γ

]
(5.2.8)

5.2.1 Power Law Growth Rate Case

The �rst case considered is to assume the growth rate follows a power law depen-

dence on size: -

g(m) = amb (5.2.9)

where a and b are constants.
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Integrating equation 5.2.8 for this case yields:-

∫ n

n0

dn

n(m)
= −

[
ln g(m)

]m
m0

− γ
∫ m

m0

1

amb
dm (5.2.10)

where m0 is the lowest mass class and n0 is the number of trees in the lowest mass

class.

ln
n(m)

n0

= −
[
b ln |am|+ γm1−b

a(1− b)

]m
m0

(5.2.11)

n(m) = n0 exp

[
−b ln

∣∣∣∣ mm0

∣∣∣∣− γ

a(1− b)
(
m1−b −m0

1−b)] (5.2.12)

Giving the size distribution of

n(m) =
k

mb
exp

[
− γ

a(1− b)
m1−b

]
(5.2.13)

where

k = n0m0
b exp

[
γ m0

1−b

a(1− b)

]
(5.2.14)

For b = 0, which corresponds to a constant growth rate of magnitude a, this general

form (Equation 5.2.13) reduces to

n(m) = n0 exp
(
−γ
a

[m−m0]
)

(5.2.15)

Idealised Self-Thinning

If the above power law solution is used to represent an idealised case where b = 2
3

then the growth rate is: -

g(m) = am2/3 (5.2.16)
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This corresponds to a case where the trees are self-similar with a constant mass

density and with growth proportional to the crown area A. The self-similarity

and constant density implies that the crown area is a circle of radius r and the

tree mass is proportional to volume V , which in turn is proportional to the crown

radius cubed r3. The growth rate is assumed to be proportional to the crown area

A.

g ∝ A ∝ r2 (5.2.17)

m ∝ V ∝ r3

Rewriting the above equation by substituting mass m into the relation for g, leads

to Equation 5.2.16

If the mortality is negligible so γ → 0, then Equation 5.2.13 reduces to

n =
k

m2/3
(5.2.18)

where k = n0m0
2/3.

(a) (b)

Figure 5.2: The self-thinning trajectory as a solution to the forest continuity equation

in the idealised case of g(m) ∝ a m2/3 a) Linear axes b) logarithmic axes
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This then corresponds to the trajectory an even aged stand will follow during self-

thinning (Westoby, 1984). This is only an approximation as real forest growth

function increases up to a maxima then then decreases back down to zero as size

increases. The above approximation can seen to be valid for small sizes before the

growth maxima.

5.2.2 Quadratic Growth Rate Case

A more complex functional form for g(m) that still allows the equilibrium solution

to be found easily by direct integration is to assume quadratic dependence of g(m)

on mass. This approximates to tree growth rates in a situation that while the

photosynthesis is a monotonic function of size, the respiration and litter losses

increase more slowly but eventually overtake photosynthesis meaning there is both

a turning point in the growth rate and a maximum size where growth rate has fallen

to zero. This pattern can be seen in some studies of forest growth (Kohyama, 1987,

1991), particularly for faster growing species in canopy gaps.

g(m) = gmax

[
1−

(
m

mmax

− 1

)2
]

(5.2.19)

A non-dimensional form of the tree mass is used to simplify the mathematics: -

x =
m

mmax

(5.2.20)

g(x) =
∂m

∂t
(x) = gmaxx (2− x) (5.2.21)

The di�erential is

dg

dm
=

gmax
mmax

2 (1− x) (5.2.22)

Again we integrate Equation 5.2.8 to get the analytical expression for n: -
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Figure 5.3: Quadratic growth rate as function of mass

∫ n

n0

dn

n(m)
= −

[
ln g(x)

]x
x0
− γ mmax

gmax

∫ x

x0

1

x (2− x)
dx (5.2.23)

ln
n

n0

= −
[
ln |x (2− x)|

]x
x0
− γ mmax

2gmax

[
ln

∣∣∣∣2− xx
∣∣∣∣]x
x0

(5.2.24)

We can make the simplifying substitution of : -

z =
γ mmax

2gmax
(5.2.25)

n = n0x0
z+1(2− x0)1−z (2− x)z−1

xz+1
(5.2.26)

If we gather all the constant terms into a constant D, we get

n =

 D (2−x)z−1

xz+1 , forx ≤ 2

0 forx > 2
(5.2.27)

If x > 2 the solution (Equation 5.2.27) is then only real if z is an integer and is

complex if z is a multiple of 0.5 and is unde�ned if z is neither an integer nor a
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multiple of 0.5. As you would not expect trees to grow beyond x > 2 as the growth

rate g ≤ 0 then the solution is de�ned to be zero for x > 2.

The di�erential of the above solution is : -

dn

dm
=
dn

dx
=

2D (2− x)z−2

xz+2
(x− 1− z) (5.2.28)

E�ect of z parameter on analytical solutions

The z parameter is an important determinant of the distribution shape seen. Figure

5.4, shows the di�erent distribution shapes for di�erent values of z.

Figure 5.4: Shows di�erent analytical solutions assuming a quadratic growth rate for

di�erent values of z. Clearly shows that as z increases past 1 the solutions no longer

have a minima in the middle and instead are monotonically decreasing.

This shows that the distribution is �U-shaped� with a minima between 1 < x < 2

(mmax < m < 2mmax) if 0 < z < 1, this means that the tree density is larger

for both smaller and larger trees compared to medium sized trees. If z ≥ 1 the

tree density is a monotonically decreasing function of size and for z > 1 follows the
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rotated sigmoid shape commonly seen in observed forest size distributions (Zenner,

2005; Rubin et al., 2006).

When 0 < z < 1, the medium sized trees grow quickly and therefore trees spend

the least time at these sizes and the top of the canopy is densely populated. When

z ≥ 1 then the death rate is becoming large enough to have a signi�cant e�ect on

the distribution and the forest has a decreasing number of trees with increasing

size, as represented through mass m.

This can be understood mathematically if the continuity equation (Equation 5.1.3)

is rearranged in terms of ∂n
∂m

(m) and g(m) is substituted for ∂m
∂t

∂n

∂m
(m) = −n(m)

g(m)

(
γ +

∂g

∂m
(m)

)
(5.2.29)

From this it can be seen that the gradient of the distribution will be positive where(
γ + ∂g(m)

∂m

)
is negative. This means the positive slope seen for m > mmax and

z < 1 corresponds to: -

∂g

∂m
(m) < −γ (5.2.30)

So if the steepest negative slope at x = 2 (m = 2mmax) is less than −γ the

distribution will be �U-shaped�. From Equation 5.2.22 it can be seen that the

greatest slope of the growth function is

∣∣∣∣ dgdm
∣∣∣∣
max

= 2
gmax
mmax

(5.2.31)

So z is described by the ratio of the mortality to the greatest slope of g: -

z =
γ mmax

2gmax
=

γ∣∣ dg
dm

∣∣
max

(5.2.32)
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5.3 Discussion

The continuity equation has been previously used successfully as a way of mod-

elling forest ecology by Kohyama (1991, 1993, 2006) and ecosystem demography

(Moorcroft et al., 2001). These earlier studies only focused on producing numerical

simulations based on empirical data.

This chapter has shown that a simpli�ed time independent growth rate that is

described by simple mathematical functions of tree size itself, can be used to obtain

approximate analytical solutions to the forest continuity equation.

Two useful solutions were found. The �rst was using a power law growth rate,

which allowed the idealised self-thinning trajectory to be reproduced.

