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Abstract

Reliable temperature time series are necessary to quantify how our world is changing.
Unfortunately many non-climatic artefacts, known as inhomogeneities, affect these time
series. When looking at real world data it is often not possible to distinguish between
these non-climatic artefacts and true climatic variations that are naturally found in our
world. Therefore, trying to remove the non-climatic artefacts with complete confidence
is problematic, but leaving them in could lead to misinterpretation of climate variations.
In creating realistic, homogeneous, synthetic, daily temperature series the truth can be
known about the data completely. Known, created inhomogeneity structures can be
added to these series, allowing the distinguishing between true and artificial artefacts.
The application of homogenisation algorithms to these created inhomogeneous data al-
lows the assessment of algorithm performance, as their returned contributions are being
compared to a known standard or benchmark, the clean data.

In this work a Generalised Additive Model (GAM) was used to create synthetic, clean,
daily temperature series. Daily data pose new challenges compared to monthly or an-
nual data owing to their increased variability and quantity. This is the first intercomparison
study to assess homogenisation algorithm performance on temperature data at the daily
level. The inhomogeneity structures added to the clean data were created by perturbing
the inputs to the GAM, which created seasonally varying inhomogeneities, and by adding
constant offsets, which created constant inhomogeneities. Four different regions in the
United States were modelled, these four regions are climatically diverse which allowed for
the exploration of the impact of this on homogenisation algorithm performance. Four dif-
ferent data scenarios, incorporating three different inhomogeneity structures, were added
and evaluations also investigated how these impacted algorithm performance. Eight ho-
mogenisation algorithms were contributed to this study and their performance was as-
sessed according to both their ability to detect change points and their ability to return
series that were closer to the clean data than they were on release. These evaluations
sought to aid the improvement of these algorithms and enable a quantification of the
uncertainty remaining in daily temperature data even after homogenisation has taken
place. Evaluations were also made of the benchmarks as it was important that bench-
mark weaknesses were taken into account. It was found that more climatologically di-
verse regions were harder to model and less climatologically diverse regions were easier
to homogenise. Station density in a network and the presence of artificial trend inhomo-
geneities did not impact algorithm performance as much as changes in autocorrelations
did, and the latter area was an area that most algorithms could improve on.

This work feeds into the larger project of the International Surface Temperature Initiative
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which is working on a wider scale and with monthly instead of daily data.
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1. Introduction

This chapter explains the motivations and aims of the research described in this thesis
and gives an overview of the content which follows in the rest of the thesis. It is designed
to aid the reader’s understanding by providing them with a brief introduction to the areas
of homogenisation and benchmarking, which will be expanded on in the literature review
in chapter two.

1.1. Motivations

Attempts are increasingly being made to quantify how the world is changing and what
is causing these changes. Changes in climate are frequently attributed to anthropogenic
(man made) or natural drivers and these changes are detected using in situ observations,
amongst other sources [IPCC, 2014]. However, in situ observations have long since
been known not to be error free. Widely quoted in the homogenisation literature is Viktor
Conrad’s definition of a homogeneous series as being one that has variations ”caused by
and only by variations of weather and climate” [Conrad, 1946]. This quote comes after
his comment that a manifold of causes exist to stop a time series being homogeneous,
just two of which are changes in instrumentation and changes in station surroundings.

Artefacts that stop a time series from being homogeneous are known as inhomogeneities.
These inhomogeneities confound attempts to draw conclusions from in situ data because
their magnitudes are often similar to the magnitudes of true climate artefacts [Williams
et al., 2012]. Therefore, it is necessary to remove these inhomogeneities in order to
create time series’ that can be relied upon in climate studies; this process is known
as homogenisation. Multiple algorithms have been designed to homogenise data and
comparison studies have been undertaken in the past to compare their strengths and
weaknesses, Easterling and Peterson [1995]; Reeves et al. [2007]; Venema et al. [2012],
to name a few.

If algorithms are being run on real world data then reliably assessing their performance
is problematic as the correct answer is not known. Therefore, it is common practice
to instead create synthetic data, where known inhomogeneities are inserted into known
homogeneous series’, meaning that the truth about the data is known a priori. This
process is known as benchmarking, and if the truth of the homogeneous data, often called
clean data, is not revealed to the homogenisers until after the algorithms have been run
then it is known as blind benchmarking. The largest comparison study to date, Venema
et al. [2012], also known as COST HOME, was a blind benchmarking study. It compared
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25 variants of 13 different algorithms by assessing their performance on a variety of
inhomogeneous scenarios which were created by the first author. A larger comparison
study still is currently being planned. The International Surface Temperature Initiative plan
to compare multiple homogenisation algorithms on a range of global, monthly benchmark
datasets. The temporal and spatial scale of this project will vastly exceed all previous
work in this area. The current project is a part of this larger project, but looking at daily
data on a smaller scale.

At the beginning of the write up of COST HOME one motivation for the project given was
that, although there were many homogenisation algorithms available for monthly data,
previous comparisons had been carried out at the annual level. Therefore, Venema et al.
[2012] created monthly benchmark datasets for their analysis. Now that COST HOME
has been completed the next logical step is to carry out a benchmarking study at the
daily scale. There are not a plethora of algorithms available which are designed to work
with daily data, therefore, this thesis has dual motivation. Firstly, to assess the existing
algorithms that can be applied to daily data and secondly, to encourage the development
of further algorithms by providing a tool with which to develop them.

Daily data are of interest because it is often at this level that societal impacts of climate
change are felt. Heat waves that last a few days will be aggregated out of data when time
series are looked at on an annual or monthly scale, but it is important to know how often
these events are occurring as they are events that can claim lives. Thus, being able to
look at trends in extremes of data is incredibly valuable, but should only be carried out on
reliable daily time series.

Daily data are more complex to work with than monthly or annual data. They vary over
shorter space scales, thus making comparisons between stations more difficult. They are
typically not normally distributed, thus making creation of synthetic data more difficult.
Finally, their extra variability internally confounds attempts to distinguish true inhomo-
geneities from natural temperature variations. Given this extra variability that is present
in daily data it is not sufficient to assess homogenisation algorithms based only on their
adjustments to the mean of the data. Instead, this study will look at a variety of algorithm
assessment measures, including analyses of returned station variabilities and extremes.

Although temperature is not the only climate variable in need of homogenisation it will be
the sole variable focussed on in this project. This is because it was one of two variables
identified as being of most interest to the homogenisation community in 2012 [Venema
et al., 2012]. The other variable identified was precipitation, which is arguably still more
complex than daily temperature data as the spatial correlations are greatly reduced.

1.2. Data and Analysis

No global, daily, homogenised dataset exists. However, there are sources of daily, quality
controlled data. Quality control differs from homogenisation in that it looks for effects with
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random consequences e.g. it might seek to identify a value recorded a factor of ten out,
whereas homogenisation looks for systematic effects e.g. effects on temperatures arising
due to a change in instrument. In this study, the data are created in such a manner that
participating homogenisers can assume that no effects with random consequences are
present, and thus, no quality control needs to take place.

The choice of data used to build the model for creating synthetic temperature series in
this project will be expanded on in chapter three, but it had to meet certain requirements.
The temperature data had to be daily in nature and available at the station level in order
to be able to investigate the spatial and temporal correlations that are present in data
at this scale so that these could be reproduced and the quality of their incorporation in
the benchmarks could be assessed. Given the modelling nature of this project, it was
also desirable that data for more than just temperature were available for all stations so
that these other variables could be used to enhance the model. It was also known that
benchmarks should be seeking to be realistic in terms of observed longer-term variability
such as the El-Niño Southern Oscillation.

All data analysis was carried out using freely available software; predominantly R, but
with a few small scripts written for Python. All scripts are available on request and it is the
author’s hope that these may be used to further the work begun in this project.

1.3. Aims

High quality daily data are necessary for the climate research community, but inhomo-
geneities are all too frequent in the majority of these series. Daily homogenisation is still
in its infancy and no previous benchmarking comparison studies for daily data have taken
place. Therefore, this thesis has sought to aid the homogenisation and climate commu-
nities by providing daily mean temperature benchmarks that explore multiple different re-
gions and scenarios. It also provides a validation framework that has been implemented
to assess the performance of existing homogenisation methods and aid the development
of new ones. This framework was implemented by the author in collaboration with the
homogenisation community. The overall aims of this study were as follows:

1. To design a model capable of creating realistic, clean, daily data that could act as
benchmarks. This model had to be capable of reproducing true data autocorrela-
tions and inter-station correlations and be able to be easily generalised to multiple
different regions. It also had to be able to produce large (> 100 stations) networks
and ideally be able to incorporate other climatic variables.

2. To design a realistic range of inhomogeneity structures that could be added on
to the clean data. These were the released data scenarios. These data needed
to explore a range of inhomogeneity types known to affect daily temperature data
and also explore the impacts of changing the station and network characteristics
themselves.

27



1. Introduction

3. To engage the homogenisation community and encourage their involvement in this
work by providing them with the released data to homogenise and keeping them
blind to the clean data until after the algorithm assessment.

4. To assess the homogenised contributions and provide an analysis of algorithm
strengths and weaknesses and the uncertainty remaining in the homogenised data.
This analysis was fed back to the homogenisers to aid further development of their
algorithms.

5. To assess the quality of the created benchmarks and identify areas for improvement
in a future iteration of this project.

1.4. Thesis Overview

The rest of the thesis proceeds as follows. Chapter two provides a more in depth de-
scription of previous homogenisation and benchmarking studies. It explains previous ap-
proaches to clean and inhomogeneous data creation and also looks at previous methods
of assessing algorithm performance.

Chapter three introduces the data used for this project and the necessary pre-processing
steps to be able to use them. It explains the motivations behind the choices of these data
sources and locations where the reader can access the same data.

Chapter four looks at the modelling of daily temperature data. It gives an introduction
to the statistical models considered when creating the benchmark clean data before ex-
panding on the reasons for the final model choice and the variables contained within it.
This chapter concludes with an assessment of the similarity between the created clean
data and the real world data.

Chapter five introduces the inhomogeneity structures used in this benchmarking study.
These form the released data scenarios that were made available to the homogenisation
community. The reasoning behind the different scenarios created is also explained in this
chapter.

Chapter six lays out the validation framework that was used to assess the returned data
produced by homogenisers running their algorithms on the released data. This chapter
introduces the different measures for assessing an algorithm’s adjustment or detection
ability.

Chapter seven introduces the algorithms evaluated in this project and then proceeds
to explain the results of implementing the validation framework of chapter six on the
returned data from them. It first gives an overview of how all algorithms performed for
each validation measure before going on to quantify the strengths and weaknesses of
each contributed algorithm. The chapter concludes with an assessment of the uncertainty
remaining in the data after homogenisation.
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Chapter eight provides a summary of the accomplishments of this thesis and highlights
areas for future work.
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Chapter one has introduced the motivation and aims for this project and given an overview
of what follows in the rest of the thesis. This chapter explains in more detail previous work
carried out in the areas of homogenisation and benchmarking and gives an overview of
previous validation measures used when assessing homogenisation algorithm perfor-
mance.

2.1. Homogenisation

Homogenisation, in the climate context, refers to the act of removing the non-climatic
artefacts, inhomogeneities, from a time series. Multiple studies have illustrated the need
for homogenisation of climate data, whether that is by illustrating the effects inhomo-
geneities can have, e.g. figure 2.1 taken from Menne et al. [2009]; highlighting that they
can confound our attempts to quantify how our climate is changing because of their similar
magnitudes to true climate signals [Della-Marta and Wanner, 2006; Venema et al., 2012;
Williams et al., 2012]; or by highlighting the causes of the inhomogeneities themselves
[Trewin, 2010; Parker, 1994; Hubbard and Lin, 2006].

Often, inhomogeneities are divided into two categories, step and trend changes [Menne
and Williams JR., 2009]. The former is usually caused by a specific event in time, e.g.,
a station relocation [Xu et al., 2013], or a change in instrumentation [Willett et al., 2014].
Trend inhomogeneities are commonly caused by a change in station surroundings, the
most common cause of which is urbanisation [Trewin, 2010]. Another cause of a trend in-
homogeneity could be the deterioration of an instrument or shelter [Lopardo et al., 2014].
The effects of inhomogeneities could be largely constant e.g., because of a thermometer
error, or could vary diurnally e.g., shelter change impacts [Parker, 1994], or seasonally,
e.g., because of seasonal changes in surrounding vegetation at a new site (Blair Trewin,
personal communication). More focus is given to non-constant inhomogeneities in this
work, as constant inhomogeneities have been studied more in the past, see section 2.2
of this chapter. An overview of the inhomogeneities specifically focused on in this work
and the reason for their choice is given in section one of chapter five.

As this project is focused on temperature homogenisation, this is also the area of ho-
mogenisation that this review focuses on. Temperature homogenisation has been the
focal point of numerous studies in the past (see Yozgatligil and Yazici [2015] for an exten-
sive list). It is one of the main variables to be homogenised because it has become the
variable most commonly associated with the quantification of climate change. It is also
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Figure 2.1. Figure 8b from [Menne et al., 2009]. This figure illustrates the difference in minimum
adjusted (blue) and unadjusted (black) temperatures between Reno, Nevada and the mean of its
ten nearest neighbours. The steps in this series were caused by station relocations and the trend
was caused by urbanisation of the surrounding area.

commonly homogenised because there are typically long records available for tempera-
ture data and temperature is measured near globally, though the spatial coverage varies
dramatically. The second most commonly homogenised variable is precipitation; this too
is directly relevant to society, which is why acquiring more reliable records through ho-
mogenisation is so valuable. Venema et al. [2012], which has been one of the largest
studies assessing homogenisation algorithms to date, looked at the homogenisation of
precipitation data, and therefore references to precipitation homogenisation studies can
be found in section one of Venema et al. [2012].

A great number of homogenisation algorithms are available and they have been being de-
veloped for many years, although many of these algorithms should correctly be referred
to as change point detection algorithms as they seek only to find the inhomogeneities
and not to also correct for them. As stated in section one of the introduction, one of the
earliest references to homogenisation is from Viktor Conrad in the mid twentieth century.
Conrad [1946] defined a series to be homogeneous if its variations were caused only by
variations in weather and climate. He went on to define relative homogeneity; ”A climato-
logical series is relatively homogeneous with respect to a synchronous series at another
place if the differences (ratios) of the pairs of the homologous averages represent a series
of random numbers which satisfies the law of errors”, and absolute homogeneity, when a
series itself, i.e., not a difference series, is deemed to contain no inhomogeneities. These
definitions have spawned the groupings of homogenisation algorithms today: absolute
homogenisation methods are applied to each station separately, whereas relative meth-
ods use reference stations to assess the homogeneity of a candidate station [Costa and
Soares, 2009].

As demonstrated by Venema et al. [2012], relative homogenisation algorithms are, in
general, more reliable than absolute homogenisation algorithms, and the majority of al-
gorithms do now fall into the former category. However, as Costa and Soares [2009]
point out, both methods have disadvantages. Relative homogenisation methods cannot
cope with simultaneous changes across a network as they will assume it to be a true
climatic event, and absolute methods are overly reliant on metadata (data about data) to
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distinguish between true and artificial changes, but metadata is all too often not available
[Costa and Soares, 2009; Menne et al., 2009]. All algorithms applied in this study were
relative homogenisation algorithms, though they differed in whether they used a single
station as a reference series or multiple stations. For a review of absolute homogenisa-
tion algorithms the reader is referred to Reeves et al. [2007].

It is commonly acknowledged that a perfect algorithm does not exist [Thorne et al., 2011b;
Williams et al., 2012]. However, knowing this has spurred on many comparison studies
between different algorithms. The studies of Reeves et al. [2007] and Venema et al.
[2012] have already been mentioned, but there are many others. Easterling and Pe-
terson [1995] compared relatively early homogenisation methods whilst developing their
own; Ducre-Robitaille et al. [2003] and DeGaetano [2006] compared the abilities of mul-
tiple algorithms for detecting step changes and Domonkos [2011] took the comparisons
one step further by also looking at the correction abilities of algorithms. This is not an
exhaustive list. The most recent comparison studies have been those of Venema et al.
[2012] and Yozgatligil and Yazici [2015], though the latter was once more only assessing
change point detection and not correction also. The upcoming study eluded to in Willett
et al. [2014] should be by far the largest homogenisation comparison study undertaken
as it will look at multiple algorithms’ detection and adjustment abilities on a global scale.

The existence of so many comparison studies already does not remove the need for a
further study. Venema et al. [2012] was the first study to compare multiple algorithms at
the monthly level and the current study is the first to compare multiple algorithms at the
daily level. However, even once multiple studies are available at the monthly and daily
levels there will still be the need for more studies to enable different inhomogeneity sce-
narios, underlying data structures and new algorithms to be further investigated. This is
why the International Surface Temperature Initiative plans on having a cycle of homogeni-
sation comparison studies, [Willett et al., 2014], and why the author encourages a future
iteration of this daily project.

2.2. Benchmarking

The Penguin English Dictionary defines a benchmark as ’Something that serves as a
standard by which others may be measured’ [Allen, 2003]. For homogenisation the
benchmark is the known truth, usually created clean data, and the ’others being mea-
sured’ are the returned data obtained by having run homogenisation algorithms on the
released data. Such benchmarks are necessary as when the truth that is being aimed
for is known, a reliable quantification of errors is possible, but when the truth is not known
a priori no such reliable quantification is possible. In the area of homogenisation there
have been some well known benchmarking studies, most notably the COST HOME ac-
tion detailed in Venema et al. [2012] and the study comparing variants of the Pairwise
Homogenisation Algorithm carried out by Williams et al. [2012]. The International Sur-
face Temperature Initiative’s current project, [Willett et al., 2014], will be the first global
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benchmarking study. All of these studies look at monthly temperature data, and, in the
case of Venema et al. [2012], monthly precipitation data as well.

The process of benchmarking homogenisation algorithms first requires the creation of
the benchmark data. This creation process can be split into two stages; the creation of
homogeneous (clean) data and the creation of error structures used to corrupt this data
in a known manner to produce the released data. What follows is a brief review of some
of the methods used at both these stages in studies to date.

2.2.1. Clean data creation

As stated previously most homogenisation studies to date have focussed on monthly
or annual data. Therefore, this review will focus on these time scales. Also, as already
stated, many studies only focus on change point detection and not the subsequent adjust-
ment of the data. These change point detection studies will still be mentioned as they do
involve data creation. However, the reader is cautioned that the focus of a full homogeni-
sation study is on more than just the correct identification of change point locations (see
section 2.2.3).

It is important to create realistic benchmarks to get a true idea of algorithm performance.
The key elements that should be well replicated are station auto-correlations and cross-
correlations, realistic trends, long- and short-term variability and realistic station level
climatology [Willett et al., 2014]. The study of Willett et al. [2014] seeks to do this using a
combination of interpolated Global Climate Model (GCM) output for long term trend and
regional variability; analysis of the stations being modelled to get true seasonal cycles and
station variabilities; and a vector autoregressive model to ensure realistic correlations.
Their work is global (32 000 stations) and includes stations of various record lengths
and qualities. The approach used is well suited to their work. However, for daily data
added complexities arise with increasing variability in the data because of the higher time
resolution and, therefore, this approach is not being adopted for this study.

The study of Williams et al. [2012] compares variants of the same algorithm and also uses
interpolated GCM data to create their clean benchmarks. These data are interpolated
to the station level over the contiguous United States. The stations created then had
climatological offsets and noise added in a manner that allowed inter-station correlations
and autocorrelations to be approximately equal to those of the observed network. This
study determined the necessary correlations from previously homogenised data. As such
data are often not available this approach was not adopted in the current study.

A different approach to creating clean data was taken by the COST HOME initiative and
is detailed in both Venema et al. [2011] and Venema et al. [2012]. They base their cre-
ated clean data on small networks of 5, 9 or 15 stations in Europe and their created data
series are 100 years in length. Some of their test data comes from the real world and is
therefore naturally not perfect. They also create ’surrogate’ station networks. The time
series’ for these networks are created using the Iterative Amplitude Fast Fourier Trans-
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form (IAFFT) algorithm (see Venema et al. [2006]) and reproduce true network spatial
and temporal correlations. However, the IAFFT algorithm requires homogeneous data
as an input and is therefore impractical for the present study where such data are rarely
available, especially at the daily level necessary here. Venema et al. [2012] also create
’synthetic’ station networks based on their surrogate station networks. Each synthetic net-
work is paired with a surrogate station network and mimics its cross-correlations, means
and standard deviations. However, it does not mimic the auto-correlations; the difference
series between pairs of stations in the synthetic networks are temporally uncorrelated
Gaussian white noise which is a simplification of reality. Venema et al. [2012] point out
that the assumption of difference series between stations being white noise is a common
one and that is why they chose to have synthetic and surrogate station networks - to in-
vestigate the impact of this assumption. The present study also investigates the impact
of this assumption, as detailed in chapters four and five.

Many studies focus on modelling standardised anomaly series (those that have had the
seasonal cycle removed and been divided by the series standard deviation). This allows
generation of time series from relatively simple statistical models with a mean of zero,
a standard deviation of one and usually a small auto-regressive parameter to ensure
some low level of autocorrelation enters the model, for example Ducre-Robitaille et al.
[2003]. DeGaetano [2006] built on this work to also incorporate correlations between
stations using a multivariate normal model and observed climate time series to base their
station information on. Menne and Williams JR. [2005] also modelled anomaly series and
take information about the autocorrelations and inter-station correlations from observed
annual temperature series in the United States.

A problem that can arise from working with standardised anomaly series is that, to then
generate non-standardised and non-deseasonalised data, realistic means and variances
must be determined. The means could be decided as a set value and then added back on
as was done in Easterling and Peterson [1995], or by taking them from real world series,
as will be done in Willett et al. [2014]. However, many homogenisation algorithms will
only work with anomaly series anyway, thus eliminating the problem of adding variation
back on to statistically created series. Some studies even focus on creating the difference
series between two anomaly series given that many homogenisation methods now work
with relative time series (candidate minus reference) anyway. For example, Domonkos
[2008b] and Domonkos [2011] create synthetic difference series with reference to ob-
served difference series.

As already mentioned, a very nice overview of many homogenisation studies can be
found at the beginning of Yozgatligil and Yazici [2015]. These authors then go on to create
data using a similar method to Yozgatligil et al. [2011] and Yazici et al. [2012] which takes
into account the known autocorrelations in monthly temperature series by using a time
series model. This time series model estimates a mean temperature and then adds a
monthly offset to this value according to the time of year. A normally distributed error
term with constant variance is also included. Highly correlated reference series from
this method were created by slightly perturbing the seasonal offsets and error terms
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generated from a multivariate normal distribution. The study by Yozgatligil et al. [2011]
also investigated the impact of changing the variance of the series by generating three
series with increasing variabilities.

Titchner et al. [2009] state the importance of basing clean data creation on realistic mod-
els instead of simple, randomly generated series, as it allows the capturing of real varia-
tions in climate such as inter-annual modes of variability, for example, the El Niño South-
ern Oscillation (ENSO). They adopt this approach when creating synthetic radiosonde
data and then add noise on to the grid box values when downscaling to the station level.

A potential limit when basing created data on observed data is the lack of observing sites
available. Studies that generate series using models (statistical or climatological) are less
likely to face this problem as thousands of simulations can be run based broadly on real
world properties. The present study uses observations and reanalysis data to capture
the behaviour of real world temperature series, but it uses these in a statistical model that
is able to create homogeneous stations at any location in the study area. It also models
full time series with realistic seasonal cycles and variability, thus avoiding the potential
problem raised above of having to model or determine these aspects separately.

2.2.2. Corrupted data creation

After synthetic clean data have been created, error structures need to be added on to
allow the assessment of homogenisation algorithm performance. These structures differ
in their complexity and content depending on the primary focus of the study in question.

The study of Reeves et al. [2007] assessed algorithm performance in the presence of at
most one change point (AMOC). The location and magnitude of this change point was
allowed to vary between three values and could also be accompanied by a trend change.
A similar study of AMOC was carried out by Lund et al. [2007], but they investigated the
impact of autocorrelation and periodicity in the data, still with a random inhomogeneity
time allocation, but without any trend changes.

An increase in the complexity of the structure could be to add more than one change
point into a series or to allow more variation in the size of these inhomogeneities. These
aspects were assessed in varying degrees by Easterling and Peterson [1995], Ducre-
Robitaille et al. [2003] and DeGaetano [2006]. All of these studies drew the time and size
of inhomogeneities from a pre-specified range of values (discrete or continuous), which
allowed the assessment of algorithm performance according to the time between change
points [DeGaetano, 2006].

Another study also looking at a wider range of inhomogeneity sizes and locations was that
of Menne and Williams JR. [2005] where step inhomogeneities had magnitudes drawn
from a Normal distribution with mean 0 and variance 1. This distribution was chosen
as their focus was on US temperature series where they showed a Normal(0,1) to be a
reasonable proxy for observed inhomogeneity sizes (after they have been standardised).
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They also didn’t restrict the time when an inhomogeneity could occur, though they only
assessed detection of inhomogeneities separated by at least 5 time points. The current
study also imposes no lower limit on time between change points, but employs a window-
ing approach when validating algorithm performance that accounts for non-exact change
point detection and near simultaneous change points.

Structures of varying complexity were created by Williams et al. [2012] when assess-
ing the performance of the Pairwise Homogenisation Algorithm (PHA).These structures
always contained step changes that did not vary seasonally, but the characteristics of
these step changes were broad. In four scenarios they investigated the impact of various
combinations of inhomogeneities that were: small or large; frequent or sparse; clustered
or isolated; prone to bias or with an average size of zero and supported or unsupported
by metadata. They also assessed whether algorithm performance was dependent on the
underlying climate signal by recreating the same scenario with underlying data from four
different climate models. They drew information in part from their knowledge of the US
temperatures, which Karl and Williams JR. [1987] also did in an earlier study.

The COST HOME initiative also drew information from the real world and they assessed
a real world section of the benchmark so they could evaluate how realistic their added
inhomogeneity structures were [Venema et al., 2012]. They didn’t limit the added in-
homogeneities to just step changes, but also added trend inhomogeneities; these were
between 30 and 60 years in length and had a magnitude drawn from a Normal(0,0.8)
distribution. An underlying trend was also added to simulate climate change that should
not be treated as an inhomogeneity. The step changes they added also had magnitudes
drawn from a Normal(0,0.8) distribution and were seasonally varying with a seasonal
cycle that had a variance of 0.4◦C. Clustered change points were also allowed to simu-
late network wide station changes. The change point locations were modelled using a
Poisson process, which is the method also employed in this thesis.

Many studies have been carried out recently by Peter Domonkos exploring various in-
homogeneity structures [Domonkos, 2008a,b, 2011, 2013]. He also explored real world
data, from Hungary, and his findings revealed that small inhomogeneities were more fre-
quent than large inhomogeneities and inhomogeneities that only affect a short time pe-
riod are more common than inhomogeneities that affect a longer time period [Domonkos,
2008b]. The scenarios that these Domonkos papers created explored these characteris-
tics, pointing out that small and short term inhomogeneities shouldn’t just be included to
see if algorithms can detect them, but because they will have an impact on the detection
of more substantial or pervasive inhomogeneities [Domonkos, 2011, 2013]. The present
study also captures and investigates these inhomogeneity characteristics in its created
error structures.

The study of Della-Marta and Wanner [2006] explored daily homogenisation extremes,
acknowledging that inhomogeneities likely affect more than just the mean of a temper-
ature distribution. Therefore, they added multiple change points, but not always in the
same way. Five different change points were possible, two affected only the mean,
two also caused a change in variance and one was implemented as a change in skew-
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ness. Although the current study does not explicitly alter higher order moments, these
will be changed by the nature of having seasonally varying inhomogeneities that are im-
plemented by changing inputs to the models.

The current project of the International Surface Temperature Initiative is likely to produce
the most comprehensive range of error structures to date. This benchmarking study will
incorporate error structures similar to those already investigated, whilst also expanding
the range of investigation to incorporate inhomogeneities affected by other climate vari-
ables and a wider range of inhomogeneity sizes, frequencies and real world similarities
[Willett et al., 2014]. It will also surpass the spatial scale of any previous study by quite
some margin, thus enabling the assessment of algorithm performance in quite diverse
climatic areas. The present study also assesses the interaction of temperature with other
climate variables and will feed back into the work of the International Surface Temperature
Initiative.

Studies have, of course, been carried out on other climatic variables too. Two of these
which investigate homogenisation problems similar to those encountered in temperature
data are Young [1993] and Titchner et al. [2009]. The first of these looked at sea level
pressure data and investigated the impacts on inhomogeneity detection arising from in-
creasing the variability of the series, altering series length and altering the location of the
inhomogeneity. The second study looked at the temperature in the upper atmospheric
layer and created four error models. These four error models were: a ’best guess’ struc-
ture; many small change points; change points added in such a way as to remove the
underlying climate change signal; and few large change points. They were designed to
be as diverse as possible to avoid algorithm tuning. The present study has not sought
diversity as its main focus, but instead changes only one main aspect of the data or error
structure per scenario. The reason for this choice was that it allows the investigation of
whether changing only one aspect can markedly change algorithm performance, which
is beneficial when feeding back to the creators of algorithms.

2.3. Validation

The validation of homogenisation algorithm performance can be split broadly into two cat-
egories; change point detection ability and inhomogeneity adjustment ability, where the
inhomogeneity is the effect of the change point. These two insights into a homogenisation
algorithm’s performance should be considered as complementary and not competitive.
Studies have highlighted that good performance in one of these areas does not guaran-
tee good performance in the other [Domonkos, 2011; Venema et al., 2012]. However, it is
only recently that investigation has begun to be carried out into adjustment ability as well
as detection ability. Assessing adjustment ability poses more problems for the benchmark
creator as knowledge of exactly how different inhomogeneities affect temperature series
is far from perfect. The same inhomogeneity will not have the same effects everywhere,
for example station relocation effects will vary with topography and uniformity of climate.
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2.3.1. Detection ability

The quantification of detection ability has been carried out using various measures in
the past, commonly formed from contingency tables that comprise information on hits,
false alarms, misses and correct rejections [Menne and Williams JR., 2005]. These four
terms refer to the correct allocation of a change point, the false allocation of a change
point, failing to allocate a change point where one should have existed and correctly
not allocating a change point where one didn’t exist; they are commonly represented
by the letters a, b, c and d respectively. Arguably the most common measure used
when assessing detection ability is the hit rate, H = a

a+c [Hogan and Mason, 2012]. This
measure is also referred to as the probability of detection [Menne and Williams JR., 2005]
and the proportion of discontinuities identified [DeGaetano, 2006] in different studies.
There are also occasions where it is wrongly referred to as the percentage correct, which
in fact credits hits and correct rejections [Easterling and Peterson, 1995].

The hit rate credits algorithms for correctly locating change points and penalises them for
missing true change points. A closely related measure to the hit rate is the correct change
point power statistic (CRC), which also credits algorithms for not falsely inserting change
points into truly homogeneous series [Menne and Williams JR., 2009]. A commonly
used measure that is the opposite to the CRC in a sense is the type I error rate of an
algorithm. The type I error rate is the proportion of truly homogeneous series that are
made corrupt by the homogenisation process [DeGaetano, 2006; Menne and Williams
JR., 2009; Yozgatligil and Yazici, 2015].

Hits are usually counted if a change point has been allocated within a certain window of
the true change point. This window varies in length depending on the time scale of the
study, but for monthly or annual series it is common to have it as around ±2 time steps
[Menne and Williams JR., 2005, 2009]. In the current study, at the daily level, the longest
window considered for an allocated change point to be classified as a hit is 180 days, 90
days either side of the true change point; this is noticeably longer than ±2 time steps in
the knowledge that homogenisation algorithms are unlikely to be accurate within a time
scale of four days.

Some studies define hits slightly differently, insisting that for an allocated change point to
not count as a false detection it must have a similar magnitude and the same sign to the
true change point and not just a similar location [Domonkos, 2011]. A further distinction
was made by Ducre-Robitaille et al. [2003] who distinguished between a correctly iden-
tified change point (close in magnitude and exact in time) and a well identified change
point (relatively close in both magnitude and time). A few studies have also assessed an
algorithm’s ability to identify the correct type of inhomogeneity out of a range of possible
models. This was done by both Reeves et al. [2007] and Menne and Williams JR. [2009].

Given that the hit rate rewards correct change point allocation it is helpful to also have
a measure that penalises an algorithm for inserting false change points. Various such
measures exist, the two most common of these are the false alarm rate, F = b

b+d , also
known as the probability of false detection, and the measure that it is consistently con-
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fused with in the literature, the false alarm ratio, FAR = b
a+b [Venema et al., 2012]. A

review of 26 papers published in American Meteorological Society journals found that the
terms false alarm rate and false alarm ratio were used incorrectly on 38% of occasions
[Barnes et al., 2009]. Although the study of Barnes et al. [2009] did not look at hit rate
terminology as well, this is also often incorrectly used as mentioned previously. The FAR
is also sometimes referred to as the error rate [Easterling and Peterson, 1995]. A good
algorithm should have a low false alarm rate and a high hit rate.

It is known that there are various confounding factors when assessing an algorithm’s de-
tection ability and some of these are commonly assessed in the literature. Many studies
analyse the influence of a change point’s size on the hit rate and conclude unsurprisingly
that smaller change points are harder to detect [Ducre-Robitaille et al., 2003; DeGae-
tano, 2006]. Given that small change points are harder to detect some studies focus on
larger change points only [Domonkos, 2011]. The variability of the series is also known
to affect the detection rate, with more variable series being more difficult to homogenise
[Young, 1993; Yozgatligil et al., 2011]. Change points closer to the ends of time series
are also found to be harder to locate in general [Young, 1993; Yozgatligil et al., 2011]
and as the frequency of change points increases detection also tends to become harder
[McCarthy et al., 2008]. Lund et al. [2007] also look at the impacts of autocorrelation and
periodicity on change point detection and find that both degrade an algorithm’s detection
ability, but autocorrelations have the far more noticeable effect. In the present study the
impacts of series autocorrelation and inhomogeneity size will be explicitly assessed; by
their nature, daily time series exhibit periodical (seasonal) behaviour so this can also be
taken into account. Focus is not given to the location of change points within a series or
their frequency, but further study in this area could be of interest. Another aspect that is
assessed in the present study and was mentioned in DeGaetano [2006] is the effect of
changing station density on change point detections.

