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Greening of the Earth and its drivers 1 

Global environmental change is rapidly altering the dynamics of terrestrial 2 

vegetation with consequences for the functioning of the Earth system and 3 

provision of ecosystem services1,2. Yet how global vegetation is responding to the 4 

changing environment is not well established. Here we use 3 long-term satellite 5 

leaf area index (LAI) records and 10 global ecosystem models to investigate four 6 

key drivers of LAI trends during 1982-2009. We show a persistent and widespread 7 

increase of growing season integrated LAI (greening) over 25 to 50% of the global 8 

vegetated area, whereas less than 4% of the globe shows decreasing LAI 9 

(browning). Factorial simulations with multiple global ecosystem models suggest 10 

that CO2 fertilization effects explain 70% of the observed greening trend, followed 11 

by nitrogen deposition (9%), climate change (8%) and land cover change (LCC) 12 

(4%). CO2 fertilization effects explain most of the greening trends in the tropics, 13 

while climate change resulted in greening of the high latitudes and the Tibetan 14 

Plateau. LCC contributed most to the regional greening observed in Southeast 15 

China and Eastern United States. The regional effects of unexplained factors 16 

suggest that the next generation of ecosystem models will need to explore the 17 

impacts of forest demography, differences in regional management intensities for 18 

cropland and pastures, and other emerging productivity constrains such as 19 

phosphorus availability. 20 

 21 

 22 



 5 

Main 1 

Changes in vegetation greenness have been reported at regional and continental scales 2 

based on forest inventory and satellite measurements3-8. Long-term changes in 3 

vegetation greenness are driven by multiple interacting biogeochemical drivers and 4 

land use effects9. Biogeochemical drivers include the fertilization effect of elevated 5 

atmospheric CO2 concentration (eCO2), regional climate change (temperature, 6 

precipitation, and radiation), and varying rates of nitrogen deposition. Land use related 7 

drivers involve changes in land cover and in land management intensity, including 8 

fertilization, irrigation, forestry and grazing10. None of these driving factors can be 9 

considered in isolation given their strong interactions with one another. Previously, a 10 

few studies had investigated the drivers of global greenness trends6,7,11 with a limited 11 

number of models and satellite observations, which prevented an appropriate 12 

quantification of uncertainties12. 13 

 14 

Here, we investigate trends of Leaf Area Index (LAI) and their drivers for the period 15 

1982 to 2009 utilizing 3 remotely sensed data sets (GIMMS3g, GLASS and GLOMAP) 16 

and outputs from 10 ecosystem models run at global extent (see Supplementary 17 

Information). We use the growing season integrated leaf area index (LAI hereafter – 18 

Methods) as the variable of our study. We first analyze global and regional LAI trends 19 

for the study period and differences between the 3 data sets. Using modeling results, 20 

we then quantify the contributions of CO2 fertilization, climatic factors, nitrogen 21 

deposition and LCC to the observed trends. 22 

 23 
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Trends from the 3 long-term satellite LAI data sets consistently show positive values 1 

over a large proportion of the global vegetated area since 1982 (Fig. 1). The global 2 

greening trend estimated from the three data sets is 0.068±0.045 m2m-2yr-1. The 3 

GIMMS LAI3g data set that includes recent data up to 2014, shows a continuation of 4 

the trend from the 1982-2009 period (Fig.1 and Fig. S3). The regions with the largest 5 

greening trends, consistent across the 3 data sets, are in Southeast North America, 6 

Northern Amazon, Europe, Central Africa and Southeast Asia. The GLASS LAI data 7 

shows the most extensive statistically significant greening (Mann-Kendal test, p<0.05) 8 

over 50% of vegetated lands, followed by GLOBMAP LAI (43%) and GIMMS LAI3g 9 

(25%). All 3 LAI data sets also consistently show a decreasing LAI trend (browning) 10 

over less than 4% of global vegetated land – these are observed in Northwest North 11 

America and Central South America. Analyses of the changes in observed maximum 12 