The second solution was that with a quadratic growth rate increasing from the

origin to a maxima before decaying back to zero at the largest tree size, which

approximates the variation of growth rate observed by Kohyama (1987) for forest

gaps. This showed two distinct size distributions, the �rst having a rotated sig-

moid size distribution (as also seen in observational studies such as Zenner (2005);

Rubin et al. (2006)) and the second was a �U-shape� distribution. The �U-shape�

distribution corresponds to a forest with a very dense upper storey with very few

medium sized trees.

The determinant of which distribution shape being seen was the ratio of the max-

imum slope of the growth function to the death rate γ. If the death rate is higher

than the maximum growth rate slope then a rotated sigmoid solution is seen, oth-

erwise the solution will be the �U-shape� distribution.

In the next chapter the model will be improved to include competition through

shading, growth rate based on plant physiology and recruitment based on primary

productivity.
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Chapter 6

Numerical Model of Robust

Ecosystem Demography (R.E.D.)

As mentioned in Chapter 5, estimating land use and land cover change and forest

regrowth after a disturbance is an important issue for large-scale land surface mod-

els whose purpose is estimating the land carbon sink. The TRIFFID (Cox, 2001;

Best et al., 2011; Clark et al., 2011) dynamic global vegetation model (DGVM)

does not model di�ering tree sizes and this is a contributing factor to the reason

that its regrowth time-scales are often longer than those seen in observations (see

Figure 6.1).

The model presented in Chapter 5 is extended in this chapter with a physiology

model from TRIFFID used to calculate the growth rate and also introducing rep-

resentations of light competition and recruitment.

6.1 Discretisation

To make a practical model we need to discretise this equation into a set of mass

classes. The mass classes are de�ned as equally spaced with the mean mass (mid-

point) of the class used to represent the mass of all individuals in that class. The
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Figure 6.1: Output from TRIFFID for Hyytiala in Finland. Shows the time evolution

of the fractional coverage of each PFT where BS is bare soil, SH is shrub, C4 is C4

grass, C3 is C3 grass, NL is needleleaf trees and BL is broadleaf trees. The dominant

PFT of needle leaf takes ∼300 years to regrowth whereas observations show this should

be ≤∼100 years timescale (Staaland et al., 1998).
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Table 6.1: List of symbols for Chapter 6

Symbol Variable / Parameter Unit

m Tree carbon mass kg C

n(m, t) Tree density trees m−2 kg−1

γ Tree mortality year−1

C Tree carbon mass per unit crown area kg C m−2

Cl Leaf carbon mass per unit crown area kg C m−2

Cf Fine root carbon mass per unit crown area kg C m−2

Cw Wood carbon mass per unit crown area kg C m−2

L Leaf area index -

A Tree crown area m2

D Tree trunk diameter (breast height) m

B Tree basal area m2

H Tree height m

σl Speci�c leaf carbon density kg C m−2

ρ Tree wood density kg C m−2

ml Tree leaf carbon mass kg C

mr Tree root (�ne and coarse) carbon mass kg C

ms Tree stem (woody aboveground) carbon mass kg C

mf Tree �ne root carbon mass kg C

mw Tree woody (above and below ground) carbon mass kg C

Π Net Primary Productivity kg C m−2 year−1

ΠG Gross Primary Productivity kg C m−2 year−1

Rp Respiration per unit tree crown area kg C m−2 year−1

Rpm Maintenance respiration kg C m−2 year−1

Rpg Growth respiration kg C m−2 year−1

rg Growth respiration coe�cient -

fPAR Fraction of photosynthetically active radiation -

k extinction coe�cient -

fl fraction of light reaching particular depth in canopy -

Λl Litter rate per unit tree crown area kg C m−2 year−1

λl Leaf litter rate year−1

λr Root litter rate year−1

λw Wood litter rate year−1

fR Fraction of NPP going to reproduction -

fS Fraction of reproduction NPP going to seedlings -
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mass of each class is then expressed mathematically as:-

mj = ∆m

(
1

2
+ j

)
(6.1.1)

where j is an integer de�ned so that m0 is the class with the smallest mass and

higher values of j correspond to classes of higher mass. Also the smallest class m0

is assumed to represent trees with masses between 0 and ∆m (see Figure 6.2).

Figure 6.2: Shows how to mass classes are de�ned in RED. Each class has a width of

∆m and has a value corresponding to the mid-point value. The �rst class covers the

range from mass of 0 to ∆m and has a value of m0 = ∆m
2
.

For a mass class j with growth rate ∂mj
∂t

then we get: -

∂nj
∂t

= − 1

∆m

(
nj
∂mj

∂t
− nj−1

∂mj−1

∂t

)
− γnj (6.1.2)
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where nj is the number density (trees m−2 kg−1).

This equation has three terms that correspond respectively to growth out of the

class, growth into the class and losses due to trees dying.

∂nj
∂t

= growoutj + growinj + deathj (6.1.3)

growoutj = − nj
∆m

∂mj

∂t
(6.1.4)

growinj = −growoutj−1 (6.1.5)

deathj = −γnj (6.1.6)

Each of these terms will be described in more detail later in this chapter, as they

will be modi�ed at the upper and lower boundary conditions and where the growth

rate is negative (∂m
∂t
< 0).

6.2 Allometry

The scaling relationship between di�erent tree dimensions and properties are impor-

tant in determining both the outcome of competition and for accurately estimating

the amount of carbon locked up in a forest. Trees compete via shading each other,

so how tall a tree is and its crown size are important factors in its ability to capture

light and shade its rivals. In a DGVM it is also crucial to know the canopy height,

fractional coverage and Leaf Area Index (LAI) of each plant functional type (PFT),

as a climate model needs to be able to calculate vegetation-dependent biophysical

surface parameters, such as albedo and roughness.

Based on the work of Niklas and Spatz (2004), West et al. (2009) and Poorter et al.

(2006) simple scaling power laws are used.
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6.2.1 Leaf mass

The relationship between leaf mass and tree mass follows that of Niklas and Spatz

(2004): -

ml = kmlm
φml (6.2.7)

where φml = 3/4.

6.2.2 Trunk Diameter

The trunk diameter at breast height is de�ned as (Niklas and Spatz, 2004):

D = kDml
φD (6.2.8)

where φD = 1/2.

If it is assumed that the leaf mass ml is proportional to leaf area and that the

area of transport tissue is proportional to trunk diameter squared, then the above

leaf mass to trunk diameter relationship can also be seen to be consistent with the

pipe model (Shinozaki et al., 1964a,b), where each unit of leaf area is assumed to

require the support of a corresponding area of transport tissue. Wang et al. (2010)

has shown the sapwood area scales with the trunk diameter with an exponent in

the range 1.3-2.2.

6.2.3 Root mass (both coarse and �ne)

The root mass mR is considered to be a �xed fraction of the stem mass ms: -

mr = krsms (6.2.9)

where kRS corresponds to the root:shoot ratio.
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6.2.4 Stem mass (woody aboveground mass)

The stem mass is estimated from the tree volume

ms = kmsD
2H (6.2.10)

kms = Fρ
π

4
(6.2.11)

where F is the form factor which is taken to be 0.6 in broad-leaf species (Chave

et al. (2005), value in this chapter adjusted for di�erent units) and ρ the trunk

wood carbon density (oven dry mass over green volume, kg C m−3).

6.2.5 Roots and Stem

To be consistent with TRIFFID (Cox, 2001) the above allometry is modi�ed by

splitting roots in �ne and coarse and to merge coarse roots and stem into a term

representing the wood in the tree.