Other measures relating to an algorithm’s detection ability include the frequency bias
of an algorithm, B = a+b

a+c , though it’s debatable to what extent this analyses detection
ability and not just rate of insertion [Menne and Williams JR., 2005] and also various skill
scores [Hogan and Mason, 2012]. Skill scores compare the performance of an algorithm
with that of some reference algorithm of no skill, e.g. one that allocates change points
randomly [Venema et al., 2012]. Certain skill scores and measures do not involve the
term d which is advantageous when this is difficult to define owing to the number of
correct rejections far outweighing the hits, false alarms and misses. In the present study,
the chosen ’non-d’ measures are the frequency bias and the Critical Success Index,
CSI = a

a+b+c , also known as the Jaccard coefficient or the threat score [Warrens, 2008;
Hogan and Mason, 2012].

2.3.2. Adjustment ability

As one of the primary aims of homogenisation is to improve the temporal consistency of
time series [Venema et al., 2012] it is valuable to examine the ability of homogenisation
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algorithms to recover long term trends. This is the primary focus of the studies by Thorne
et al. [2011a] and Williams et al. [2012], but is also highlighted in many other studies
[Titchner et al., 2009; Domonkos, 2011; Venema et al., 2012]. It is commonly linear trends
that are assessed, calculated using a least squares regression model on annual data.
Linear trends are used as they are simple to compare and give an answer as to whether
temperatures are going up or down overall at a glance. These trends are compared
using measures such as the root mean squared error between clean and returned and
clean and released trend coefficients [Menne and Williams JR., 2009; Venema et al.,
2012]. Other measures looking at the improvement that homogenisation has created in
the long term data trends are the percentage trend recovery [Willett et al., 2014] or skill of
linear trend estimation [Domonkos, 2008a, 2011]. Focus has also been on the statistical
significance of trends in the past, whether they were significant before or after corruption
or homogenisation, and whether or not these significances were legitimate [Domonkos,
2008b].

Adjustment ability can also focus on general similarity measures between the clean and
returned data. One of the earliest studies to assess adjustment ability in this way was
that by Ducre-Robitaille et al. [2003] who looked at the sum of squared errors between
the adjusted series and the known mean of the clean series and could therefore com-
pare results to a known target value. An even earlier study, that assessed performance
by analysing whether confidence intervals associated with adjustments incorporated the
clean data, was that by Karl and Williams JR. [1987]. More recent studies have used
error metrics to assess the similarities, these have included the RMSE [Della-Marta and
Wanner, 2006] and the centred RMSE (CRMSE) [Venema et al., 2012]. The CRMSE is
simply the RMSE computed on series that have first been centred by the subtraction of
their means.

One final aspect of homogenisation algorithm quality that has thus far received relatively
little attention is the homogenisation of moments higher than the mean. When shifts
have been artificially applied to only affect the mean of a series this is almost accept-
able, but in the real world variability and skewness of distributions could also be affected
by the presence of inhomogeneities. Della-Marta and Wanner [2006] compared trends
in extreme measures as they stated that mean focus is not sufficient. Communication
within the homogenisation community has also highlighted that depending on the goal of
homogenisation, different approaches should be considered as different parties are inter-
ested in different things. ”When trying to compute monthly means or trends, you do not
worry about losing variance, but this would be highly inconvenient if you are interested in
extremes” (pers. comm. J. Guijarro). Also, measures should be considered in tandem
as, ”For daily data RMSE is likely not the best measure. RMSE quickly ’rewards’ methods
that have too little variability around the mean” (pers. comm. V. Venema). This is one
reason why RMSE was considered as only one of several measures in the present study
and, as with all the other measures, an algorithm’s performance classification according
to it shouldn’t be taken out of context.

As well as looking at different measures it is advantageous to look at the same mea-

40



2. Literature Review

sures aggregated over different spatial and temporal scales. COST HOME revealed that
algorithms that did well on a station by station basis were not necessarily as effective
when looking at regional series [Venema et al., 2012]. Equally, measures on different
time scales can highlight different algorithm capabilities [Domonkos, 2013]. In the current
study regional and station by station similarity measures were compared across algo-
rithms. Longer term variability was also compared at different temporal scales.

When considering the evaluation of algorithm performances the quality of the benchmark
data they are being applied to should also be taken into account. Test datasets that
are more realistic should give a truer picture of how algorithms will perform in the real
world, but fully knowing the characteristics of the real world in their entirety is not possible
[Domonkos, 2013]. However, studies can gather much information from their focus region
before creating synthetic data and it is hoped that these will then bear relatively good
resemblance to reality [Domonkos, 2008b; Venema et al., 2012]. It is also advantageous
to create blind studies where algorithm users do not know the properties of the underlying
data, which reduces the chances of algorithms being tweaked to only perform well in
specific circumstances [Willett et al., 2014]. The present study was a blind study that
took information from real world stations and existing homogenisation literature.

2.4. Summary

This chapter has provided an overview of past studies that have sought to assess ho-
mogenisation algorithm performance, albeit on different spatial and temporal scales to
the present study. It has highlighted both advantages and disadvantages of previous
work and has hinted at how the present study will go about dealing with these issues.
The following chapters all contain a brief review of the main points covered here that are
relevant to the specific chapter, before proceeding to explain how the chosen methodol-
ogy was implemented.
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Chapters one and two have given a brief overview of the motivation for this project and
previous work in this area. They have explained that this project worked with daily data
as opposed to the more commonly used monthly time series. This chapter begins with
further information on the data that were used, where they were sourced from and how
to access them. Details are provided on the data themselves, their spatial and temporal
resolution and any necessary manipulations that took place in order to get them to the
daily station level. Also included in this chapter is an explanation of why the four specific
focus regions in North America were chosen.

3.1. Data Sources

Real world data were sought to be used in the modelling process to produce realistic,
clean data benchmarks, against which returned data from homogenisers were evaluated.
The benchmarks needed to closely replicate real world climate characteristics at the daily
scale. Specifically, they needed realistic autocorrelations, cross-correlations, high and
low frequency variabilities and long term trends. The data used had to be freely available,
so that the work was reproducible; well documented, so that their source was known; and
of a reasonably high quality, that is, having undergone quality control.

As stated in chapter one section two, daily mean temperature data at the station level
were desirable as they allowed the reproduction of real station networks. Also, daily mean
temperature station data provided a framework against which to broadly assess the cre-
ated data’s properties, such as their inter-station correlations and auto-correlations. In
addition to the temperature data, variables that could aid the modelling of these data
were sought. These variables included other climatic variables known to be related to
daily temperature variations, and available at a similar scale, such as precipitation. Vari-
ables that could represent larger space or time-scale variability, such as El Niño Southern
Oscillation (ENSO) events, were also sought in order to best match the real world data.
A full list of the variables used in this model can be found in section 1.2 of chapter four.

The final data used came from the following three sources:

1. The Global Historical Climatology Network Daily (GHCND) Database - https://
www.ncdc.noaa.gov/oa/climate/ghcn-daily/ [Menne et al., 2012a].

2. The National Oceanic and Atmospheric Administration (NOAA) 20th Century Re-
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analysis - http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.monolevel.
html [NOAA, 2014].

3. The Australian Bureau of Meteorology - ftp://ftp.bom.gov.au/anon/home/ncc/
www/sco/soi/soiplaintext.html.

3.1.1. GHCND

The GHCND database is from the National Oceanic and Atmospheric Administration’s
(NOAA’s) National Climatic Data Center (now the National Center for Environmental In-
formation). It fulfils the criteria of being at the daily station level, allowing the mimicking
of real station networks. It has near global coverage and has been quality controlled,
with those data that fail any quality control checks given flags allowing database users
to identify them. A detailed description of this database including its coverage, sources,
creation and quality control can be found in Menne et al. [2012b]. The main points of
interest are summarised below.

Data characteristics
GHCND covers 180 countries and contains over 80 000 stations, though only one third of
these contain temperature information, which is the variable of interest in this study. The
database is formed from daily data with records varying in length from less than a year
to over 200 years. The number of stations peaks in the 1960s, but remains at a relatively
high level for temperature records, though it drops for precipitation data. The spatial cov-
erage of stations that have any temperature records can be seen in figure 3.1. This figure
shows that the coverage is good over most of Europe, North America and Australia; it is
reasonable over Asia; and is relatively low over South America and Africa.

Figure 3.1. Location of GHCND stations with temperature records. No time constraint has been
put on the length of these records and some may therefore be very short.

The database is regularly updated to ensure that records cover the present time period
where possible and incorporate newly available data. This updating process is subject to
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automated checks to ensure that any new stations that are replicas of existing stations
are treated accordingly, so that the maximum amount of information can be used. All
stations have their format checked to ensure that it complies with that of GHCND, and
the data themselves are subject to 19 quality assurance checks detailed in Durre et al.
[2010]. Examples of these checks include identifying cases where the maximum tem-
perature has been recorded as being lower than the minimum temperature, or where the
temperature recorded at one station falls significantly outside the range of temperatures
at neighbouring stations. Occasionally additional checks are implemented that test the
integrity of the records, these assess the records for artefacts such as repeated failure of
earlier quality assurance checks [Menne et al., 2012b]. The data are not homogenised,
but the creators hope they will be in a future version of the database.

Variables available
As stated above, daily precipitation is the most commonly archived GHCND variable. The
other core variables which the dataset seeks to provide are minimum and maximum tem-
perature, snowfall and snow depth. There are around fifty more variables reported only at
certain stations; these include multiday maximum and minimum temperatures, average
cloudiness and average daily wind speed.

For this work interest lies in mean temperatures. Therefore, as minimum and maximum
temperatures are recorded in GHCND, the following formula for the calculation of the
midrange, henceforth referred to as the mean, of daily temperature was used by the
author:

TMEAN = TMIN+TMAX
2 .

For any days where only TMIN or TMAX was recorded TMEAN was set to be miss-
ing.

3.1.2. 20th Century Reanalysis

A reanalysis dataset is one that has been produced by combining past observations with
a forecasting model to produce realisations of multiple climate variables that are physi-
cally consistent. Reanalyses offer data that are spatially and temporally complete and
also allow a range of climatic variables to be obtained from a single source for long pe-
riods of time. These characteristics can make them preferable to observational datasets
which can be short and incomplete. The disadvantage of reanalysis datasets is that
they are gridded and are therefore at a much worse spatial resolution than observational
datasets, which is one reason why the 20th century reanalysis (20CR) was used in con-
junction with the other data sources specified in the introduction of section 3.1. Further
information on 20CR can be found in Compo et al. [2011], the main points of which are
summarised below.

Data Characteristics
The 20CR version 2 dataset, created by NOAA, contains data at the daily and sub-daily
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scales from the 1st January 1871 to the 31st December 2012. The data are on an ir-
regular Gaussian grid with a resolution fractionally better than two by two degrees. This
dataset is created using surface pressure and sea level pressure records as these ele-
ments have been documented well since the late nineteenth century, or even earlier in
places. A numerical weather prediction (NWP) model is used with 56 ensemble members
to provide inputs for an Ensemble Kalman Filter Data Assimilation method that allows the
creation of an analysis every 6 hours over the time period. This NWP model is fully
parametrised and has boundary conditions defined using SST and sea ice fields from the
Met Office Hadley Centre’s HadISST dataset [Rayner et al., 2003].

In addition to these analyses the 20CR provides gridded forecasts every 3 hours for the
same time period and it is predominantly these forecasts that were used in this thesis.
The exception is the sea level pressure data which were taken from the analysis itself
owing to them being one of the components used to create the rest of the data. The
mean values of the ensemble forecasts were used in this study.

Given that 20CR is sourced from just pressure variables more can be assumed about its
homogeneity than is possible for other reanalysis products. The creators even suggest it
could be used to investigate inhomogeneities in observed time series showing their con-
fidence in its homogeneity. Although, it should be pointed out that, Ferguson and Villarini
[2012] do show that there is in fact an inhomogeneity present in 20CR for the United
States region around 1950 owing to an increase in assimilated surface pressure obser-
vations, and they do not rule out further inhomogeneities. Ferguson and Villarini [2012]
therefore recommend that climate studies should only use the data from this source from
1960.

Variables available
There are 35 variables available from the 20CR forecast dataset and many of these are
available at different pressure levels. As this study is looking at station based observa-
tions the data from the surface level were used where possible. Data from the surface
level were available for temperature, precipitation rate and downward solar radiation flux
of the variables included in this model. Three variables incorporated into the model that
were not available at the surface were wind speed (eastward and northward) which had
to be taken at the 10m level (standard observing height for wind) and precipitable water
content which is only considered in the atmosphere as a whole in the 20CR.

3.1.3. Southern Oscillation Index from the Australian Bureau of
Meteorology

There are various phenomena in the climate system that are known to impact temper-
atures, but act over a longer time period than days. One of these phenomena is the
El-Niño Southern Oscillation (ENSO). This is an ocean-atmosphere coupling which has
its origins in the tropical Pacific, but can have impacts on variables including temperature
on a much wider scale, see Marshall and Plumb [2008]. As such it is helpful to include a
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measure of this phenomenon.

One such measure is the Southern Oscillation Index (SOI). This is a monthly index that
can track the progression of ENSO events. There are various slightly different ways of
presenting this index, but the one used in this study is that given by the Australian Bureau
of Meteorology, as this is where the records of this index were sourced from. The index
is defined as:

SOI = Pdiff+Pdiffav
SD(Pdiff) ,

where Pdiff is the (average Tahiti mean sea level pressure (MSLP) for the month) -
(average Darwin MSLP for the month), Pdiffav is the long term average of Pdiff for the
month in question, and SD(Pdiff) is the long term standard deviation of Pdiff for the
month in question. When the SOI has sustained negative values below -8 it is an El-Niño
phase, when there are sustained positive values above 8 it is a La Niña phase. El-Niño
is traditionally referred to as the warm phase of ENSO, but can still have cooling effects
on temperatures. For example, in the South Western United States an El-Niño phase is
generally associated with cooler than normal temperature anomalies [Wang et al., 2013].

The Bureau caution that daily values of the SOI should not be trusted as they fluctuate too
much because of weather conditions, as such the SOI data are provided at the monthly
level. These trustworthy values were then interpolated to the daily level for this study
using the method detailed in section 3.2.2.

There are other phenomena that vary on a longer time scale and affect the atmosphere,
however it was deemed sufficient to have only one index of such events, especially when
the chosen phenomenon can have impacts on such a global scale.

3.2. Source Data Processing for Benchmark Data Creation

The sparsity of data in some regions is one reason why this study is not global. Other
reasons include the computational and climate complexity involved in global modelling
and the lack of algorithms that could comfortably cope with this amount of data. This
section details the selection of the regions that were focussed on and also the focus time
frame. It also details the temporal and spatial interpolation of the source data necessary
to provide the variables that are to be used in the modelling process at the daily station
level.

3.2.1. Temporal and regional focus areas

Focus time frame
GHCND station coverage is best in the 1960s and remains at approximately this level for
the rest of the record for temperature stations [Menne et al., 2012b]. Reanalysis quality
is best where most pressure observations are available, which is also in the more recent
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time period [Compo et al., 2011]. It is therefore sensible to make the focus time frame the
later half of the 20th century and the beginning of the 21st century.

The exact time frame selected was 1st January 1970 to the 31st December 2011. This
time frame is long enough that inter-annual and inter-decadal artefacts will be incorpo-
rated in the data, but short enough that data manipulation is relatively straight forward.
The record stops in 2011 as this was the last complete year available when this study
began.

Within this time frame it was decided that for a station to be considered for inclusion in
the modelling process it must be at least 75% complete. This restriction was imposed as
a cautionary measure as those stations with large amounts of missing data could also
be less reliable, which could in turn bias the modelling process. Also, many algorithms
aggregate data to the monthly level and the WMO advises that this should only be done
if months are at least 83% complete [WMO, 1989]. A desired 75% completeness for the
entire series was therefore a tighter restriction overall, though individual months could
still be less complete than this, but it was hoped to ensure that on average no benchmark
data released would have to be discarded because of insufficient records. The modelling
framework itself, detailed in section one of chapter four, is capable of handling missing
data and of reproducing realistic and complete stations regardless of whether they were
present in the model building process. Therefore, these data restrictions are acceptable
and should not be detrimental to the study.

As high quality data are preferred for this project and GHCND provide quality flags for
data that have failed any of the quality assurance procedures detailed in Durre et al.
[2010] any flagged data were made missing. Therefore, from this point ’missing data’
refers to both data that were missing in the original dataset and data that were made
missing when the data were being processed for use in this research.

Focus regions
Not all stations shown in figure 3.1 contain temperature records for the time period 1970
to 2011. Stations that do contain any data between 1970 and 2011 are highlighted in red
in figure 3.2 and this shows that the regions with the best station coverage are the con-
tiguous United States and Japan. However, calculations on the station data revealed that
in Japan only 5 out of 136 stations satisfied the criteria of being at least 75% complete.

Figure 3.3 shows all GHCND temperature stations in the contiguous United States, with
stations that are at least 75% complete over 1970 to 2011 shown in red or blue. The blue
stations are those in the focus regions for this project. This figure shows that even with
temporal data restrictions there are still many stations available for use in the modelling
process. The exact number is 3373 out of 3984 stations. It would have been possible
to create a model using all available stations, but the United States incorporates multiple
different climate regimes and focusing on certain regions in more detail allowed exploita-
tion of this fact. For this reason four regions were chosen; Wyoming, the South East, the
North East and the South West, these are the regions with their stations highlighted in
blue in figure 3.3. The climates of these regions are outlined below, and these outlines
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Figure 3.2. Location of GHCND stations with temperature records. Stations in red indicate sta-
tions with any temperature records in the period 1970 to 2011.

Figure 3.3. Location of GHCND stations with temperature records for the contiguous United
States, those which are at least 75% complete in the period 1970 to 2011 are highlighted in red.
Those which are in the focus regions, and at least 75% complete, are highlighted in blue instead.

were largely sourced from the North America Climate entry in the Encyclopedia of World
Climatology [Corcoran and Johnson, 2005].

Wyoming is a mid western state, characterised by distinct seasons and a relatively dry cli-
mate with the majority of its precipitation occurring in summer through variably distributed
convective showers. It was chosen as a focus region particularly because it has no sea
borders, thus eliminating one aspect of variability. It is relatively diverse topographically,
with the Rocky Mountains in the west of the State offering a mountain climate where extra
variability is added by rapidly changing station altitudes and mountains imposing barriers
to wind and precipitation. The distribution of temperatures in the stations used for mod-
elling in this region can be seen in figure 3.4a and their standard deviations can be seen
in figure 3.5a. These plots illustrate the seasonality of temperatures in Wyoming and the
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increased temperature variability in winter.

The South East incorporates all or part of the following states: Florida, South Carolina,
Georgia, Alabama, Mississippi and Louisiana. The very tip of Florida could be classed as
having a tropical climate while the rest of this region is classified as subtropical. As this
region is closer to the equator than Wyoming the seasons are much less distinct. It is a hot
and humid region, though this is less pronounced in the east owing to a greater amount of
solar energy going into evaporation and not heating. Summers are long and hot and also
the time of most precipitation, which is mainly in the form of convective showers. Winters
with mean monthly temperatures above freezing are common. This region’s temperature
distribution can be seen in figure 3.4b, its lack of bi-modality illustrates the lack of distinct
seasons in this area, but figure 3.5b shows that there is still a strong seasonal cycle in
temperature variability.

The North East incorporates all or part of the following states: Maine, New Hampshire,
Vermont, Massachusetts, New York, Rhode Island, Connecticut and Pennsylvania. These
states have a snow climate, and monthly average temperatures below freezing are not
uncommon [Corcoran and Johnson, 2005]. The region is not too dissimilar to Wyoming,
having distinct seasons and a wide annual temperature range, the widest in the United
States. The biggest difference from Wyoming is the coastal border that the North East
has with the North Atlantic Ocean meaning that although in the west of the North East
region the majority of precipitation falls in the summer this is not the case in the east of
the North East region. For the entire North East region frontal precipitation is the most
common form, which is not the case in Wyoming, though convective showers do occur
more towards the south of the North East. The North East’s similarity to Wyoming can
be further seen by comparing figures 3.4a and c and 3.5a and c. These show that the
temperature distributions and variability are very similar in these two regions.

The South West incorporates the southern half of California and Nevada and the very
western most stations of Arizona. Unlike the other focus regions, which are a mixture
of at most two climates, the South West could be argued to incorporate five different cli-
mates even in this relatively small region. There is a strip in its centre that shares a similar
climate with Wyoming; both the dry climate and the mountain climate, but it also incor-
porates desert climates in the east where high temperatures and low humidities are the
norm and timings and amounts of precipitation are highly variable. Here cyclonic storms
give winter precipitation while monsoon systems give the summer precipitation and the
deserts themselves see convective showers. In the west it has two coastal climates; the
north west of the region has cooler, damper summers than the rest of the west of the
region which has warmer, drier summers, with only about 5% of the year’s precipitation
falling in this time. Winter rains are predominantly caused by frontal systems. Figure 3.4d
illustrates the regional temperature distribution here, but investigation of individual station
distributions reveals a lot of variability in their shape. The yearly variability in temperatures
for the region also differs from other regions as can be seen in figure 3.5d.

Figure 3.4 reinforces the differences between the four focus regions. It can be seen that
plots (a) and (c), for Wyoming and the North East respectively, exhibit wide temperature
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Figure 3.4. Density distributions of calculated mean temperatures in each of the four focus re-
gions. (a) Wyoming, (b) South East, (c) North East and (d) South West. Axes were constrained to
be the same for all regions to allow direct comparisons. All stations that were 75% complete over
1970 to 2011 contributed data to these plots.

ranges and are almost bimodal indicating distinct seasons. The two southern regions are
unimodal and have narrower temperature ranges. All four distributions exhibit negative
skew (long negative tails) indicating the non-Gaussianity of daily temperature data in
these regions.

Figure 3.5 shows how the standard deviation (the square root of the variance) of temper-
ature varies throughout the year in each of the four focus regions. Clearly the variability of
temperature is non-constant with larger variances being seen in the winter for Wyoming,
the South East and the North East and in the summer and the winter for the South West.

Interest in stations extends beyond their means and variabilities. In homogenisation inter-
station correlations, station autocorrelations and difference series autocorrelations are all
of interest too.

Inter-station correlations are important as many homogenisation algorithms will use neigh-
bouring stations to determine the location and magnitude of inhomogeneities. The higher
inter-station correlations are, the easier it should be to find inhomogeneities and the lower
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Figure 3.5. Scatter plots to show how the standard deviation of mean temperatures varies over
the year in each of the four focus regions. (a) Wyoming, (b) South East, (c) North East and (d)
South West. Axes were constrained to be the same for all regions to allow direct comparisons. All
stations that were 75% complete over 1970 to 2011 contributed data to these plots.

they are the harder it is expected to be [Williams et al., 2012]. Figure 3.6 shows the den-
sity distribution of observed inter-station correlations in each of the four focus regions.
It can be seen that stations in Wyoming show fewest low inter-station correlations, influ-
enced undoubtedly by the fact that the maximum separation of stations in this region is
not as large as the maximum separation between stations in other regions. More low
inter-station correlations are seen in the South West, which, as stated above is the most
climatologically complex region. Inter-station correlation density distributions in the North
East and South East are relatively similar to each other. From these figures it would be
expected that, in the real world, Wyoming would be the easiest region to homogenise and
the South West would be the hardest. These levels of difficulty in terms of inter-station
correlations are reproduced in the created data, as can be seen in figures 4.14 and 5.9.

Autocorrelations are of interest in benchmarking studies as the stations being created
need to look and feel sufficiently like the real world for the conclusions drawn from the
analysis to be generalisable to observed climate series. Before calculating autocorrela-
tions stations should be deseasonalised to ensure that the seasonal cycle is not domi-
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Figure 3.6. Density plots of the inter-station correlations found in the observed temperature station
networks for (a) Wyoming, (b) the South East, (c) the North East and (d) the South West. Axes
were constrained to be the same for all regions to allow direct comparisons.

nating the results.

Figure 3.7 shows the autocorrelations in regional average series for Wyoming, the South
East, the North East and the South West. These regional average series were created
by taking the mean of all deseasonalised values for each day of the time series for each
region separately. It can be seen that in all regions the autocorrelation drops below 0.1
relatively quickly; this value was chosen relatively arbitrarily as the autocorrelation of
interest cut off point in this study. The similarity in shapes of the regional autocorrelation
plots in Wyoming (a) and the North East (c) again emphasises that these two regions are
the most similar. The autocorrelations tail off a little quicker in these two regions than in
the South East or the South West. The author believes this to be due to the prevailing
winds in the United States. For the majority of the United States the prevailing winds
blow from the west [Ahrens, 2000]; for the South West and the South East winds from the
west often mean winds from the coast, whereas for the North East winds from the west
come from the land. As oceans have a longer memory of temperatures than land this
can explain the resultant increased autocorrelations in the South East and South West
relative to those that are seen in the North East or Wyoming.

Often, instead of working just with deseasonalised series algorithms will work with desea-
sonalised difference series. That is, a series created by subtracting one deseasonalised
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Figure 3.7. Plots to illustrate the autocorrelations found in the regional average series of observed
temperatures for (a) Wyoming, (b) the South East, (c) the North East and (d) the South West.

series from its most highly correlated neighbour, which has also been deseasonalised.
The primary reason for doing this is that it removes another level of variability from the
series being assessed, based on the assumption that nearby stations will show similar
climate variations. Removing more variability from a series should make detecting inho-
mogeneities easier as the signal (inhomogeneity) to noise (background variability) ratio
should be greater.

Figure 3.8 shows the average autocorrelations at each lag for deseasonalised difference
series in each of the four regions. The average autocorrelation at each lag has been
determined by working out the autocorrelation at each lag in all difference series, these
are the difference series which have been created by differencing each station and its
most highly correlated neighbour, and then taking the mean of these autocorrelations
at lag one, lag two and so on. It can be seen that even after differencing there is still
a noticeable amount of autocorrelation in the observations. This is of interest as many
algorithms assume that deseasonalised difference series will be white noise. Also note
that, once more, the autocorrelations are more persistent in the South East and South
West than in Wyoming and the North East.
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Figure 3.8. Plots to illustrate the average autocorrelations found in the deseasonalised difference
series of observed temperatures for (a) Wyoming, (b) the South East, (c) the North East and (d)
the South West. Each series in a region was differenced according to its most highly correlated
neighbour and the mean autocorrelation at each lag was then calculated across all stations in
each region.

3.2.2. Interpolation

As stated in section 3.1 not all the data are available at the daily station level.The 20CR
data downloaded are daily gridded data and the SOI is a monthly index and is the same
everywhere in space. This section therefore gives the methods of spatial and temporal
interpolation used for this project.

Spatial Interpolation
The interpp function in the R package akima was used for the spatial interpolation of
20CR data from the gridded level to the station level. More information on this function
can be found in the R documentation on akima, or through the original paper about the
function [Akima, 1978]. interpp is an interpolation method able to take regularly or irreg-
ularly gridded data and interpolate to irregular points. It is not able to cope with missing
values, but this is not a hindrance when the data are sourced from 20CR as they are
given as complete fields. The command to use this function in the current study took the
following form:

call=interpp(ReanalysisLats,ReanalysisLons,ReanalysisVar,PredLats,PredLons,
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linear=TRUE, extrap=FALSE, duplicate = ”error”).

Here, ReanalysisLats,ReanalysisLons and ReanalysisV ar were the values of the lat-
itudes, longitudes and variable being interpolated from the 20CR grid. PredLats and
PredLons were the values being predicted to and the command call$z gave the values
of the variable of interest at the specified prediction locations. A buffer zone was included
around the edge of each of the regions to minimise the edge effects of the interpolation
and some example plots were created to ensure that the method was behaving as ex-
pected. No extrapolation beyond the reanalysis points was allowed and this is indicated
by extrap = FALSE in the above line of code. linear = TRUE indicates that linear
interpolation was used. If linear = FALSE then spline interpolation would be used.
Spline interpolation would be a valid approach, and splines were employed for interpo-
lation elsewhere in this study, as detailed in section 4.2.2. However, linear interpolation
was deemed appropriate here; it constrains extremes to only occur at given data points,
which could be considered an unnecessary restriction, but does ensure that no unrealistic
values can be produced from this process. Splines would still be unlikely to produce un-
realistic values and, therefore, future work could investigate if better interpolations were
achieved when using splines, but this investigation was not carried out in the present
study. The final option defined in the above code was duplicate = ”error”. No duplicate
prediction points should have occurred in this work as the interpolation was to distinct
stations, but this was a valid safety net to protect against input data errors. If duplicate
data were encountered then the command would report an error.

Interpolating gridded data will not achieve the same level of inter-station variability as is
found in true station data because there is less information available. However, inter-
polated data do provide more variability than data that are just taken from the nearest
grid point. Interpolation outputs will be better for variables that are known to have higher
spatial correlations, such as temperature, than lower spatial correlations, such as precip-
itation. This is especially true in areas where precipitation is known to fall as convective
showers which are much smaller than the near two by two degree grid boxes of the 20CR.

This spatial interpolation method was used as the code was simple to implement and able
to take gridded data and interpolate to irregularly spaced points. Alternative methods of
spatial interpolation are available, such as the commonly used geostatistical method,
kriging, see Cressie and Wikle [2011], but the capabilities of interpp were deemed suf-
ficient for this project.

Temporal Interpolation
SOI is interpolated from monthly data to daily data using a simple linear interpolation.
This takes the values of SOI for each pair of consecutive months, fits a line between the
two points and then reports the values at daily intervals on that line. This method of inter-
polation was deemed preferable to reporting a constant value of SOI for each month, as a
constant value could change suddenly at the beginning of the next month and, depending
on the influence of SOI, this could be mistaken as an inhomogeneity.
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3.3. Discussion

In this chapter many decisions were made that could be altered to expand this bench-
marking study or provide an ensemble of benchmarks. For example, a different reanaly-
sis dataset could be used, or observed precipitation values could be taken from GHCND
instead of from the 20CR dataset. Neither of these possibilities were investigated here
as the author believes the final choices of using 20CR data were most beneficial to the
model building process owing to its completeness and greater homogeneity. However,
using different data could in the future provide insight into how much the choice of under-
lying data impacts how realistic the benchmarks are.

Changing the choice of interpolation method when downscaling data from the 20CR to
specific station locations could also be investigated in a future study. For example, non-
linear interpolation could be used so that extremes could be located at positions other
than the grid points, though this has the disadvantage of allowing the small possibility of
unrealistic extremes as mentioned in section 3.2.2. Alternatively a spatial interpolation
method could be used.

A further extension to the study would be to investigate more regions of North America, or,
indeed, the world. Figures 3.4 to 3.8 show that the focus regions chosen exhibit noticeably
different data characteristics and the following chapters show how well the chosen model
is able to reproduce these characteristics. It would be an interesting investigation to try
modelling a region where there is essentially no seasonal cycle and/ or a very predictable
weather regime to see how both the models and the homogenisation algorithms coped in
such circumstances.

3.4. Summary

This chapter has described the data used for this project, their sources, and the methods
used to acquire them at the daily station level. It has explained why the four specific
regions in North America were chosen as focus regions and has also given the reasoning
for the choices of time period and level of temporal completeness. The following chapter
will explain how these data were used to create clean daily benchmark time series and
the models used to form these series.
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The first two chapters of this thesis gave the motivations behind this research project and
reviewed previous work in the area. Chapter three introduced the sources of data used in
this study and the necessary pre-processing steps that they had to undergo to make them
suitable for inclusion in the models to be used to produce realistic daily temperature data.
This chapter explains the formulation of these models, including justifications for why the
specific variables used were chosen. It closes with details of the predictions made from
the final chosen models and the post-processing of these predictions that took place to
ensure high quality benchmarks that adequately matched reality were produced.

4.1. Modelling Methods for Daily Temperature Data

As stated in section 2 of chapter two, in the past, models to produce synthetic temper-
ature data for benchmarking studies have primarily focused on monthly or annual data.
Three of the main benchmarking studies to date have been those of Venema et al. [2012],
Williams et al. [2012] and Willett et al. [2014], the last of which is currently at the bench-
mark data creation stage. All of these studies focus predominantly on monthly data.
Venema et al’s approach was not feasible for this study owing to a lack of the necessary
homogeneous series used to create the clean data. The method of Willett et al. [2014]
would perhaps be feasible for daily temperature data, but has the capacity to be very
computationally expensive when working with daily data and was not finalised when this
study began. The study of variants of the pairwise homogenisation algorithm by Williams
et al. [2012] allowed the creation of realistic networks on a large scale in the contiguous
United States. However, the Williams et al. [2012] study also required homogeneous sta-
tion information and would likely struggle to reproduce daily variabilities. This is because
it downscaled gridded data with white noise and climatological offsets to create station
time series, though these did match observed inter-station correlations at the monthly
level. Other methods detailed in the literature review had similar drawbacks to these
main studies.

For these reasons a new approach was sought. This new approach needed to have
as many of the desirable criteria of previous studies, with as few of the drawbacks, as
possible. It needed to be able to create realistic homogeneous benchmarks without the
requirement of homogeneous input data and be able to handle incomplete or short data
records. It needed to be able to cope with data at the daily resolution without exceeding
computational capacity and be a directly reproducible method. It had to produce data

57



4. Creation of the Benchmark Clean Data

with realistic inter-station correlations and autocorrelations and ideally be able to make
use of all the data available to it when creating both clean and inhomogeneous series.

The method adopted in this study, which is described below, sought to match as many
of these criteria as possible. It used a statistical model as the basis for data creation to
allow other climatic variables to impact the predictions of temperature. Using a statis-
tical model also met the criteria of being able to cope with short or incomplete records
as it allowed the prediction of temperatures at unobserved locations as long as some
input information was available, which, in this case, it always was. A brief introduction
to statistical models is given here to aid understanding of later model explanations. As
more approaches for modelling daily temperature become available, be they statistical or
climatological, they could be compared with this study to enable further quantification of
algorithm performance.

4.1.1. Modelling Framework: The Generalised Additive Model

Generalised Additive Models (GAMs) are a more flexible extension to the more com-
monly known Generalised Linear Models (GLMs) which are in turn an extension of the
linear model. The reasons for using a GAM in this study largely relate to its allowance
of non-Gaussian response variables and the flexibility it allows in the incorporation of
explanatory variables. The following paragraph gives a brief introduction to statistical
modelling terminology and statistical models in general before overviews of the two sim-
pler modelling approaches, and the reasons why they were not suitable for this study, are
given. There follows an explanation of the GAM in more detail, which leads on to details
of the selection of the specific GAM used for this work. Throughout this section Simon
Wood’s book on Generalised Additive Models in R, [Wood, 2006], will be the primary
reference.