LAI also show similar widespread greening trends (Section S8). 13 

 14 

We compare satellite-based LAI anomalies with LAI anomalies simulated by 10 global 15 

ecosystem models driven by eCO2 (+46 ppm over the study period), climate, nitrogen 16 

deposition and LCC (Section S7). Multi-Model Ensemble Mean (MMEM) LAI 17 

anomalies with all these drivers considered, generally agree with averaged satellite 18 

observations at the global scale (r=0.83, p<0.01; Fig. 2a). The trend in MMEM LAI 19 

anomalies (0.062 m2m-2yr-1) is within the range of estimates from the 3 satellite data 20 

sets. The model simulations suggest that increasing gross primary productivity, 21 

although partly neutralized by increasing autotrophic respiration, and decreasing carbon 22 
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loss due to fires are responsible for the increasing LAI during 1982 to 2009 (Section 1 

S9).The spatial pattern of LAI trends also matches well between satellite data and 2 

MMEM simulations (Fig. 3a, b). Consistent greening trends between models and 3 

observations are seen in Fig. 3 across the Southeast United States, the Amazon basin, 4 

Europe, central Africa, Southeast Asia and Australia. However, satellite LAI and 5 

MMEM results show different magnitude (or sign) of trends in the Southwestern United 6 

States, Southern South American countries, and Mongolia, indicating that models may 7 

be over-sensitive to trends in precipitation (Section S10). 8 

 9 

We used an optimal fingerprint detection method13 to assess the ability of the models to 10 

simulate observed patterns of LAI response to eCO2 ， climate change, nitrogen 11 

deposition and LCC. We regressed the observed 2-year mean global average LAI time 12 

series against the MMEM simulated LAI reflecting the effects of single drivers, based 13 

on factorial runs where only one driver is varied at the time. A residual consistency 14 

test13 suggests no inconsistency between the regression residuals and the model 15 

simulated internal variability in the absence of forcing (Methods), indicating that the 16 

fingerprint detection method is suitable for detection and attribution at the global scale 17 

(Fig. 2b). The 95% confidence intervals of the scaling factors of CO2 fertilization (best 18 

estimates of scaling factor β = 1.03, 95% confidence interval [0.84,1.23]) and climate 19 

change (β = 1.06, [0.55,1.64]) are not only above zero but also span unity, which 20 

means that the modeled signals from these two drivers are successfully detected and 21 

suitable for attribution (Fig. 2b). The fingerprints of nitrogen deposition and LCC 22 
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effects on the trend of LAI remain confounded with internal variability and cannot be 1 

clearly detected (not shown).  2 

 3 

Globally, the model factorial simulations suggest that CO2 fertilization explains the 4 

largest contribution to the satellite observed LAI trend (70.1±29.4%, 0.048±0.020 m2m-5 

2yr-1), followed by nitrogen deposition (8.8±11.8%, 0.006±0.008 m2m-2yr-1), climate 6 

change (8.1±20.6%, 0.006±0.014 m2m-2yr-1) and LCC (3.7±14.7%, 0.003±0.010 m2m-7 

2yr-1) (Fig. 2c). The contributions of CO2 fertilization and climate change are reliable 8 

according to the optimal fingerprint analysis, while the effects of LCC and nitrogen 9 

deposition should be interpreted with caution. Our estimation of CO2 fertilization 10 

effects on vegetation growth is more prominent than Los6, which is likely due to the 11 

different attribution approaches. When using only those ecosystem models (5 out of 10) 12 

that incorporate N limitations and nitrogen deposition effects (Table S1), the fraction of 13 

the LAI trend that is unambiguously attributed to CO2 fertilization is slightly smaller 14 

(66.2±13.2%, 0.045±0.009 m2m-2yr-1) than when using models that ignore nitrogen 15 

processes (75.0 ± 42.6%, 0.051 ± 0.029 m2m-2yr-1). This suggests that although 16 

incorporating nitrogen in ecosystem models does not significantly (t-test, p<0.05) 17 

change the contribution of the CO2 fertilization effect to the global trend of LAI, it 18 

reduces the spread of model simulations (F-test, p<0.05).  19 

 20 

Vegetation leaf area changes result from interacting factors, but factorial simulations 21 

help to attribute a dominant factor for the observed changes. Our analyses show that 22 



 9 

the CO2 fertilization effect has a rather spatially uniform effect on the positive LAI 1 

trends. The modeled relative increases in global mean LAI due to CO2 fertilization 2 

alone is about 4.7-9.5% (or 10.2-20.7% per 100ppm) during 1982 to 2009, which is 3 

comparable to measurements from the Free-Air CO2 Enrichment (FACE) experiments 4 

(0.3-11.1%, or 0.6-24.1% per 100ppm)14. However, no FACE experiment covered 5 

tropical forests, where models suggest that eCO2 is the dominant factor of the recent 6 