For simplicity the mass of �ne roots is assumed to be equal to the leaf mass (Cox,

2001). This simpli�ed model does not include water availability, which can alter

the leaf to root mass ratio Sitch et al. (2003).

mf = ml (6.2.12)

The woody mass is then equal to the sum of the coarse roots and stem mass

mw = mr +ms −mf = ms(1 + krs)−ml (6.2.13)
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6.2.6 Height

Niklas and Spatz (2004) derived a relationship between tree height and trunk di-

ameter.

H = kHD
φH − cH ≈ kHD

2/3 (6.2.14)

where φH = 2/3.

Typically cH << kHD
φH so usually cH can be ignored. Note the value of φH is

usually lower than 2/3. Feldpausch et al. (2011) found it to vary regionally in the

range 0.48 to 0.65 with a value globally of 0.53, but the reasons for this are so far

poorly understood. The 2/3 exponent appears to represent the hydraulic limit and

trees do not always grow to the limit due to many other factors such as altitude,

�re, tree density (ie light competition), water availability and storm frequency that

can all modify tree allometry.

The constant derived in Niklas and Spatz (2004) is

kH =
1

(1 + krs)kms k
1

φml
ml k

1
φD
D

(6.2.15)

6.2.7 Crown area

The crown area is assumed to scale with the square of the tree height. This is

because it has been found that the crown radius scales linearly with height (Poorter

et al., 2006; West et al., 2009; Enquist et al., 2009).

A = kAH
φA (6.2.16)

where φA = 2.
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6.2.8 Leaf area index (LAI)

LAI is the total leaf area above each unit area of the forest �oor. For a single tree

this is: -

L =
ml

σlA
(6.2.17)

where ml is the tree leaf carbon mass and σl is the speci�c leaf carbon density and

A the crown area of the tree.

6.2.9 Carbon mass density

This is the carbon density of a tree averaged over its canopy area

C =
m

A
(6.2.18)

where C is the tree carbon mass and A the tree crown area.

6.2.10 Basal area

Basal area is the cross-sectional area of the trunk measured at breast height.

B =
πD2

4
(6.2.19)

where D is the tree trunk diameter.

6.2.11 Allometry Parameters

A set of parameter values is given in Table 6.2. The values are based on those in

Niklas and Spatz (2004) and are used to represent a generic tree type. When RED
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is extended to include multiple Plant Functional Types (PFTs) then parameter

values will be de�ned for each PFT based on observational data sets.

Table 6.2: Allometry parameter values based on Niklas and Spatz (2004)

Parameter Value Unit

kml 0.137 kg1/4

kD 0.085 m kg−1/2

krs 0.423 -

kms 202.3 kg m−3

kA 0.167 -

φml
3
4

-

φD
1
2

-

φH
2
3

-

φA 2 -

6.3 Growth Rate

The growth rate of a tree is related to the Net Primary Productivity (NPP) Π,

which is the net �xation of CO2 via photosynthesis, and the e�ect of loss of leaves,

roots, and twigs called litter Λl. The carbon density growth rate is simply the NPP

minus the litter.

∂C

∂t
= Π(1− fR)− Λl (6.3.20)

where fR is the fraction of NPP allocated to reproduction.

So the growth rate in terms of mass is

∂m

∂t
=
∂m

∂C

∂C

∂t
=
∂m

∂C

(
fl(m)Π(1− fR)− Λl

)
(6.3.21)

where fl(m) is the shading term representing the fraction of light lost due to shading

through the canopy. Note that when carbon balance is negative the growth rate
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is not allowed to go below zero and instead the mortality is increased (see section

6.4.1).

6.3.1 Net Primary Productivity

The Net Primary Productivity (NPP) is de�ned as the Gross Primary Productiv-

ity(GPP) ΠG minus the plant respiration Rp: -

Π = ΠG −Rp (6.3.22)

For the purposes of this study, photosynthesis is assumed to follow a �Big Leaf�

canopy model, with leaf nitrogen concentration scaling with light (Cox et al., 1998).

ΠG = ΠGTOP

fPAR
k

(6.3.23)

and

Rp = Rpm +Rpg (6.3.24)

where ΠGTOP is the maximum GPP (at the top of the canopy), fPAR the fraction

of photosynthetically active radiation, Rpm the maintenance respiration and Rpg

the growth respiration.

The growth respiration is assumed to be a �xed fraction rg (growth respiration

coe�cient) of the GPP minus maintenance respiration (Cox, 2001), thus: -

Rpg = rg {ΠG −Rpm} (6.3.25)

So the NPP is then

Π = (1− rg) [ΠG −Rpm] (6.3.26)

The maintenance respiration represents the CO2 lost by the vegetation as it burns

stored chemical energy to maintain its tissues. The maintenance respiration term

is a combination of respiration of leaves, �ne roots and woody (stem and coarse

roots) components.
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Plant respiration is modelled in a similar way to TRIFFID. For more details see

Appendix E

Rpm = Rd

(
1 +

(
µrlmf + awsµslmw

ml

))
fPAR
k

(6.3.27)

In Figure 6.3 the variation in GPP with size can be seen which is predominantly

due to the fact that the LAI changes as a function of crown area and leaf mass (see

equation 6.2.17).

Figure 6.3: Shows the GPP, NPP and respiration as a function of class size (carbon

mass) for ΠGTOP = 0.9 kg C m−2 yr−1.

6.3.2 Litter

The litterfall is de�ned as: -

Λl = λlml + λrmr + λwmw (6.3.28)
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where ml, mr and mw are the carbon masses of leaf, �ne root and wood and λl, λr

and λw are constants with units of year−1.

6.3.3 Shading

Smaller trees are shaded by larger ones, and reduce the light available to trees or

branches below. Models of a whole canopy suggest that light reaching the forest

�oor is an exponential function of the leaf area index (LAI) above (Beer-Lambert

Law, see Monsi and Saeki (1953) and Hirose (2005)). In RED the canopy is split

up into size classes where each class shades smaller size classes. Each tree size class

is modelled as a canopy following the Beer-Lambert law but where the amount of

light reaching the top of each size class is reduced by shading from larger classes.

RED does not explicitly model spatial distribution, so some way is needed to cal-

culate how much light reaches a particular size class to know how much the growth

rate of that size class is suppressed by shading.

Two opposing limiting assumptions for the overlap of the canopy are minimum

overlap (i.e. trees grow in gaps wherever possible) or that trees are randomly

arranged (i.e. trees always partly overlap). It is likely that neither assumption is

completely true and real forests will have overlaps that are between the two.

Random Overlap Shading

RED uses random overlap shading as this is very simple conceptually and does not

have the complexity of keeping record of the shaded and unshaded fraction of each

class. It also does not have any problem with keeping track of gap formation due

to mortality, which could be an issue for any shading scheme that tries to explicitly

account for how much of size class is shaded and how much is unshaded or partly

shaded. This latter issue is particularly a problem for a minimum overlap shading

scheme.
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The amount of light that is transmitted through both the vegetated and unvege-

tated fraction of the class above is calculated and then it is assumed the light level

reaching the next class below is the mean of the shaded and unshaded light levels.

Figure 6.4: Shows the shading in the model. Each level represents a size class, which

has a fractional coverage νj of the grid-box area. Each class has LAI Lj and is assumed

to absorb in accordance with Beer's law. The light reaching the class below is assumed

to be the mean of the light getting through the vegetated and unvegetated fractions.

The fraction of light incident on the canopy reaching the top of class j

flj =
n∏
k>j

(1− fPAR,k νk) (6.3.29)

where νj is the fraction of area covered by class j

This does have the drawback that there is always some overlap (and hence shading)

even in a sparsely vegetated area, this could have a slight impact on regrowth rates

as small trees will lose some light even when the canopy is not yet closed. So this

model is less applicable to semi-arid or dry regions. This e�ect should be small

though and this shading scheme has the advantage of modelling the dominant

mechanism of competition while remaining mathematically simple.