A statistical model is concerned with modelling a response variable y= (y1, ..., yn)T , which
has some probability distribution p(y;θ), where θ is a vector of the model parameters. For
example, θ could be the model’s mean and variance, which could in turn be modelled by
explanatory variables, xi, that are related to the response variable in some way. When
using a statistical model the θ will normally need to be estimated. The driving force be-
hind this estimation process is the likelihood, L(θ) = p(y;θ). When p(y;θ) is viewed
as the likelihood function it is treated as a function of θ for fixed y as it represents how
(relatively) likely different values of θ are for the observed data y. If you have fixed val-
ues of θ and are looking at p(y;θ) as a function of y then it is a probability distribution,
as already stated. The values of θ that maximise the value of L(θ) are the maximum
likelihood estimates, θ̂, which can be found by setting the first derivatives of log(L(θ)) to
zero. (log(L(θ)) tends to be used instead of L(θ) as it tends to be easier to work with
and will give the same θ̂ estimates). These estimates have desirable statistical proper-
ties including being consistent (varying less from the true θ as sample size increases)
and being asymptotically unbiased and efficient (varying less than other estimates for the
same sample size). If one then takes the second derivative of log(L(θ)) then it is possible
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to also form confidence intervals for the maximum likelihood estimates.

The Normal Linear Model (LM)
A normal linear model, henceforth referred to as the linear model, in statistics is a model
where y is assumed to be normally distributed with a mean, µ, and constant variance, σ2.
For this model the mean is itself represented using a linear combination of parameters
β multiplied by explanatory variables, x. The model can therefore be written in the form
y∼ N(µ, σ2) where µ = Xβ and X is the model matrix that contains the values of the
explanatory variables (or functions of them).

The assumption of linearity in the parameters means that although functions of explana-
tory variables can be included, they cannot incorporate the β’s. For example, the term
β1sin(xi) would be acceptable, but the term sin(β1xi) would not be. Further information
on linear models including the method of fitting can be found in chapter one of Wood
[2006]. The method of fitting revolves around the idea that the β’s should be chosen
to minimise the squared difference between the predictions and the observations, that
is, they should be chosen to minimise the least squares function, S = ||y − Xβ||2. The
values minimising S will be those values maximising the likelihood, L(θ).

It is evident from figures 3.4 and 3.5 that neither the normality, nor the constant variance
assumption of this model hold for the daily temperature data in the focus regions of this
study. It is often the case in climate studies that temperature data have their seasonal cy-
cle removed and are standardised by dividing by their standard deviation to try and better
match these assumptions. However, this is removing information that could instead be
exploited by a more sophisticated model.

The Generalised Linear Model (GLM)
The generalised linear model (GLM) is more flexible than the linear model, allowing the
response to be non-Gaussian. In fact, the response can have any distribution in the
exponential family of distributions, where any distribution in this family can be written as

p (y; θ, φ) = exp

{
(yθ − b (θ))

a(φ)
+ c (y, φ)

}
,

where a, b and c are functions, φ is a scale parameter and θ is the location, or canonical,
parameter of the distribution [Wood, 2006]. The mean and variance of any distribution in
this family can be written as µ = b′(θ) and σ2 = b′′(θ)a(φ). Many well known distributions
can be written in this manner, including the Normal, Binomial and Gamma distributions.
Thus, the linear model is a special case of the generalised linear model. Using a slightly
different fitting approach the range of distributions can be extended to anywhere where
the mean-variance relationship is known, for an explanation of this the reader is referred
to section 2.1.10 in Wood [2006] on quasi-likelihood.

The assumption of linearity in the parameters is relaxed to some extent for the GLM as
the model is now written as y ∼ p(y; θ, φ) and a link function is defined as g(µ) = η =Xβ,
which relates the mean of the chosen exponential family distribution to the explanatory

59



4. Creation of the Benchmark Clean Data

variables. Thus, the β’s have to enter the link function linearly, but this link function could
be non-linear as long as it is smooth (differentiable) and monotonic.

The equations it is necessary to solve to find the parameter estimates of a GLM nor-
mally require an iterative solution instead of the straightforward least squares estimation
method used for the linear model. Therefore, a method known as iteratively re-weighted
least squares (IRLS) is employed to get the maximum likelihood estimates of the β’s. A
detailed explanation of this method is given in chapter 2 of Wood [2006], an overview,
heavily relying on this source is given here.

The least squares function that must be minimised is derived from the log likelihood of
the model and can be written as S =

∑n
i=1

(yi−µi)2
V (µi)

; the derivation of this expression can
be found in section 2.1.2 of Wood [2006]. V (µi) is known as the variance function of a
GLM and is equal to b′′(θi)

w and w is a known constant. In matrix form this can be written

as S = ||
√
V[k]
−1[y − µ(β)]||2 where V is a diagonal matrix with V[k]ii = V (µi

[k]) and k
denotes the iteration number. Using Taylor expansions of β and introducing the notation
G which is the diagonal matrix with Gii = g′(µi

[k]) this expression can be manipulated
into an iterative least squares expression of the form S = ||

√
W [k][z[k]−Xβ]||2. Therefore

iteration proceeds as follows until convergence occurs:

1. Use the current iterations of µ and η to calculate z[k] = g′(µ[k])(y−µ[k]) + η[k] and
the iterative weights from the diagonal matrix W with Wii

[k] = 1
V (µi[k])g′(µi[k])2

. If this
is the first iteration then common practice is to set µi = yi and ηi = g(µi).

2. Minimise S with respect to β to get β[k+1] and use these new estimates of β to
get updated values of µ and η. Increment k by 1 and repeat until convergence has
occurred.

Clearly this extension to the linear model allows more features of the data to be modelled
instead of removed and removing the assumption of normality also allows greater flexibil-
ity. Link functions could be investigated and functions of explanatory variables included
so as to allow a desired relationship with the response to be mimicked. However, this
could become very complicated very quickly, also, the aim of this study is not to perfectly
explain the given data, as these contain inhomogeneities, but instead to be able to repro-
duce data that are like them. Thus, a still more flexible approach would be desirable with
even fewer constraints on the model framework and this is what the Generalised Additive
Model offers.

The Generalised Additive Model
A generalised additive model (GAM) takes a similar form to the GLM, but with even fewer
restrictions in how the explanatory variables can enter the model. y∼ p( y; θ, φ) remains
the same, but now g(µ) can contain both traditional Xβ terms and smooth functions of
the explanatory variables, fj(xji). These smooth functions are commonly fitted using a
spline based approach.

Splines are formed from a set of basis functions that can be combined in such a way as to
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create a smooth curve that mimics the behaviour of f(·). If left unconstrained these smooth
curves can be over fitted to the data, therefore, it is advisable to add a penalty term so that
the spline will be penalised if it becomes too unsmooth. This means that the estimate for
the function f(xi) is chosen to minimise

∑n
i=1[yi− f(xi)]−λ

∫
Range(x)[f

′′(xi)]
2dx where λ

is a smoothing parameter and the smaller λ is the less the smooth function is penalised.
Because the form of the GAM differs from the GLM, the fitting method also changes and
is now Penalised-Iteratively Re-weighted Least Squares (P-IRLS). This fitting mechanism
is described below, and is paraphrased from chapter four of Wood [2006].

Before the fitting process is explained it is helpful to introduce some notation. If a spline
can be written as a series of basis functions, then each smooth function can be written in
matrix form fj = X̃jβ̃j as defined on page 167 of Wood [2006]. This means that the entire
GAM link function can be written as g(µ) =Xβ, subject to some identifiability constraints
to ensure that this is a one-to-one function. Here X contains the traditional model matrices
as from the GLM in addition to the newly defined Xj ’s for each smooth function, which
are the X̃j ’s multiplied by a matrix Z that is used to ensure that the aforementioned
identifiability constraints are met. Further details on Z can be found on page 168 of
Wood [2006]. Similarly, the β contains the parameter vector for the parametric part of the
model and the parameters from the smooth function bases.

It would be possible to get the maximum likelihood estimate of β, but this would likely
result in over fitting to the data. Which is why penalised likelihood is maximised using
P-IRLS. This penalised likelihood is defined as lp(β) = l(β)− 1

2β
TSβ where S=

∑
j λjSj

and the Sj are matrices of known coefficients and the reader is referred to section 4.2 of
Wood [2006] for a more in depth explanation of these matrices. The λj are smoothing
parameters.

If the scale and smoothing parameters are unknown then fitting proceeds as follows,
details are not given for the fitting method if these parameters are known as they never
were for this thesis. First some new terminology is defined, any terminology not defined
here can be assumed to be defined in the same way as for the GLM.

Define the ’influence matrix’ of the GAM as A=X(XTWX+S)−1XTW and the trace of
this matrix as tr(A)=

∑dim(A)
i=1 aii. Then the scale parameter can be estimated as φ̂ =∑

i V (µ̂i)
−1(yi−µ̂i)2

n−tr(A) . Because the scale parameter has been estimated, the smoothing pa-
rameters are estimated so that they minimise the Generalised Cross Validation (GCV)
score, Vg = nD(β̂)

[n−tr(A)]2
. HereD(β̂) is the deviance of the model, defined asD = 2[l( ˆβmax)−

l(β̂)]φ, and ’l( ˆβmax) indicates the maximised likelihood of the saturated model: the model
with one parameter per data point’, from section 2.1.6 of Wood [2006]. To minimise Vg

a numerical method involving its derivatives can be used inside P-IRLS as the following
steps indicate. These are the steps that must be iterated until convergence occurs. What
follows is directly taken from page 187 of Wood [2006], further information on the calcu-
lation of some of these steps can be found there. Two final pieces of notation to introduce
are ρk = log(λk) and the omission of hats from estimates for ease of writing.

1. ”Evaluate the pseudodata, zi = ∂ηi
∂µi

(yi − µi) + ηi, and corresponding derivatives,
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∂zi
∂ρk

= (yi − µi)g′′(µi)∂µi∂ηi
∂ηi
∂ρk

. Note that ηi = Xiβ̂, is the ’linear predictor’ for the ith

datum.

2. Evaluate the weights, wi = [V (µi)g
′(µi)2

wi
]
−1
2 , and derivatives, ∂wi

∂ρk
= −1

2
w3

i
wi

[V ′(µi)g
′(µi)+

2V (µi)g
′′(µi)]

∂ηi
∂ρk

.

3. Drop any observations (for this iteration only) for which wi = 0 or ∂µi
∂ηi

= 0.

4. Find the parameters, β̂, minimising
∑

iw
2
i (zi −Xiβ)2 + βTHβ +

∑
k e

ρiβTSiβ and
the derivative vector, ∂β̂

∂ρk
, for the next iteration” where H is any positive semi-definite

matrix which could be used to impose bounds on the smoothing parameters, regu-
late an ill-conditioned problem or just be zero if neither of these are necessary, see
section 4.6.1 of Wood [2006].

Here the GAM fitting method that has been described is that used for this study; where
the scale parameter, φ, and the smoothing parameters, λj , are unknown and must be
estimated along with the β′s. The fitting method can vary according to what is known
about the model beforehand and the amount of computational cost that is deemed ac-
ceptable. For further information on these other methods, the method described here or
the possible spline bases available the reader is referred to chapters three and four of
Wood [2006].

4.1.2. Model Formulation: The Gamma Generalised Additive Model

The previous chapter and previous section respectively introduced the data and mod-
elling possibilities available for this work. The focus now turns to the specific model that
was chosen, its method of implementation and the reasons for these choices.

The model family
The model framework used for this study was the Generalised Additive Model. This
model demanded the choice of an appropriate distribution in the exponential family and
the choice of a link function. Figure 3.4 showed that the data are skewed and continuous,
this suggested that the Gamma could be an appropriate distribution, but the Gamma is
a positively skewed distribution and the data are negatively skewed. Therefore, a trans-
formation had to take place. Incorporated into this transformation there had to be an
addition of a constant as the Gamma cannot work with negative values.

The transformation that was applied to the data was TMEAN60 = 60− TMEAN . This
transformation was applied to ensure that all recorded values of TMEAN60 were now
positive and that no temperatures that have ever occurred in the United States were
impossible to get from this model. For example, the hottest maximum temperature ever
verifiably recorded, which is therefore hotter than the hottest mean temperature, is 57◦C
[Shein et al., 2013]. After transformation this value would become 3, therefore it would
still be within the range of the Gamma distribution.

The Gamma distribution can be written as p(y) = 1
saΓ(a)y

a−1e−
y
s where the two pa-
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rameters a and s are the shape and the scale respectively. The Gamma function is
Γ(a) =

∫∞
0 ta−1e−tdt where t is a dummy variable. Using GLM theory, it can be shown

that the mean of the Gamma distribution is as and the variance is as2. Hence, it can be
seen that as the mean increases so does the variability.

Before the data transformation, winter (lower) temperatures exhibited the most variability
in three of the four regions, and still high variability in the remaining region, the South
West. After the transformation, the largest values were the winter values and were there-
fore rightly associated with larger variances. This is another aspect of the data that the
Gamma distribution captured well.

These arguments show that the Gamma distribution was a logical choice for the mod-
elling of these data subject to arithmetic transformations. The following section proceeds
to show which variables were included in the models to explain these data and the justifi-
cations for these choices. Note the use of models, plural, here. The same variables were
included in the model for each focus region, but the models themselves were fitted to
data from each region separately to maximise their ability to reproduce individual region
characteristics.

One more point to note before moving on to the model variables is that, as previously
stated, the GAM allows a link function to be chosen. In this work, the logical choice of a
link function was the identity link, g(µi) = µi as this meant that predictions and plots from
the model were on the same scale as the model inputs and were thus easily interpretable.

The variables
Temperatures are affected by many climatic and non-climatic factors. This section gives
a brief overview of the variables included in this study that seek to explain temperature
variability. There are undoubtedly other factors that could have been included, but model
complexity had to be balanced with the computational cost of running the models. The
final models were deemed fit for purpose using the criteria detailed later in this chapter.

The following explanatory variables were included in the models:

• Time: This was a simple numerical variable from 1 to 15340 (the number of days
in a complete station series from 1st January 1970 to 31st December 2011). It was
included to account for the long term trend in the data. Other studies have acknowl-
edged the benefit of incorporating true climate variability in a model to create clean
data, this has often been done by obtaining a trend from climate model data, for
example Titchner et al. [2009]; Williams et al. [2012] and Willett et al. [2014], but in
this study the longer term variability is drawn from the observations themselves.

• Day of the year: Again, this was a numerical variable from 1 to 365 to account for
the position of an observation in the seasonal cycle. The 29th of February was given
the indicator 59.5 to ensure that the numbering of other days remained consistent
in leap and non-leap years. It has already been stated and shown in section 3.2.1
that temperatures exhibit a seasonal cycle, but this has also been acknowledged
by other studies and it is a known scientific fact that North American temperatures
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have a seasonal cycle [Trenberth, 1983; Willett et al., 2014].

• Altitude (m): The altitude or elevation of a station is commonly accepted to affect its
temperature distribution, with stations at higher altitudes generally exhibiting lower
temperatures [Ahrens, 2000]. This variable was provided with the GHCND station
data.

• Latitude (degrees): The latitude (north-south position) of a station defines how close
a station is to the equator, those stations closer to the equator are typically warmer
[Ahrens, 2000]. This variable was provided with the GHCND station data.

• Longitude (degrees): The longitude (east-west position) of a station can help to
capture and incorporate land features into the model such as mountain ranges and
deserts. These differing surface characteristics are known to affect the tempera-
tures as was stated when discussing the different focus regions for this study in
chapter three section 2.1 [Corcoran and Johnson, 2005]. This variable was pro-
vided with the GHCND station data.

• Distance to the coast (m): Proximity to a coast is expected to affect temperatures.
For example, near coastal stations may be expected to be cooler than inland sta-
tions in summer, but warmer in winter because of the fact that land and water heat
at different rates [Ahrens, 2000]. Distance to the coast was calculated using ArcGIS
data and the latitudes and longitudes given in GHCND, acknowledgement is due to
Mark Cherrie of Exeter University for the calculation of these values. Please note
that ’Distance to the coast’ is the distance to the nearest ocean, therefore the Great
Lakes are not explicitly included in the models. Models with and without the Great
Lakes were investigated and those without proved to have a better performance.

• Downward solar radiation flux (Wm−2): Also referred to as ’levels of sun’ from this
point onwards. It is intuitive that the levels of solar radiation a station is exposed
to will affect its temperature [Ahrens, 2000]. This variable was obtained from the
20CR data.

• Southern Oscillation Index: Included as an ENSO indicator. As stated in section
3.1.3 this variable was included as a representative of ocean and atmosphere in-
teractions and larger scale temperature variability. ENSO is known to affect at least
some regions of the USA, as stated in chapter three section 1.3 [Wang et al., 2013].
This variable was obtained from the Australian Bureau of Meteorology.

• U-wind (ms−1): U-wind is eastward wind, that is wind that blows from the west
towards the east would have a positive value and wind that blows from the east
towards the west would have a negative value. This is how the wind direction was
defined in the 20th Century Reanalysis and the terms should not be confused with
the more commonly used phrases ’westerly’, a wind from the west and ’easterly’
a wind from the east. Wind direction may affect temperature depending on the
conditions where the wind is blowing from, e.g., a coast, a mountain range etc
[Ahrens, 2000; Corcoran and Johnson, 2005]. Wind speed would also be expected
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to affect recorded temperature measurements. This variable was obtained from the
20CR data.

• V-wind (ms−1): V-wind is a northward wind, that is wind that blows from the south
towards the north would have a positive value and wind that blows from the north
towards the south would have a negative value. Again, these are not the same as
northerly and southerly winds. In the United States winds from the south would
be expected to bring warmer weather in general and those from the north would
be expected to bring colder weather in general owing to the effects of latitudes on
temperatures stated above and in [Ahrens, 2000]. This variable was obtained from
the 20CR data.

• Precipitation rate (Kgm−2s−1): Precipitation rate and temperature are often linked
and therefore inclusion of a precipitation indicator is wise. For example, especially
in summer, larger amounts of precipitation are likely to result in lower temperatures
for most of the United States [Zhao and Khalil, 1993]. This variable was obtained
from the 20CR data.

• Precipitable water content (Kgm−2): This variable considers the entire atmosphere
as a single layer and reports how much moisture is present that could theoretically
fall as precipitation. Considering the atmosphere as a single layer is acceptable as
the majority of the moisture will be concentrated relatively near the surface in the at-
mospheric boundary layer [NASA, 1991]. Both Trenberth et al. [2005] andRuckstuhl
et al. [2007] refer to precipitable water as integrated water vapour and Ruckstuhl
et al. [2007] suggests that integrated water vapour is linearly related to specific
humidity. From these studies it is therefore reasonable to assume that a humidity
variable such as specific humidity would behave similarly in the model to precip-
itable water content. Precipitable water content was obtained from the 20CR data.

• Sea Level Pressure (Pa converted to hPa): This variable can help provide informa-
tion on larger scale weather systems, e.g., storm systems, that might not be cap-
tured through the inclusion of other variables [Ahrens, 2000]. This variable was
obtained from the 20CR data.

• Temperature (K converted to ◦C): This variable was included from the 20CR data
as it is expected that reanalysis temperatures will be a helpful predictor of observed
temperatures, including their longer term trends [Compo et al., 2011, 2013]. The
reanalysis data were not of a high enough resolution to allow reanalysis tempera-
tures to be used to directly create the clean series without any modelling needing
to take place.

Not all variables are strictly necessary for all regions. For example, distance to the coast
and longitude serve a very similar purpose for the Wyoming model and distance to the
coast and altitude are closely linked in the South East. However, it was decided to keep
the models uniform across regions to make this work as generalisable as possible. It is
hoped that a future researcher could use this model anywhere in North America and it
would be appropriate because of the array of explanatory variables that have been incor-
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porated. If the model were to be taken to a very different area, Africa for instance, the
researcher may want to consider changing the variables included. Africa may also bene-
fit from a less complex model as there is less data availability and fewer variables would
better guard against overfitting. Overfitting was not a concern in the USA as the data are
plentiful, therefore, variables that had some justifiable reason for inclusion in any region
were included in all regions. That is, the selection of variables was primarily physically
based and investigations into dropping certain variables were only carried out very early
on in the model creation stage before it was decided that less was not more in the case
of this project. If a simpler model was sought that was not necessarily the same in all
regions then an approach such as stepwise selection based on the Akaike Information
Criteria (AIC) could be used to determine the best model.

Model Selection
To reduce the computational cost of model fitting the data were thinned so that only every
other day at a station was taken for modelling purposes. This thinning was done using
the time index of the data. This index ran from 1 to 15340. To ensure that days from
all points in the time series were well represented odd indexed days were taken at one
station and even indexed days were taken at the next. Thus, the models included infor-
mation from the whole time series, but were computationally cheaper to fit. This thinning
also reduces, though does not remove, the autocorrelation in the data, which is beneficial
as the GAM is designed to work with independent data. The ranges of the values for all
the variables were compared before and after thinning and although a few extremes were
reduced, none were substantially reduced.

Once the data were thinned and the explanatory variables were chosen it was necessary
to decide how they would be included. They could be included parametrically (linearly
in practice here); as smooth functions; or as smooth surfaces that take into account the
effect of more than one variable at a time on temperature. One could include all variables
as smooth functions, but this is more computationally costly, and of little benefit when
relationships are linear or near linear. This requires assessment by eye, as, given the
opportunity to be very unsmooth a relationship will take it. For this reason, scatter plots
were formed between variables that were suspected to have a linear relationship with
mean temperature, namely altitude and reanalysis temperatures.

Altitude was tricky, as, of course, stations exhibit a range of temperatures while remaining
at the same altitude. This meant that the relationship between temperatures and altitudes
was not constant. It should also be remembered that altitude is not an immediate indicator
of topography, it is easy to assume that high altitude stations must be mountain top sites,
but Pepin and Siedel [2005]; Pepin and Norris [2005] looked at ’high elevation sites’ (over
500m) and were still able to classify them into groups which included both mountain
summit and valley sites. These different topographies result in different influences on
daily mean temperatures, i.e. wind is likely to have a greater effect at mountain summit
sites [Pepin and Lundquist, 2008], but all sites in the studies by Pepin had high altitudes.

In spite of this knowledge that higher altitude sites aren’t necessarily high topographi-
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cally, the scatter plots, not shown, exhibited the traditionally expected slight negative cor-
relation between station height and temperature overall. This was considered sufficient
justification to include altitude parametrically and not as a smooth function. Including a
categorical factor of topography as well as altitude would be an interesting addition to the
model as the aforementioned studies do show its effects on temperatures, however it was
not investigated further in this work.

A similar argument could be made in favour of including latitude linearly, as, generally
speaking, stations get cooler the further away they are from the equator. However, lati-
tude was included as a smooth function because it was deemed appropriate to include
longitude as a smooth function and it was logical to include both co-ordinate variables
in the same manner. Longitude was included as a smooth function because it is not
necessarily the case that the temperatures across a region are linearly related to their
east-west position. For example, factors such as deserts and mountain ranges will affect
temperatures and the longitude smooth function can pick up these features to a certain
extent.

Reanalysis temperatures, as expected, were highly positively correlated with observed
temperatures and therefore allowing them to enter the model linearly was a simple deci-
sion.

The remaining variables were then included as smooth functions and their shapes sug-
gested that this was an appropriate step. However, it is apparent when looking at climatic
data that relationships between temperature and other variables can exhibit seasonal
cycles, which suggested that the smooth surface option of the GAM should also be in-
vestigated. This option allows two explanatory variables to be interacted with each other,
so that the effect of one on the response differs according to the value of the second.

The advantages of including a variable interacted with ’day of the year’ are twofold. Firstly,
it will mean that the seasonal cycle can vary between stations in a region, which would not
be the case if a smooth function of ’day of the year’ by itself were included. This can then
lead to a more realistic relationship with temperature being modelled, which benefits the
creation of the benchmark data. Secondly, there is evidence to suggest that the effects
of inhomogeneities are not constant throughout the year [Trewin, 2013]. Therefore, if an
interaction term is included and one of its variables is perturbed then a seasonally varying
inhomogeneity can be created. This methodology will be explained in much greater detail
in the following chapter.

Only one smooth surface could be included in the model otherwise the two surfaces would
interact with each other and lead to the possibility of unrealistic values being predicted.
The choice of which variable to include with ’day of the year’ involved much careful consid-
eration. Initially all explanatory variables were considered as potential candidates and a
scatter plot was produced between ’day of the year’ and the explanatory variable in ques-
tion in each of the four focus regions. These plots showed which variables had a naturally
occurring seasonal cycle, those which clearly did didn’t need to be considered further as
they were already causing seasonal variation within and between stations. Unsurpris-
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ingly the ’levels of sun’ variable fell into this category. Precipitable water content also had
a reasonably distinct seasonal cycle in all but the South West region and therefore was
also not considered further.

Latitude, longitude and distance to the coast could have different effects on mean tem-
peratures at different times of the year, but this will be due to other factors such as pre-
cipitation or wind regimes. Therefore, none of the location variables were considered for
inclusion as a smooth surface. SOI was not considered for inclusion as a smooth surface
as its value is constant for a month at a time and is the same for all stations. This means
that the full benefit of a smooth surface would not be realised if SOI were the variable to
be included with ’day of the year’. This left the options of sea level pressure, eastward
or northward wind and precipitation rate. Therefore, further investigation was carried out
on the models that included one of these four smooth surfaces. Sea level pressure was
soon ruled out, as, although different pressures had different effects on temperature in
summer, this was not the case in winter.

The remaining three possible models were then analysed for all regions to assess which
produced the best predicted data. The analysis consisted of looking at the correlation
and mean squared error between the predictions and the observations; the adjusted R-
squared value (which should be high) and the generalised cross validation score (which
should be low) for the models and comparing models using ANOVA tables. Alongside
comparing the variable of interaction, how the interaction was to be incorporated was
also investigated.

Smooth function interaction terms between two continuous variables can be incorporated
in one of two ways: as a thin plate regression spline smooth surface, or as a tensor
product smooth surface. Thin plate regression spline smooth surfaces are constructed
from two-dimensional thin plate regression spline bases which are combined in order
to produce the desired surface, just as one dimensional splines are combined to form
a smooth function. These surfaces are good if the two variables are on similar scales,
but not as good if the scales are very different. Tensor product bases are good even if
the variables are measured on very different scales as bases are built for each variable
separately and then combined using a tensor product, see section 4.1.8 of Wood [2006].

The analyses revealed that the best model was obtained by including a smooth surface
of ’day of the year’ and ’precipitation rate’ using a tensor product smooth. However, there
is a drawback to this model. Some of the inhomogeneities in this study were produced
by scaling certain explanatory variables by a small factor. If this were to be done with
’precipitation rate’ in order to create an explicitly seasonally varying inhomogeneity, then
any days with no precipitation would be unaffected by the scaling, thus the inhomogeneity
addition method would not be as effective as it had the potential to be. For this reason
the model that came a very close second in the analyses was used. This was the model
incorporating ’day of the year’ and eastward wind as a smooth surface.

The final model can therefore be written as:

TMEAN60it ∼ Gamma(a, sit)
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where the mean of the Gamma distribution µit = asit and

µit = β0 + β1Altitudeit + β2Tempforecastit + f1(Dyearit, UWit) + f2(Timeit) +

f3(Latit) + f4(Longit) + f5(Sunit) + f6(SOIit) + f7(VWit) + f8(Precipit) + f9(PWCit) +

f10(Coastit) + f11(SLPit)

Here i is a station index from 1 to N , where N is the number of different stations used
as inputs to the model and t is a time index, taking values from 1 to 15340. It may seem
unnatural to index location and altitude variables according to time as well as station, but,
as will be explained later, these variables will not necessarily be held constant for the
whole station record length. For example, a station may be relocated.

After the model formulation was finalised it was necessary to decide how to include the
smooth functions. Decisions when introducing smooth functions involved choosing the
bases from which they were built and an upper limit for how unsmooth they were allowed
to be. How unsmooth a smooth function is in the GAM can be broadly described by
the function’s effective degrees of freedom, or edf. The edf can be thought of as an
approximation to the degree of the polynomial you would need to get the same amount of
variability. For the smooth function of time it was decided to heavily restrict the variability,
forcing it to be only as variable as a quadratic. The reason for doing this was because
the time component is included to incorporate the long term underlying variability in the
data that has not been captured by other variables, not to reproduce every variation that
happens over the time period. The danger of allowing the smooth function of time too
much freedom would be that it could mimic a network wide inhomogeneity, such as a
change in the time of observation, thus undermining the assumption of homogeneity in
the clean data.

All other smooth functions were allowed up to nine effective degrees of freedom. All bar
one, the smooth function of eastward wind in Wyoming, took advantage of this maximum
and thus it was necessary to investigate whether the limit should be increased. This
investigation consisted of analysing the residuals from the fitted model. When smooth
functions were fitted with partial residuals overlaid, the scatter about the smooth function
appeared uniform, this is a sign of a well fitting model [Wood, 2006]. However, when
smooth functions were fitted to the deviance residuals, with respect to each of the co-
variates in turn, there was clear suggestion of unmodelled variability. Deviance residuals
are the square roots of each point’s contribution to the deviance, where the deviance is
the scaled difference in log likelihood between the saturated model and the fitted model.
Modelling the deviance residuals with respect to a covariate simply means that a GAM is
fitted with the residuals as the response variable and the explanatory variable in question
as the only smooth function. Because, in all cases when this was done, the smooth func-
tion was shown as being significant this suggested that an investigation into increasing
the allowable degrees of freedom for the smooth functions should be carried out. There-
fore, all models were refitted with just over a doubling of their allowable effective degrees
of freedom and the resulting models were compared to the originals.

When the allowable degrees of freedom for smooths was increased, some smooths be-
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came smoother and others became more variable, some also started noticeably affecting
each other. This is because climate variables will be correlated with each other. There-
fore, a smooth function may behave differently depending on whether another variable
is or isn’t included in the model, or depending on how many degrees of freedom other
variables have. For example, the range of effect sizes on temperature from the longitude
smooth function became incredibly wide in Wyoming, the South East and the North East.
In some cases this increase was partly compensated by the ranges of other smooths in-
creasing too, but not always, meaning that some predictions from these models would be
completely inadequate. It is also worth noting that for both the South East and the North
East the models with less variability allowed gave better (lower) GCV scores, suggesting
that they were preferable. Therefore, for these reasons, and in the interest of computa-
tional efficiency the original models were preferred over those with increased degrees of
freedom.

In this work thin plate regression splines are used as bases for the smooth functions. Thin
plate regression splines fit the data well without being too computationally expensive or
reliant on user choices. They can also be used as the basis of smooth surfaces allowing
a continuity between the single and interaction terms in the model.

The models described here were all fitted using the package mgcv in R. As already out-
lined, a model for each region was fitted separately to maximise the inclusion of the
individual region characteristics. The mgcv package is well documented and Wood [2006]
devotes a lot of attention to its capabilities. The models should be easily reproducible
from the information given in this section. One small point to note is that, although with
restricted effective degrees of freedom over-fitting was not a major concern, because
GCV is known to sometimes over fit, a slight alteration to the GAM was made when ap-
plying it in R. This alteration was setting the parameter gamma to 1.4, as advised in Wood
[2006].

Model Outputs
As shown in the model formulation, explanatory variables entered the GAM in one of three
ways. As parametric terms, i.e., linearly with a coefficient indicating the sign of the effect
the term has on mean temperatures; as smooth functions, allowing easily for non-linear
relationships; or as smooth surfaces allowing two variables’ impacts on temperature to
interact with each other.

The explanatory variables that entered the models parametrically were altitude and re-
analysis temperature. The coefficient for altitude indicated an increase in altitude lead to
a decrease in temperatures in Wyoming, the North East and the South West as expected.
In the South East the coefficient suggested increasing altitude lead to increasing temper-
atures, but the coefficient was smaller than in the other regions, as are the altitudes,
thus this relationship does not seem unreasonable. Also, as expected, the coefficient
for reanalysis temperature indicated that as reanalysis temperatures increased so did
modelled temperatures.

The remaining explanatory variables entered the model as smooth functions or smooth
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surfaces. Not all smooth functions are displayed in the interests of space and ease of in-
terpretation. When interpreting those that are displayed the following explanations should
be kept in mind. Firstly, smooth functions are centred to ensure that they are identifiable.
That is, the sum of all the elements of the smooth must be zero to ensure that the smooth
function is a one-to-one function [Wood, 2006]. Secondly, this identifiability constraint
does not stop different smooth functions interacting with each other, as was stated in the
previous section. Thus, the shape of a smooth function does inform the reader what im-
pact a particular covariate value has on predictions, but only in relation to the other terms
and smooth functions in the model. This means that smooth functions do not always
have intuitive and easily interpretable shapes. For example, in Wyoming longitude and
distance to the coast are highly correlated, which means the distance to the coast func-
tion appears to have a large influence on temperatures, which seems counter-intuitive for
a landlocked state.

However, this study was concerned primarily with creating realistic data, not trying to
explain the data that already existed. Hence, smooth functions were included to allow for
more complex non-linear relationships to be modelled without having to rationalise their
shape. Therefore, non-intuitive smooth function shapes were not cause for concern as
long as the temperature series created from the models were realistic, which the following
section illustrates was the case.

Figure 4.1. Centred smooth functions of levels of sun for Wyoming (black), the South East (red),
the North East (blue) and the South West (orange).

Figures 4.1 and 4.2 show examples of two sets of smooth functions from the fitted mod-
els, for levels of sun and northward wind respectively. These serve as good illustrations
for the caveats provided above. In figure 4.1 it can be seen that although in Wyoming,
the South East and the North East higher levels of sun have a warming impact on tem-
peratures, this is not the case in the South West. This is not what would be anticipated
in the South West, however, in conjunction with the other model terms, predictions in this
region are reasonable. For the northward wind smooth functions the interpretations do
seem relatively straightforward. In all regions winds blowing from the south bring warmer
temperatures, while winds from the north bring colder temperatures everywhere but the
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South West, where the relationship is simply that stronger winds have a warming impact
on temperatures.

Figure 4.2. Centred smooth functions of northward for Wyoming (black), the South East (red), the
North East (blue) and the South West (orange). Positive values indicate wind blowing towards the
north and negative values indicate wind blowing from the north.

The two variables that were interacted in smooth surfaces for each region were day of
the year and eastward wind. Figures 4.3 to 4.6 show these smooth surfaces. As is the
case with the rest of the model components it should be remembered that these smooth
surfaces are simply a contributing factor to the final predictions and so they should not be
over interpreted.

Figure 4.3. A contour plot to illustrate the smooth surface of the day of the year interacted with
the eastward wind in Wyoming. The x-axis gives the days of the year from 1 to 365 and the y axis
gives the range of eastward winds. The values on the black lines within the plot indicate the effect
of the given combination of eastward wind and day of the year on temperature. For example, in
Wyoming, winds from the east have a cooling effect on the model predictions in winter. As with the
smooth functions there is uncertainty in the values of the smooth surface. Therefore, red dashed
lines indicate minus one standard deviation, while green dashed lines indicate plus one standard
deviation from the contours.