LAI trend (Fig. 3c, d). The spatial pattern is consistent with previous analyses15 that 7 

posited large absolute LAI increases due to eCO2 in the tropics, in the absence of 8 

temperature, water and nitrogen limitations16, and large relative LAI increases due to 9 

eCO2 in arid regions, where eCO2 is expected to increase water use efficiency of plants 10 

(Fig. S12)17. A simple theoretical model17,18 was used to diagnose the response of leaf 11 

level carbon assimilation to the observed 46 ppm increase of CO2 over the study period, 12 

including the effect of vapor pressure deficit trends and stomatal closure. This model 13 

gave a similar relative response of carbon assimilation to eCO2 as the ecosystem models 14 

did for LAI (Section S12). 15 

 16 

Climate change explains about 8.1±20.1% of the observed positive LAI trend, but 17 

unlike eCO2 effects, climatic effects are negative in some regions. Although detected 18 

by the optimal fingerprint model, the effects of climate change are not consistent 19 

between models, and may even be opposite in individual model simulations. Overall, 20 

climate change has dominant contributions to the greening trend over 28.4% of the 21 

global vegetated area (Fig. 3c, d). Positive effects of climate change in the Northern 22 
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high latitudes and the Tibetan Plateau are attributed to rising temperature, which 1 

enhances photosynthesis and lengthens the growing season5, whereas the greening of 2 

the Sahel and South Africa are primarily driven by increasing precipitation (Fig. S13). 3 

South America is the only continent where negative climate effects were statistically 4 

significant (Fig. S10 and Fig. S11b). This is particularly important due to the role of the 5 

Amazon forests in the global carbon cycle19,20. Ecosystem models may tend to 6 

overestimate the responses of vegetation growth to precipitation12 (Section S10) which 7 

is one of the reasons why the fate of the Amazon forests continues to be debated10.  8 

 9 

Considerable evidence points to nitrogen limitation of vegetation growth over many 10 

parts of the Earth21, with local alleviation by nitrogen deposition in boreal and 11 

temperate regions22,23. Our analyses suggest that nitrogen deposition explains 8.8±11.8% 12 

of the LAI trend at the global scale. However, this result is uncertain because only two 13 

models in the ensemble specifically performed factorial simulations with and without 14 

nitrogen deposition. A slightly negative trend in nitrogen deposition effect was 15 

observed in North America and Europe, where nitrogen deposition rates have stabilized 16 

or even declined during the last three decades24,25.  17 

 18 

LCC is a dominant driver of LAI greening only over 9.6% of the global vegetated area, 19 

mainly in Southeast China and Southeast United States. Models produce negative LCC 20 

effects on LAI trends in tropical and southern temperate regions where deforestation 21 

occurred (Fig. S11d)26. The individual effect of LCC seems however to be outweighed 22 

by other factors in these regions, and thus does not appear to be dominant. Trends of 23 
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the LCC effect simulated by ecosystem models differ significantly in magnitude, and 1 

sometimes also in sign. This could be due to differences in model assumptions relating 2 

to whether the productivity of secondary vegetation is smaller or larger than that of the 3 

vegetation it replaces. 4 

 5 

At the global scale, the observed LAI trend can be largely accounted for by CO2, climate, 6 

nitrogen deposition and LCC. However, at regional scales, other factors (OF) not 7 

considered in models such as forest management, grazing, changes in cultivation 8 

practices and varieties, irrigation and disturbances such as storms and insect attacks, 9 

can be a cause of mismatch between observed and simulated LAI trends. The patterns 10 

of the effect of other factors were estimated as a residual, by subtracting the simulated 11 

trend caused by factors explicitly modeled from the observed local LAI trend. OF 12 

contributes the most to the observed LAI trend over 25.0% (increase) and 5.3% 13 

(decrease) of the vegetated area (Fig. 3d). OF can also encompass non-modeled 14 

processes such as plant diversity within a type of vegetation, hydrological and nutrient 15 

liberation during permafrost thawing, phosphorus and potassium limitations, access to 16 