Another simpli�cation is that RED does not currently model the overlapping (or

co-competition) of tree crowns, so the crown is e�ectively modelled as an in�nitely

thin disc of leaves with corresponding LAI.
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The latest version of JULES (Clark et al., 2011), includes an advanced shading

model that includes the e�ects of changing sun angle and also di�use lighting and

scattered direct lighting in a multi-layer canopy model (Mercado et al., 2007; Dai

et al., 2004). This model could be adapted in future to RED, with the layers

replaced by RED size classes.

6.4 Mortality

Tree mortality is due to several causes including senescence, competitive suppres-

sion (shading and crowding) and disturbance (�re, storms etc).

For simplicity at this stage, the mortality term γ in RED is assumed to be a con-

stant independent of tree-mass and currently does not include disturbance or direct

competitive e�ects. This is the simplest way of modelling mortality and Kohyama

(1991) found in a similar model that explicitly including the e�ect of competi-

tive suppression in the mortality term (i.e. density dependence) was very much

secondary to growth suppression in determining the stationary size distribution.

Coomes and Allen (2007) suggests that the mortality of a forest with size follows a

u-shape with high mortality at the largest and smallest tree sizes and lowest mor-

tality in the middle. This comes about due to increasing age related mortality with

size combined with higher mortality of small trees due to shading and competition

for space.

This suggests that the mortality term may, in a future version of RED, represent

senescence better if the mortality term is age related. As RED has no direct

modelling of age then the best proxy for age is size and so the mortality term could

be modi�ed in future to be an increasing function of size.
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6.4.1 Negative Carbon Balance

What if the carbon balance of a particular mass class is negative (i.e. ∂mj
∂t

< 0)?

To conserve carbon either trees must shrink (which is unrealistic), or some trees

in the mass class must die (through carbon balance mortality). RED assumes the

latter.

The additional mortality from negative carbon balance is assumed to be propor-

tional to the negative growth rate:-

deathj =

 −njγ For ∂mj
∂t
≥ 0

−nj
[
γ − 1

∆m

(
∂mj
∂t

)]
For ∂mj

∂t
< 0

(6.4.30)

This approach was also used by Kohyama (1991), albeit in a di�erent form.

6.5 Recruitment and Seedling Establishment

Recruitment of seedlings is calculated by taking a fraction, fR, of NPP to represent

reproductive activity of the plant and then taking a fraction of this, fS, to represent

the NPP that actually makes it to seedlings. This is suppressed by available space

in the lowest mass class by considering how much room is left after the current

fractional coverage ν0 is taken into account and then further suppressed by the

shading from above by multiplying by the fraction of light making it through to

the forest �oor fl0.

growin0 = fl0 (1− ν0)
fR fS ΠTOT

m0

(6.5.31)

where nu0 = n0A0 is the area coverage of the lowest mass class, fl0 the amount

of light reaching the forest �oor and m0 the mass of the lowest mass class. The

(1 − ν0) term represents density dependent competition between members of the

lowest mass class.
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The NPP per tree of each class is calculated as follows

ΠTOT,j = Πj nj Aj (6.5.32)

Where Πj is the NPP per unit crown area for a given class from equation 6.3.22,

and Aj is the crown area of trees of the class in question. So the total NPP per

unit ground area is simply the sum: -

ΠTOT =
∑
j>0

ΠTOT,j =
∑
j>0

Πj nj Aj (6.5.33)

Model Initialisation

The model can be initialised in several ways: -

1. Initiate the lowest mass class with a tree density that equates to a fractional

coverage of 100%. All other mass classes will be set to zero. This represents

the forest being started o� with a dense crop of seedlings.

2. Prescribe a distribution from the start. If an analytical or approximate so-

lution to RED including shading can be found then we can start the model

with little or no spin up. This would be useful in a coupled DGVM.

3. Have seeding from outside the grid-box i.e. migration. In a spatially resolved

DGVM then RED would simulate the vegetation in each grid-box and could

then model some seeds travelling from grid-box to grid-box. When running

RED in a point mode (zero dimensional case as presented here) we could add

a �xed term in equation 6.5.31 representing seeding from outside the model

area.

Currently we initialise the model using the �rst method and then run the model

to equilibrium.
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6.6 Time-step Size Constraints

The model has a stability condition for the time step size based on the mass class

width and maximum growth rate. The model can become unstable if any tree can

grow by more than one mass class in one time step.

This creates a time step requirement: -

∆t <
∆m

(dm
dt

)max
(6.6.34)

While the mass class width ∆m is de�ned by the user-de�ned mass classes, the

maximum growth rate (dm
dt

)max is more complex as it depends on climate conditions.

It is therefore important to be aware of the highest possible growth rate when

selecting the mass class and timestep sizes. If ∆t is constrained by other factors

then ∆m must instead be changed instead, so the above condition is met.

6.7 Results

6.7.1 Tree PFT Simulations

Figure 6.5 shows the distribution and light availability as a function of mass class

for both Broadleaf and Needleleaf PFTs. The two simulations were started with

seedlings (lowest mass class) covering the whole area and no other size classes

present and then run until the total system biomass reached equilibrium. The

parameter set used for these simulations is given in Table 6.3.

The simulation (Figure 6.6) shows a much shorter regrowth time-scale compared to

TRIFFID (Figure 6.1) of about 39 years for Broadleaf and 63 years for Needleleaf.

162



6.7. RESULTS

(a) (b)

(c) (d)

Figure 6.5: Shows a) the mass distribution and b) the light availability for Broadleaf

PFT c) mass distribution and d) light availability for Needleleaf PFT
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Table 6.3: Parameter values used in Broadleaf and Needleleaf PFT simulations, based

on those used in latest version of TRIFFID

Parameter Broadleaf Needleleaf

rg 0.25 0.25

kPAR 0.5 LAI−1 0.5 LAI−1

γl 0.25 yr−1 0.25 yr−1

γw 0.01 yr−1 0.01 yr−1

γr 0.25 yr−1 0.25 yr−1

nl 0.04 kg N (kg C)−1 0.03 kg N (kg C)−1

Rd 0.1816 kg C m−2 yr−1 0.1362 kg C m−2 yr−1

µrl 1.0 kg C m−2 1.0 kg C m−2

µsl 0.1 kg C m−2 0.1 kg C m−2

aws 10 10

σl 0.0824 kg C m−2 0.2263 kg C m−2

γ 0.01 yr−1 0.01 yr−1

ΠGTOP
0.9 kg C m−2 yr−1 0.9 kg C m−2 yr−1

m0 25 kg C 25 kg C

∆m 50 kg C 50 kg C

(a) (b)

Figure 6.6: Shows the regrowth rate for a) Broadleaf PFT is 39 years and b)

Needleleaf PFT is 63 years.
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6.7.2 Mortality Parameter

By repeating the Broadleaf simulation for di�erent values of the mortality term it

is possible to see the e�ect this term has on the distribution. Figure 6.7 shows that

increasing mortality (shortening lifetime) reduces the number of plants reaching

the highest mass classes considerably. Conversely a long lifetime leads to a more

even size distribution with more plants reaching the size limits imposed by their

GPP, respiration and litter.

This pattern can be explained by the basic theory presented in section 5.2.2 where

the z parameter which is proportional to the mortality term γ determines the shape

of distribution seen. Shading (that is neglected in our analytical solution) does not

change this pattern appreciably.

(a) (b)

Figure 6.7: Shows the e�ect of changing the mortality term in RED on a) the size

distribution b) the �nal total biomass.