In Wyoming, figure 4.3, the effect of eastward wind on temperatures varies most at the
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ends of the year and least in the middle of the year. At the ends of the year winds from
the east cool temperatures, while winds from the west warm temperatures.

Figure 4.4. A contour plot to illustrate the smooth surface of the day of the year interacted with the
eastward wind in the South East. The x-axis gives the days of the year from 1 to 365 and the y
axis gives the range of eastward winds. The values on the black lines within the plot indicate the
effect of the given combination of eastward wind and day of the year on temperature. It can be
seen that the direction and strength of the wind don’t actually change predictions that much as the
black lines are near vertical in places. However, the time of the year does have an impact, with
winds showing a cooling effect in winter and a warming in summer. As with the smooth functions
there is uncertainty in the values of the smooth surface. Therefore, red dashed lines indicate
minus one standard deviation, while green dashed lines indicate plus one standard deviation from
the contours.

In the South East, the speed and direction of the wind matter less, but the time of year
still affects the impact of eastward winds on temperatures. At the ends of the year winds
cool the temperatures and in the middle of the year they cause a slight warming.

In the North East the relationship is a little more complex. At the ends of the seasonal
cycle winds of any speed cool the temperatures, with those from the east (the coast)
cooling temperatures more. In the middle of the year strong winds from the east still cool
temperatures, but those from the west or weaker winds from the east warm them.

In the South West, at the ends of the seasonal cycle all winds cool temperatures, but
those from the west (the coast) cool them more. In the middle of the seasonal cycle
almost all winds warm temperatures, but those from the west warm them least and the
strongest westerly winds cool them.

4.2. Data Simulation: The benchmark data

As already stated, the aim of this work was not to explain the data that already existed, but
to create realistic synthetic data that could be used for assessing homogenisation algo-
rithm performance. It was important that the data that were created were clean initially so
that there could be confidence in the conclusions drawn from the study. To be a realistic
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Figure 4.5. A contour plot to illustrate the smooth surface of the day of the year interacted with the
eastward wind in the North East. The x-axis gives the days of the year from 1 to 365 and the y axis
gives the range of eastward winds. The values on the black lines within the plot indicate the effect
of the given combination of eastward wind and day of the year on temperature. For example, in
the North East winds in winter always have a cooling effect on predictions, but those from the west
(positive eastward wind values) have less of a cooling effect than those from the east. As with the
smooth functions there is uncertainty in the values of the smooth surface. Therefore, red dashed
lines indicate minus one standard deviation, while green dashed lines indicate plus one standard
deviation from the contours.

Figure 4.6. A contour plot to illustrate the smooth surface of the day of the year interacted with the
eastward wind in the South West. The x-axis gives the days of the year from 1 to 365 and the y
axis gives the range of eastward winds. The values on the black lines within the plot indicate the
effect of the given combination of eastward wind and day of the year on temperature. For example,
in the South West, at the very ends of the year (late December and early January) all winds have
a cooling effect on predicted temperatures, with those from the west having the largest effect. As
with the smooth functions there is uncertainty in the values of the smooth surface. Therefore, red
dashed lines indicate minus one standard deviation, while green dashed lines indicate plus one
standard deviation from the contours.

benchmark the synthetic data needed to match the real world well in terms of cross-
correlations between stations, standard deviations and autocorrelations in difference se-
ries between stations and autocorrelations within stations [Willett et al., 2014]. All these
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measures needed to be evaluated on deseasonalised series, that is, series where the
seasonal mean cycle had been removed. The reason for preferring deseasonalised data
for these checks is that they have a better signal to noise ratio than non-deseasonalised
data. That is, the longer term variability is more easily distinguished from the day to
day variability. They also have the advantage that measures of correlation should not be
dominated by the presence of a seasonal cycle. In the climate literature deseasonalised
series would more commonly be known as climate anomalies.

In this work deseasonalisation took place using the following step by step process:

1. Take a station series and work out the mean value for each day of the year using all
available years.

2. Use these values to create a series of means the same length as the original series.

3. Subtract the series of means from the original series to create the deseasonalised
series.

4. Repeat for remaining stations.

Inter-station correlations were of interest owing to the processes taken by many ho-
mogenisation algorithms. As stated in section one of the literature review, algorithms
seeking to detect inhomogeneities can be broadly split into two categories; absolute
methods where homogeneity tests focus on a single station at a time and relative meth-
ods where neighbouring stations are used to try and determine the homogeneity of the
station in question [Costa and Soares, 2009]. If inter-station correlations are too high then
stations are too similar and inhomogeneities would be easier to detect than in reality, if
they are too low then inhomogeneities become harder to detect than in reality [Williams
et al., 2012].

As the current study was looking at daily data another aspect that could be investigated
was the extremes. Extremes are of interest when evaluating whether the variability of
temperatures is changing, thus an algorithm should not smooth out extremes or create
non-existent ones. How well the created benchmarks match observed extremes will be
reported here and this will be done using non-deseasonalised data.

4.2.1. Predictions

The initial predictions from a GAM are the mean behaviour of the response variable, in
this case temperature. These predictions will be identical, down to computer precision,
each time predictions are made from the model for the same explanatory variables. A
selection of these predictions can be seen in figures 4.7 to 4.10. In each of these figures
plot (a) shows the predicted temperature density plot for the region as a whole, plot (b)
shows an example of a ’good’ station, where ’good’ indicates the density of the predictions
matching the observations well by eye and plot (c) shows an example of a ’bad’ station,
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where ’bad’ indicates the density of the predictions not matching the observations well by
eye.

These plots show that taking the regions as a whole the predictions (blue) are matching
the observations (black) reasonably well. The general shapes of the distributions are
being captured, but the peaks of the distributions are being overshot at the expense of
the extremes. This over- and under-shooting is also evident in the examples of the ’bad’
stations and, to a lesser extent, even in the examples of the ’good’ stations.

Figure 4.7. Density distributions of observed temperatures (black) and model predictions (blue) in
Wyoming for (a) Wyoming as a whole, (b) a ’good’ station, (c) a ’bad’ station. Where ’good’ and
’bad’ are here determined by eye.

Figure 4.8. Density distributions of observed temperatures (black) and model predictions (blue) in
the South East for (a) the South East as a whole, (b) a ’good’ station, (c) a ’bad’ station. Where
’good’ and ’bad’ are here determined by eye.

Figure 4.9. Density distributions of observed temperatures (black) and model predictions (blue) in
the North East for (a) the North East as a whole, (b) a ’good’ station, (c) a ’bad’ station. Where
’good’ and ’bad’ are here determined by eye.

A further problem with simply using the mean predictions from the model is that all sta-
tions are predicted to be too similar, resulting in inter-station correlations that are too
high. This is illustrated in figure 4.11 which shows the density distributions of inter-station
correlations for the observed and the predicted temperatures, where all series have been
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Figure 4.10. Density distributions of observed temperatures (black) and model predictions (blue)
in the South West for (a) the South West as a whole, (b) a ’good’ station, (c) a ’bad’ station. Where
’good’ and ’bad’ are here determined by eye.

deseasonalised. It must be noted that these comparisons are not exactly like for like as
they are being made between homogeneous (predicted) and inhomogeneous (observed)
data. However, the difference in inter-station correlations is greater than could be caused
by the addition of inhomogeneities.

Given that extremes are an area of investigation that daily data allow for and inter-station
correlations should be realistic it was desirable to do some further processing of the
predictions to create benchmark data that could reproduce these aspects better.

It should be noted at this point that the problems with using mean predictions straight
from the model are also those encountered if downscaled reanalysis temperatures alone
are used for the creation of the benchmark data. This is the reason that reanalysis tem-
peratures were only used as an explanatory variable in the final model and not instead of
the final model.

4.2.2. Adding Realistic Variability

To decrease the inter-station correlations and increase the temperature range noise was
added on to the mean predictions. The process for calculating this noise was as follows:

1. Let 60− µ̂it be predictions from the GAM. It is necessary to subtract µ̂it from 60 to
ensure predictions are on the TMEAN scale and not the TMEAN60 scale. These
µ̂it are the means of Gamma distributions. Therefore, to add extra variability, noise
can be generated from a Gamma distribution with µ̂it as the mean.

2. To generate values from a Gamma distribution both the shape, a, and the scale,
s, parameters must be known. Using the facts that a · s is the mean of a Gamma
distribution, and that the mean is already known, only one other piece of information
is required to work out the value of the remaining parameter. Owing to how the
models were fitted, an estimate of a could be obtained from the fitted model output.
sit could then be estimated as ŝit = µ̂it

a .

3. Generate a value from this Gamma distribution and denote it by ŷit, which can be
thought of as a more variable prediction, ŷit = µ̂it + εit, where εit is the added
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Figure 4.11. Density plots of the inter-station correlations found in observed (black) and predicted
(blue) temperature station networks for (a) Wyoming, (b) the South East, (c) the North East and (d)
the South West. The reader is cautioned that these plots do not indicate inter-station correlations
greater than one, it is just an artefact of the plotting process that the blue curves extend beyond
one on the x axes.

variability.

Figure 4.12 shows the density of the temperature distributions, transformed back to the
true scale, if these noise added predictions are used. It illustrates that adding extra
variability in the form of Gamma noise had the desired effect of increasing the range of
modelled temperatures. However, it increased the range too much, cold extremes are
now overshot in all regions, though warm extremes are still being missed. Also, although
adding this extra variability improved the match to the peak of the distribution in Wyoming
and the North East, this was not the case in the other two regions.

A more conclusive reason for not using the noise added variability with no further pro-
cessing can be seen in figure 4.13. This figure shows clearly that inter-station correla-
tions of the predictions are now much too low. This would make the benchmark harder to
homogenise than reality, thus undermining the study.

To rectify this problem of decreased inter-station correlations, without reverting back to
the raw predictions from the model, a post-processing of these new predictions was ap-
plied. This post-processing technique can be thought of as an extension of the previous
variability adding method, as outlined below.
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Figure 4.12. Density plots of the temperature distributions found in observations (black) and noise
added predictions (blue) from temperature station networks for (a) Wyoming, (b) the South East,
(c) the North East and (d) the South West.

4. Extract εit, the extra variability added on to the prediction µ̂it. This extra variability is
not correlated between stations on any given day, though the values will have been
generated from distributions with relatively similar parameters.

5. Fit a two dimensional loess surface to the given εit’s for each value of t separately.
This requires the selection of a smoothing parameter, sp. The larger sp is the more
smooth the surface will be.

A loess surface is simply a two dimensional smooth of a region obtained using the current
information available (the εit and their geographical locations) and a local fitting method.
A local fitting method means that the value of the surface at any given point is influenced
by other points in the vicinity of it, usually weighted by how far apart the points are. What
proportion of available points are taken into account is decided by sp. For this work sp
was held constant for smooths for all days within a region, but was allowed to vary across
regions. The weighting function used for the points taken into account at each part of
the smooth was a tricubic weighting function, (proportional to (1 − (dist/maxdist)3)3).
The loess surface is a polynomial surface and in this work polynomials of degree two
were used. The code used for the fitting and prediction from a loess surface was slightly
adapted from existing functions available for the R software and is therefore attached as
electronic appendix A to allow the reproduction of this work.
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Figure 4.13. Density plots of the inter-station correlations found in observations (black) and noise
added predictions (blue) from temperature station networks for (a) Wyoming, (b) the South East,
(c) the North East and (d) the South West.

6. Predict back from the loess surface to get a value of smoothed variability, smit, for
all stations and times.

7. The modelled temperature data can now be calculated as Tit = 60− (µ̂it + smit).

8. Assess these predictions’ inter-station correlations and repeat until an appropriate
sp value is found.

Multiple values of sp were investigated for each of the regions. As already stated, it was
decided to allow sp to vary across these regions in order to obtain the best inter-station
correlations in each place instead of having a compromise that was acceptable, but not
optimal everywhere. One size would not fit all because the sizes of the regions, their
climatic variability and their station density are not constant. For example, smoothing ac-
cording to a given number of stations could over-smooth Wyoming while under-smoothing
the South West.

As will be explained in the next chapter, multiple scenarios of each region were created
for this work. Scenarios two and three had an increased station network density relative
to scenario one, but in all three scenarios the amount of smoothing was specified by
taking the same number of stations into account. The reason for this was that in the
less dense scenarios a certain number of stations would typically be more spread than
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in the more dense scenarios, thus more smoothing would occur. In the more dense
scenarios the underlying station mean predictions would already be more similar, which
would have already boosted the inter-station correlations, thus, less smoothing of the
noise was desirable. Therefore, although the same number of stations was taken into
account in the smoothing across all scenarios in a region this amounted to a smaller
proportion of all available stations in the more dense regions.

Table 4.1. A table to show an overview of the values chosen for sp in the different regions and
scenarios and what proportion of stations this amounts to.

Region Scenarios Number of
stations in total

Number of stations
taken into account (sp)

Equivalent proportion
of stations

Wyoming 1 75 25 33.3%
Wyoming 2 and 3 158 25 15.7%
Wyoming 4 75 15 20%

South East 1 153 45 29.4%
South East 2 and 3 210 45 21.4%
North East 1 146 40 37.4%
North East 2 and 3 207 40 19.3%
South West 1 151 35 23.2%
South West 2 and 3 222 35 15.8%

These numbers were decided on after careful consideration of multiple alternatives and
also research into how neighbouring stations are used in the homogenisation process.
Many homogenisation algorithms look for a small number of highly correlated neighbours,
therefore it was deemed more important that the upper end of inter-station correlations
was captured rather than the lower end. As already stated, inter-station correlations that
are too high should make homogenisation easier than in reality because the stations will
be more similar, and this is preferable to making the situation more complicated. There-
fore, over-smoothing was preferred to under-smoothing as long as no extreme problems
were encountered. Some algorithms also focus on local regions around the station be-
ing investigated, therefore getting inter-station correlations right at shorter distances was
of more concern than making them perfect over longer distances. The exact number of
stations that were taken into account during the smoothing process is given in table 4.1.

Figure 4.14 looks at density plots of the inter-station correlations of stations in each of the
regions when the smoothed variability is added on to the predictions. More stations con-
tribute to the inter-station correlation calculations in the more dense regions (scenarios
two and three) than the less dense regions (scenarios one and reality), but these plots
show that the inter-station correlations are similar across scenarios which is highly desir-
able. There is still a tendency for inter-station correlations to be a little too high, but, as
argued in the previous paragraph, this is preferable to them being too low. These plots
do show evidence of a few spuriously low inter-station correlations though. The stations
contributing to these low inter-station correlations were investigated and it was found that
the model was not performing as well at these locations, either in terms of the predictions
themselves, or just in terms of the inter-station correlations. The culprit stations were
therefore removed in the interest of not creating low quality stations in the benchmark
that might bias the results.
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Figure 4.14. Density plots of the inter-station correlations found in observations (black) and predic-
tions with added smoothed variability (blue) from temperature station networks for (a) Wyoming,
(b) the South East, (c) the North East and (d) the South West. Solid lines indicate scenario one,
dashed lines indicate scenarios two and three.

One station was removed from the more dense scenarios for Wyoming, it was likely worse
as it was reasonably isolated and the only station in a relatively mountainous region. Two
stations were removed in the South East less dense version, both on the northern coast
of the Gulf of Mexico. One of these also needed to be removed in the more dense version
along with one that was very isolated on the western coast of the Gulf of Mexico. Two
stations were removed in the less dense scenario of the North East, one on the North
Atlantic coast and one on the border with Canada. Neither of these needed to be re-
moved in the more dense scenarios, but one at the very bottom of the focus region, and
two others on the North Atlantic coast did need to be. The South West was the region
with the most inadequate stations, as expected from its varying climate across the re-
gion. However, there were still only six that needed removing in the less dense scenario;
two were poor only in the less dense scenario and therefore could be left in in the more
dense scenarios; two were poor in more and less dense scenarios and two were poor
in the more dense scenario, but had to be removed from both. An additional four then
needed removing in the more dense scenarios. All the stations that were removed in
the South West were coastal stations, but there were also coastal stations that were per-
fectly acceptable, indicating that the model performance is not inadequate for all coastal
stations.
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Figure 4.15. Density plots of the inter-station correlations found in observations (black) and predic-
tions with added smoothed variability (blue) from temperature station networks for (a) Wyoming,
(b) the South East, (c) the North East and (d) the South West. Solid lines indicate scenario
one, dashed lines indicate scenarios two and three. Here, stations with unrealistic inter-station
correlations or predictions were removed.

Density plots of the inter-station correlations in each of the regions after the removal of
the dubious stations can be seen in figure 4.15. The higher inter-station correlations have
changed very little, but the majority of the unrealistically low inter-station correlations have
now been removed.

As stated already, many algorithms look for stations nearby when homogenising data.
Therefore, inter-station correlations between stations that were less than 75km apart
were extracted from the data and plotted. This distance was chosen as it is the dis-
tance used in the neighbour based quality control checks for GHCND [Durre et al., 2010].
Figure 4.16 shows scatter plots of the inter-station correlations for the true and predicted
stations within a 75km radius of each other. It is evident that predicted stations are prone
to be over-correlated, this is especially evident in the South East and North East. Al-
though this was not the desired situation it was deemed to be acceptable. It must also be
remembered that the modelled inter-station correlations are for clean stations, whereas
the inter-station correlations they are being compared to are unlikely to be clean.

Figure 4.17 mimics figure 4.12, but with the new smoothed noise. It shows that smoothing
the noise has maintained the ability to match the shape of the overall temperature density
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Figure 4.16. Scatter plots of the inter-station correlations found in observations and predictions
with added smoothed variability for temperature stations less than 75km apart in (a) Wyoming,
(b) the South East, (c) the North East and (d) the South West. Points are from scenario 1,
but inter-station correlations are very similar for scenarios 2 and 3. The diagonal line is the
line y = x, points above this line indicate over-estimated inter-station correlations, points below
it indicate under-estimated inter-station correlations in the predicted data with added smoothed
variability. Note that the x and y axes are consistent within plots, but not across plots. The
comparison of predicted and observed inter-station correlations is marginally hampered by the
fact that the predictions don’t have inhomogeneities in and the observations do. However, the
effects of inhomogeneities on inter-station correlations are not believed to be large enough to
make this figure invalid.

distributions in each region well, without having to sacrifice the inter-station correlations.
However, looking closely at this figure it is evident that some of the most extreme values
of the distributions do not match between the observed and predicted data. In Wyoming
the distribution is slightly too negative, with between 7 and 27 values in different scenarios
being cooler than the cold extremes observed in reality, by up to five degrees, and the
uppermost warm extremes being missed. In the South East the opposite is true, though to
a lesser extent, with a maximum of only two cold extremes being missed in any scenario
and only five warm extremes being gained. In the North East the largest cold extremes
are missed, but the warm extremes are relatively well matched for all scenarios. Finally,
in the South West, 24 cold extremes are missed in scenario one and one or two are
too extreme in scenarios two and three. The upper tail is not well captured in the South
West though with 200 warm extremes being missed in the denser scenarios and nearly
600 in scenario one. This amounts to losing the top 4 to 5 degrees of the temperature
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distribution in this region. The numbers given here are just the number of times that
predictions are outside (or missing) the ranges observed in reality, i.e. extremes are
not being compared on like for like days or at like for like stations. When recovery of
extreme values was being used as an assessment for algorithm performance, extremes
were compared between clean and returned equivalent stations on the same day.

Figure 4.17. Density plots of the temperature distributions found in observations (black) and pre-
dictions with added smoothed variability (blue) from temperature station networks for (a) Wyoming,
(b) the South East, (c) the North East and (d) the South West.

The autocorrelations within deseasonalised series were also assessed as another way
of examining how realistic the created data were. Even after deseasonalisation, daily
data exhibit autocorrelation. For the observed data this autocorrelation tails off relatively
rapidly, dropping below 0.1 by lag 15 in all regions. For the created data autocorrelations
were below 0.1 by lag 15 in all regions apart from the South West. The South West
exhibits more persistent auto-correlation, this is observed in reality, but not to the same
extent.

Figure 4.18 illustrates the general behaviour of autocorrelation in regional average series.
These series were created by taking the mean of all deseasonalised values for each day
of the time series for each region separately. The general features displayed in these
plots could also be seen by looking at the average difference in autocorrelations between
individual observed and predicted series. The autocorrelation at lag one is consistently
too low, this tendency to be a little low persists for the first few lags before becoming a
tendency to be too high. There were of course a few stations that had predicted autocor-
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relations which varied from the observed autocorrelations more than others, but overall
the autocorrelations in the created time series were deemed a good match to reality.

Figure 4.18. Plots to illustrate the autocorrelations up to lag 40 found in the regional average series
in observations (black) and predictions with added smoothed variability (blue) for temperature
networks in (a) Wyoming, (b) the South East, (c) the North East and (d) the South West for
scenario 1. Plots for scenarios 2 and 3 are nearly identical to this.

It is not just autocorrelations of deseasonalised series themselves that are of interest.
Also of interest are the difference series created between two highly correlated desea-
sonalised series. These difference series are commonly assumed to behave as white
noise by homogenisation algorithms, but this is not the case in reality as can be seen
in figure 4.19. The autocorrelation plots are not the same for all difference series in all
regions, but they clearly cannot be assumed in general to be white noise.

A deseasonalised difference series is referring to the difference series created by differ-
encing a deseasonalised station with its most highly correlated neighbour. The stations
that are most highly correlated with each other are not necessarily the same in the ob-
served and predicted data. For this reason when creating deseasonalised difference
series for predictions the series to difference against was chosen in two different ways. In
the first case the predicted station was differenced with the most highly correlated station
in the predicted region. In the second case the predicted station was differenced with the
predicted station that represented the station that was most highly correlated with it in the
observations.
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Figure 4.19. Example autocorrelation plots of the difference between a deseasonalised series
and its most highly correlated neighbour in observations for (a) Wyoming, (b) the South East, (c)
the North East and (d) the South West.

Figure 4.20 looks at the average autocorrelation at each lag across the deseasonalised
difference series pairs for all regions and for observations and predictions. It displays
average autocorrelations at each lag for the deseasonalised difference series that have
been differenced according to their most highly correlated in the observations (addition
signs) and those differenced according to their most highly correlated neighbour in the
predictions (multiplication signs). The averages were determined by looking at each lag
in turn of all deseasonalised difference series and taking the mean autocorrelation value
at each lag. It is evident that the autocorrelations in the deseasonalised difference series
are considerably higher in the observations (solid circles) than in the predictions (addition
and multiplication signs). This means that the created data will be easier to homogenise
than the real data, as the created data match an algorithm’s white noise assumption
where the real data do not.

A likely reason for the lack of autocorrelation in the deseasonalised difference series of
the predictions is because the created stations are not as varied as their real world coun-
terparts. This is supported by the higher inter-station correlations found in the predicted
data. Low autocorrelations when series have been differenced according to their most
highly correlated neighbour in that region is also supported by the smaller standard devi-
ations in the deseasonalised difference series for predictions compared to observations
that can be seen in figure 4.21. A lower standard deviation implies less variability in
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Figure 4.20. Plots to illustrate the average autocorrelation at each lag of the difference series
between a deseasonalised series and its most highly correlated neighbour for (a) Wyoming, (b)
the South East, (c) the North East and (d) the South West. Solid circles relate to the observations,
addition signs to predictions with added smoothed variability where the most highly correlated
neighbour according to the observations has been used and multiplication signs where the most
highly correlated neighbour has been determined using the predictions with added smoothed
variability themselves. As the values represented by addition and multiplication signs became
very similar after lag seven the values represented by addition signs were omitted after this lag.
The reason for omitting the addition signs is that any algorithm working with the data would only
know which station was most highly correlated with another station in the predictions as they
wouldn’t have access to the observations. The averages shown here are all taken over scenario
one, but the results are similar in scenarios two and three.

the difference series, leading to the conclusion that the series being differenced in the
predicted data are more similar than those being differenced in the observed data. Dif-
ference series that have been created by differencing according to the predicted station
that is the equivalent of the most highly correlated neighbour in the real world do have
reasonably realistic standard deviations. Therefore, in these cases the lack of variability
cannot be the culprit for the lack of autocorrelation.

To build in temporal autocorrelation using the existing model formulation required the
variability added on to the predictions to be smoothed in time as well as in space. This
smoothing took place after step 6 of the former outlined prediction process. That is, the
loess spatially smoothed noise values, smit, were smoothed in time before being added
back on to the mean predictions. The temporal smoothing was implemented using a
weighted moving average on the smit values. A drawback to this weighted moving av-
erage approach is that it increased the autocorrelations for the first n-1 lags for an n
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Figure 4.21. Scatter plots of standard deviations of the difference between a deseasonalised
series and its most highly correlated neighbour for (a) Wyoming, (b) the South East, (c) the North
East and (d) the South West. Black points relate to the observations, red points to predictions
with added smoothed variability where the most highly correlated neighbour according to the
observations has been used and blue points where the most highly correlated neighbour has been
determined using the predictions with added smoothed variability themselves. These standard
deviations are for scenario one, but the results are similar in scenarios two and three.

point weighted moving average, but then the autocorrelations reverted to being similar to
before. Even so, a cut off point of weighting had to be decided as, generally speaking,
the greater the amount of temporal smoothing the greater the inter-station correlations
and the smaller the range of inter-station correlations. Given that inter-station correla-
tions were already relatively high this was undesirable. Therefore, to keep inter-station
correlations down to some extent, the amount of spatial smoothing was reduced to only
15 stations. This level of smoothing when combined with temporal smoothing was small
enough to restrict inter-station correlations, but large enough to avoid unrealistic extremes
entering the data through the variability addition process.

Many lengths of weighted moving average were considered, but a nine point weighted
moving average was chosen because it is at lag 8 that the median autocorrelation first
drops below 0.1 in the observations on average and, as already stated, it is the first n-1
lags that are affected for an n point weighted moving average. As in section 3.2.1, this
threshold of 0.1 was chosen as a relatively arbitrary cut off point, but it was deemed
small enough that the autocorrelations dropped below it relatively quickly, meaning that
large temporal smooths that had detrimental effects to inter-station correlations did not
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have to be used. The weighting of the moving average was decided by looking at me-
dian autocorrelations in the observed series. More specifically the median value of the
autocorrelation at each lag was calculated to get an idea of how the autocorrelations at
lag n changed as n increased and these values were then divided by the sum of all the
median autocorrelations up to lag n. The weight at each lag is then mi∑n

i=1mi
, where mi

is the median autocorrelation in the observed series at lag i and n in this implementation
was 9. The division step ensures that the weights sum to one and that lags most highly
autocorrelated with the observation in question in reality will maintain this high level of
autocorrelation in the predictions. Median autocorrelations were used here instead of
mean autocorrelations to prevent any potential outliers having undue influence.

Figure 4.22. Average autocorrelation plots of the difference between a deseasonalised series and
its most highly correlated neighbour for Wyoming scenario 1 (red) and 4 (blue). Average auto-
correlations here are calculated by taking the mean autocorrelation at each lag from all the most
highly correlated deseasonalised difference series pairs. Solid circles relate to the observations,
addition signs to predictions where the most highly correlated neighbour according to the obser-
vations has been used and multiplication signs where the most highly correlated neighbour has
been determined using the predictions themselves.

The average autocorrelations produced using this method can be seen in figure 4.22.
Average autocorrelations here are calculated by taking the mean autocorrelation at each
lag from all the most highly correlated deseasonalised difference series pairs. This illus-
trates that the autocorrelations are now too high on average initially. However, when plots
are looked at on a station by station level, not shown, this level of spatial and temporal
smoothing was deemed to be the best of those analysed. The different levels of smooth-
ing were also assessed after inhomogeneities had been added to the data, which further
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suggested a 15 station smooth with a nine point weighted moving average to be the best
choice.

Standard deviations for the deseasonalised difference series in this scenario were also
investigated. They can be seen plotted in figure 4.23, which shows that they are all too
similar to each other. However, given that these values are of approximately the right
magnitude, the data were deemed sufficient according to this criteria.

Figure 4.23. A scatter plot of standard deviations of the difference between a deseasonalised se-
ries and its most highly correlated neighbour for Wyoming. Black points relate to the observations,
red points to predictions where the most highly correlated neighbour according to the observations
has been used and blue points where the most highly correlated neighbour has been determined
using the predictions themselves.

This scenario with temporal smoothing in addition to spatial smoothing was only imple-
mented in Wyoming and was termed scenario 4. The reason for focusing on Wyoming
was that this was the region homogenisers were asked to prioritise, and also the small-
est region (just 75 stations). Remaining scenarios were left with no temporal smoothing
because of the compromises smoothing temporally raised. Proceeding in this way al-
lows comparisons to be made based on whether meeting or violating the assumption of
deseasonalised difference series being white noise affects algorithm performance.

Throughout this discussion inter-station correlations have been a point of interest, figure
4.24 therefore shows the inter-station correlations for scenario 4, both for all stations and
for stations less than 75km apart. It is evident that the very highest inter-station correla-
tions are being missed, but on average the inter-station correlations are similar to those
found in scenario one; this is desirable as will be explained further in chapter five. The
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highest inter-station correlations tend to be those at the shorter distances, thus there is
now more under-estimation of the observed inter-station correlations at shorter distances,
which is not desirable as these are the stations that will most likely be used as reference
series. However, it is evident that not many stations are affected by this problem and
therefore the scenario was still deemed fit for purpose because of its good performance
on average. There is also a reduction in the range of inter-station correlations at short
distances because of the loss of the highest correlations. If all distances are looked at
this loss is not as noticeable and the overall over- and under-estimation of inter-station
correlations is relatively similar in this scenario and scenario one.

Figure 4.24. (a) A density plot to illustrate inter-station correlation distributions for stations in
Wyoming, for observations (black), scenario 1 (dark green) and scenario 4 (blue). (b) A scatter
plot to compare observed and predicted (scenario 4) inter-station correlations for stations within
75km of each other.

It is of course also important that the predicted data match the observed data well and
this can be seen to be the case in figure 4.25. There are only 3 values that are more
extreme in the predicted data than they are in the observed data. One at the upper end
and two at the lower end.

The final assessment that all clean scenarios underwent was the application of the Pair-
wise Homogenisation Algorithm (PHA) [Menne and Williams JR., 2009]. This algorithm
is automated and requires that the data are aggregated to the monthly level; it then
searches for inhomogeneities using pairwise comparisons between stations. The inho-
mogeneities found are attributed to the station believed to be the culprit and the magni-
tude and uncertainty of the shift required to homogenise the data is then provided.

Table 4.2 shows the number of ’inhomogeneities’ identified in the clean scenarios that
have a shift magnitude greater than the shift uncertainty. It also shows how many clean
stations are therefore affected. Some of these ’inhomogeneities’ will be false alarms of
the PHA, i.e., the PHA will have wrongly said that there is a change point where in fact
no change point exists, others could be genuine shifts that the modelling process has
inadvertently produced. However, it should be noted that, there are no occasions where
an ’inhomogeneity’ was found in the clean data at the same time and for the same station
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Figure 4.25. A density plot to illustrate the temperature distributions for observations (black) and
scenario 4 predictions (blue) in Wyoming.

as the PHA found an inhomogeneity in the observations. Therefore, the author has high
confidence that this modelling process can successfully take inhomogeneous data and
create homogeneous series from them. The greatest numbers of ’inhomogeneities’ are
found in the South West, this is as expected as it is the most complicated of the regions.

A note was made of all these ’inhomogeneities’ found in the clean series and if the same
inhomogeneities were found by any of the participating algorithms then they were not
counted as false alarms, this ensures that algorithms aren’t wrongly penalised for what
could feasibly be a modelling mistake. If the PHA was an algorithm that was being as-
sessed in this thesis then discounting these ’inhomogeneities’ would not be a fair ap-
proach as it would favour the PHA over other algorithms. There is still a possibility that
this approach will favour ’PHA-like’ algorithms, but ’PHA-like’ algorithms could be classed
as those which use reference series and, as all the algorithms in this study use reference
series, the author believes that none should have an unfair advantage because of the
exclusion of the PHA ’hits’.
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Table 4.2. A table to show how many ’inhomogeneities’ were identified in each of the clean
scenarios and therefore how many stations are affected.

Region and
Scenario

Number of
stations in total

Number of stations
with inhomogeneities

with magnitude greater
than uncertainty

Number of identified
inhomogeneities with

magnitude greater than
uncertainty

Wyoming 1 75 4 4
Wyoming 2 158 5 5
Wyoming 3 158 16 16
Wyoming 4 75 3 3

South East 1 153 11 13
South East 2 210 9 9
South East 3 210 15 15
North East 1 146 11 11
North East 2 207 8 9
North East 3 207 11 11
South West 1 151 46 50
South West 2 222 25 28
South West 3 222 31 31

4.3. Discussion

The model selected to be used for the clean data creation in this thesis contains many
physically justified explanatory variables. However, as stated in section 4.1.2 there are
inevitably others that could be included, for example, a topography categorical variable
like that used in the analyses of Pepin and Norris [2005]; Pepin and Lundquist [2008],
or a land cover variable. Adding in more variables could make the models still more
detailed, however, the author believes that the current models are fit for purpose. Should
a simpler model be sought then models with alternative combinations of variables could
be compared using stepwise regression based on the Akaike Information Criteria.

In addition to changing the explanatory variables in the model, changes could be made
to the model output by changing the formulation of the smooths within the model. The
investigation carried out in this thesis looked at simultaneously increasing the allowable
degrees of freedom for all the smooth functions and this was found to lead to the possibil-
ity of unrealistic results. However, further investigation into altering only certain smooths
would be an interesting area for extended research. This investigation was not carried
out here as the model outputs in this thesis were deemed fit for purpose according to the
criteria in section two of this chapter.

In the area of assessing the homogeneity of the created clean data the author is happy
with the results of the PHA which shows few ’inhomogeneities’. Whether or not these
’inhomogeneities’ should be discounted from the final analysis was discussed in section
4.2.2 and the conclusion was that it is acceptable in this study to discount them as the
PHA was not one of the participating algorithms, and all algorithms could be argued to
be ’PHA-like’. However, the author would recommend that such ’inhomogeneities’ should
not be discounted if absolute homogenisation algorithms (those that homogenise without
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a reference series) were present in the study as such a decision could unfairly favour
’PHA-like’ relative homogenisation methods. Equally, if discounting or not discounting
such inhomogeneities makes little difference to the overall conclusions about algorithm
performance, the step removing PHA ’inhomogeneities’ could be omitted in the interest
of a simpler study. This topic of the PHA and its ’inhomogeneities’ is revisited in section
2.3 of chapter seven in light of the results of the current study.

4.4. Summary

This chapter has given the reasons for the inclusion of the chosen model variables. It has
explained the Gamma GAM model; its formulation and workings and the justifications
for its use. These justifications include its ability to use other climatic variables to model
temperatures, which will be exploited in the following chapter; its ability to cope with short
or incomplete records; and its ability to create new stations where none currently exist as
will be illustrated in section 2.2 of chapter 5.