ground water by deep roots, and rigid discretization of the simulated vegetation into 17 

few plant functional types. Further, uncertainties in existing model parameterization 18 

and structure (Section S7) and biases from the remote sensing data sets (Section S6) 19 

can cause a mismatch between simulated and observed LAI trends. Interestingly, 20 

positive effects tentatively attributed to OF are mainly found in areas of intensive 21 

ecosystem management such as northeast China, Europe, and India27. Negative OF 22 
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effects are mainly found in northern high latitudes where most models lack a 1 

representation of regionally important ecosystems (peatlands, wetlands) as well as of 2 

specific disturbances28,29.  3 

 4 

Understanding the mechanisms behind LAI trends is a first, yet critical, step towards 5 

better understanding the influence of human actions on terrestrial vegetation, and 6 

towards improving future projections of vegetation dynamics. Utilizing three LAI data 7 

sets, an ensemble of 10 ecosystem models, and a fingerprinting technique, we assessed 8 

the consistency of observed greening and browning patterns with the effects of key 9 

environmental drivers. The use of a 10-model ensemble increases confidence in the 10 

attribution, although model simulations diverge in some aspect, particularly for the 11 

impacts of climate change and LCC, which suggests an area for future model 12 

improvements. Overall, the described LAI trends represent a significant alteration of 13 

the productive capacity of terrestrial vegetation through anthropogenic influences.  14 

 15 

Methods 16 

Methods and any associated references are available in the online version of the paper. 17 
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Figure Legends 1 

Figure 1. The spatial pattern of trends in growing season integrated LAI derived from 2 

three remote sensing data (a) GIMMS LAI3g, (b) GLOBMAP LAI and (c) GLASS LAI.  3 

All data sets cover the period 1982 to 2009. Regions labeled by black dots indicate 4 

trends that are statistically significant (Mann-Kendal test, p<0.05). (d) Probability 5 

density function of LAI trends for GIMMS LAI3g, GLASS LAI, GLOBMAP LAI and 6 

the average of the three remote sensing data sets (AVG OBS). 7 

 8 

Figure 2. (a) Interannual changes in anomalies of growing season integrated leaf area 9 

index (LAI) estimated by multi-model ensemble mean (MMEM) with all drivers 10 

considered (blue line) and average of the three remote sensing data (red line) for the 11 

period 1982 to 2009, and interannual changes in anomalies of LAI of GIMMS LAI3g 12 

(green line) for the period 1982 to 2014. The shaded area shows the intensity of EI 13 

Niño-Southern Oscillation (ENSO) as defined by the multivariate ENSO Index. The 14 

black dash lines label the sensor changing time of the AVHRR satellite series. Two 15 

volcanic eruptions (El Chichón eruption and Pinatubo eruption) were labeled in brown 16 

dash lines. (b) Best estimates of the scaling factors of CO2 fertilization effects, climate 17 

change effects and simulated LAI under the four scenarios and their 5-95% uncertainty 18 

range from optimal fingerprint analyses of global LAI for 1982-2009. (c) Trend in 19 

global averaged LAI derived from satellite observation (OBS) and modeled trends 20 

driven by rising CO2, climate change (CLI), nitrogen deposition (NDE) and land cover 21 

change (LCC) using the Mann-Kendal test. Error bars show the standard deviation of 22 
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trends derived from satellite data and model simulations. Two asterisks indicate that the 1 

trend is statistically significant (p<0.05).  2 

 3 

Figure 3. The spatial distribution pattern of the trend in growing season integrated LAI 4 

(a, b), its primary driving factors (c) and the latitudinal area fraction of the driving 5 

factors (d) for the period 1982 to 2009. LAI trends were derived (a) from average of 6 

GIMMS, GLOBMAP and GLASS LAI and (b) from multi-model ensemble mean with 7 

all drivers considered; Regions labeled by dots have trends that are statistically 8 

significant (p<0.05). The trend is calculated and evaluated using the Mann-Kendal test 9 

at 5% significance level. (c) The dominant driving factor is defined as the driving factor 10 

that contributes the most to the increase (or decrease) in LAI in each vegetated grid-11 

cell. The driving factors include rising CO2 (CO2), climate change (CLI), nitrogen 12 

deposition (NDE), land cover change (LCC) and other factors (OF), the latter being 13 

defined by the non-modeled fraction of observed LAI trend (see text). Prefixed ‘+’ of 14 

driving factors indicate their positive effect on LAI trends, while ‘-’ indicate negative 15 

effect. (d) Fractional area of vegetated land in 15° latitude bands (90°N-60°S) attributed 16 

to different factors. The fraction of vegetated area (%) that dominantly driven by each 17 

factor was labeled on top of the bar.  18 
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Methods 1 