6.7.3 Self-Thinning

The model does approach the self-thinning limit (Westoby, 1984; Hamilton et al.,

1995) if background mortality is excluded, seeding is switched o� and the model

started with a �pulse� of seedlings (see Figure 6.8). This is done by setting the
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mortality term to zero, setting fR and fS also to zero and initialising the model

with 100% coverage of seedlings in the smallest mass class and all others with zero

tree density.

Figure 6.8: Shows the self-thinning trajectory of RED running with no background

mortality. The maximum and minimum thinning lines correspond to the expected range

of exponent from -1.3 to -1.8 (Lonsdale, 1990).

The self-thinning comes about as the pulse of seedlings grow and the trees in the

smaller classes get increasingly shaded until they go into negative carbon balance.

If background mortality is non-zero then this will deplete the number of trees

over time and the model will evolve to a near horizontal trajectory as the trees

stop growing but continue to be lost through the mortality term. So setting the

background mortality to zero allows the self-thinning e�ect to be isolated.

This agrees with the assertion of Hamilton et al. (1995) that self-thinning only

exactly follows the -3
2
scaling law when competition for light is the only cause of
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mortality.

6.8 Proportion of NPP allocated to reproduction

The proportion of NPP going into reproduction is an important determinant of

ecosystem behaviour. Resources diverted from growth will limit a plants ability

to compete for light but without reproduction the forest would exist for only one

generation.

To investigate the e�ect of this parameter on the behaviour of RED the model was

run with a range of values of the proportion of NPP going into reproduction (fR).

To simplify the analysis it was assumed that all the NPP allocated to reproduction

is available to new seedlings (fS = 1).

In �gure 6.9 the total forest biomass (sum of all mass classes) is plotted as a func-

tion of the proportion of NPP allocated to reproduction, for di�erent mean plant

lifetimes. The plot shows that there is a peak in biomass with respect to proportion

of NPP allocated to reproduction. This peak occurs at lower reproductive NPP

proportion for longer lifetimes, because a slow growing forest with low mortality

will need less seedlings coming through to replace those lost to mortality.

If this plot is repeated for di�erent measures of forest function such as total forest

NPP, cumulative fractional coverage and the forest �oor light level (Figure 6.10) a

similar pattern is seen with an optimum value of fR for each measure.

The optimum value of NPP to reproduction is though di�erent for each measure

as can be seen in Figure 6.11.

Malhi et al. (2011) suggests reproductive NPP is typically between 5�15% of canopy

NPP for tropical forests. This model is showing (Figure 6.11) that the optima occur

in this range for some lifetime cases (40-180 years for biomass maxima, 240-640

years for fractional coverage maxima, 60-320 for NPP maxima and 180-640 years

for forest �oor light minima). This suggests that biomass is least likely variable
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Figure 6.9: Total Forest Biomass as a function of proportion of NPP allocated to

reproduction for di�erent lifetimes. Clearly shows that there is an optimum proportion

to reproduction for a given tree lifetime/mortality. As the lifetime of the trees increase

(ie lower mortality rate) the smaller the optimum proportion of NPP to reproduction

and the higher the biomass peak.
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(a) (b)

(c)

Figure 6.10: a) Total forest NPP as a function of proportion of NPP allocated to

reproduction for di�erent lifetimes. b) Cumulative fractional coverage as a function

of proportion of NPP allocated to reproduction for di�erent lifetimes. c) The por-

tion of light reaching the forest �oor as a function of proportion of NPP allocated to

reproduction for di�erent lifetimes. All these optima occurs at di�erent NPP values.
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Figure 6.11: Shows the optimum proportion of NPP allocated to reproduction in

terms of biomass, total NPP, forest �oor light level and cumulative fractional coverage.
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for reproduction optimisation as tropical trees can be long-lived (Chambers et al.

(1998) suggest maybe as much as 1000 years for the oldest trees in the Amazon),

and suggests that it is competition for light (fractional coverage or forest �oor

light) that could be determining the optimum proportion of NPP to reproduction

for trees of a given lifetime. Investigating this further could be an interesting avenue

of future work.

6.9 Discussion

This study presents a new DGVM called RED, that is not as complex as gap and

individual based models, but includes size dependence in the form of mass classes.

The model is based on the principle of continuity, where the number of individuals

in each mass class is governed by the number growing in from the class below,

minus the number growing out, or lost due to mortality.

The RED model is an important step forward compared to previous DGVMs (such

as TRIFFID) as the size dependence through mass classes allows the di�ering

growth rates with tree size to be modelled. The inclusion of the forest demog-

raphy, through size classes, means the regrowth time-scales are therefore better

represented compared to TRIFFID. RED also has bene�ts in terms of simplicity

compared to many gap and individual based DGVMs and so should be expected

to require less simulation overhead to execute.

This study has also for the �rst time shown that there is an optimum proportion of

NPP allocated to reproduction. The optimum depends on lifetime/mortality with

forests with lower mortality expending much less NPP on reproduction than those

with higher mortality.
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6.10 Full Mathematical Description of Discretised

Model

∂nj
∂t

= growoutj + growinj + deathj (6.10.35)

growoutj =

 −1
∆m

nj
∂mj
∂t

For ∂mj
∂t
≥ 0

0 For ∂mj
∂t

< 0
(6.10.36)

growinj =

 fl0 (1− ν0) fR fS ΠTOT
m0

j = 0

−growoutj−1 For j > 0
(6.10.37)

deathj =

 −njγ For ∂mj
∂t
≥ 0

−nj
[
γ − 1

∆m

(
∂mj
∂t

)]
For ∂mj

∂t
< 0

(6.10.38)
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Chapter 7

Conclusions

This chapter provides an overview of the main �ndings presented in this PhD thesis

and discusses how the work may be extended by future research.

7.1 Overview

Chapter 1 summarised the current understanding of biodiversity and stability in

ecological models. While trade-o�s, complexity, niches, and neutral theory all

seem to have a role to play in creating the diversity we see, there is no de�nitive

theoretical understanding of diversity. Stability also has no single de�nition, so for

the purposes of this thesis the principle of resilience is used - which is how far a

system characteristic such as biomass or net primary productivity (NPP) changes

as a system is undergoing an environmental change.

The development of Dynamic Global Vegetation Models (DGVMs) was also dis-

cussed, showing how the models have increased in complexity but that current

models either do not model di�ering tree sizes and therefore struggle to model size-

dependent aspects of land use and land cover change and regrowth or solve this in

ways that make the models complex and hard to maintain.

Building on the Lotka-Volterra based equations used in the TRIFFID DGVM,
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chapter 2 models the e�ect of increasing temperature on the NPP of a system which

consists of species with a range of temperature optima. The system was initially

in a equilibrium state with the starting temperature, but once the temperature

started increasing linearly underwent transient oscillations in NPP until settling

down to a steady `pseudo-equilibrium' level. Introducing a smoother non-linear

temperature increase that has heat capacity (analogous to the Earth undergoing

climate change) the transient oscillations in the NPP are reduced suggesting the

transient is a result of the system being pushed out of its initial steady state

when the temperature increase suddenly starts. Changing the equations to use

competition coe�cients broke conservation of both individual species and total

coverage, suggesting the equations are not a useful way to model diversity and so

cannot be used to study the e�ect of diversity on the systems resilience to change.

To provide a clearer mechanism of competition chapter 3 used a single resource

model and stochastic temperature �noise� to successfully model diversity (again

using a system with a range of temperature optima) and found diversity varied

with the choice of noise parameters. The relationship between noise parameters

and diversity was found to be complex (see Figures 3.14, 3.15, 3.16 in section 3.5.3).