This chapter finishes with the production of clean data that can be used as benchmarks
for the testing of homogenisation algorithms. These data are shown to have reasonable,
if high, inter-station correlations that have been decided using sophisticated smoothing
mechanisms; good autocorrelations in deseasonalised series; and autocorrelations that
are too low, but match algorithmic assumptions, in the deseasonalised difference series.
A further dataset was created, using spatial and temporal smoothing, with increased
autocorrelation in deseasonalised difference series to allow the assessment of the impact
of the false assumption that deseasonalised difference series are white noise. Finally,
all created clean scenarios were run through the pairwise homogenisation algorithm to
ensure that they were indeed clean. The results of this algorithm application suggested
that, although some potential inhomogeneities were found, the modelling process had
succeeded in making largely clean data. The following chapter will detail the creation of
the inhomogeneities to be added on to these clean data and the different versions of the
data released to the homogenisation community.
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The previous chapter has explained how realistic clean daily temperature data were cre-
ated as a benchmark for the assessment of homogenisation algorithms. These data
were created using a generalised additive model with observations and reanalysis data
as inputs to ensure that the model drew information from reality instead of solely relying
on assumptions about the real world. The focus areas for this study are four regions in
North America, chosen for their station coverage and diverse climates. The same model
formulation was used for each of these four regions, but the models themselves were
fitted to each region separately to maximise the information that was captured from these
climatologically diverse regions.

This chapter details the investigation and creation of realistic error structures and how
these were added on to the benchmark clean data in order to assess algorithm perfor-
mance in response to different inhomogeneities. The structure of the GAM used for data
creation is employed effectively to allow for the creation of these inhomogeneities in previ-
ously unexplored ways. The four different release scenarios created and the reasons for
their creation are explained in this chapter and the chapter concludes with an overview of
the characteristics of these scenarios allowing the reader to make comparisons between
them.

5.1. Inhomogeneities to be investigated

There are many different factors that affect the homogeneity of a temperature series.
The factors most commonly identified are changes in observation practice or instrumen-
tation, changes in station location and changes in station surroundings, see for example
Peterson et al. [1998], Reeves et al. [2007] or Trewin [2010]. Other studies also iden-
tify additional causes; shelter deterioration for example Lopardo et al. [2014] or shel-
ter changes Hubbard and Lin [2006]. As the literature commonly identified these main
causes, and personal communication with those working on homogenisation of temper-
ature data also identified them as prominent, this study focussed on representing three
of these most prominent inhomogeneity causes: station relocations, shelter changes and
changes in station surroundings. The reason for not focussing on observation practice
changes explicitly is that, certainly in the US, this has already been the focus of numerous
studies [Quayle et al., 1991; Hubbard and Lin, 2006]. Henceforth the changes focussed
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on shall be referred to as shelter changes, station relocations and urbanisation, which is
a specific example of a change in station surroundings. Added inhomogeneities could be
considered to mimic more than simply these three issues, as some changes will affect
temperature records in similar ways, for example, both urbanisation and shelter deteriora-
tion would commonly cause trend inhomogeneities. When adding inhomogeneities using
the explanatory variables however, the justifications for the perturbations used are based
on mimicking these three specific inhomogeneities.

This study has sought to represent true inhomogeneities well, but not restrict inhomo-
geneities investigated to only those known to have occurred in the US over the period
of record. It has also not restricted the locations at which inhomogeneities can occur,
therefore urbanisation inhomogeneities can occur at any site, regardless of real world
population density. This will enable the methodology of the project to be generalised to
other regions easily. It also means that real world metadata (data about the data) cannot
be used to homogenise the created data. This is advantageous in this benchmarking
study as it avoids any one method having an unfair advantage over others, although the
use of metadata for daily homogenisation at this time is minimal. Metadata would cur-
rently be primarily used to verify changes that have been detected and not necessarily
in the detection process itself. Metadata could be created for a future iteration of this
project, but at the time of data creation it was considered an unnecessary complication
that wouldn’t be used sufficiently to justify its inclusion.

5.2. Scenarios created

It was desirable to assess homogenisation algorithm performance in different circum-
stances. Some of these circumstances were covered by the creation of temperature
series that represented different climatic regions in North America. However, it was also
desirable to test algorithm performance in response to different data characteristics (e.g.,
autocorrelation) and station availability. This was done by the creation of four scenarios.

5.2.1. Scenario 1

This scenario can be thought of as the current best guess for the world. The stations
provided are those that are at least 75% complete in the observed data over the period
of 1970-2011, minus the few in each region that the model did not reproduce adequately.
All the inhomogeneities listed in the previous section are allowed to be present in this
scenario, thus an algorithm’s ability to detect and correct for both trend (urbanisation) and
step (relocation or shelter) changes can be investigated. Figure 5.1 shows the locations
of the stations in this scenario in black for all four regions provided. There are 75 stations
in Wyoming, 153 in the South East, 146 in the North East and 151 in the South West.
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Figure 5.1. Location of the temperature stations provided in scenario 1 (black) and the additional
stations provided in scenarios 2 and 3 (blue) for (a) Wyoming, (b) the South East, (c) the North
East and (d) the South West.

5.2.2. Scenario 2

It was possible to work out the density of stations present in each region per unit area
using Python code created by Peter Killick from the Met Office. One unit area on a
Python map is approximately 9500km2. For scenario one the average number of stations
per unit area differed across regions, being 2.82 in Wyoming, 4.38 in the South East,
4.22 in the North East and 4.09 in the South West. These differing station densities
mean that differences in algorithm performance may arise because of a greater or lesser
availability of suitable reference stations and not just because of differences in climatic
regions. Therefore, in scenario two, the station density was made uniform across each
of the regions, with an average of 6 stations per unit area. This amounted to having
158 stations in Wyoming, 210 in the South East, 207 in the North East and 222 in the
South West. It should be noted that these numbers are slightly less than was originally
designed owing to the removal of some stations where the model performed inadequately,
as stated in chapter four section 2.2. Increasing the station density to 6 stations per
unit area was deemed an appropriate increase to investigate the change in algorithm
performance, without the processing becoming too computationally expensive. It was
decided to increase the station density and not decrease it, as it is far easier for algorithm
developers to decrease the station density themselves to test performance. Decreasing
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the station density can be done simply by omitting some of the given stations, whereas
the creation of new stations required interpolation to new data points and new model
predictions. Creating new stations at new locations allowed the capabilities of the GAM
modelling approach to be exploited.

Once the necessary increase in stations was decided the locations for these stations had
to be chosen. One way to achieve this would be to randomly generate latitudes and longi-
tudes for the necessary number of stations and then proceed to acquire the GAM’s input
variables for these points. This was the methodology employed when creating the sta-
tion relocation options as will be explained in section three of this chapter. An alternative
method was to use the existing station locations stored in the GHCND database that were
unable to be used in the initial modelling stage of this project owing to insufficient record
completeness. These extra GHCND stations have the advantage that they are in plausi-
ble locations and are known to have been used for gathering observations at some point
in the past. In order to spread the sample of new stations out over the region in question
the candidates for selection were first ordered by longitude and were then subsampled
at regular intervals to achieve the desired number of additional stations. These stations
were then plotted, as can be seen in blue in figure 5.1, to ensure that a reasonable
coverage had indeed been achieved. Missing data were added to these stations in the
following manner. Stations that also existed in scenario one had the same missing data
as their equivalent scenario one stations. Stations that were newly created had missing
data from stations chosen randomly, without replacement, from another modelled region.
This ensured that their level of missing data was realistic, but also that no two stations
within a region could have the same missing data.

Figure 5.2. A time series (a) and density plot (b) to illustrate the capabilities of the GAM at
predicting station temperature data for stations that were not included in the model building stage.
Black points and lines are from the observations and blue points and lines are from the predictions.

Figure 5.2 shows an observed (black) and predicted (blue) station. This station is station
113 in Wyoming scenario two; the observed station could not be included in the model
building process as it was not 75% complete, but it did have sufficient data to be able
to form both a time series and density plot that the predicted data could be compared
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to. It can be seen that the predictions match the observations well, thereby providing an
example to testify that the GAM is able to predict mean temperatures for stations who’s
data were not included in the model building process.

5.2.3. Scenario 3

This is the simplest of all the scenarios created and the one that algorithms were antic-
ipated to have the best performance on. The station density is equal to that in scenario
two, making it better than the station density of stations that are at least 75% complete
in reality, and there are no urbanisation inhomogeneities. Urbanisation inhomogeneities
were expected to be more difficult to locate than shelter changes or station relocations
as urbanisation inhomogeneities are trend inhomogeneities. Trend inhomogeneities can
be difficult to detect owing to the possibility of them starting at different points with re-
spect to different neighbouring series Menne and Williams JR. [2008]. Having said this
Hausfather et al. [2013] showed urban effects being correctly identified and adjusted for
suggesting that the removal of trend inhomogeneities is not beyond the capabilities of
all algorithms. Hausfather et al. [2013] found that urbanisation inhomogeneities could be
best removed with greater station densities suggesting that urbanisation inhomogeneities
should be easier to find and remove in scenario two than scenario one.

A comparison between scenario three and scenario two allows the assessment of al-
gorithm performance with and without the presence of artificial trends. This scenario is
similar to the investigation carried out by Williams et al. [2012] where homogenisation
algorithm ability was only assessed in the presence of varying step inhomogeneities, but
not trend inhomogeneities. However, the focus of Williams et al. [2012] was on the algo-
rithm’s ability to recover the true trend at the regional scale, whereas this study focusses
on a wider range of validation measures, as will be explained in chapter six.

5.2.4. Scenario 4

Whilst the other scenarios incorporate all four focus regions this scenario was created
only for Wyoming. This was because Wyoming was the area participants were asked
to prioritise owing to the model having good performance here and it being the smallest
of all the regions meaning that the application of a manual algorithm would be possible.
As stated in chapter four section 2.2, it was scenario four where autocorrelations in the
created data were focused on to try and ensure a better match to observed autocorrela-
tions than was found in the other scenarios. To be able to most easily assess the impact
that these autocorrelations had, the type and location of inhomogeneities added to this
scenario were exactly the same as in Wyoming scenario one. The size of perturbations
or constant offsets made were the same as in Wyoming scenario one too, however final
sizes of the inhomogeneities were not necessarily identical owing to the underlying clean
data not being identical.

100



5. Building and Evaluation of the Released Data

5.3. Inhomogeneity creation and addition

The following step by step process was implemented in order to create and then add
inhomogeneities into the clean series:

1. Take a clean scenario from a single region.

2. For each station in that scenario allocate points of an inhomogeneity using a Pois-
son process.

3. Decide on the type (station relocation, shelter change or urbanisation) of each in-
homogeneity by generating a random value from a uniform distribution on zero to
one. (The types of inhomogeneity allowed are governed by the scenario chosen, as
explained in the previous section.) Allocate inhomogeneities as evenly as possible,
but ensure that an urbanisation inhomogeneity does not happen more than once in
any given series.

4. Decide on the method of addition for an inhomogeneity by generating another ran-
dom value from a uniform distribution on zero to one so that 30% of inhomogeneities
are constant offsets and 70% come from explanatory variable perturbations.

5. Make any necessary changes to the predictor variables in the GAM to implement
explanatory variable changes and then use this model to predict new inhomoge-
neous data.

6. Add the original smoothed noise and any constant offset inhomogeneities to the
predicted inhomogeneous data so that the noise structure is the same in clean and
inhomogeneous scenarios.

The following sections give more detail for these steps.

5.3.1. Inhomogeneity locations

Points where an inhomogeneity arises in a time series can be thought of as rare events,
therefore, they can be modelled as a Poisson process. In a Poisson process the time
between events is exponentially distributed with a mean time between events of θ and
events are independent of each other [von Storch and Zwiers, 2001; Venema et al.,
2012]. Inhomogeneities occur on average every 15-20 years in a US monthly dataset
analysed by Menne et al. [2009] and Venema et al. [2012] found a similar frequency of
inhomogeneities in Europe. However, those analyses will not have captured all inhomo-
geneities as some will have been too small and the detection methods will not have been
perfect. Therefore, the frequency of inhomogeneities found in those studies can likely
be considered a conservative estimate of the true number of inhomogeneities present.
For this reason, in this study, inhomogeneities were inserted into the series on average
every thirteen years. This value amounts to a mean of three inhomogeneities per 42
year series where change points were not allocated to the final two years of the period.
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Although a lack of change points in this period is a simplification of reality it was deemed
appropriate as a first step in benchmarking the performance of daily homogenisation al-
gorithms. This simplification is common to other studies [Venema et al., 2012], this is
because many methods use the final years of a record as the reference period against
which to search for inhomogeneities and because methods also traditionally struggle to
find inhomogeneities close to the end points of a series. Homogenisers were asked to
use the most recent homogeneous sub period for reference in this study, but they were
not told the length of this last HSP.

Note here that the final two years were free of change points, but they were not neces-
sarily free of the effects of an inhomogeneity. The times of inhomogeneities represented
the time of a shelter change or station relocation; or the midpoint of an urbanisation in-
homogeneity. Thus, no inhomogeneities started or ended in the final two years of the
record, but an urbanisation inhomogeneity could persist throughout it. Because the time
allocated for an urbanisation inhomogeneity represented its midpoint the actual number
of change points per urbanisation inhomogeneity is two. This will further increase the fre-
quency of change points beyond the aforementioned average of one per thirteen years.
However, as will be explained later, some of these inhomogeneities will have no notice-
able effect on the series and therefore the frequency of noticeable inhomogeneities was
deemed to be acceptable.

As participants were asked to homogenise relative to the most recent time period, inho-
mogeneities were propagated backwards in time. That is, all the points in time from each
change point to the beginning of the series were affected by the added inhomogeneity.
The effects of inhomogeneities combined, therefore, the earliest period of a record had
most inhomogeneities acting on it. However, there was nothing to stop multiple inho-
mogeneities cancelling each other out, which is why the size of an inhomogeneity was
determined using its relative effect size and not the cumulative size of all inhomogeneities
acting at a certain point. Further detail about inhomogeneity size classification is given in
section four of this chapter.

5.3.2. Inhomogeneity creation

In chapter four, three prominent benchmarking studies were identified, those of Williams
et al. [2012], Venema et al. [2012] and Willett et al. [2014]. All three of these studies
were blind, meaning that the truth about the data was not revealed until it was known that
contributions were finalised. In the first of these studies the benchmarking investigation
was assessing variants of the pairwise homogenisation algorithm; specifically it looked
at the algorithms’ ability to recover true climate trends in the presence of various inho-
mogeneity structures. The structures introduced included large change points, clustered
change points and many small change points randomly inserted into the temperature se-
ries. Some of these change points were supported by metadata, others were not. No
trend inhomogeneities were added, and the size of the inhomogeneities added was kept
constant throughout the period over which they acted. These sizes were drawn from nor-
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mal distributions with varying standard deviations (a maximum of 1) and various means,
depending on whether the inhomogeneities were associated with a sign bias, which was
allowed to be positive or negative. The study of Venema et al. [2012] investigated trends
and seasonally varying inhomogeneities. They used a Poisson process when locating
non-clustered inhomogeneities and a normal distribution to decide their size with a stan-
dard deviation of 0.8◦C for the mean size and a standard deviation of 0.4◦C about the
mean to decide the size of the seasonal cycle. Spatially clustered change points were
added into 30% of the time series in any network assigned this change point type; this
change point occurred at the same time in each series, but its magnitude was allowed
to vary slightly in the different stations affected. A uniform distribution between 30 and
60 years was used to decide the length in the case of trend inhomogeneities and these
had to be fully contained within the focus time period. The size of the trend was selected
from a normal distribution with a mean of 0.8◦C. The study of Willett et al. [2014] has not
yet reached the stage of creating error structures. However, it advocates the production
of multiple scenarios ranging in difficulty, the inclusion of both step and trend inhomo-
geneities and also the creation of error structures using information from other climatic
variables.

In the present study inhomogeneities were added in two different ways; by perturbing ex-
planatory variables in the GAM or by adding constant offsets to the clean series. These
added inhomogeneities can mimic both step and trend inhomogeneities and those inho-
mogeneities that are added using information from other climatic variables will vary sea-
sonally, thus allowing the exploration of algorithm performance when non-constant offsets
are present. No inhomogeneities are supported by metadata in this study for the reasons
given in 5.1 and also because it is known that metadata is not always complete or even
present and therefore methods need to be found that can correct for inhomogeneities
without prior knowledge of them [Peterson et al., 1998]. The processes to create the
inhomogeneities are explained in more detail below.

Using constant offsets to create inhomogeneities
Using constant offsets has been the most common method employed for inhomogeneity
addition in past studies. These offsets may have pre-specified sizes, as in DeGaetano
[2006] or Reeves et al. [2007]; or they may have sizes sampled from a particular distri-
bution, as in Menne and Williams JR. [2009]. The Normal(0,1) distribution is a common
distribution to use in cases of step-changes as, as already stated, Menne and Williams
JR. [2005] showed that, certainly in the US, inhomogeneity magnitudes tend to be dis-
tributed Normally once they have been standardised; although there is evidence of some
positive skew in their figure evidencing this. One inhomogeneity that is prevalent in US
records and known to exhibit positive skew is the inhomogeneity caused by changing the
time that temperature observations were made [Menne et al., 2009]. This is not an in-
homogeneity that is focused on here as it is already relatively well understood and has
received more focus in the past than some of the inhomogeneities chosen as focuses for
this thesis.

It is known that detection skill for the smallest inhomogeneities, for example from the cen-
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tre of a N(0,1) distribution, is extremely low; this artefact is known as the missing middle.
In the current study inhomogeneities with sizes in this missing middle were generated to
keep a realistic distribution of sizes and section 2.3 of chapter seven includes an analysis
of the performance of algorithms in this area; this analysis does bear in mind that these
inhomogeneities are known to be difficult to detect.

As constant offsets are the conventional method of inhomogeneity addition this means
that more studies have already analysed change points added in this manner, therefore,
they were not the primary focus of this study. Constant offset inhomogeneities were also
not the primary focus of this study as it is known that, in reality, most inhomogeneities
are not constant. Therefore, only 30% of inhomogeneities were added as constant off-
sets. That is, if the random number generated from the uniform distribution at step four
of the inhomogeneity creation and addition process was less than or equal to 0.3 the
inhomogeneity was added using a constant offset, otherwise it was added by perturbing
the explanatory variables.

For the constant offset method of inhomogeneity addition shelter changes or station re-
locations could essentially be created in the same way as each other, as both are imple-
mented as sudden changes and not trend changes. This combined type of inhomogeneity
was implemented if the random number generated at step three of the inhomogeneity ad-
dition process was less than or equal to 0.67. The size of the inhomogeneity was chosen
by sampling from the set {1.5, 1.25, 1, .75, .5, .25, -.25, -.5, -.75, -1, -1.25, -1.5} ◦C, this
value was then added on to the clean series at the location decided in step 2. All values
are equally possible, meaning that positive and negative steps are equally likely here. Al-
lowing both positive and negative steps is justifiable as various studies have shown that
neither station relocations nor shelter changes bias all temperature series in the same
manner [Hubbard and Lin, 2006; Xu et al., 2013]. Having a range of inhomogeneity sizes
allows the assessment of algorithm performance in response to different sized pertur-
bations; from those in the missing middle to those that would be expected to be more
easily detectable. The sizes given here changed slightly due to rounding and stacking of
inhomogeneity structures in the released data, but the process of evaluating sizes will be
explained in more detail in section 4 of this chapter.

Figure 5.3a shows an example difference series between the clean and released data for
a station from scenario one in Wyoming where a constant offset shelter change/ station
relocation inhomogeneity has been added at the time point 14067 as indicated by the
vertical red line. Figure 5.3b shows the inhomogeneity in the released series itself.

Urbanisation inhomogeneities were implemented if the value generated at step three of
the inhomogeneity addition process was greater than 0.67. Urbanisation inhomogeneity
lengths were drawn at random from a normal distribution with a mean of 15 years and a
standard deviation of three years. Although this is a relatively short time period it is long
enough to investigate the impacts of non-climatic trends on temperature series without
dominating the whole series. If the length selected was less than or equal to 15 years
then the trend could reach .1, .15 or .2◦C over the period which it acted. That is, a
constant gradient slope was added over the period of the urbanisation so that at its end
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Figure 5.3. (a) Example difference (released minus clean) series, from station 58 in Wyoming
scenario one to illustrate the effect of a constant offset shelter change or station relocation inho-
mogeneity. (b) The equivalent part of the released inhomogeneous series.

the series was .1, .15 or .2◦C higher than it was before. If the length of the inhomogeneity
was greater than 15 years then the range of values from which the trend was drawn was
{.15, .2, .25, .5, 1 , 1.5} ◦C.

Figure 5.4a shows an example series where a constant offset urbanisation inhomogene-
ity has been added. Because the data have been rounded to one decimal place to mimic
GHCND data this does not look like a trend inhomogeneity; this is an issue with the real
world data too. Here, the constant switching between two different values of the difference
series shows that there is a gradual change taking place, this is further evidenced in 5.4b,
which is the unrounded difference series. The appearance of multiple values at a single
point in time in 5.4a is just an artefact of having many time points close together, there
are no real multiple observations for a single time point. Another artefact to highlight from
this figure, that is true of all constant gradient urbanisation inhomogeneities is that they
acted by reducing temperatures prior to their end point by ever increasing amounts; this
means that they are positive trends, but are implemented by reducing past temperatures
instead of increasing future ones relative to the clean baseline, because they are applied
in reverse.
Perturbing the GAM’s explanatory variables to create inhomogeneities
It is known that inhomogeneity effect sizes may be dependent on other climatic variables
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Figure 5.4. (a) Example difference (released minus clean) series, from station 73 in Wyoming
scenario one to illustrate the effect of a constant gradient urbanisation inhomogeneity. (b) The
difference series if rounding of values to one decimal place had not occurred. (c) The equivalent
part of the released inhomogeneous series.

and that they can vary seasonally [Auchmann and Bronnimann, 2012]. In the current work
the temperature series were themselves created using a GAM that drew information from
these other climatic variables, which allowed the addition of inhomogeneities using a per-
turbation of these inputs. Creating inhomogeneities in this manner made them seasonally
varying and varying according to background meteorological features. This is a new ap-
proach to the inhomogeneity addition problem, which is believed to be more realistic, and
therefore 70% of inhomogeneities were added in this manner so that a range could be
explored.

If step three of the inhomogeneity addition process returned a value less than 0.34 then
the inhomogeneity to be mimicked was a shelter change. Numerous shelters have been
used to house thermometers over the period of recorded temperature series, see Parker
[1994] for an excellent overview of these. The quality of these shelters in protecting the
thermometer from radiation whilst allowing free air circulation has varied considerably.
For example, Trewin [2010] notes that many pre-Stevenson screens, including the widely
used Glaisher stand, were over exposed to radiation and Parker [1994] comments that
early UK screens may have restricted the ventilation inside a screen with other equip-
ment when earlier designs of Stevenson screen were in use. Therefore, to mimic shelter
change inhomogeneities the explanatory variables of solar radiation, eastward wind and
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northward wind were all perturbed.

All three of these explanatory variables were perturbed in the same direction so that a
decrease in levels of sun (to mimic better radiation shielding), was accompanied by a
decrease in wind (to mimic reduced ventilation) and vice versa; that is, less exposure to
one element is coincident with less exposure to another. The literature shows that alter-
ing both variables in such a manner may in fact reduce inhomogeneity effects in reality.
This is because an increase in radiation can bias the thermometer readings because too
much heat is trapped inside the screen, but this effect is reduced with increasing ventila-
tion [Harrison, 2010; Parker, 1994], which is why some screens now artificially ventilate.
These inhomogeneities were seasonally varying because levels of sun are naturally sea-
sonally varying and eastward wind has been encouraged to be so by including it as a
smooth surface with day of the year in the GAM. Northward wind is not seasonally vary-
ing in the model formulation for the reasons given in section 4.1.2, namely that entering
more than one smooth surface in to the GAM causes the two surfaces to adversely affect
each other, but it does still naturally vary on a day to day basis.

The amount by which the explanatory variables were perturbed was selected randomly
from the set {0.85,0.9,0.95,1.05,1.1,1.15} and the variables in question were then mul-
tiplied by this factor. The inhomogeneity effect sizes produced using this method were
reasonable, as is discussed in section four of this chapter, therefore, no other perturbation
values were considered.

Figure 5.5 shows an example of a shelter change inhomogeneity created in this manner.
In this case the solar radiation, eastward and northward wind were all higher in the past
than the present, implemented by the multiplication of these elements by 1.15 before day
11722, which is the date of the change. An explanation of how these perturbations are
imposed can be given by considering the model used. The mean of the GAM can be
written as

µit = β0 + β1Altitudeit + β2Tempforecastit + f1(Dyearit, UWit) + f2(Timeit) +

f3(Latit) + f4(Longit) + f5(Sunit) + f6(SOIit) + f7(VWit) + f8(Precipit) + f9(PWCit) +

f10(Coastit) + f11(SLPit).

Given the same input variables the predictions from this model would always be the same,
to measurement precision. However, the predictions for all t < 11722 are now made from
the model with mean

µit = β0 + β1Altitudeit + β2Tempforecastit + f1(Dyearit, 1.15 ∗ UWit) + f2(Timeit) +

f3(Latit) + f4(Longit) + f5(1.15 ∗ Sunit) + f6(SOIit) + f7(1.15 ∗ VWit) + f8(Precipit) +

f9(PWCit) + f10(Coastit) + f11(SLPit)

instead, thus changing the values and imposing the inhomogeneity. This inhomogeneity
has caused positive shifts in the past in the temperatures with a seasonal cycle, which
further investigation reveals creates larger differences in summer than in winter. The arte-
fact of rounding to GHCND precision has again made the inhomogeneity more staccato
than it would be if a higher measurement precision was recorded.
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Figure 5.5. (a) Example difference (released minus clean) series, from station 10 in Wyoming
scenario one to illustrate the effect of a shelter change inhomogeneity caused by the perturbation
of explanatory variables. (b) The equivalent part of the released inhomogeneous series.

If step three generates a number that is greater than or equal to 0.34, but less than or
equal to 0.67 then this signifies a station relocation. With the method of explanatory
variable perturbation, creating such an inhomogeneity is a relatively straightforward step,
all the explanatory variables just need to be taken from a new station location. To simplify
the process further each station was assigned a single station that it could be relocated
to. The latitude and longitude of the station to have the inhomogeneity were perturbed
by an amount that created a station displacement greater than 500m, but less than 5km.
All explanatory variables were then acquired for this new location. Station relocations are
typically not over very large distances, which is why the maximum displacement allowed
was 5km. For the majority of explanatory variables getting the values at the new location
meant interpolating the smooth surfaces produced in section 2.2 of chapter three to new
locations. Elevations were not interpolated, instead they were obtained from the US
geological survey National Elevation Dataset [Gsech et al., 2002; Gsech, 2007]. These
elevations were sometimes noticeably different from the elevations of the original station,
however, this was not cause for concern, as some station moves in complex terrain will
result in large elevation changes and large elevation changes can provide more scope for
a noticeable temperature change than just geographical location changes [Trewin, 2010;
Xu et al., 2013].

Figure 5.6 shows an example station relocation inhomogeneity that was produced by the
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perturbation of explanatory variables. In this case the station moved 2.37km and had
an elevation change of 30.8m. The inhomogeneity does have some seasonal variation
(largely masked by the rounding process), but it can be seen that its effect is generally
one of cooling in the past, which fits with the fact that the older station location had the
higher elevation.

Figure 5.6. (a) Example difference (released minus clean) series, from station 20 in Wyoming
scenario one to illustrate the effect of a station relocation inhomogeneity caused by the perturba-
tion of explanatory variables. (b) The difference series if rounding values to one decimal place
had not occurred. (c) The equivalent part of the released inhomogeneous series.

If more than one station relocation occurred in a single series and all were to be mimicked
by explanatory variable perturbations, then the station alternated between the original
location and the single relocation option. If no other inhomogeneities occurred between
these points then this would result in a reversal of the original inhomogeneity effect, thus
creating a platform inhomogeneity [Domonkos, 2008b]. If more computer power was
available then allowing multiple relocation options would be a straightforward extension
to the existing code. However, this extension was deemed unnecessary for this project,
especially as platform inhomogeneities are a true artefact of temperature series, though
a reversal of a relocation would not normally be the cause [Domonkos, 2008b], though it
can be, as was shown in figure 2.1!

The final option for the addition of an inhomogeneity was an urbanisation caused by the
perturbation of explanatory variables. Increasing urbanisation can lead urban areas to
exhibit the urban heat island effect; this effect manifests itself with increased tempera-
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tures. It is caused by the presence of buildings leading to a greater retention of heat
during the day and a reduced loss of heat at night. The effect is amplified with clearer
skies and lower wind speeds [Parker, 2010]. For these reasons, the explanatory variable
urbanisation effect was created by gradually increasing levels of sun and gradually de-
creasing levels of eastward and northward wind from the start point to the end point of
the inhomogeneity. The maximum increase or decrease possible was 2.5% if the urban-
isation lasted less than 15 years and 2.5%, 5% or 7.5% if the urbanisation was longer
than 15 years. The advantage of using explanatory variables here is that the urban heat
island’s strength in response to cloudy or clear skies and high or low wind speeds will
naturally be mimicked. Some experimentation was also done into varying precipitable
water content as a proxy for humidity, but this was found to confound the effects of the
other explanatory variable perturbations and therefore this line of investigation was not
carried any further.

Figure 5.7 illustrates an example urbanisation inhomogeneity. This inhomogeneity is still
in progress at the end of the series, which can be seen to be warmer in general than
when the inhomogeneity began. This figure also illustrates, though not very noticeably,
a slight error that arose in the inhomogeneity addition process that was not discovered
until after the data release. This error is that all urbanisation inhomogeneities added by
perturbing explanatory variables start with a step change, which will therefore make them
easier to find than would otherwise be the case. Although this situation is not ideal, it is
not unrealistic. When analysing HCN difference series Menne and Williams JR. [2009]
found 40% exhibited a step change accompanied by a trend change, although some of
these trend changes may have in fact been small step changes.

5.3.3. Inserting the inhomogeneities

The previous subsection has expanded upon the different methods of inhomogeneity
addition. Here these methods will be explained in relation to the final predictions from the
GAM used for the released data.

It has already been stated that inhomogeneities propagate backwards in time, so the in-
homogeneities that come last chronologically will be implemented first, affecting all time
points before their date of addition. Other inhomogeneities then continue to be added
in reverse order until the final inhomogeneity (that closest to the beginning of the series)
has been added. Explanatory variable perturbation inhomogeneities are added by alter-
ing the values of the climatological variables input to the model itself, as was explained
in section 5.3.2. Therefore, all explanatory variable inhomogeneities need to have been
added before the predictions from the model are made to ensure the correct data are
being perturbed. Because the constant offset inhomogeneities do not affect the explana-
tory variables they are added at the appropriate times after the predictions have been
made. In terms of their effect on the model predictions, constant offset inhomogeneities
essentially add a constant value to the β0 term of µit within appropriate ranges of t as
determined by their location values given by the random number generation of step two
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Figure 5.7. (a) Example difference (released minus clean) series, from station 49 in Wyoming
scenario one to illustrate the effect of an urbanisation inhomogeneity caused by the perturbation
of explanatory variables. (b) The equivalent difference series if rounding to one decimal place had
not occurred. (c) The equivalent part of the released inhomogeneous series.

of the inhomogeneity addition process.

The same smoothed noise that was added to the clean predictions is added to the cor-
rupted predictions to ensure that the only changed variability in the data is from intention-
ally added inhomogeneities and not from the data generation process.

5.4. Evaluation of the scenarios

Once the scenarios were created an investigation was carried out into their properties
and, where possible, these properties were compared to the real world so that their fidelity
to reality could be assessed. This evaluation process benefited after the release of the
data from comments of homogenisers, especially Dr Peter Domonkos.

An initial evaluation involved ensuring that no completely unrealistic (greater than ob-
served extremes) values had occurred. This was done by comparing the ranges of val-
ues in each corrupted scenario with the range of temperatures found in the observations.
Although extremes did not match perfectly, as was the case in the clean scenarios, es-
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pecially in the South West, none were found to be unrealistic and therefore this aspect
of the data was deemed appropriate. Figure 5.8 shows the temperature density distribu-
tions in each of the scenarios and regions. Black dashed lines represent the observed
values, blue dashed lines represent the clean scenarios and red dashed lines represent
the corrupted scenarios. The blue lines can hardly be seen in these figures though they
are sometimes visible between the red dashes, this illustrates that the distributions of
temperature on a regional scale are very similar with and without inhomogeneities. How-
ever, it can be seen that the peak of the distribution in figure 5.8b, which represents the
South East, matches the observations better after corruption than before.

Figure 5.8. Density distributions of temperatures in a) Wyoming, b) the South East, c) the North
East and d) the South West. Black dashed lines represent observations, blue dashed lines repre-
sent clean scenarios and red dashed lines represent released scenarios.

5.4.1. Inter-station correlations, autocorrelations and standard deviations
exhibited in the released data

Section two of chapter four assessed the inter-station correlations and autocorrelations
of the created clean data, but these comparisons were against the real world data, which
are very unlikely to be free of inhomogeneities. The corrupted data created in this chapter
can fairly have their qualities compared to those of reality, as they are designed to match
real world inhomogeneity structures.
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Figure 5.9 looks at the inter-station correlations in the corrupted data in relation to the
clean and observed data. It can be seen that, as expected, corruption lowered the inter-
station correlations in all regions, but only by small amounts meaning the inter-station
correlations are still higher on average in the created data than in the observations. The
inter-station correlations can be seen to not be identical across scenarios within a region,
but are broadly similar, with the larger scenarios showing slightly higher inter-station cor-
relations in Wyoming and the North East. The same findings about inter-station corre-
lations were seen when only stations within 75km of each other were investigated, as
was done in figure 4.16, this can be seen in figure 5.10. The red points representing cor-
rupted data inter-station correlations against observed inter-station correlations in figure
5.10 can be seen to be lower than their black counterparts which were for clean predic-
tions. However, there is still clearly a bias for inter-station correlations to be higher in the
predictions than the observations even when inhomogeneities are present in both data
sets. As already stated, this means that the released data are expected to be easier to
homogenise than the observed data would be.

Figure 5.9. Density distributions of the inter-station correlations found in a) Wyoming, b) the
South East, c) the North East and d) the South West. Black lines represent observations, blue
lines represent clean scenarios and red lines represent released scenarios. Solid lines represent
scenario one, dashed lines represent scenario two, dotted lines represent scenario three and the
dot-dashed lines in plot (a) are for scenario four.