The growing season integrated leaf area index was used as a proxy of vegetation growth 2 

in this study. We identified the growing season for each 0.5° × 0.5° grid cell of global 3 

vegetated area utilizing GIMMS LAI3g data sets and freeze/thaw data sets. The 4 

growing season was first determined from the GIMMS LAI3g data set30 using Savitzky-5 

Golay filter and then refined by excluding the ground-freeze period identified by the 6 

Freeze/Thaw Earth System Data Record31. In particular, the growing season of 7 

evergreen broadleaf forests was set to 12 months and starts in January. All the satellite 8 

observed leaf area products and leaf area index outputs of ecosystem models were first 9 

aggregated to 0.5° × 0.5° spatial resolution and then composited to annual growing 10 

season integrated leaf area index data. 11 

 12 

Three satellite-observed leaf area index products (GIMMS LAI, GLOBMAP LAI and 13 

GLASS LAI) were used to analyze the changes in global vegetation for the period 1982 14 

to 2009. We used a nonparametric trend test technique (Mann-Kendall test) to evaluate 15 

trends in growing season integrated leaf area index derived from the three satellite LAI 16 

products at the 95% significance level. We analyzed trends in LAI at pixel level, global 17 

level and continental level. When we tested trends in LAI at global and continental 18 

scales, we calculated the mean of LAI values of all the pixels in the specific region, 19 

weighting by the area of each pixel. 20 

 21 

Ten ecosystem models were used to analyze the relative contributions of external 22 



 21 

driving factors to trends in global vegetation growth during 1982-2009. We performed 1 

4 experimental simulations to evaluate the relative contribution of four main driving 2 

factors, i.e. CO2 fertilization, climate change, nitrogen deposition and land cover 3 

change, to the global vegetation trends: (S1) varying CO2 only, (S2) varying CO2 and 4 

climate, (S3) varying CO2, climate and nitrogen deposition and (S4) varying CO2, 5 

climate and land cover change. S1, S2-S1, S3-S2 and S4-S2 were used to evaluate the 6 

effects of CO2 fertilization, climate change, nitrogen deposition and land cover change 7 

to vegetation growth, respectively (see Section S7).  8 

 9 

We used an optimal fingerprint method13 to detect the signals of CO2 fertilization, 10 

climate change, nitrogen deposition and land cover change effects simulated by 11 

ecosystem models at global scales. The optimal fingerprint expresses the observation 12 

(Y) as a linear combination of scaled (𝛽𝑖) responses to external driving factors (𝑥𝑖), and 13 

internal variability (𝜀): Y = ∑ 𝛽𝑖𝑥𝑖 + 𝜀𝑛
𝑖=1 . The scaling factors (𝛽𝑖) are estimated based 14 

on the total least square method to adjust the amplitude of the responses of LAI to each 15 

driving factors. We regressed the satellite observed LAI against responses of vegetation 16 

growth (expressed as LAI) to elevated atmospheric CO2, climate change, nitrogen 17 

deposition and land cover change estimated by multi-model ensemble mean simulations 18 

of 10 ecosystem models. We also performed similar analysis for the simulated LAI 19 

under scenarios S1, S2, S3 and S4. These regressions provide best-estimate linear 20 

combinations of signals simulated by ecosystem models. The coefficients of the signals 21 

are the scaling factors (𝛽𝑖). A residual consistency test was introduced to check the 22 



 22 

consistency between the residuals of satellite observed LAI and best-estimate 1 

combinations of signals and the assumed internal LAI variability13. The overall 2 

statistical model was considered suitable only if the residual consistency test passed at 3 

95% significance level. If the 95% confidence interval of the estimated scaling factor 4 

lies above zero, the signal of the corresponding driving factor is detected. And the 5 

model simulations are suitable for attribution if the 95% confidence interval contains 1. 6 

 7 
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