To overcome the problems of generating diversity, chapter 4 introduced trait dif-

fusion to a non-stochastic version of the single resource model, whereby biomass

di�uses to adjacent traits due to genetic mutation. This model successfully mod-

elled coexistence and found that a sudden collapse in NPP occurred if the rate of

temperature change exceeded a critical value (see Figure 4.15 in Section 4.3). The

critical rate was found to increase with increasing initial diversity, implying a more

diverse system a higher resilience to environmental change.

Chapter 5 presented a simple model of vegetation demography based on a continuity

equation that models size distribution of plants. This chapter therefore deals with

modelling of size diversity. Analytical solutions were found for the case where the

growth rate was time independent and was a simple function of size. Two useful

solutions were found for the case where plant growth rate was (i) a power law of
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mass and (ii) the case where it was an inverted quadratic. The power law solution

can be reduced to to the trajectory an even aged stand will follow during self-

thinning. The quadratic solution reproduces the rotated sigmoid size distribution

often seen in observations if the death rate is higher than the maximum growth

rate slope, otherwise the solution will be a �U-shape� distribution.

Chapter 6 builds on the previous chapter by expanding the model into the basis for

a DGVM called the Robust Ecosystem Demography (RED). Plant growth rate as

a function of plant mass is based-on equations used in JULES for NPP, respiration

and litter. Simple random overlap shading is added to simulate one-sided com-

petition for light and a fraction of total system NPP is allocated to recruitment,

which is further limited by forest �oor light and space availability. The inclusion

of size classes allowed better representation of regrowth time-scales compared to

TRIFFID. It was also found that there is an optimum proportion of NPP to al-

locate to reproduction (or "recruitment") in order to maximise properties such as

biomass and total ecosystem NPP. This optimum depends on mortality, with lower

mortality plants expected to devote a smaller fraction of NPP to reproduction.

7.2 Future Work

There are a number of di�erent areas of possible future research that could build

on the work in this thesis. The stochastic resource model in chapter 3 would

particularly bene�t from a deeper mathematical understanding of how diversity

varies with the nature of the environmental noise. It would also be interesting

to compare the noise seen in real temperature observations to see if there is any

correlation between real world temperature variability and diversity.

The Trait Di�usion model would also bene�t from a study of how the trait di�usion

parameter relates to real processes such as genetic variation (mutation etc) between

generations. Another avenue of investigation is to compare the trait model to an

individual based evolution model where new individuals appear with traits that are
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randomly mutated from those already in the system. It would be useful validation

of the Trait model to perform an in-depth study of plant traits to see if there is a

link between the range of environmental traits in an ecosystem and the range of

the environmental variable. For example, do a wider range of plant temperature

traits occur in ecosystems that experience greater variations in temperature than

those which experience smaller temperature variations?

The work of chapter 5, would most usefully be extended by looking for more com-

plex functions of size for the time independent growth rate, that are still simple

enough to allow an analytical solution of the continuity equation. In particular,

it would be useful to look for a polynomial function that better replicates the

asymmetric growth rate curves seen in observations.

The RED model presented in chapter 6 is the area of the thesis with the most

potential for future work. The most pressing extension is to add multiple Plant

Functional Types (PFTs), and competition between these PFTs. This may need

RED to be fully coupled into the UK land surface model JULES for a more complete

comparison. An important validation would be to compare the size distributions

produced by RED to real observations of mature forest. One challenge here is ob-

taining a size distribution that uses tree mass as the size variable or that can easily

be converted to tree mass. It is also necessary to tune the allometry parameters

for every PFT. Currently the mortality rate in RED is constant for all size classes.

This is a crude simplifying assumption which needs to be improved by looking at

observational data to infer size-dependent mortality. A particular issue here will be

to separate the age/size related mortality from the competition related mortality,

as these are dealt with di�erently in RED.

The �nal area of future work is better understanding the optimum proportions of

NPP into reproduction/recruitment as currently what determines the optimum nor

why the optima di�er for di�erent variables is fully understood.
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Appendix A

Lotka-Volterra Competition

Coe�cients

It is a standard result of Lotka-Volterra competition theory uses competition coef-

�cients to model the strength of competition between individuals both of the same

species and other species.

A.1 2 Species Theory

The e�ect of other species on a particular species is modi�ed by using competition

coe�cients c and k. If both c and k are set to 1 then this is equivalent to the

original model. To get coexistence then c and k must not be equal to each other.

So equation 2.1.2 is modi�ed to give: -

dν1

dt
= a1 (Γ1(θ)(1− kν1 − cν2)− 1)

dν2

dt
= a2 (Γ2(θ)(1− cν1 − kν2)− 1)

(A.1.1)

For there to be steady-state with both species having non-zero coverage then we

need to solve the following
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Γ1(θ)(1− kν1 − cν2)− 1 = 0

Γ2(θ)(1− cν1 − kν2)− 1 = 0

(A.1.2)

Then we get the equations of the null-clines in phase space

ν1 =
1− 1

Γ1(θ)
− cν2

k

ν2 =
1− 1

Γ2(θ)
− cν1

k

(A.1.3)

From the null-clines the steady-state coverages can be obtained in terms of growth,

death and competition parameters.

ν1 =
k
(

1− 1
Γ1(θ)

)
− c

(
1− 1

Γ2(θ)

)
k2 − c2

ν2 =
k
(

1− 1
Γ2(θ)

)
− c

(
1− 1

Γ1(θ)

)
k2 − c2

(A.1.4)

This leads to the conditions for stable equilibrium

k

c
>



1− 1
Γ1

1− 1
Γ2

, For Γ1 > Γ2

1− 1
Γ2

1− 1
Γ1

, For Γ2 > Γ1

(A.1.5)

with the implied condition k 6= c.

A.2 Multiple Species Theory

For an n species system the equations are
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dνi
dτ

= ai

[(
1− kνi − c

∑
j 6=i

νj

)
Γi(θ)− 1

]
(A.2.6)

The non-trivial steady-state solution where all species have non-zero coverage is

then

[(
1− kνi − c

∑
j 6=i

νj

)
Γi(θ)− 1

]
= 0 (A.2.7)

this can be reformulated into matrix notation


Γ1 k Γ1 c · · · Γ1 c

Γ2 c Γ2 k · · · Γ2 c
...

...
. . .

...

Γn c Γn c · · · Γn k




ν1

ν2

...

νn

 =


Γ1 − 1

Γ2 − 1
...

Γn − 1

 (A.2.8)

Inverting the matrix allows the solution for the species coverages to be found


ν1

ν2

...

νn

 =
1

(k + (n− 1)c) (k − c)



k+ (n−2)c
Γ1

−c
Γ2

· · · −c
Γn

−c
Γ1

k+ (n−2)c
Γ2

· · · −c
Γn

...
...

. . .
...

−c
Γ1

−c
Γ2

· · · k+ (n−2)c
Γn




Γ1 − 1

Γ2 − 1
...

Γn − 1


(A.2.9)

This gives the ith species coverage

νi =
1

(k + (n− 1)c)(k − c)

[
(k + (n− 2)c)

(
1− 1

Γi

)
− c

∑
j 6=i

(
1− 1

Γj

)]
(A.2.10)

It can clearly be seen that there is no multiple species solution if k = c and that

this case reverts to a single species competitively excluding all others. It is also a

well known result of Lotka-Volterra competition models that the solution is only

stable if the intra-species competition is stronger than the interspecies competition
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(k > c) (Silvertown, 1987; May and McLean, 2007). While the solution still exists

for k < c, the steady-state is an unstable saddle point.

One thing to note is that the above solution only applies for species who have a

positive fractional coverage as it ignores the ai term in Equation 2.5.22.