If regional averages of the corrupted stations are created, and the autocorrelations plotted
for these regional averages, then there appears to be no difference in autocorrelation
between the clean and corrupted data. Small scale experimentation showed that this
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Figure 5.10. Scatter plots of the observed versus predicted inter-station correlations found in a)
Wyoming, b) the South East, c) the North East and d) the South West between stations that
are less than 75km apart. Black dots are inter-station correlations before inhomogeneities were
added and red dots are inter-station correlations after inhomogeneities have been added. It is
evident that the addition of inhomogeneities does decrease inter-station correlations, but not by
very large amounts. The inter-station correlations displayed here are only for scenario one, but
similar findings were obtained when other scenarios were also investigated.

lack of difference was largely the case on a station by station level too, but figure 5.11
illustrates it is not always the case. Looking on a lag-by-lag basis the autocorrelations can
be seen to be fractionally higher in the corrupted data; this is more evident at later lags.
Figure 5.11 shows the autocorrelations for the observations (black), the clean data (blue)
and the released data (red) for station one in scenario one in each of the four regions.
Figure 5.11d, for the South West appears to show no change in autocorrelations and this
is not surprising given that this station sees just one step change in its record. Wyoming
and the North East both have step and trend changes in station one, with differing effects
on the autocorrelations, while the South East sees only step changes.

Also of interest are the autocorrelations in the deseasonalised difference series between
most highly correlated neighbours. Figure 4.19 showed that the common assumption that
these series are white noise is invalid and figure 4.20 showed that the clean data did not
reproduce these autocorrelations well. Figure 5.12 shows that, where the clean series
had a tendency to under-estimate autocorrelations in deseasonalised difference series,
the corrupted data over-estimate these autocorrelations on average. The autocorrelations
displayed here are averages of the autocorrelations in each deseasonalised difference
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Figure 5.11. Autocorrelation plots for station one of scenario one in a) Wyoming, b) the South
East, c) the North East and d) the South West. Black points represent observed data, blue points
represent clean data and red points represent released data.

series at each lag on a scenario by scenario basis. Not all stations will behave in the same
manner. Interestingly the scenario that doesn’t allow trend inhomogeneities (scenario
three, plotted in orange) displays more persistent autocorrelations in the deseasonalised
difference series. This finding was a surprise as series with trends might be expected
to exhibit greater autocorrelation than those without. However, a possible explanation
as to why there are lower autocorrelations exhibited in trend scenarios is that the effects
of trends somewhat cancel out and they are also more gradual whereas a step change
might be expected to force the difference series to have a more persistent sign thus
increasing the autocorrelation. The autocorrelations in scenario four in figure 5.12a can
be seen to also be increased from the clean state, but not as far as reality after the
point at which the weighted moving average stops acting (lag eight). Therefore, scenario
four can be considered as closest to reality whilst still being a little too easy because of
being closer to the algorithmic assumption of white noise difference series (because of
the lower autocorrelations) than the observations are.

Finally, just as in the clean scenarios, the standard deviations in the deseasonalised
difference series were examined. To show all the standard deviations for all scenarios
would result in an illegible plot, therefore, figure 5.13 shows only the standard deviations
for the real data, the clean version of scenario one and the corrupted version of scenario
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Figure 5.12. Averages of the autocorrelations in each deseasonalised difference series at each
lag for a) Wyoming, b) the South East, c) the North East and d) the South West. Black points
represent observations, blue addition signs represent clean data, red points represent released
data in trend scenarios (addition signs are scenario 1; multiplication signs are scenario 2 and
triangles are scenario 4) and orange points represent released data in scenario 3.

one (and scenario four in Wyoming). The series have been differenced with respect to
their most highly correlated neighbour in their scenario, therefore the series differenced
against are different in reality, scenario one and scenario four. The clean series are differ-
enced with respect to the most highly correlated neighbour in the released data and not
in the clean data, in order to make these comparisons direct, but in more cases than not
the highest correlated neighbour is the same in both situations. It can be seen that, as
expected, corruption increases the variability of the series, with red points being higher
than blue points. Scenario four is still the best match to reality in terms of standard devia-
tions, though the standard deviations are still relatively constant. There are no completely
consistent patterns in the ordering of the standard deviations of the scenarios, but very
generally speaking scenario two is prone to having lower standard deviations than both
scenarios one and three. In all cases though the pattern in standard deviations across
scenarios is not uniform and therefore broad conclusions about the relationship between
algorithm performance and scenario standard deviation will not be reported on a scenario
by scenario level.
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Figure 5.13. Standard deviations in deseasonalised difference series for a) Wyoming, b) the South
East, c) the North East and d) the South West. Black points represent observations, blue addition
signs represent clean data, red addition signs represent scenario one released data (and red
triangles are scenario 4).

5.4.2. Inhomogeneity size and frequency

Inhomogeneity sizes can be defined in two different ways, which will here be defined as
an inhomogeneity’s cumulative size and its relative size. Its cumulative size is its mean
size over the period which it acts compared to the clean series, that is, if d is the difference
series between clean and released data, then the cumulative size of an inhomogeneity
would be the mean size of d for the period of the inhomogeneity. This means that the
cumulative size of an inhomogeneity takes into account all the other inhomogeneities that
may be acting on the same time period. Thus, if two consecutive inhomogeneities have
opposite effects and return the data to homogeneity, the cumulative size of the second
inhomogeneity will be zero.

The relative size of an inhomogeneity is its size relative to the next homogeneous sub
period. This is calculated by working out the mean value of d for two consecutive sub-
periods and then working out their difference to get the relative inhomogeneity size.

The outcome of these definitions is that an inhomogeneity can have a cumulative size of
zero, without having a relative size of zero. When this happens there is a platform inho-
mogeneity, as defined in 5.3.3, because the effect of one inhomogeneity has corrected
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for the effect of another. In reality this might happen owing to a change which causes an
inhomogeneity that is then discovered and rectified [Domonkos, 2011]. Table 5.1 shows
the number of platform inhomogeneities in each region as well as other regional charac-
teristics. The proportion of platform inhomogeneities is higher in scenario three than in
the other scenarios. The cause of this is likely due to the lack of trend inhomogeneities in
scenario three. This means in scenario three a step change of one sign and magnitude
has an increased chance of being followed by another step change of opposite sign and
the same magnitude, thus creating a platform inhomogeneity; whereas in the other sce-
narios a trend inhomogeneity could start between them causing enough of a disturbance
to stop a platform forming.

Personal communication with, and investigation by, Peter Domonkos revealed that the
proportion of platform inhomogeneities is too low in the created data and should there-
fore be increased, or considered more directly in a future study. It is emphasised in
Domonkos [2013] that the benefit of including these inhomogeneities is not solely to test
whether they can be detected, but because their presence will also impact on the detec-
tion of more substantial inhomogeneities. It should be noted here that in other studies,
for example Venema et al. [2012], platform inhomogeneities refer simply to change points
with opposite signs, but not necessarily the same magnitudes, the reported proportion of
platform inhomogeneities is therefore higher in such studies than in the present work.

If an inhomogeneity has a relative size of zero, regardless of its cumulative size, then this
means that the change point separating two homogeneous sub-periods is indistinguish-
able and is therefore termed unidentifiable. Homogenisers were not expected to be able
to find unidentifiable inhomogeneities and therefore the location of these inhomogeneities
was noted in the data creation, but they were not searched for when assessing algorithm
performance. Table 5.1 shows the number of unidentifiable inhomogeneities in each re-
gion. The proportions of added inhomogeneities that were unidentifiable is greater in the
South East and the South West than in Wyoming or the North East which have relatively
similar proportions of unidentifiable inhomogeneities in equivalent scenarios.

In all regions there were never any unidentifiable inhomogeneities caused by constant
offset shelter changes or station relocations. This is because, as stated in 5.3.2, the
smallest value these inhomogeneities could take was 0.25◦C (though their relative size
could become a little smaller when interacting with an inhomogeneity with a seasonal
cycle). In Wyoming, the North East and the South West scenarios that allowed urbanisa-
tion, urbanisation was the most common cause of an unidentifiable inhomogeneity. Given
that urbanisation is a slow trend with a smaller magnitude in general than other types of
inhomogeneity this was not surprising. Urbanisation was also just about the most com-
mon cause of unidentifiable inhomogeneities in scenario one for the South East. In other
South East scenarios and in scenario three for the North East and Wyoming station re-
locations were the dominant cause of unidentifiable inhomogeneities. In the South East
this is not surprising as it is the least topographically and climatologically diverse of the
regions. In Wyoming and the North East although the region varies more it is still believ-
able that a small change of all variables (a station relocation) will have a lesser impact
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than a larger change of three variables (a shelter change). In the South West which is
a more diverse region station relocations were the least common cause of unidentifiable
inhomogeneities.

It was the relative size that was used to group inhomogeneity magnitudes into categories.
These categories were small inhomogeneities, which were less than or equal to 0.2◦C in
magnitude, medium inhomogeneities which were between 0.2 and 1◦C in magnitude and
large inhomogeneities, which were greater than 1◦C in magnitude. These groupings
were decided so that the small inhomogeneities could be thought of as those that tradi-
tionally fall into the category of the ’missing middle’, these are the inhomogeneities that
participants are unlikely to find owing to them only being a little larger than measure-
ment precision. The medium inhomogeneities still incorporate some that are likely to be
missed, as other studies have considered inhomogeneities smaller than 0.5 as unidentifi-
able [Stepanek, 2004; Menne and Williams JR., 2009], but they are still sizeable enough
to bias conclusions drawn from analyses run on them. The large inhomogeneities are
those that should definitely be corrected for by the algorithms. When assessing algorithm
performance the proportion of inhomogeneities of different sizes that were detected was
noted as well as the similarity of the returned to the clean series. Therefore, algorithms
could be judged accordingly if they had a good detection skill in general, but were unable
to pick up the smallest inhomogeneities. Further details of the assessment criteria for the
algorithms are given in the following chapter.
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5. Building and Evaluation of the Released Data

Table 5.1 gives the mean inhomogeneity magnitude (the absolute value of the inhomo-
geneity which must therefore be positive) and the mean inhomogeneity size (the signed
value of the inhomogeneity) as well as the number of inhomogeneities in each magnitude
category. Note that the mean inhomogeneity magnitude is similar across all scenarios
and regions and that the mean inhomogeneity size is generally close to 0◦C suggesting
that there is no persistent bias in the sign of the added inhomogeneities. Figure 5.14
shows the distribution of inhomogeneity sizes in all the regions combined. Plot (a) dis-
plays the inhomogeneity sizes before standardising and plot (b) shows the sizes after this
process has taken place. Plot (b) also incorporates an overlaid N(0,1) density line and
shows that although the inhomogeneities are not Normally distributed, the distribution
they do have is approximately symmetrical like a Normal distribution, just with a higher
peak and more larger values at the expense of values between the centre and the tails.
The reason for comparing to a normal distribution at all is that, as already stated, Menne
and Williams JR. [2005] found this to be a good distribution for representing standard-
ised inhomogeneity sizes in the US. Overall, the plot shows that there are a good range
of inhomogeneities and therefore the inhomogeneity creation and addition process was
deemed a success.

Figure 5.14. A histogram showing the distribution of inhomogeneity sizes before (a) and after
(b) they have been standardised by dividing by the standard deviation of all sizes. The blue line
overlaid in figure b shows the density of a N(0,1). The pattern in bar heights in figure (b) is believed
to be an artefact of adding constant offset inhomogeneities of discrete sizes.

Looking at a breakdown of the sizes by different types of inhomogeneity, the following
findings were obtained. As designed, approximately 30% of the inhomogeneities were
added by constant offsets and 70% of the inhomogeneities were added by explanatory
variable perturbation in each of the regions. However, owing to more of the explanatory
variable perturbations creating unidentifiable inhomogeneities than the constant offset
perturbations these percentages do change slightly. This change in distribution of inho-
mogeneity types is most noticeable in the South East where approximately 40% of the
final identifiable inhomogeneities are from constant offsets. The majority of all constant
offset inhomogeneities are medium in all regions, with this majority ranging from 38% in
the North East scenario one to 64% in the South East scenario three. This higher fre-
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5. Building and Evaluation of the Released Data

quency of medium inhomogeneities in all scenarios is logical as the shelter and station
change constant offset values were largely in this range. There were some small constant
offset inhomogeneities, largely arising from the urbanisation inhomogeneities, though a
few from other sources. The remaining 30% or so of constant offset inhomogeneities
were classified as large and were solely from station and shelter changes.

Looking at the inhomogeneities added by perturbing explanatory variables there was a
much greater tendency towards small inhomogeneities. Small inhomogeneities were the
dominant category that inhomogeneities fell into in all regions but Wyoming; around 40%
were classed as small in Wyoming and between 70 and 90% were classed as small in
other regions. In all regions there were relatively few large inhomogeneities, with none
at all in the South East, which also only saw only a small proportion of medium inhomo-
geneities (between 4 and 12%). This propensity for small inhomogeneities in the South
East agrees with the earlier reasoning that explanatory variable changes would be ex-
pected to make less difference here owing to it being the most uniform climatological and
topological region. In the remaining three regions explanatory variable shelter changes
never caused large inhomogeneities, and station relocations caused them in less than
10% of cases in all regions except from scenarios two and three in the South West.
These larger inhomogeneities caused by station relocations in the South West would
again fit with the greater variability of this region. In the North East and Wyoming there
were a small number of large inhomogeneities caused by explanatory variable urbani-
sations, this was due to these inhomogeneities inadvertently being forced to start with a
step change.

When comparing scenarios, the similarities between scenarios one and four in Wyoming
should be emphasised. These two scenarios were designed to be similar so that the
assessment could evaluate the impact of different underlying data characteristics, namely
autocorrelation, as its primary focus. Therefore, as already stated, they had the same
inhomogeneity structures added. This means that the distribution of inhomogeneity sizes
is very similar, though not identical, with scenario four having a slightly greater tendency
towards larger inhomogeneities. In turn this leads to unidentifiable inhomogeneities that
are not always the same in the two scenarios, in fact they differ in approximately 10% of
cases. These differences lead to marginally different average homogeneous sub period
lengths, but by less than a year. Overall the general agreement of characteristics in these
two scenarios is clear to see in tables 5.1 and 5.2 and therefore comparing algorithm
performance across them was deemed legitimate.

Table 5.1 gives the number of inhomogeneities found by the PHA in the released data.
This is the same algorithm that was run on the clean data. As with the clean data, the
number of inhomogeneities reported in this table is the number of inhomogeneities found
with a shift size greater than their shift uncertainty. It can be seen that PHA always iden-
tifies less than half of the inserted inhomogeneities to within a month of their location and
also that it ’identifies’ many inhomogeneities that were not inserted into the released data.
The algorithm performs best in scenario three of each region as was anticipated from this
being the simplest scenario. The large number of false alarms from this algorithm were
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5. Building and Evaluation of the Released Data

a little concerning, but were not taken into account when assessing the performance of
other algorithms. The reason for not taking them into account was primarily that the PHA
is not a perfect algorithm and the aim of this study was to compare the performance of
algorithms against the clean benchmark data, not against the performance of the PHA. It
should also be noted that the window used here for classifying an inserted change point
as a hit and not a false alarm was only one month, which is fair, but still quite strict.

Table 5.2 provides some further information on the characteristics of each region in each
of the scenarios. Lengths of homogeneous sub-periods are defined in two ways, lengths
in real time and lengths in condensed time. The length in real time refers how many days
there were between one inhomogeneity and the next regardless of whether there were
data available for these days. The condensed time is the number of days in a homoge-
neous sub period that the data were present for. There were a few inhomogeneities that
were completely unidentifiable because there was no data during the period over which
they acted, in these instances homogenisers were not expected to find them and they
were removed from the records.
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5. Building and Evaluation of the Released Data

A statistic not shown in table 5.2, but calculated during the evaluation process is the me-
dian HSP length. In all regions the median HSP length was less than the mean HSP
length. This means there is positive skew in the distribution of the HSP lengths as can be
seen in figure 5.15 which is for Wyoming scenario one, but is relatively similar to equiva-
lent figures for other scenarios and regions. This positive skew means that shorter HSPs
are more common than longer HSPs. This can be explained because to have an average
of n HSPs per series, for every series with one long HSP, there must be another series
with n − 1 much shorter HSPs. Unless n = 2 this means that there will be more shorter
HSPs than longer HSPs, as exhibited here. Another way of explaining this is to remem-
ber that the inhomogeneity locations were generated using a Poisson distribution and so
the length of the homogeneous sub-periods have an exponential distribution, which is
positively skewed.

Figure 5.15. A histogram showing the distribution of homogeneous sub-period lengths in real time
for Wyoming scenario one.

5.5. Discussion

As stated in section 5.1, no metadata were provided for any of the scenarios created in
this thesis. The primary reason for this is that such data are often not available in the
real world and therefore homogenisation algorithms cannot rely on them. However, the
author believes that it would be worth creating a scenario with metadata in a future itera-
tion of this project to see what effect providing such information does have on algorithm
performance. Even if algorithms only use metadata as a checking mechanism, if such
data cause a noticeable improvement in performance, then it would be further evidence
of the need to digitise old station records so that algorithms can benefit from metadata in
real life.

In addition to a metadata scenario another new scenario could investigate including more
platform inhomogeneities, to better match real world distributions of these artefacts. Also,
if more computing power were available stations could have multiple relocation options
instead of only one.

A future iteration of this study could also investigate a greater range of inhomogeneity
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5. Building and Evaluation of the Released Data

sizes in its scenarios. Although the current size distribution is reasonable, constant offset
inhomogeneities were here chosen from a discrete set of values. If they were chosen
instead from a Normal distribution, as in Venema et al. [2012], then their distribution
would likely be more similar to that of the explanatory variable changes, which would
make comparisons between the two inhomogeneity types simpler.

Thinking about urbanisation inhomogeneity sizes, a change to a continuous distribution
could also be beneficial. The possible trends in this thesis are similar in magnitudes
to those used by Menne and Williams JR. [2009]. However, they are larger than the
values cited in DeGaetano [2006] or Ren and Zhou [2014] for urbanisation and they
therefore should perhaps be reconsidered in a future iteration of this study. It should also
be noted that the size a trend could take had a discontinuity at the 15 year mark; the
author recommends that should this work be carried out again a trend per year should be
specified, as in DeGaetano [2006] instead of the overall size of the trend.

An interesting extension to the present work using the existing output of the PHA would
be to analyse the PHA’s detection ability when the criteria is simply to get a change point
in the right year instead of within a month of the true change point. The reason for such
an investigation would be that Venema et al. [2012] found the PHA to have a very low
false alarm rate when assessing it at the yearly resolution whereas the present study
looking at it at the monthly resolution found it to have a high false alarm rate.

5.6. Summary

This chapter has introduced the different scenarios that were released to the homogeni-
sation community to allow for the testing of temperature homogenisation algorithms on
daily data. These scenarios explored different inhomogeneity and station characteristics
by considering different regions, different inhomogeneity types and different underlying
data autocorrelations.

An overview of the method used to create inhomogeneous data has been given as well
as a justification of why the specific inhomogeneities modelled were investigated. The
inhomogeneities themselves were created in two different ways; the traditional constant
offset approach and the new explanatory variable approach that utilises the GAM’s ability
to create inhomogeneities by using information from other climatic variables.

The chapter concludes with an overview of the scenarios created and compares them
to the clean data that were created in the previous chapter. This shows that corrupting
data does alter their characteristics, highlighting once more the importance of having
clean data if reliable conclusions are to be drawn from analyses carried out on them. The
frequency and size of inhomogeneities is well matched to previous studies’ findings in
general, with perhaps a slight tendency to over-estimate the number of small and large
inhomogeneities, at the expense of those of medium size. This is acceptable however, as
small inhomogeneities can bias series, but pose a bigger challenge to homogenisation
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5. Building and Evaluation of the Released Data

algorithms. Therefore, assessing performance of the algorithms in this study in this area
is beneficial as not all algorithms are yet in mainstream use. Details of these algorithms
are given in chapter seven after chapter six has introduced the methodology for assessing
their performance.
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6. Framework for Evaluating the Returned
Data

Previous chapters have explained how the data used for this benchmarking study were
created to mimic four regions in North America and subsequently corrupted to form four
different data scenarios that were released to the homogenisation community. These sce-
narios incorporated different station densities, different combinations of step and trend
inhomogeneities and different underlying data characteristics, namely different autocor-
relations.

This chapter explains the validation framework implemented when assessing algorithm
performance on these scenarios. The validation was split into two components; detec-
tion ability, which assesses an algorithm’s ability to find change points, and adjustment
ability, which assesses the similarity of the returned series to the clean series. Each of
these will be discussed in turn. The validation concepts explained in this chapter will be
implemented in the next chapter.

6.1. Validation framework

There are a plethora of studies that have assessed the performance of homogenisation
algorithms, many have compared multiple algorithms, such as Venema et al. [2012] and
Reeves et al. [2007], whilst others have assessed variants of the same algorithm Titchner
et al. [2009] and Williams et al. [2012]. Within studies evaluating the performance of
homogenisation algorithms different aspects of an algorithm’s performance have been
the focus. The predominant focus until recent years was on an algorithm’s ability to
correctly identify the location of a change point, where an algorithm was rewarded for
identifying a change point within the window of a true change [Menne and Williams JR.,
2005]. The correct identification of change points is commonly assessed using the hit
rate (proportion of change points found out of total number present). Complements to
this statistic are the false alarm rate (how many change points are wrongly inserted out
of the number of points where no change is present in reality), the false alarm ratio (the
proportion of the detected change points that are false) and the type one error rate (the
percentage of times a homogeneous series is incorrectly classified as inhomogeneous)
[DeGaetano, 2006; Venema et al., 2012]. Many other measures exist, and many other
names for the same measures exist, as was outlined in section three of chapter two. In
this study the hit rate and the false alarm rate were the focus measures, alongside the
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bias and critical success index, as will be further explained in section two of this chapter.

Recently, as stated in chapter 2 section 2.3, attention has started to focus on the quality of
data returned by an algorithm and not just an algorithm’s ability to detect change points.
Both detection and adjustment ability need to be examined, as good performance in one
does not guarantee good performance in the other [Venema et al., 2012]. The quality
of returned data can be assessed by measuring the difference between the clean and
returned series; this was done using the centred root mean squared error (CRMSE) by
Venema et al. [2012] and the root mean square prediction error (RMP) by Reeves et al.
[2007].

Not restricting assessment to just detection ability allows for inspection of an algorithm’s
capacity to return realistic climate trends in homogenised data, an aspect of growing
interest in recent decades. Venema et al. [2012] used the RMSE to compare trends in
clean and returned series, but the approach outlined in Willett et al. [2014] using the
percentage recovery was employed in this thesis. This is a new approach that can be
used across multiple aspects of the validation.

Not looking purely at detection ability also has the advantage that an algorithm’s ability
to correct for trend inhomogeneities can be better assessed. The change points that
happen at the start and end points of trend inhomogeneities are difficult to detect and
trends are often misclassified as step changes [Menne and Williams JR., 2009], but this
does not necessarily mean that their effects haven’t been corrected for. Looking at more
than just detection ability means that algorithms can be credited for lessening a trend
inhomogeneity’s impacts even if they do not find its end points.

Although there is still benefit in validation studies that assess only one aspect of algorithm
performance, there is a growing need for benchmark datasets that test an algorithm’s
performance against multiple, different featured, datasets that are more similar to the real
world. Such tests benefit from being blind as this avoids the danger of algorithms be-
ing tuned to perform well only in certain situations [Willett et al., 2014]. For the present
study homogenisers were given the final location of the stations, but very little other in-
formation about the datasets used. They knew roughly what aspects would be present in
the created datasets; trend inhomogeneities, step inhomogeneities and inhomogeneities
created using the model or using constant offsets, but they did not know the quantities or
distribution of these aspects. They were also given a brief outline of how the algorithms
would be assessed, this highlighted that both detection and adjustment ability would be
evaluated, even so, not all algorithms returned sufficient information for both these qual-
ities to be assessed. The main emails sent to homogenisers explaining the study can
be found in Appendix A, the website where homogenisers downloaded the data from is
http://www.metoffice.gov.uk/hadobs/benchmarks/.
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6.2. Breakpoint Detection ability

Although arguably less important than its adjustment ability, an algorithm’s detection abil-
ity is still important. Whether missing inhomogeneities is better or worse than adding in
spurious inhomogeneities is a much debated and contentious subject, but the fact re-
mains that both are undesirable algorithm tendencies [Domonkos, 2011; Willett et al.,
2014]. For this reason it is important to assess not just an algorithm’s ability to find true
change points, but also the rate at which it ’detects’ false change points.

Large inhomogeneities are easier to detect than smaller inhomogeneities given their
greater signal to noise ratio. The effect of leaving these larger artefacts in can be more
detrimental to the climatic series. However, missing multiple small discontinuities is also
undesirable as this can still lead to large errors in the analyses. Within this validation,
inhomogeneity size was taken into account and it was the relative size that was being
referred to. The relative size is the size of an inhomogeneity relative to the next homo-
geneous sub period, as defined in section 4 of chapter 5. Also, as the previous chapters
showed, the created benchmarks are not perfect and this too was taken into account
when evaluating the algorithm performance. This means that inhomogeneities that may
be unintentionally present in the clean series did not contribute to either an algorithm’s hit
rate or its false alarm rate.

6.2.1. Breakpoint Detection ability concepts

Various statistics exist to summarise an algorithm’s performance in terms of breakpoint
detection, many of which were listed in section two of chapter two. These statistics are
largely formed from the combination of four quantities; hits, false alarms, misses and
correct rejections, which are commonly given the letters a, b, c and d respectively, with
their sum being n [Hogan and Mason, 2012]. These quantities can be defined as follows
and can be seen in table 6.1:

• Hit - a change point allocated to a day/window where there was a change point
present.

• False alarm - A change point allocated to a day/window where there was no change
point present.

• Miss - No change point allocated to a day/window where there was a change point
present.

• Correct rejection - No change point allocated to a day/window where there was no
change point present.

In annual data, where ’day’ is replaced by ’year’ in the definitions above, the quantities
a, b, c and d are of a similar enough order to each other to ensure that they can be easily
combined to form the desired summary statistics. At the monthly or daily level the fre-
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Table 6.1. A table to illustrate the events that give rise to a, b, c and d. Adapted from Hogan and
Mason [2012].

Change point present
Change point allocated Yes No Total

Yes a (Hits) b (False alarms) a+ b
No c (Misses) d (Correct rejections) c+ d

Total a+ c b+ d a+ b+ c+ d = n

quency of correct rejections should vastly outweigh the frequency of all other quantities.
This presents problems when calculating validation measures as they can easily become
swamped by d, blurring the distinction between different algorithms. For this reason a
novel approach to defining these quantities was applied in this study. This approach in-
volved defining windows of time in the series. These windows could either be a change
point window, which could be a hit or a miss; or a homogeneous sub period (HSP) win-
dow, which could be a false alarm or a correct rejection.

The idea of windowing change points is not a new one, it is common practice in homogeni-
sation studies, see for example Easterling and Peterson [1995], DeGaetano [2006] or
Menne and Williams JR. [2009]. The reason for this approach is that, although exact
detection would be the ideal in homogenisation, it is unlikely to occur in practice, espe-
cially when the series are at the daily resolution. Having a series at the daily resolution
was a challenge in this study as most contributed algorithms homogenised data at the
monthly level and then interpolated these changes through time. These algorithms then
gave the date of change as the first or last day of the culprit month, substantially reducing
the chance of specifying the true date of the change.

Two change point window lengths were considered, a 60 day window, allowing 30 days
either side of the true change point, and a 180 day window, allowing 90 days either side
of the true change point. The reason for using two window lengths is twofold. Firstly, it
allows the assessment of whether an algorithm is consistently detecting change points,
but consistently being beyond a month out; in this case the 60 day window would record
a miss, but the 180 day window would record a hit. Secondly, many algorithms still have
an operational minimum time between detections, even if theoretically none exists. For
the contributions assessed in this work this operational limit was never more than six
months. Therefore, in having a 180 day window, a change point that has been placed by
an algorithm between two true change points, because of the short time separating them,
can be recorded as a hit for both change points. In the event that an algorithm detects
two change points within a single change point window only one hit is recorded, this is
to ensure that it is impossible for an algorithm to be credited with more hits than there
are change points. The other hit is ignored as it would be incorrect to count it as a false
alarm, miss or correct rejection.

An HSP window is a newer concept than a change point window, it treats all days between
two change point windows (or between a change point window and the end of the series)
as a single period. Thus, most of the time, a series will have m change point windows
and m+ 1 HSP windows, though there will be a few exceptions when two change points
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are so close together that there is effectively no HSP between them. Each HSP has the
capacity to be either a correct rejection for the algorithm or a false alarm, this solved the
problem of correct rejections swamping everything else. If there are multiple false alarms
within an HSP window the algorithm is still only given one false alarm, just as it is given
only one hit for multiple hits within the same change point window.

Only penalising an algorithm once for any number of false alarms in a single HSP window
has both advantages and disadvantages. One advantage is that it is simple to explain
and implement. A second advantage is that it means hits and false alarms within their
respective windows are treated in the same manner. A third advantage is that n will
be constant across all methods in a region, thus making comparisons of different algo-
rithms very easy. A disadvantage of this method is that it could feasibly result in a very
error-prone algorithm that inserts multiple false alarms into every HSP window only being
penalised by the same amount as an algorithm which inserts just one inhomogeneity into
each HSP window. This point is raised to caution the reader that an algorithm’s perfor-
mance should be considered as a whole; looking at both similarity to clean series and
detection capability. An algorithm that is prone to adding too many false alarms may not
be penalised harshly enough in detection ability measures, but the impact of them will
likely show in adjustment ability measures.

Given that at the station level the defined a, b, c and d will be very small the detection
ability measures were all assessed on the region as the whole. That is, a was the total
number of hits in a region, b was the total number of false alarms, c was the total number
of misses and d was the total number of correct rejections; where all were defined using
the windowing approach.

6.2.2. Breakpoint Detection ability measures

As stated in section one of this chapter, two commonly used measures when assessing
algorithm performance are the hit rate, also known as the probability of detection, and the
false alarm rate, which is the same as the probability of false detection.

The hit rate is defined as H = a
a+c , that is, the total number of hits out of the total possible

number of hits. For a perfect algorithm the hit rate would be one and the worst hit rate
score is zero, no values outside this range are possible.

The false alarm rate is defined as F = b
b+d , which here is the number of false alarms

divided by the total number of HSPs. Again, the possible range is between zero and
one, with zero being perfection and one signifying that all homogeneous sub periods
have been corrupted by the homogenisation process. Both the hit rate and false alarm
rate will be reported for each algorithm and also shown graphically. The advantage of a
graphical presentation of such measures is that it provides a good visual illustration of the
differences in the performance of different algorithms and different scenarios.

Given that defining d in the daily data situation is tricky, it is beneficial to have some
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measures that do not include this term. The measures chosen here were the frequency
bias and the critical success index (CSI) [Hogan and Mason, 2012]. Frequency bias is
defined as B = a+b

a+c and gives information about whether an algorithm is prone to over-
or under-estimating the number of change points in a series, though it does not take into
account whether these change points are in the right place! CSI combines a, b and c as
CSI = a

a+b+c , it gives more information than the hit rate as, by the incorporation of b, it
also takes into account how the algorithm performs in the absence of change points.

Given that bias and CSI do not incorporate d, the windowing method could be somewhat
relaxed. HSP windows no longer needed to be constrained to count as only one false
alarm or only one correct rejection. Instead each false alarm could be counted, which
will distinguish between an algorithm very prone to over-inserting change points and one
that has only a slight tendency to do so. This change to the definition of HSP windows
makes defining change point windows slightly more of a challenge. To be equivalent to
the approach for HSP windows, each hit in a change point window should be counted,
but this would allow the possibility, however small, of there being more hits allocated
than there were change points present. For this reason change point windows were still
constrained to be a single hit or miss.

In all these measures, consistency of calculation across the same measure was key. As
long as for each region, scenario and method the measure was calculated in the same
way then direct comparisons could be made allowing a fair review of the strengths and
weaknesses of the various algorithms.

6.3. Methods for assessing similarity of clean to returned
series - Adjustment ability

It was not expected that all inhomogeneities would be detected and, in the unlikely event
that they were, it was not expected that they would be perfectly corrected for. This is
the reason that it was important to assess the similarity between the clean and returned
series; to enable a fuller picture to be formed of how well an algorithm had homogenised
the released data.

It is important to highlight at this stage that homogenisation algorithm performance was
the primary focus of this study and not interpolation algorithm performance. For this
reason, all returned data that had been interpolated over missing periods were made
missing to the same level as the released data. Similarity measures were then calculated.
This ensured fair comparisons across homogenisation algorithms regardless of whether
they also incorporated interpolation algorithms.
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6.3.1. Adjustment ability concepts

When comparing clean and released and clean and returned series it was possible to
work on a station by station basis as well as on a region wide basis, whereas for de-
tection ability the numbers were too small for individual stations to be analysed, and the
most sensible option was to look at measures regionally. However, to report individual
statistics for each station pre- and post-homogenisation would be time consuming and
largely uninformative. For this reason adjustment ability statistics were made available to
homogenisation algorithm developers for all stations for their benefit, but only summary
plots and measures are included in this thesis.

To show the progression of a particular statistic of interest over time required the regional
aggregation of the data into what will here be defined as a compiled series. Compiled
series’ were created both at the monthly and daily levels to balance conveyance of in-
formation in the level of detail with interpretability in the quantity of information. That is,
a daily plot is more detailed, but a monthly plot can be more easily interpreted and is
unlikely to hide any major findings, though both were produced to be certain of this. In
chapter seven only example monthly plots are included, but the author checked that the
conclusions stated were also valid for the daily plots.

The methodology for creating a compiled series is best explained with an example. The
code relating to this example can be found in electronic appendix B. Suppose that a series
for the RMSE in a region as a whole is desired. For Wyoming scenario one there are 75
stations. Thus there are 75 values (some of which may be missing) for each day from
the 1st January 1970 to the 31st December 2011. In an iterative loop each day can be
selected in turn and the RMSE for that day between clean and released data and clean
and returned data can be calculated. This takes all 75 stations into account, but returns
just a single value for each time point. These values can then be formed into a series. The
principle is the same if the time period of focus is longer such as months from January
1970 to December 2011, or if the desired series only covers a single year, but draws data
from all years. In this latter case the iterative loop would go from the 1st January to the
31st December and take all information from these days regardless of year and station.
So all January 1sts from all stations would be used to get a single value of the RMSE
for January the 1st. It doesn’t matter that later years would be expected to have a lower
RMSE as this would be a consistent pattern for all days of the year and therefore would
affect all days in the same way. (The reader is reminded at this point that RMSE is lower
in later years because inhomogeneities were propagated backwards in time).

Another concept, that was mentioned in section 6.1, is that of percentage recovery. This
can be defined for a statistic as:

PR = [ (statisticreleased−statisticreturned)
(statisticreleased−statisticclean) ] ∗ 100.

This conveys how much change there has been in the value of a statistic between the
released and the returned data. A value of zero indicates that no change in the statistic
has taken place, that is, the returned data is no better or worse than the released data.
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Values greater than zero mean that the statistic has been moved in the right direction
(i.e. towards perfection) and the closer this value is to 100 the better. For some statistics
PR can overshoot 100 percent; this would mean that too much of a modification has
been made and if the value goes over 200 then the series is worse than it was before
homogenisation, that is, it is further from the truth. A value less than zero means that
an algorithm has moved the statistic in the wrong direction so that it is further from the
truth on return than on release. The ranges of PR possible will be discussed alongside
the statistics in question, but the range for a single statistic will be consistent across
different regions and methods and therefore these values will be directly comparable. If
no inhomogeneities are present in a series then the denominator of the PR formula is
zero and PR is incalculable. In such cases, an algorithm, provided that it did not corrupt
the series, was given a PR value of 100 for all statistics relating to that series.

PR should be considered alongside other measures to ensure that it does not give mis-
leading conclusions. For example, a near perfect station could have a PR of 0 because
no changes to the station have been made as none were very necessary, this is not as
much a cause for concern as if a very corrupt station also had a PR of zero.

One way to use PR to convey information without fear of being misleading is to create
percentage recovery plots, these allow the extent to which the improvement was neces-
sary to be seen, as well as the range that the PR values themselves fall into. An example
of such a plot can be seen in figure 6.1. This is the PR plot for linear trends in the ten
worst (as defined in the following paragraph) stations in Wyoming scenario one after their
homogenisation by MAC-D, the algorithm applied by Michele Rienzner of the University
of Milan [Rienzner and Gandolfi, 2013]. It is evident that Mac-D is doing very well in
this aspect of homogenisation as all returned series trends are closer to the clean series
trends than the released series trends were and some trends have been moved to near
perfection.

The classification of ’best’ and ’worst’ stations was made so that the stations most af-
fected by the corruption process and those least affected by the corruption process could
be highlighted. Good algorithms should improve the homogeneity of the worst stations,
whilst not damaging the quality of the best stations, and even improving it where possi-
ble. The groupings into best and worst stations were done based on the RMSE between
a clean time series and its released counterpart. Many of the best stations were al-
ready perfectly homogeneous, if more than ten such stations existed in a region then
preference was given to those which the PHA also deemed to be homogeneous for the
released data. As this did not narrow down the field drastically, ten were then chosen
at random from all the possible candidates - these ten remained consistent across all
algorithms and measures to ensure fair comparisons.

Figure 6.2 displays the locations of the best and worst stations in each region and sce-
nario on topographical maps. These show that there is no clustering in the station classi-
fications, which is as expected given the random nature of the corruption process.
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Figure 6.1. A plot to look at the percentage recovery for linear trends when using Mac-D for the
ten worst stations in Wyoming scenario 1. Any points lying outside the red lines would indicate the
trend has been made worse. Points between the solid red and black lines (0 < PR < 100) indicate
the trend has been moved in the right direction. Points between the solid black and broken red
lines (PR > 100) indicate the trend has been moved too far in the right direction, but is not as bad
as before homogenisation.

Figure 6.2. Figures to illustrate the locations of best and worst stations in (a) Wyoming, (b) the
South East, (c) the North East and (d) the South West. Dots represent station locations, upward
pointing triangles are the best stations and downward pointing triangles are the worst stations.
Pink triangles are for scenario 1, purple are for scenario 2, blue are for scenario 3 and dark green
are for scenario 4. Topographies to create these maps were obtained from the National Elevation
Dataset [Gsech et al., 2002; Gsech, 2007].

6.3.2. Adjustment ability measures

Getting the mean right for temperature studies is important, as assessing changing means
is valuable for impact studies. Therefore, two measures looking at the mean were as-
sessed in this project, the bias and the RMSE, calculated between the clean and the
returned series. These measures were looked at in comparison to the same measures
between the clean and the released series because this allowed analysis of the impact
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that homogenisation had had. Values were obtained for these statistics for the region
as a whole, as well as for each of the stations in the region. For bias, the sum of abso-
lute biases in a region was compared as this allowed the assessment of the magnitude
of bias in a region and removed the possibility of the effects of stations with oppositely
signed biases cancelling each other out. Plots for how bias and RMSE changed over the
whole time period were provided to the algorithm developers. The percentage recovery
was assessed for both bias and RMSE. PR was bounded by 100 as the upper end of its
range for RMSE as it is impossible to get more than 100% recovery given that RMSE is
restricted to be 0 or positive. The same restriction applies for the sum of absolute biases,
but for the regional bias and bias of individual stations there was no such restriction on
percentage recovery.

Bias was assessed as it is important to know if an algorithm is prone to making data con-
sistently warmer or cooler. If there is a persistent bias at the homogenisation stage this
could be addressed by post-processing (further altering) the results before carrying out
climate analyses on the series, or by altering the internal workings of the algorithm itself.
One of the aims of this study is to aid the development of daily temperature homogenisa-
tion algorithms and the information on the bias of returned data will be a valuable tool for
this. Bias will also be helpful at the station by station level to assess the extent to which
the original bias affects the bias of the returned data, i.e., is an algorithm prone to over or
under compensate for original bias.

While bias compares only the means of series’, RMSE was assessed as an overall mea-
sure of similarity between the clean and returned data. It can be shown to be composed
of correlation, standard deviation and mean difference components. That is, the RMSE
between two series x and y can be written as√

1
n

n∑
i=1

(xi − yi)2 =
√

(x̄− ȳ)2 + (sx + sy)2 + 2sxsy(1− rxy),

where x̄ indicates a mean, sx indicates a standard deviation and rxy indicates a correla-
tion [Murphy, 1988].

Both bias and RMSE were assessed using non-deseasonalised data. The primary rea-
son for this is that, given that the bias is the difference in means between two series,
if a series has been deseasonalised by having its mean subtracted then all biases will
become zero, and thus, uninformative. As consistency was sought across measures
where possible, in having bias assessed on non-deseasonalised data it made sense to
also assess RMSE on non-deseasonalised data. A secondary reason was that, although
deseasonalised data are preferred for trend analyses, as they are impacted less by in-
consistent temporal and spatial sampling, non-deseasonalised data are often preferred
for impact studies.

In addition to a series’ behaviour on a daily basis, long term trends are also a major area
of interest in climate studies as they provide information on how the climate is chang-
ing. Knowing how the climate is changing is important because without knowing this it
is not possible to mitigate or adapt to these changes. Therefore, the evaluation of re-
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turned trends in homogenised data is very important and this is illustrated by the fact that
many other studies have focussed on trend evaluation [McCarthy et al., 2008; Venema
et al., 2012; Williams et al., 2012]. Errors remaining in series because of undetected
inhomogeneities can be comparable to the climate change signal [Williams et al., 2012].
Therefore, understanding the uncertainty in homogenisation is crucial when making state-
ments about long term regional climate trends; though, it should be noted that, globally,
homogenisation errors would have very little impact on the conclusion that our climate is
warming [Willett et al., 2014; Karl et al., 2015].

In the present study linear trends were assessed for the time series overall and non-linear
variability was calculated at the inter-annual and inter-decadal levels as being able to
reproduce the low- and high-frequency variability of a series is also valuable. The overall
trend is used for climate change quantification. Low-frequency variability should capture
events such as ENSO and the NAO (North Atlantic Oscillation). High-frequency variability
comparisons should be a good measure of whether algorithms exhibit a tendency to
oversmooth series during homogenisation.

Trend assessments were always on deseasonalised data, otherwise the seasonal cycle
biases the trend estimates, especially when there are missing data. The overall trends
were assessed using linear regression on data aggregated to the yearly level. The rea-
son for aggregating to this level was to reduce the variability in the data and cope with
inconsistent temporal sampling as well as to reduce the autocorrelation in the data, as
linear regression assumes independent inputs. For the decadal and annual long term
variability calculations loess smooths were used, in a similar manner to that employed
by Venema et al. [2012]. That is, for each time point in a series a prediction was made
using the time points within a specified period and a fitted polynomial surface. For the
annual loess this was done using 1

42 of the data, which amounts to 6 months either side
of the time point. For the decadal loess, 10

42 of the data was used, which amounts to five
years of information either side of the time point in question. In the present study a linear
function was used as the basis for the loess regression to avoid the trends being allowed
to vary too much over the relatively short time period, in Venema et al. [2012] a quadratic
polynomial was used.

For the overall trend the linear regression coefficients were compared between clean,
released and returned data, with the primary focus being on trends that had significant
coefficients in any or all of these data groups. Significance here was defined at the 5%
level. Trends that were significant in the clean series were expected to be significant, and
of the same sign, in the returned series and trends that weren’t significant in the clean
series were expected not to be significant in the returned series, regardless of whether
the corruption process had affected their significance. The number of trends that fell into
each of these different categories was tabulated for easy comparisons across methods
and regions. Percentage recoveries were also investigated for linear trend coefficients.
There were no restrictions on percentage recovery for this measure as trends have no
lower and upper limiting values.

For the annual and decadal variability comparisons, correlations were calculated between
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the created loess smooths for equivalent stations in the clean and released and clean and
returned data. These correlations were calculated having discarded the first and last six
months of the data for annual smooths and the first and last five years of the data for
the decadal smooths. The reason for discarding these data is that, at the ends of the
time series, the loess smooths will continue on the same trajectory that the last prediction
put them on, which could lead to misleading conclusions if the last trajectory was bad.
The correlations between clean and released and clean and returned data were plotted
to gauge how similar the loess smooths were. Percentage recovery was also used in
relation to the correlations. The maximum percentage recovery was 100 for this measure
as a perfect correlation of one was the upper limit.

As pointed out by Della-Marta and Wanner [2006], at the daily scale it is not sufficient to
only focus homogenisation efforts on the mean of the temperature distribution. For this
reason, in the present study, assessments of similarity between the clean and released
and clean and returned series also focussed on variability comparisons. This was done by
looking at the similarity in standard deviations in series before and after homogenisation
relative to the standard deviations in the clean series and also by looking at similarity
in extremes. Both these measures were analysed using non-deseasonalised data. For
standard deviations deseasonalisation would not change the values, but for extremes
analysis non-deseasonalised data is most beneficial, especially if this study were to be
carried further to also analyse real world data where extremes have impacts on real
people.

Standard deviation similarities were assessed by looking at ratios of the standard devi-
ations for clean and released and clean and returned series to allow investigation into
whether the homogenisation process had a tendency to smooth or accentuate true vari-
ability. Percentage recoveries of standard deviations were examined and there were no
limits on the values these percentage recoveries could take. It is important to ensure real-
istic variability is retained during homogenisation to avoid the risk of creating or smoothing
out climate extremes.

The climate extremes themselves were compared using scatter plots of the most extreme
values on like-for-like days. That is, a homogenisation algorithm was not credited with a
correct extreme if it had in fact removed the true climate extreme and created one of
the same or differing magnitude on another day. As extremes are a climate artefact that
can be examined with a lot more meaning at the daily data level, owing to them not
being smoothed out in an aggregation process, this was an important aspect to this first
benchmarking study in this area. Measurement error was allowed for in the comparison
of extremes and this measurement error was deemed to be 0.14◦C. Values on the same
day that were within this level of precision were counted as sufficiently equal. The value
for measurement error was calculated using a formula similar to that found in Brohan
et al. [2006] who, knowing that each temperature recording had a random error of 0.2◦C
(which represents one standard deviation), stated that an average calculated using n

measurements (in their case 60) would have an error of at most 0.2√
n
◦C. In the present

work n = 2 and therefore the calculation was 0.2√
2

= 0.14 (to two decimal places). The
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extremes focussed on in this study were the warmest daily mean temperature recorded
and the coldest daily mean temperature recorded at each station over the full period of
the record.

6.4. Discussion

The author believes the subset of validation measures selected in this thesis gives a good
overview of the participating algorithms’ performance. However, there is inevitably more
that could be investigated than could be achieved in this project.

An additional validation measure that it would be beneficial to include in a future iteration
of this work would be another loess smooth comparison measure. The reason for this is
that the included loess smooth comparison measure, which looks at correlations between
loess smooths of the clean, released and returned data, was found to be flawed. When
investigating the plots comparing correlations during the validation of the algorithms it
was found that it was possible to have a higher correlation between loess smooths of the
released and clean data than the returned and clean data, even if the data had been im-
proved by homogenisation. This is illustrated in figure 6.3, which shows that the returned
series is more similar to the clean series than the released series is, but its correlation
is lower because it doesn’t ascend and descend at the same time as the clean series
as much as the released series does. As this was only realised during the validation of
algorithms an alternative measure of long term variability assessment was not sought,
however, a future iteration of this study would seek to evaluate this measure in a more
reliable way. One suggestion is to look at the RMSE between the two smooths instead of
the correlation between them.

Figure 6.3. Figure to illustrate a loess smooth where the returned data (blue) could be considered
to be as good or better than the released data (red) when compared to the clean data (black),
but where the correlation between clean and returned loess smooths is lower than that between
clean and released. Correlation between the clean and returned data loess smooth is 0.732 and
between the clean and released data loess smooth is 0.915.
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6.5. Summary

This chapter has introduced the validation framework that will be implemented for all al-
gorithms in the next chapter. It highlights that considering only one aspect of algorithm
performance should be avoided and for this reason details have been given for a range of
measures to assess both the detection and adjustment ability of temperature homogeni-
sation algorithms. Within these assessments focus is not only on the mean of the climatic
series, but also on the impact of homogenisation on its variability and, therefore, its ex-
tremes.

Even with the range of measures given in this chapter it is by no means an exhaus-
tive validation framework. Therefore, participants were and are encouraged to carry
out further assessment of their contributions using the clean data, which has now been
released to the homogenisation community. The information that homogenisers were
given about how their algorithm performed is provided in electronic appendices available
from http://www.metoffice.gov.uk/hadobs/benchmarks/ and contained specific infor-
mation about their algorithm performance in each region as well as summary information
as to how it performed relative to the other algorithms in the study. No participants were
given the data homogenised by other participants, only the summaries, but the author
encourages data sharing to continue this collaborative work.
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7. Benchmarking the Performance of
Contributed Algorithms

Preceding chapters have laid the foundations that allow the performance of the con-
tributed homogenisation algorithms to be assessed. Chapters three and four introduced
the data and methodology for creating the benchmark clean data and chapter five ex-
plained how these data were corrupted to form the released data. Chapter six introduced
the validation framework that was designed to compare the returned data contributions
from homogenisers and this chapter implements that framework.

The chapter begins with an overview of the contributions submitted, their characteristics,
and references where further information can be found. It then proceeds to evaluate
these algorithms. At this stage any benchmark weaknesses that may affect algorithm
performance are highlighted before the chapter continues with a summary of how the
algorithms performed according to each validation measure. A short summary of each
algorithm’s strengths and weaknesses is then given in this chapter, but a more detailed
summary, which provides plots and explanations for Wyoming scenarios and just plots
and summaries for other scenarios, was provided to each participating homogeniser.
These summary documents can be found in electronic appendices C to H. The chapter
concludes with a discussion concerning the amount of uncertainty left in the data after
homogenisation has occurred; a primary focus of this project.

7.1. Algorithms used

Seven distinct algorithms were run on the benchmark data. Variants of the same algo-
rithm were also run, however, with one exception, only one realisation was evaluated for
each algorithm. There follows a brief overview of each algorithm, important caveats to
bear in mind and also references where more detailed information can be found. Each
algorithm user was contacted to provide information on their algorithms and the subsec-
tions that follow are closely adapted from the information they provided. In particular,
each algorithm user was asked to provide answers to the following questions:

1. What is the smallest distance between change points the algorithm can cope with?

2. Can the algorithm cope with gradual inhomogeneities?

3. Does the algorithm have two steps, one for detection and one for adjustment, or are
the two performed simultaneously?
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4. Are the adjustments made using constant offsets (thus primarily affecting the mean)
or are they variable (allowing for a change in the variance as well)?

The author deliberately did not research the algorithms in detail before commencing the
evaluation to avoid any biases inadvertently slipping into the analysis.

7.1.1. ACMANT

ACMANT stands for the Adapted Caussinus-Mestre detection Algorithm for homogenis-
ing Networks of Temperature series. This algorithm can be run automatically and was
run for all regions and scenarios by its creator Peter Domonkos. It can be applied at
the monthly or annual level, with daily data being aggregated up to the requisite level for
assessment and with adjustments being evenly applied at the daily level at the final step.
The smallest distance between change points it can cope with in this study is five months,
as change points were analysed at the monthly level, thus a ninety day window will be
more favourable than a thirty day window when evaluating the accuracy of change point
locations.

Time series comparisons were carried out with composite reference series, that is a
composite of multiple other stations. This composite reference series was decided using
weights obtained through spatial ordinary kriging, with some minor adjustments. These
minor adjustments were as follows: no station was allowed to contribute more than 40%
of weight to the reference series, to avoid contributing its own inhomogeneities; nega-
tive covariances between stations were not allowed; and at least 6 stations had to be
available for ordinary kriging to be applied (in practice in this study at least six stations
were always available). Optimal step function fitting together with the Caussinus-Lyazrhi
criterion [Caussinus and Lyazhri, 1997] was used for deciding the location and number of
steps respectively and adjustment sizes were determined using ANOVA variance minimi-
sation [Caussinus and Mestre, 2004]. The detection and adjustment were distinct steps.
Only biases in the means were deliberately searched for and adjustments were constant
for the period over which they acted, that is, there was no seasonal variation. Gradual in-
homogeneities may have experienced some degree of correction if steps were corrected
mid-trend, but no search for gradual inhomogeneities was explicitly built in.

The variant of this algorithm analysed is a slightly modified version of the freely available
”Acmant2Tmindaily” program of the ACMANT2 software package, http://www.c3.urv.
cat/data.html. For a full description of the method the reader should consult Domonkos
[2011] and Domonkos [2014]. It should be noted that since the time of analysis a new ex-
perimental version of ACMANT has been created by Peter Domonkos that works directly
with daily data for certain steps of the homogenisation process.
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7.1.2. Climatol

Two versions of this algorithm were evaluated as one was explicitly designed to work
with daily data, whilst the other worked with data at the monthly level and then down-
scaled adjustments. Henceforth the two versions will be referred to as Climatol-Daily and
Climatol-Monthly. A third version was also run, but was not assessed here. All versions
were run for all regions and scenarios. Climatol is freely available from www.climatol.eu

and is there accompanied by an instruction manual, which is recommended as the pri-
mary reference for this algorithm.

This algorithm is designed to run in R and many settings can be programmed by the
user, thus meaning that different users will inevitably get slightly different outcomes. The
default behaviour of the algorithm is to apply variable corrections, which was done for
Climatol-Monthly, however, for Climatol-Daily constant adjustments were applied in each
homogeneous sub-period. It should be noted here that there was a mistake in the ho-
mogenisation during the application of Climatol-Monthly for Wyoming scenarios one and
two, therefore comparisons for these regions with others should be approached with cau-
tion. This mistake was a simple error of making adjustments using the wrong units and
not a general flaw in the algorithm. Corrected results were provided, but only after the
clean data had been released and, therefore, they could not be fairly included in the
comparisons.

The minimum time between change points that is theoretically detectable is just three time
steps, though at the daily scale it is unlikely that such a limit is achieved. Change points
are searched for using the Standard Normal Homogeneity Test (SNHT) [Alexandersson,
1986] iteratively applied until no more change points are found when the candidate series
is compared to a composite reference series, created from nearby stations. The SNHT
splits the series at the most significant change point until all sections are deemed to be
homogeneous sub-periods. This procedure is applied first on overlapping windows, to
avoid possible masking effects of multiple change points in the series, and then on the
whole series, where SNHT is more powerful. Adjustment sizes are not explicitly calcu-
lated and corrections are made as a separate step. This step entails using the homoge-
neous sub-periods to estimate the missing data that have been created by the splitting
process. These estimates are calculated by normalising the data that are available and
then filling in the missing data using weighted averages of the closest normalised data.
This normalisation involves centring the distribution if constant corrections are to be ap-
plied, as in Climatol-Daily, and centring and standardising if variable corrections are to
be applied, as in Climatol-Monthly. Gradual inhomogeneities are not sought out, however
a step change may be inserted in the middle of a gradual inhomogeneity if a noticeable
change in mean is found.
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7.1.3. DAP, HOM and SPLIDHOM

Two versions of each of these algorithms were applied, but only the first was analysed.
The difference between the two versions is that the first homogenises a station using its
most highly correlated neighbour as the reference series and the second homogenises
a station using its second most highly correlated neighbour as the reference series. For
these algorithms not all stations were homogenised and released stations therefore had
to be treated as returned stations for around half of the stations in each region (although
this figure varied between regions and scenarios). These algorithms were applied to all
scenarios for Wyoming, the South East and the South West, but only to scenario one for
the North East. Results were provided for scenarios two and three of the North East at
a later date, but as this was after the clean data had been released they could not be
included as part of this blind benchmarking study.

For all three of these algorithms the detection and adjustment steps were performed sep-
arately and did not seek out trend inhomogeneities. The detection was performed at the
annual, seasonal and monthly levels, with most weight given to the seasonal and annual
evaluations. The change point was always assigned to the first day of a given month
because of the automation of the homogenisation process. In practice, the change points
were almost always assigned to the 1st of January unless it was very clear to the al-
gorithm that a different month was the culprit. However, it should be kept in mind that
these algorithms were tuned to European data originally and different decisions should
perhaps have been implemented when applying them to US data. For these algorithms
it was recommended that change points were not sought out within four to five years of
another change point when analysing data at the monthly level, however, when analysing
data at the daily level a much smaller time window of half a month was the minimum time
between change points. Change points were searched for using multiple tests, the SNHT
[Alexandersson, 1986], the Maronna and Yohai bivariate test [Potter, 1981] and the East-
erling and Peterson test [Easterling and Peterson, 1995]. If a certain proportion of the
tests detected a change point then that change point was deemed worthy of adjustment
[Stepanek et al., 2013]. The change point detections and adjustments were two separate
steps and the same change points were identified for all three homogenisation algorithms
simultaneously. The adjustments were calculated for each algorithm separately and were
therefore different between algorithms, although still very similar. The adjustments ap-
plied were variable meaning that changes in the means, variances and also higher order
statistical moments of the temperature series could be corrected.

The Higher Order Moments (HOM) method was the first algorithm out of DAP, HOM and
SPLDHOM in use in the homogenisation community and an excellent summary of it can
be found in Della-Marta and Wanner [2006]. From this paper, the homogenisation pro-
cess is as follows. Once the homogeneous sub-periods (HSPs) of a candidate station
have been identified a reference station with data suitably spanning a change point is
chosen, beginning with the most recent change point. A non-linear model is then used to
determine the relationships between the candidate and reference station before and after
the change point. The model before the change point is used to predict temperatures
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after the change point and from this a difference series between observed and predicted
temperatures is formed. These differences are binned according to the predicted tem-
peratures in the appropriate decile of the probability distribution for the most recent time
period. A smoothly varying function is then fitted between the binned decile differences
to obtain an estimated adjustment for each percentile. The percentiles of the HSP need-
ing adjustment (i.e. the period before the change point) are also found by obtaining the
probability distribution of that HSP and binning the observations into deciles so that the
appropriate adjustments can be applied to each point. Finally the adjustments are made
and the two HSPs are merged. The process is repeated until there is only a single HSP.

The SPLIDHOM (SPLIne Daily HOMogenisation) algorithm is detailed in Mestre et al.
[2011]. It is similar to HOM in that it requires predefined HSPs, but differs in its method
of correction. Whereas HOM defines distributions in order to make adjustments, SPLID-
HOM relies on a regression approach. In this approach a highly correlated reference
station is required for each change point, just as it is for HOM, and, as in HOM, each
change point is considered sequentially beginning with the most recent. Before and
after a change point the regression of the candidate station (Y) on the reference sta-
tion (X) is estimated, this is done using a cubic smoothing spline approach. Details
of splines can be found in chapter four, and specific details about the fitting of these
cubic splines can be found in Mestre et al. [2011]. If the optimal smoothing spline
is defined as m̂ then the corrected values of the candidate series can be defined as
Ŷt = Yt + m̂Y Xaft−Y Xbef

[m̂XYbef (Yt)] where the subscripts bef and aft relate to whether
the spline regression estimate was obtained before or after the change point. Thus, the
SPLIDHOM method does not only correct the means of the time series, but also does not
require full probability distributions to be estimated before and after each change point.
The study of Mestre et al. [2011] compared the performances of HOM and SPLIDHOM
and found HOM to be superior for reducing RMSE and also for improving the lower quan-
tiles, but the performance of SPLIDHOM was deemed equal to the performance of HOM
for upper quantiles.

The Distribution Adjusted by Percentiles (DAP) algorithm is detailed in Stepanek et al.
[2013]. It is similar to the HOM method, as it is adapted from a method for the correction
of regional climate model outputs detailed in Deque [2007], which in turn was based
on assumptions used in Della-Marta and Wanner [2006] for HOM. DAP calculates the
percentiles for the candidate and reference series before and after a change point for
each month in turn. When focusing on a particular month, one month immediately before
and after is also taken into account to reduce the likelihood of sudden large step changes
between months. Once the percentiles for the candidate and reference station before
and after a change point have been calculated, their difference can be obtained. The
differences are then smoothed to obtain an adjustment for each percentile, which can
then be applied for any point of the candidate series before the change point. The process
is carried out iteratively in order to obtain the most precise results.
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7.1.4. MAC-D

The MAC-D method searches for Multiple Abrupt Changes in the mean value of Daily
temperature series. It is able to effectively deal with seasonality, non-periodicity, missing
data and autocorrelations in the data examined. It is an automated method and is docu-
mented in Rienzner and Gandolfi [2013]. It was applied only to the Wyoming scenarios
in this study. MAC-D is explicitly designed to work with daily data, as the name suggests,
and has a limit between change points of just 15 days in this instance. The allowable
time between change points is an adjustable parameter and can be as little as ten days,
but this then increases the possibility of false alarms and makes determining amplitudes
harder. MAC-D is not designed to seek out trend inhomogeneities and these will there-
fore be either neglected or corrected as a series of steps. However, although not yet
implemented, it is hoped that, in the future, post-processing of the data could take place
in order to detect trends between change points or within a stairway of change points.

MAC-D needs to work on groups of closely related station series. These were made by
cutting the set of stations in a scenario into groups according to their correlation with their
regional signal. The regional signal for MAC-D is defined as the average disturbance
from the periodic seasonality which is common to the whole dataset. Lower performance
is expected for stations with a weak link to their regional signal, termed ’bad’ stations, and
better performance is expected for those with a stronger link, termed ’good’ stations. In
this analysis the groupings were not taken into account, but comparisons of performance
explicitly on ’good’ and ’bad’ stations would be an interesting area for future study. After
the series have had their seasonal periodicity and regional signal removed, autocorrela-
tion coefficients and change points are identified via an iterative process that stops when
the autocorrelation (first and second order lags) of the filtered and de-stepped series
(mean adjustment only) is close to zero. At the core of each iteration, the change points
are located using the Standard Normal Homogenisation Composite Method (SNHCM),
[Rienzner and Gandolfi, 2011], applied to the decorrelated version of the series that still
retains the change points. The decorrelated version is the version of the series with no
significant autocorrelations at lags one or two. This method is a change point detection
method only and the adjustments therefore had to be applied separately. In this work
these adjustments were calculated as constant offsets and were therefore expected to
primarily affect the mean and not higher order moments.

7.1.5. MASH

The Multiple Analysis of Series for Homogenisation (MASH) method is the oldest of the
methods applied in this study. It was originally developed in the 1990s [Szentimrey, 1999],
for monthly, seasonal or annual data, though the version applied here is that which can
be applied to daily data and is detailed in Szentimrey [2008]. The procedure has now
been automated and this allowed MASH to be run on all regions and scenarios in this
study.
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MASH first aggregates the daily data into monthly series in order to search for inhomo-
geneities through comparisons with neighbouring stations. The smallest time between
change points is one month, though in this study the change point detection ability of
MASH was not assessed owing to it being different from that of other algorithms. Other al-
gorithms will typically return a single month (or day) of a detected change point, whereas
MASH returns the suggested change point sizes in the monthly time series and does
not attribute each change point to a single month, so a single change point can lead to
multiple ’detections’ [Venema et al., 2012]. However it should be noted that Venema et al.
[2012] still commended MASH as one of the best homogenisation methods available and
did provide an analysis of its detection ability. It should also be noted that a differing de-
tection method did not preclude comparison of MASH with other algorithms when using
the adjustment ability validation measures in the present study.

MASH’s method of smoothing monthly inhomogeneities to the daily scale means that ad-
justments are not constant and therefore can indirectly reduce the impacts of variance
changing inhomogeneities. MASH is an iterative procedure and performs detection and
correction of inhomogeneities simultaneously. During this procedure confidence intervals
are provided on the size and location of the suggested shifts in order to help synthe-
sise the final series. These confidence intervals allow metadata to be used automati-
cally, though in this study no metadata was provided to the homogenisers. In addition,
the intervals could be used to provide uncertainty estimates on the homogenised data.
The iterative procedure is run until no more inhomogeneities in the monthly series are
identified, this will likely lead to a reduction in trend inhomogeneities, though no trend
inhomogeneity search is explicitly built in.

One final cautionary note should be raised when looking at comparisons of MASH with
the other evaluated algorithms; MASH does not always homogenise to the most recent
period. This is the case for one of two reasons: 1. The last period is not deemed to be
homogeneous. 2. There is only a single inhomogeneity and it is very close to the end
of the series, thus correcting the small final segment of the series is more time effective
than correcting the much longer earlier segment and gives fewer opportunities for errors
to arise. When evaluating the algorithm these different reference periods were noted, but
were not explicitly taken into account, thus, there may be occasions where MASH appears
to have a worse performance. The reader is directed to the more detailed appendix on
MASH’s performance, electronic appendix H, for more information on which measures
have been affected in each scenario and region.

7.2. Algorithm assessment

7.2.1. The scenarios and regions

Section two of chapter five provided a detailed description of each of the scenarios. How-
ever a summary is provided here for the reader. Scenario one represents the current
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density of stations that are at least 75% complete over the period 1970-2011 and has all
three types of inhomogeneity added; shelter changes, station relocations and urbanisa-
tion trends. Scenario two also has all three types of inhomogeneity added, but has an
increased station density, making the density of stations in all regions equal. Scenario
three has the same station density as scenario two, but does not contain any urbanisation
trend inhomogeneities, thus allowing the assessment of their impact on algorithm perfor-
mance. Finally, scenario four was for Wyoming only and has the same inhomogeneities
as Wyoming scenario one; its contributing difference is that it has higher and more re-
alistic station autocorrelations than the other scenarios, but similar, if slightly reduced
inter-station correlations.

7.2.2. Known benchmark weaknesses

As this study was a first attempt at a substantial daily benchmarking study there were
expected to be imperfections in the created data. Chapters four and five showed that
these imperfections did not stop the data being valid for this study, but they should still be
kept in mind when evaluating algorithm performance.

One weakness is that scenarios one to three did not have realistic autocorrelations in de-
seasonalised difference series, they were too low. This should, in theory, make detection
easier as most algorithms assume little or no autocorrelation in these series. This was
the reason for the creation of Wyoming scenario four which better mimicked observed
autocorrelations. The reader should take into account these differences in scenario char-
acteristics when drawing their own conclusions about the different algorithms assessed.

A further known benchmark characteristic was the tendency to make inter-station cor-
relations too high. This was deemed preferable to making them too low, which would
have likely resulted in a benchmark harder than reality. Having a benchmark harder than
reality would make drawing conclusions about areas for algorithm improvement more dif-
ficult and would have thus reduced the benefit of this study to algorithm developers. In
scenario four some very nearby stations had inter-station correlations that were a little
too low, but this only affected 20% of stations within 75km of each other and the most
an inter-station correlation was too low by was 0.06. 75km was chosen as the distance
cut-off point for this investigation as this is the distance used in the quality control checks
for the GHCND [Durre et al., 2010].

One final cautionary point arises from the error in the addition of trend inhomogeneities
for scenarios one, two and four. This error meant that trend inhomogeneities created
using explanatory variables began with a step change. Given that trend inhomogeneities
are known to sometimes start out with a step change in reality, [Menne and Williams JR.,
2009], this should not be considered too detrimental to the algorithm evaluation. However,
it is expected to lead to a greater proportion of trend inhomogeneities being detected than
might otherwise be the case.
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7.2.3. Detection ability

Section two of chapter six introduced the framework for the validation of algorithm de-
tection ability, which included assessing the hit rate, false alarm rate, frequency bias and
critical success index of an algorithm. Figure 7.1 shows the detection abilities in Wyoming
for a 60 day, figure (a), or 180 day, figure (b), detection window and figures 7.2, 7.3 and
7.4 show the same for the South East, North East and South West respectively. It is
evident that in Wyoming there is more spread between algorithm performance in the dif-
ferent scenarios than there is in the other regions. The difference between scenario four
and the other scenarios is understandable as it was designed to be more realistic and
therefore more difficult. The increased difficulty of scenario four is reflected by the lower
hit rates exhibited in this scenario by all algorithms shown.

Figure 7.1. Plots showing false alarm rate against the hit rate in the Wyoming scenarios for (a)
a window extending thirty days either side of the true change point and (b) a window extending
ninety days either side of the true change point. MAC-D is gray, Climatol-Daily is red, Climatol-
Monthly is orange, ACMANT is green and DAP, HOM and SPLIDHOM are blue. DAP, HOM and
SPLIDHOM are all represented by a single blue point for each scenario because the detection
approach was the same for all three of these algorithms and so the same change points were
found. The shaded area below the diagonal line indicates the ’bad’ area where the false alarm
rate is higher than the hit rate.

The highest hit rates were always exhibited in scenario three for the South East, North
East and South West when the larger window sizes were being used. Once more, this is
as expected because this was arguably the easiest of the scenarios; it contained no trend
inhomogeneities and also had an increased station density relative to scenario one. Trend
inhomogeneities are known to often be harder to detect because they can have different
start and end points with respect to different neighbouring series citepMenne2008. In this
study trend inhomogeneities were also the hardest inhomogeneities to detect because
they predominantly fell in the category of ’small’ inhomogeneities (≤ 0.2◦C) whereas the
size classification of step changes varied more. In Wyoming, as long as the larger in-
homogeneity window size was being considered, the highest hit rate was still found in
scenario three for all algorithms with the exception of Climatol-Monthly. This was not be-
cause of a worse performance for Climatol-Monthly in scenario three, in fact it’s hit rate
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Figure 7.2. Plots showing false alarm rate against the hit rate in the South East for (a) a window
extending thirty days either side of the true change point and (b) a window extending ninety days
either side of the true change point. Climatol-Daily is red, Climatol-Monthly is orange, ACMANT is
green and DAP, HOM and SPLIDHOM are blue. DAP, HOM and SPLIDHOM are all represented
by a single blue point for each scenario because the detection approach was the same for all
three of these algorithms and so the same change points were found. The shaded area below the
diagonal line indicates the ’bad’ area where the false alarm rate is higher than the hit rate.