Any species for which

(
1− kνi − c

∑
j 6=i

νj

)
Γi(θ)− 1 < 0 (A.2.11)

must be eliminated and the solution equation 2.5.23 written only in terms of the

species which can maintain a positive coverage. The system would be reduced by

the number of species which have zero coverage.

For example a three species system which species 3 has too small a growth rate

would result in the coexistence of just species 1 and 2 with the solution

ν1 =
1

(k + c)(k − c)

[
k

(
1− 1

Γ1

)
− c

(
1− 1

Γ2

)]
(A.2.12)

ν2 =
1

(k + c)(k − c)

[
k

(
1− 1

Γ2

)
− c

(
1− 1

Γ1

)]
(A.2.13)

ν3 = 0 (A.2.14)

If this process is not followed the solution calculated analytically with Equation

2.5.23 would not match that found numerically using Equation 2.5.22, as the analyt-

ical solution would have some species with negative coverage, whereas the numerical

solution would have these species with zero coverage.

A.3 Constraints

Coverage needs to be constrained to be between 0 and 1 both for each individual

coverage and the total coverage must also be in the same range. Real forests can
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have overlapping coverage but this can only meaningfully be included where the

size distribution of the forest is also modelled.

So

0 ≥νi ≥ 1 (A.3.15)

0 ≥νtot ≥ 1 (A.3.16)

The total coverage is

νtot =
∑
i

νi =
1

k + (n− 1)c

∑
i

(
1− 1

Γi

)
(A.3.17)

So the constraint for the total coverage is

0 ≥ 1

k + (n− 1)c

∑
i

(
1− 1

Γi

)
≥ 1 (A.3.18)

These constraints are very di�cult to enforce in any simple way that guarantees

both will always be met regardless of the growth rate and competition coe�cient

values. This means that conservation of coverage can be broken as the competition

coe�cients mean the term multiplying the growth term Γ is no longer the bare soil

and it is this that allows the original model to conserve the fractional area.
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Resource Model Stability Analysis

B.1 Linear Stability Analysis - One Species System

with Fixed Temperature

The equations for this system are: -

fr =
dr

dt
= a(1− r)− r

r + k
g b

fb =
db

dt
= b

[
g

r

r + k
− γ
] (B.1.1)

This system has 2 equilibria (r,b) = (1,0) and (r,b) = (r∗,b∗), with r∗ =
kd

g − γ
and

b∗ =
a

d
(1− r∗). The Jacobian for this system is: -

J =


∂fr
∂r

∂fr
∂b

∂fb
∂r

∂fb
∂b

 =


−a− gb k

(r + k)2
−g r

(r + k)

gb
k

(r + k)2
g

r

(r + k)
− γ

 (B.1.2)
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B.1.1 (r,b) = (1,0) Equilibrium

For this equilibrium the Jacobian becomes: -

J =


−a −g

(1 + k)

0
g

(1 + k)
− γ

 (B.1.3)

We then can �nd the eigenvalues via: -

∣∣∣∣∣∣∣∣
−a− λ −g

(1 + k)

0
g

(1 + k)
− γ − λ

∣∣∣∣∣∣∣∣ = 0 (B.1.4)

Giving: -

λ1 = −a, λ2 =
g

(1 + k)
− γ (B.1.5)

λ1 is always stable as all quantities a, g, k and γ are always positive by de�nition. λ2

can be rearranged in terms of r∗ so that λ2 =
(g − γ)(1− r∗)

(1 + k)
. λ2 is then negative

when g < γ(1 + k) (r∗ > 1 or r∗ < 0), noting that when g < γ then r∗ < 0. So this

equilibrium is either a sink or unstable saddle, depending on the parameters g, γ

and k.

B.1.2 (r,b) = (r∗,b∗) Equilibrium

For this equilibrium the Jacobian becomes: -

J =


−a− gb∗ k

(r∗ + k)2
−γ

gb∗
k

(r∗ + k)2
0

 (B.1.6)

We then can �nd the eigenvalues via: -
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∣∣∣∣∣∣∣∣
−a− gb∗ k

(r∗ + k)2
− λ −γ

gb∗
k

(r∗ + k)2
−λ

∣∣∣∣∣∣∣∣ = 0 (B.1.7)

This gives a characteristic equation for lambda: -

λ2 + [a+ Z]λ+ Zγ = 0 (B.1.8)

where

Z = gb∗
k

(r∗ + k)2
=
agk(1− r∗)
γ(r∗ + k)2

=
a

gkγ
(g − γ)(g − γ(1 + k)) (B.1.9)

So λ is

λ =
−(a+ Z)±

√
(a+ Z)2 − 4Zγ

2
(B.1.10)

So both values of λ are negative (and equilibrium a stable sink) if Z > 0 and this

is true if r∗ < 1. This can be seen in equation for Z (Equation B.1.9). If not

this equilibrium is an unstable saddle point. Even the equilibrium appears to be a

stable sink if R∗ < 0, note that a negative resource level can never be reached as
dr

dt
= a at r=0.

It is also important to notice that the same conditions leading this equilibrium to

be stable or not are the reverse of the conditions for the previous trivial equilibrium

(r,b)=(1,0). So only one is ever stable under any set of parameters.
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B.2 Linear Stability Analysis - Two Species System

with Fixed Temperature

This system has two competing species who interact only through their competition

for the one limiting resource.

fr =
dr

dt
= a(1− r)− r

r + k
(g1 b1 + g2 b2)

fb1 =
db1

dt
= b1

[
g1

r

r + k
− γ
]

fb2 =
db2

dt
= b2

[
g2

r

r + k
− γ
]

(B.2.1)

This system has 3 equilibria (r,b1,b2) = (1,0,0), (r,b1,b2) = (r∗1,b
∗
1,0) and (r,b1,b2)

= (r∗2,0,b
∗
2), with r

∗
i =

kd

gi − γ
and b∗i =

a

d
(1− r∗i ). The Jacobian for this system is:

-

J =



∂fr
∂r

∂fr
∂b1

∂fr
∂b2

∂fb1
∂r

∂fb1
∂b1

∂fb1
∂b2

∂fb2
∂r

∂fb2
∂b1

∂fb2
∂b2



=



−a− k

(r + k)2
(g1 b1 + g2 b2) −g1

r

(r + k)
−g2

r

(r + k)

g1 b1
k

(r + k)2
g1

r

(r + k)
− γ 0

g2 b2
k

(r + k)2
0 g2

r

(r + k)
− γ



(B.2.2)
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B.2.1 (r,b1,b2) = (1,0,0) Equilibrium

For this equilibrium the Jacobian becomes: -

J =



−a −g1

(1 + k)

−g2

(1 + k)

0
g1

(1 + k)
− γ 0

0 0
g2

(1 + k)
− γ


(B.2.3)

We then can �nd the eigenvalues via: -

∣∣∣∣∣∣∣∣∣∣∣∣∣

−a− λ −g1

(1 + k)

−g2

(1 + k)

0
g1

(1 + k)
− γ − λ 0

0 0
g2

(1 + k)
− γ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (B.2.4)

Giving: -

λ1 = −a, λ2 =
g1

(1 + k)
− γ, λ3 =

g2

(1 + k)
− γ (B.2.5)

So this equilibrium is stable if for each species if gi < γ(1 + k) which is equivalent

to r∗i > 1 or r∗i < 0. If this is not true for any species then this an unstable

equilibrium.

B.2.2 (r,b1,b2) = (r∗1, b
∗
1, 0) and (r, b1, b2) = (r∗2, 0, b

∗
2) Equilibria

For the (r, b1, b2) = (r∗1, b
∗
1, 0) equilibrium the Jacobian becomes: -

J =



−a− (g1 b
∗
1)

k

(r∗1 + k)2
−d −g2

g1

γ

(g1 b
∗
1)

k

(r∗1 + k)2
0 0

0 0 γ

(
g2

g1

− 1

)


(B.2.6)
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∣∣∣∣∣∣∣∣∣∣∣∣∣

−a− (g1 b
∗
1)

k

(r∗1 + k)2
− λ −d −g2

g1

γ

(g1 b
∗
1)

k

(r∗1 + k)2
−λ 0

0 0 γ

(
g2

g1

− 1

)
− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (B.2.7)

This gives a characteristic equation for lambda: -

(
γ

[
g2

g1

− 1

]
− λ
)

(λ2 + [a+ Z1]λ+ Z1γ) = 0 (B.2.8)

Where Z1 =
g1 b

∗
1 k

(r∗1 + k)2

So λ is: -

λ1 = γ

(
g2

g1

− 1

)
, λ2,3 =

−(a+ Z)±
√

(a+ Z1)2 − 4Z1γ

2
(B.2.9)

So this is stable only if g1 > g2 and g1 > γ(k + 1)

J =



−a− (g2 b
∗
2)

k

(r∗2 + k)2

−g1

g2

γ −d

0 γ

(
g1

g2

− 1

)
0

(g2 b
∗
2)

k

(r∗2 + k)2
0 0


(B.2.10)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−a− (g2 b
∗
2)

k

(r∗2 + k)2
− λ −g1

g2

γ −d

0 γ

(
g1

g2

− 1

)
− λ 0

(g2 b
∗
2)

k

(r∗2 + k)2
0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (B.2.11)

This gives a characteristic equation for lambda: -

(
γ

[
g1

g2

− 1

]
− λ
)

(λ2 + [a+ Z2]λ+ Z2γ) = 0 (B.2.12)
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Where Z2 =
g2 b

∗
2 k

(r∗2 + k)2

So λ is: -

λ1 = γ

(
g1

g2

− 1

)
, λ2,3 =

−(a+ Z2)±
√

(a+ Z)2 − 4Z2γ

2
(B.2.13)

So this is stable only if g2 > g1 and g2 > γ(k + 1)
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B.3 Linear Stability Analysis - System with n Species

For equilibrium (r,b1,b2, ... ,bi, ... ,bn) = (r∗i , 0, 0, ..., b
∗
i , ..., 0), i.e. when species i is

the only one left.

J =



−a−
gi b
∗
i k

(r∗i + k)2

−g1

gi
γ ···

−gi−1

gi
γ −γ

−gi+1

gi
γ ···

−gn
gi

γ

0 γ

(g1

gi
−1

)
··· 0 0 0 ··· 0

...
...

...
...

...
...

...

0 0 ··· γ

(gi−1

gi
−1

)
0 0 ··· 0

gi b
∗
i k

(r∗i + k)2
0 ··· 0 0 0 ··· 0

0 0 ··· 0 0 γ

(gi+1

gi
−1

)
··· 0

...
...

...
...

...
...

...

0 0 ··· 0 0 0 ··· γ

(gn
gi
−1

)



(B.3.14)

The characteristic equation of this system is: -

(λ2 + [a+ Zi]λ− γZi)
n∏

j=1 j 6=i

(
γ

[
gj
gi
− 1

]
− λ
)

= 0 (B.3.15)

Where Zi =
gi b
∗
i k

(r∗i + k)2

For the resulting eigenvalues to be all negative and this equilibrium to be stable

then gi must be greater than all other species growth rates and gi > γ(k + 1).
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Appendix C

Resource Model Diversity vs Noise

Plots

This appendix shows larger versions of the plots from Section 3.5.3 in Chapter 3.

C.1 Constant α Slices

Slices of constant α from Figure 3.14
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C.1. CONSTANT α SLICES
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C.2 Constant σ Slices

Slices of constant σ from Figure 3.15
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C.2. CONSTANT σ SLICES
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C.3 Constant Tw Slices
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C.3. CONSTANT TW SLICES
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Appendix D

Change of Size Variable in RED

In the current formulation of RED the size variable is tree carbon mass. In cer-

tain circumstances it may be necessary to compare RED to distributions in terms

of di�erent size variables (e.g. such as trunk diameter which is more easily and

commonly measured than tree mass).

Considering �rst the continuous (ie not discretized) equation we have: -

∂n(m, t)

∂t
+

∂

∂m

(
∂m(m, t)

∂t
n(m, t)

)
= −γn(m, t) (D.0.1)

where n(m,t) is the tree density distribution (trees m−2 kg−1 ) and so the integral

of n between two tree massses of m1 and m2 will give the number of trees with

mass between m1 and m2.

m2∫
m1

n(m, t) dm = no. trees between m1 and m2 (D.0.2)

If instead we wish to express the continuity equation in terms of height H, �rst we

need a function H = F(m) that maps m to H. In this case the function would be a

power law (from allometry).

De�ning H1 = F (m1) and H2 = F (m2) then we know that: -
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m2∫
m1

n(m, t) dm =

H2∫
H1

n(H, t) dH (D.0.3)

So

n(m, t) =
d

dm

H2∫
H1

n(H, t) dH =
dH

dm

d

dH

H2∫
H1

n(H, t) dH =
dH

dm
n(H, t) (D.0.4)

We can then substitute this result and

∂m

∂t
=
dm

dH

∂m

∂t
(D.0.5)

into equation D.0.1 to prove that the form of the continuity equation is unchanged

if we convert the size variable.

∂n(H, t)

∂t
+

∂

∂H

(
∂H(H, t)

∂t
n(H, t)

)
= −γn(H, t) (D.0.6)

So to convert the distribution from size variable y to z

n(y, t) =
dz

dy
n(z, t) (D.0.7)
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Appendix E

Respiration Calculation

In TRIFFID (Cox, 2001) the respiration is de�ned as

Rpm = Rd

(
β +

(
Nf +Ns

Nl

))
fPAR
k

(E.0.1)

where β is the moisture stress factor, Rd the dark respiration and Nl, Ns, and Nf

are the nitrogen contents of leaf, respiring stem and �ne roots and are given by

Nl = nl σl L = nl Cl (E.0.2)

Nf = µrl nl Cf (E.0.3)

Ns = aws µsl nl Cw (E.0.4)

where Cf , Cw and Cl are the tree �ne root, wood and leaf carbon densities. The

respiring stem is taken to be a �xed ratio aws of the total wood carbon Cw As all

above proportional to nl then we can eliminate nl from equation for Rpm and by

also assuming no water stress so β = 1 we get

Rpm = Rd

(
1 +

(
µrlmf + awsµslmw

ml

))
fPAR
k

(E.0.5)
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where mf , mw and ml are the tree �ne root, stem and leaf carbon masses obtained

by multiplying by the tree crown area A by Cf , Cw and Cl.

The dark respiration is de�ned as

Rd = 0.015Vmax fT (q10)(365 · 86400 · 0.012) (E.0.6)

where Vmax is the maximum rate of carboxylation of Rubisco and is assumed to be

linearly dependent on the leaf nitrogen concentration nl. For C3 plants this is

Vmax = 0.0008nl (E.0.7)

fT represents the q10 temperature dependence

fT (q10) = q
0.1(Tc−25)
10 (E.0.8)

to simplify the model q10 is taken to be 3.0 and Tc is assumed to be 25◦C so

fT = 1.0.

The �nal term in Equation E.0.6, represents unit conversion from (mol CO2m
−2 s−1)

to (kg C m−2 yr−1).
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