Figure 7.3. Plots showing false alarm rate against the hit rate in the North East for (a) a window
extending thirty days either side of the true change point and (b) a window extending ninety days
either side of the true change point. Climatol-Daily is red, Climatol-Monthly is orange, ACMANT is
green and DAP, HOM and SPLIDHOM are blue. DAP, HOM and SPLIDHOM are all represented
by a single blue point for scenario one because the detection approach was the same for all three
of these algorithms and so the same change points were found. Scenarios two and three were not
homogenised by DAP, HOM and SPLIDHOM in this region. The shaded area below the diagonal
line indicates the ’bad’ area where the false alarm rate is higher than the hit rate.

in this region was within the range of its hit rate for scenario three in other regions, in-
stead there was a particularly good hit rate for Climatol-Monthly in Wyoming scenarios
one and two. There is no clear reason why the hit rate was best for Climatol-Monthly
in these scenarios. There was not a higher proportion of large inhomogeneities than in
some other regions or scenarios, nor was there a higher proportion of constant offset

151



7. Benchmarking the Performance of Contributed Algorithms

Figure 7.4. Plots showing false alarm rate against the hit rate in the South West scenarios for (a)
a window extending thirty days either side of the true change point and (b) a window extending
ninety days either side of the true change point. Climatol-Daily is red, Climatol-Monthly is orange,
ACMANT is green and DAP, HOM and SPLIDHOM are blue. DAP, HOM and SPLIDHOM are all
represented by a single blue point for each scenario because the detection approach was the
same for all three of these algorithms and so the same change points were found. The shaded
area below the diagonal line indicates the ’bad’ area where the false alarm rate is higher than the
hit rate.

inhomogeneities, which were normally easier to detect. The author would encourage
further investigation into this area.

When the smaller window size was used Climatol-Daily and MAC-D kept their best per-
formances in scenario three, as did Climatol-Monthly for all bar Wyoming, as expected
from above. However, ACMANT and DAP, HOM and SPLIDHOM’s performances were
less consistent. As these algorithms were known to be less precise in their detection
ability the author attributes the inconsistency to this cause, though further investigation to
clarify this would be of interest.

Comparing across regions and scenarios there was no single region where all algorithms
constantly had their highest hit rates. However, if a mean hit rate is taken within a re-
gion, that is all hit rates are summed and divided by the number of scenarios there are,
then the highest average hit rate was always found in the South East, as long as this
region was evaluated. This is as expected as the South East was arguably the simplest
region given that it started off with a lower number of inhomogeneities per series because
of many inhomogeneities being classified as unidentifiable. Given that unidentifiable in-
homogeneities were more often explanatory variable inhomogeneities this meant that the
South East also ended up with the greatest proportion of constant offset inhomogeneities.
Constant offset inhomogeneities were overwhelmingly better detected than explanatory
variable ones by all algorithms, likely because they are larger on average and less ’noisy’
because their implemented size does not vary day to day.

There was no single region where the highest (worst) false alarm rate was consistently
found. Looking at average false alarm rates across a region, in the same manner as
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average hit rates were investigated, still reveals no consensus on the region most likely
to have false alarms, though two algorithms do have most in the South East. The pairing
of higher false alarm rates going with higher hit rates is not uncommon.

This pairing of higher false alarm rates and higher hit rates was also seen when compar-
ing algorithms in general for the larger window size. ACMANT always had the highest
false alarm rate of any algorithm in all regions and scenarios, but, with the exception of
Wyoming scenario two, it also always had the highest hit rate. However, if the smaller
window size was considered, Climatol-Daily nearly always had the highest hit rate and
consistently had the lowest false alarm rate, thus making it the most precise algorithm in
terms of detection. Given that Climatol-Daily retained the lowest false alarm rate even
when the larger window size was used the author would commend this algorithm as the
most reliable for inhomogeneity detection when false alarms are considered to have a
high impact and would also recommend ACMANT when false alarms are of less con-
cern.

The measure used in this study that takes into account hits and false alarms is the crit-
ical success index, see chapter six section 2.2. The higher this value is, the better an
algorithm’s detection ability is. Unsurprisingly, given the comments above, Climatol-Daily
ranked top for this measure more frequently than any other algorithm did. When the
smaller window size was being used, Climatol-Daily ranked top for all scenarios and re-
gions apart from Wyoming scenarios one and two where it was beaten by its monthly
counterpart. For the larger window size Climatol-Daily took the top spot four times, AC-
MANT took it seven times and Climatol-Monthly took it twice. This is further evidence
to suggest that Climatol-Daily should be preferred when precision and a low tendency
to insert false change points is desired, but ACMANT or Climatol-Monthly should not be
ruled out if these two desires can be relaxed.

ACMANT should also be commended for its good ability to detect the smallest inhomo-
geneities, which all algorithms detected the lowest proportion of, but ACMANT least so.
Climatol-Monthly and ACMANT were primarily the best algorithms for detecting urbani-
sation inhomogeneities too, though Climatol-Daily did also display a comparatively good
performance in some scenarios and its detection ability was not as badly affected by the
increased autocorrelations of scenario four as its monthly counterpart’s was. In spite of
this, urbanisation inhomogeneities were the least well detected overall, this is as expected
given that none of the algorithms explicitly searched for this type of inhomogeneity.

The frequency bias, see chapter six section 2.2, was always below one for all regions,
scenarios and algorithms apart from for MAC-D in scenario four. This means that, in
nearly every case, algorithms are being too cautious about assigning change points.
However, as will be explained in the following section, the algorithms that did make most
changes were also those that made most stations worse in the returned data compared
to the released data, implying that caution is not necessarily a bad thing.

In summary, ACMANT and Climatol-Daily are deemed to be the best algorithms for inho-
mogeneity detection overall because of their good hit rates, and, in Climatol-Daily’s case,
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low false alarm rate. Climatol-Monthly and MAC-D would not be considered bad at de-
tection either, but the use of the detection methodology from DAP, HOM and SPLIDHOM
would not be recommended. Urbanisation trend inhomogeneities are concluded to be
the most difficult to locate and large inhomogeneities (greater than 1◦C) are deemed to
be the easiest inhomogeneities to locate. Constant offset inhomogeneities were better
detected than explanatory variable inhomogeneities and this was linked to the fact that
explanatory variable inhomogeneities were smaller. Scenario three, with no urbanisation
inhomogeneities, was almost always the scenario that saw the best algorithm perfor-
mance in terms of detection ability and scenario four, with increased autocorrelations,
caused a deterioration in detection ability, though the extent of this deterioration varied
between algorithms. Further summary information on the detection ability of each algo-
rithm for each scenario is available to the reader in appendix B, where they should consult
tables B.7, B.8, B.15, B.16, B.23, B.24, B.31, B.32, B.39, B.40, B.47, B.48, B.55 and B.56.
All these tables were also made available to the homogenisers.

For algorithm improvement the author recommends an increased focus on working with
autocorrelated data and further investigation into reliable methods to detect trend inho-
mogeneities and small or seasonally varying inhomogeneities. The author also recom-
mends more algorithms that perform detection at the daily level and commends MAC-D
and Climatol-Daily for their good detection abilities as truly daily algorithms.

For reference, section 4.2.2 stated that ’inhomogeneities’ detected by the PHA in the
clean series would not be counted as false alarms if other algorithms found them. This
was to account for the fact that these could be genuine modelling errors. There was
discussion about whether this gave an unfair advantage to ’PHA-like’ algorithms. Having
looked at validation outputs (not shown) very few of the same ’inhomogeneities’ as those
that the PHA identified were found by any algorithm. The algorithm most prone to finding
the same ’inhomogeneities’ was ACMANT, but this was also the algorithm most prone to
false alarms in general and was no more ’PHA-like’ than most of the other algorithms.

However, it should be noted that seven of the PHA’s ’inhomogeneities’ were found by at
least two algorithms. Therefore, the author believes that PHA’s ’inhomogeneities’ were
predominantly false alarms, but does not rule out the possibility of there being a few gen-
uine change points in the created clean data. In a future iteration of the study the author
would suggest not discounting false alarms if they were the same as the PHA’s inhomo-
geneities as there is likely as much harm as good done by this approach. However, the
author would recommend validation code that could tally if multiple algorithms found the
same ’false alarms’ so that users of the data could judge whether they wanted to try and
adjust such a point or not.

7.2.4. Adjustment ability

Bias relative to the clean series
Very few stations in any region were left completely unaltered by the process of adding
inhomogeneities. Regional biases were calculated as the average of the biases in the
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region and varied in their sign. As expected, when looking at the sum of absolute biases,
see 6.3.2, there was more bias present in the scenarios with a greater number of stations.
Scenario three always had a greater sum of absolute biases than scenario two in the
released scenarios. This was not surprising given that urbanisation inhomogeneities are
often the main cause of small inhomogeneities and they were not present in scenario
three. Looking at the percentage recovery of the sum of absolute biases, ACMANT was
consistently among the top algorithms. Climatol-Daily also performed very well in general,
being the top performing algorithm in all the South West scenarios.

There was predominantly a larger percentage recovery of the sum of absolute biases in
scenario three, which would fit with this also being the scenario where the highest pro-
portions of inhomogeneities were detected. In the South West and Wyoming for DAP,
HOM and SPLIDHOM the largest reduction in the sum of absolute biases was instead
seen in scenario two. This was likely owing to the fact that a greater proportion of large
inhomogeneities were found by these algorithms in scenario two than in scenario three.
The absolute sum of biases before and after homogenisation and the percentage recov-
eries that each algorithm achieved can be seen for each region and scenario in figure
7.5. The numerical values for the sum of absolute biases can be found, alongside other
summary measures for the evaluation of bias reduction, in appendix B in tables B.1, B.9,
B.17, B.25, B.33, B.41 and B.49.

Figure 7.5. Plots to illustrate the reduction in the sum of absolute biases, relative to the clean
benchmark data, for each algorithm, scenario and region. Plot (a) represents the reduction in
the sum of absolute biases in ◦C and plot (b) shows the recovery as a percentage, with a 100%
recovery being perfect and a 0% recovery meaning no change. X-axis labels are as follows; 1
- 4: Wyoming scenarios one to four; 5-7: South East scenarios one to three; 8-10: North East
scenarios one to three; 11-13: South West scenarios one to three. Vertical dashed lines are
added to help distinguish between these regions. Black crosses represent the clean data (always
0◦C sum of absolute biases) and red crosses represent the released data relative to the clean
benchmark data.

As well as tables B.1, B.9, B.17, B.25, B.33, B.41 and B.49, plots were produced that
looked at bias reduction over time for each algorithm, scenario and region. Figure 7.6
contains an example of such a bias reduction plot for MAC-D for the Wyoming scenarios.
As can be seen, bias is being reduced over time, but there are certain times the algorithm
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is struggling with and reducing bias is evidently proving more difficult in scenario four than
in the scenarios with less realistic autocorrelations.

(a) (b)

(c) (d)

Figure 7.6. Plots to illustrate the progression of bias over time for Wyoming (a) scenario 1; (b)
scenario 2; (c) scenario 3 and (d) scenario 4. Data have been aggregated to the monthly level to
summarise the progression. Red lines indicate the released bias, relative to the clean benchmark
data, and black lines indicate the returned bias, relative to the clean benchmark data, after MAC-D
has been applied.

Best and worst stations were defined in terms of their RMSEs as was explained in section
3.2 of chapter 6. The above mentioned tables display how many of the biases for these
best and worst stations each algorithm improved or worsened during the homogenisation
process. Generally speaking, the best stations were largely left unaltered by homogeni-
sation and the worst stations were improved. However, MASH did display the greatest
tendency to make the best stations worse and ACMANT displayed some tendency to
do the same, though not as often. The majority of algorithms made at least half of the
best stations more biased during the homogenisation process of Wyoming scenario four,
again illustrating the increased difficulty that the more autocorrelated data presented.

Station summary bias plots, as in figure 7.7 are a good visual way of assessing the
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reduction in bias on a station by station level. It can be seen in these plots that the ho-
mogenisation process has reduced both the mean and variability (assessed using stan-
dard deviations) of the biases, both desirable outcomes. Although these plots are for the
MAC-D algorithm and Wyoming scenarios, similarly good results can be seen from other
methods and in other scenarios in general.

(a) (b)

(c) (d)

Figure 7.7. Plots to illustrate the bias, relative to the clean benchmark data, of each station
in Wyoming before homogenisation (red) and after homogenisation by MAC-D (black), for (a)
scenario 1; (b) scenario 2; (c) scenario 3 and (d) scenario 4.

There are inevitably some stations where the bias is made worse by the homogenisation
process for all algorithms, scenarios and regions; although it is not necessarily always
the same stations that each algorithm makes worse. Climatol-Daily consistently displays
one of the lowest, and often the very lowest, tendency to make stations worse and MASH
and ACMANT largely display the highest. These proportions of stations being made
worse are related to the proportion that are left unaltered by the homogenisation process.
Climatol-Daily does not alter as many stations as MASH or ACMANT, but as a result of
homogenising more stations the latter two algorithms also display a greater tendency to
make station biases worse. Therefore, the author recommends that if the reader seeks
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an algorithm with a low rate of increasing station biases then they should use Climatol-
Daily. If a greater overall bias reduction is desirable, even at the cost of some stations
having lower quality after homogenisation has been applied, then an algorithm such as
ACMANT could also be used. However, Climatol-Daily outperforms ACMANT even for
overall bias reduction in all three South East scenarios, all three South West scenarios
and Wyoming scenario four. DAP, HOM and SPLIDHOM are even more conservative
than Climatol-Daily in altering station biases, leaving a greater number unchanged, but
also making a similar or slightly greater proportion worse in general. Climatol-Monthly
and MAC-D would both be classed as average for bias reduction, making more stations
worse in general than Climatol-Daily, but not as many worse in general as ACMANT, and
making more stations better than Climatol-Daily, but again, not as many as ACMANT.

There is very little tendency across the algorithms to increase the number of positively
biased stations relative to perfection, but there is a noticeable lean towards returning
more negatively biased stations than there were on release, though the magnitude of the
biases is predominantly reduced. ACMANT displays the greatest tendency to return sta-
tions with a negative bias suggesting that caution should be applied when using stations
homogenised by ACMANT for long term trend analysis.

RMSE of the returned data relative to the clean data
Similar methods were employed to evaluate an algorithm’s ability to reduce RMSE as for
its ability to reduce bias. RMSE is of interest in addition to bias because it can be shown
to consider differences in correlations and standard deviations as well as differences in
means, see chapter six section 3.2 for the formula illustrating this. Plots such as in fig-
ure 7.8 were produced for RMSE and, as expected, the RMSE reduced as the present
day, which was predominantly used as an algorithm’s reference period, was approached.
There were spikes of lower algorithm performance exhibited in the RMSE plots over time,
and these appear to be correlated with times of increased variability in temperatures be-
tween stations. Given that the algorithms applied in this study predominantly used other
station series to determine the size of an adjustment, it is logical that one finds lower per-
formance when there is increased variability as comparisons between stations are less
beneficial.

The values and percentage recoveries for regional RMSEs are illustrated in figure 7.9 and
can be found alongside other statistics in tables B.2, B.10, B.18, B.26, B.34, B.42, B.50
of appendix B. Climatol-Daily and ACMANT were once more the best performing algo-
rithms in terms of percentage recovery in Wyoming, the South East and the South West,
although MASH did outperform ACMANT in the South West scenario three. ACMANT
was the best at regional RMSE reduction for the North East scenarios one and three,
but Climatol-Monthly outperformed it in the North East scenario two. Neither Climatol-
Monthly nor MASH were as consistently good as the former two algorithms though. DAP,
HOM and SPLIDHOM largely lagged behind other algorithms owing to leaving a larger
number of stations unchanged by the homogenisation process. MAC-D performed rel-
atively well in the area of regional RMSE reduction for the scenarios that it sought to
homogenise. The greatest consistency in RMSE reduction across scenarios was found
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(a) (b)

(c) (d)

Figure 7.8. Plots to illustrate the progression of RMSE over time for Wyoming (a) scenario 1; (b)
scenario 2; (c) scenario 3 and (d) scenario 4. Data have been aggregated to the monthly level to
summarise the progression. Red lines indicate the released bias, relative to the clean benchmark
data, and black lines indicate the returned bias, relative to the clean benchmark data, after MAC-D
has been applied.

in the North East, where performance of the majority of algorithms was good.

Looking on a station by station basis the findings are similar for RMSE as they were for
bias. Climatol-Daily still displays the lowest tendency to make stations worse, but also
leaves a large number unchanged. ACMANT and MASH improve a larger proportion of
stations, but do so at the expense of making a non-negligible number of station RMSEs
worse. These tendencies are true across all scenarios and all regions. MASH consis-
tently makes the homogeneity of all the best stations worse, but predominantly makes
the homogeneity of all the worst stations better. This general tendency to improve the
homogeneity of the worst stations is true for all algorithms across all scenarios.

Conclusions based on RMSE assessment measures are very similar to those drawn from
bias assessment measures. Climatol-Daily is the preferred algorithm if a low tendency
to make stations worse is sought. If a good overall performance is desired and the ho-
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Figure 7.9. Plots to illustrate the reduction in the regional RMSE, relative to the clean benchmark
data, by each algorithm for each scenario and region. Plot (a) represents the reduction in RMSE
in ◦C and plot (b) shows the recovery as a percentage, with a 100% recovery being perfect and
a 0% recovery meaning no change. X-axis labels are as follows; 1 - 4: Wyoming scenarios one
to four; 5-7: South East scenarios one to three; 8-10: North East scenarios one to three; 11-13:
South West scenarios one to three. Vertical dashed lines have been added to help distinguish
between these regions. Black crosses represent the clean data (always a RMSE of 0◦C) and red
crosses represent the released data relative to the clean benchmark data.

mogeniser is willing to sacrifice the homogeneity of some good stations for the improve-
ment of many stations then ACMANT would also be a reliable choice.

Linear Trend Recovery
As stated in chapter 6 section 3.2, long term trends are a major area of concern in climate
science. The focus here is on the overall long-term linear trends as the assessments
using loess smooths to investigate high and low frequency variability were found to be
misleading in some cases, as discussed in section four of chapter six. The output of the
loess analysis can still be found in tables B.4, B.12, B.20, B.28, B.36, B.44 and B.52 of
appendix B should the reader be interested, but, as with all validation measures, these
statistics should not be taken out of context.

Most interest lies in linear trends that are considered significant at some level. Trends
here were defined as being significant if their regression coefficients were significant at
the 5% level. In Wyoming and the South East relatively few trends in any scenario were
significant at this level for the clean data, though noticeably larger proportions were signif-
icant in the released data. In the North East the vast majority of trends were significant for
the clean data and there were fewer significant trends in the released data. For the South
West just under half of the trends were significant in the clean data and this proportion
was increased for the released data for all scenarios. In the following summary when the
phrase ’truly significant trends’ is used it is referring to trends that were significant in the
clean data.

In Wyoming, MASH and ACMANT did the best job of returning a similar number of sig-
nificant trends in the returned data as were found in the clean data, but these were not
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necessarily at the stations that did have truly significant trends. MASH struggled to re-
tain the significance of the truly significant trends in these scenarios and ACMANT also
struggled slightly, but to a lesser extent. No algorithms returned significant trend values
for the two truly significant trends in Wyoming scenario four, but most did a good job of
reducing the number of spurious significant trends that were only present because of the
inhomogeneities. Climatol-Monthly performed comparatively to MASH and ACMANT in
Wyoming scenario three and relatively well in the South East scenarios. Climatol-Daily
and MAC-D retained the significance and approximate value of the only significant trends
in Wyoming scenarios one and two, but not in scenario three. In the South East, Climatol-
Daily performed on a par with MASH and ACMANT, with all three algorithms showing
good recovery of the significance and approximate values of the truly significant trends.
For the North East, Climatol-Daily, Climatol-Monthly, MASH and ACMANT all did a good
job of returning similar numbers of truly significant trends for all three scenarios. In terms
of recovering coefficient values of the significant trends Climatol-Monthly and ACMANT
were the top performing algorithms. In the South West, MASH, ACMANT, Climatol-Daily
and Climatol-Monthly continued to perform well. In terms of returning significant trends
that were at the same stations as in the clean data and also close in value, MASH and
Climatol-Daily performed best in the South West scenarios, though all algorithms returned
too many significant trends in the South West scenario two.

In all Wyoming, South East and South West scenarios DAP, HOM and SPLIDHOM con-
stantly returned too many significant trends, largely as a result of not altering enough
stations in the homogenisation process. In the North East, DAP, HOM and SPLIDHOM
were only applied to scenario one, but here they returned too few significant trends, again
likely as a result of not making enough changes during homogenisation.

There were no significant regional trends in any of the scenarios for Wyoming and the
South East and this lack of significant trends was preserved in the released series and
the series returned by all the homogenisation algorithms. In the North East, regional
trends were significant in the clean, released and returned data for all scenarios. In the
South West, no regional trends were significant in the clean data, but the regional trend
in scenario two was made significant on release and no algorithm managed to remove
this significance. MASH wrongly made the regional trend significant in scenario three of
the South West, which is undesirable. The reason for the significance of trends in the
North East and not the other regions is not immediately clear. However, investigation into
regional linear trends from the observations that were used when creating the benchmark
data shows that these too do not have a significant regional trend in Wyoming or the South
East, but they do in the North East. This suggests that the model is reproducing true
climate artefacts in these regions. In the South West, the observations show a significant
linear trend that is not reproduced in the created data, this illustrates that this region may
not be as reliable or realistic as a benchmark as the other regions. Although, it is also
possible that the trend exhibited in the observations is from inhomogeneities and is not
a true climate trend. It is not unsurprising that some non-significant trends are found.
Globally our climate is warming, [Karl et al., 2015], but regionally, and over shorter time
periods, the trends can be less pronounced.
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Algorithms generally struggled with regional trend recovery most when the clean and
released trends were very similar in value. This was shown in Wyoming scenario two
where percentage trend recoveries were very small and in the South East scenario two,
where percentage trend recoveries were much too large. In the South East scenario two,
the trends were in fact the same in the clean and released data to three decimal places,
which leads to a weakness in percentage trend recovery being highlighted. This weak-
ness is that if statistics are similar in clean and released data then the denominator of
the percentage recovery expression is incredibly small meaning that very large percent-
age trend recovery values are quickly obtained, even if an algorithm’s performance is still
reasonable. When such a situation arises it is helpful to look at a visual representation of
trend recovery in terms of the clean, released and returned ◦C/decade trend in addition
to the percentage trend recovery value. Visualisations of trends for the clean, released
and returned data are therefore shown in figure 7.10 alongside the percentage recovery
values for these trends. The numerical values of the trends can also be seen in appendix
B in tables B.3, B.11, B.19, B.27, B.35, B.43 and B.51.

Figure 7.10. Plots to illustrate the recovery of regional linear trends, relative to the clean bench-
mark data, by each algorithm for each scenario and region. Plot (a) represents the recovery of
the linear trend in ◦C/decade and plot (b) shows the recovery as a percentage. The Y-axis in plot
(b) has been restricted to only show percentage recovery values between 0% and 200%, that is,
only values that display no change or some change for the better. Therefore if certain algorithms
aren’t represented for a particular scenario in plot (b) this means that the algorithm returned a re-
gional linear trend that was more dissimilar to the true regional linear trend than it was on release.
X-axis labels are as follows; 1 - 4: Wyoming scenarios one to four; 5-7: South East scenarios
one to three; 8-10: North East scenarios one to three; 11-13: South West scenarios one to three.
Vertical dashed lines have been added to help distinguish between these regions. Black crosses
represent the clean data, red crosses represent the released data and red dashes represent the
200% recovery point, beyond which trends have been moved in the right direction, but to such an
extent that they are now more dissimilar to the clean trend than they were on release.

Comparing across scenarios and regions there is no one algorithm that is consistently
best or worst at regional trend recovery. MASH is nearly always in the top three, but
ACMANT, Climatol-Daily and Climatol-Monthly also have occasions of being the best. For
the North East where the regional trends are significant there is still no one consistently
best algorithm.
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There were always more positive than negative trends in the clean data for all scenarios
and regions. The addition of inhomogeneities added more negative trends in, and, in
general the process of homogenisation then corrected the data sufficiently to make these
trends positive once more, though occasionally the balance was redressed too far and
not enough negative trends were returned. Interestingly, ACMANT did not return enough
negative trends in the majority of the Wyoming, South East and South West scenarios,
in spite of its tendency to return negatively biased stations. This suggests that ACMANT
may be biasing stations more negatively towards the beginning of series, which would
then lead to an increased likelihood of creating positive trends, though the author has
not investigated this theory. In the North East ACMANT displayed no such problem of
returning too many stations with positive trends, though all bar one of the trends in this
region were positive in the clean data anyway.

In summary, no one algorithm stands out as being the best for trend recovery, though
Climatol-Daily still shows the lowest tendency to make stations worse, which is a desir-
able quality. MASH and ACMANT are still improving the greatest number of stations, but
at the cost of making more worse as well. Climatol-Monthly should be approached with
caution as it can have a relatively high tendency to make station trends worse, though
this is not consistent across all regions, but primarily evidenced in the South East, where
trends are smallest on average.

Variability similarity assessed by standard deviation comparisons between clean,
released and returned data
Recovering clean station variabilities is the area that algorithms found most difficult. This
is not a surprising result as most were not designed to homogenise moments higher than
the mean. The three algorithms that were designed for the homogenisation of higher or-
der moments, DAP, HOM and SPLIDHOM, still struggled in this area; they were changing
station variabilities, but they were not necessarily changing them for the better.

On release there were more stations that were too variable than not variable enough.
In general all algorithms kept this balance. However, this does not mean that the same
stations fell in the same categories of ’too variable’ and ’too uniform’ in the released and
returned data. That is to say, the majority of stations did have their variabilities changed
by the homogenisation process and for Climatol-Daily, Climatol-Monthly, ACMANT and
MAC-D this always resulted in more station variabilities being improved than made worse.
For DAP, HOM and SPLIDHOM there were always more variabilities made worse than
made better by homogenisation. For MASH more variabilities were made worse than
better in all Wyoming scenarios, but only scenario one of the North East and scenario
two of the South West. In the summary document provided to homogenisers, plots, as
in figure 7.11, were included that allowed the quick evaluation of whether there was a
tendency to return stations that were too variable or too uniform. Figure 7.11 is for the
Wyoming scenarios for MAC-D where it can be seen that variabilities are being brought
closer to the observed variabilities in general, with little tendency to consistently return
too variable or too uniform stations. Further information on algorithm variability recovery
can be found in appendix B, in tables B.5, B.13, B.21, B.29, B.37, B.45 and B.53.
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(a) (b)

(c) (d)

Figure 7.11. Plots to illustrate the ratios of released to clean (red) and returned to clean, for
MAC-D, (black) standard deviations for each station in Wyoming (a) scenario 1; (b) scenario 2; (c)
scenario 3 and (d) scenario 4.

Out of MAC-D, Climatol-Daily, Climatol-Monthly and ACMANT, ACMANT is best for all
regions and scenarios apart from the North East scenario two where it comes second
to Climatol-Monhtly. For this reason the author recommends ACMANT as the best algo-
rithm for improving station variabilities with the cautionary note that it does also make a
non-negligible number of variabilities worse.

Extreme Value Recovery
At the daily level extremes are not smoothed out by an aggregation process, which is de-
sirable as extremes have impacts felt at the societal scale. However, because extremes
are single observations, measurement uncertainty must be taken into account. If returned
extremes matched the extremes in the clean data exactly then they were referred to as
being ’exact’, if they matched the extremes in the clean data within ±0.14◦C then they
were referred to as being ’exact to measurement precision’. The value of 0.14◦C was ob-
tained from [Brohan et al., 2006] and its justification is provided in chapter 6 section 3.2.
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Tables B.6, B.14, B.22, B.30, B.38, B.46 and B.54 provide information on each algorithm’s
ability to recover extremes and the following paragraphs draw on information from these
tables for their conclusions.

Without exception, more of the cold extremes were corrupted by the process of adding in-
homogeneities than the warm extremes and in general they were made cooler than in the
clean data. The reason for this phenomenon is that more of the cold extremes occurred
earlier in the time series, where there was a greater chance of an inhomogeneity being in
progress owing to inhomogeneities propagating backwards. The slightly greater tendency
to colder extremes can be explained by the fact that inhomogeneities that resulted in a
warming for the more recent time period were implemented by cooling the less recent
time period, and warming inhomogeneities were fractionally more common. The algo-
rithm that was best at recovering cold extremes to be exact was Climatol-Daily for most
of the Wyoming and all of the South East and South West scenarios and also the North
East scenario three. Climatol-Monthly was best at recovering cold extremes exactly for
the North East scenarios one and two. ACMANT was best at recovering cold extremes
exactly for Wyoming scenario one and best at recovering them exact to measurement
precision for all Wyoming scenarios and the North East scenarios one and three and the
South West scenario three. MASH was best at recovering cold extremes to measurement
precision in the South West scenarios one and two.

For warm extremes, ACMANT was best at recovering them exactly for Wyoming scenar-
ios one to three, the South East scenario two and the North East scenario three. It was
also best at recovering the warm extremes exact to measurement precision for all the
South East scenarios, all the North East scenarios and Wyoming scenarios one to three.
For Wyoming scenario four, DAP, HOM and SPLIDHOM were best at returning warm
extremes exactly as in the clean data and exact to measurement precision, though this
was achieved by just not changing any extremes from the released data. Climatol-Daily
was best at recovering extremes exactly for the South East scenarios one and three, best
or joint best for all the South West scenarios and joint best for the North East scenario
two. Climatol-Daily was also best at recovering warm extremes exact to measurement
precision for the South East scenario one and all three South West scenarios. Climatol-
Monthly was joint best for recovering extremes exactly for the North East scenario two
and the South West scenario one and was best for the North East scenario one.

In terms of not making extremes worse there is not a single algorithm that does best
in all regions and scenarios. However, for cold extremes Climatol-Daily is primarily the
algorithm least prone to making extremes worse and for warm extremes Climatol-Daily
also shows a low tendency to make extremes worse, but so do DAP, HOM and SPLID-
HOM. MASH was the algorithm that most commonly improved extremes from their values
in the released data, but not by enough to make them exact to measurement precision.
However, MASH was also the algorithm which made most extremes worse and should
therefore be used with caution. It should also be noted though that some extremes MASH
’made worse’ were owing to different reference periods being used in the homogenisation
process.
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Overall the conclusions are the same for this assessment measure as for the majority
of others; Climatol-Daily and ACMANT would be the authors recommended algorithms
for extreme value recovery, but the majority of other algorithms should also be consid-
ered relatively suitable for this task. This is an encouraging result when the majority of
algorithms were not specifically designed to work with daily data.

7.3. Summary of algorithm performance

The conclusion of this work has to be, as expected, that different algorithms have different
strengths and weaknesses. Therefore, someone with data to homogenise should clarify
which aspects of their data they are most interested in before they choose a homogenisa-
tion method. The following subsections attempt to give an overview of the strengths and
weaknesses of each of the algorithms that were contributed to this study to allow an in-
formed decision on a fit for purpose algorithm to be made. The reader should bear in mind
that these statements are true when the algorithms are applied to the created benchmark
data, but the author believes the same characteristics would be exhibited when the meth-
ods are applied to real world data. An interesting extension to this study would be to apply
these algorithms to the real world data the benchmarks were created from. This would
allow quantification of whether similar features appear to be exhibited in the observations
as in the created benchmarks. For example, whether similar numbers of inhomogeneities
were found by these algorithms in the observations and the benchmarks.

7.3.1. ACMANT

ACMANT is considered by the author to be one of the best homogenisation algorithms
contributed to this study. ACMANT consistently made a large number of stations bet-
ter during the homogenisation process. Although, this came at the cost of making a
non-negligible number of stations worse as well, often including stations that were per-
fect on release. Its ability to recover variabilities and extreme values is commendable
across most regions, though it does struggle more in the South West. The precision of
the detections made by this algorithm could be improved as a larger window size was
necessary for this algorithm to have a good detection ability in general and even then it
displayed a high false alarm rate. However, its detection ability is praiseworthy because
of the consistently higher rate of detection for small inhomogeneities than that found for
other algorithms. The increase in station density does not cause a consistent change in
performance in ACMANT, in Wyoming and the South West little improvement is made, but
in the South East and North East algorithm performance is generally better in scenario
two than scenario one. The impact of having no trend inhomogeneities in scenario three
relative to scenario two results in better detection ability in general, but has little affect
on adjustment ability. ACMANT’s adjustment ability for scenario four in the presence of
increased autocorrelations is commendable with little degradation in performance being
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shown. The detection ability of ACMANT in scenario four is not as good as in scenario
one suggesting that this could be considered an area of improvement for this algorithm.

7.3.2. Climatol-Daily

Alongside ACMANT, Climatol-Daily is considered by the author to be one of the best
algorithms. It shows little tendency to make stations worse during the homogenisation
process, although this comes at the cost of leaving a non-negligible number of stations
unchanged, which may be considered undesirable for some applications. It shows a good
and precise detection ability and is to be highly commended for its adjustment ability too,
which homogenised some stations to perfection, a trait that no other algorithm can boast.
Generally speaking Climatol-Daily’s performance was not affected by a change in station
density, though this is not true in the South West where more stations did lead to better
algorithm performance. In the South West, the presence of trend inhomogeneities did
not lead to a consistent change in algorithm performance, but in other regions there was
some evidence of trend inhomogeneities hindering Climatol-Daily’s ability to homogenise
as well as it could. The presence of autocorrelations did not have a detrimental effect
on Climatol-Daily’s adjustment ability, which is praiseworthy, though its detection ability
for scenario four in Wyoming was lower than scenario one, which was the equivalent
scenario with lower autocorrelations.

7.3.3. Climatol-Monthly

Climatol-Monthly’s performance can best be described as being average. It does not
show as much of a tendency to leave stations unchanged as its daily counterpart, but
it does show more of a tendency to make them worse, though rarely the greatest ten-
dency to do so. Generally speaking the increase in the station density from scenario
one to scenario two does lead to a slight improvement in algorithm performance, but not
to such an extent that Climatol-Monthly should be considered unreliable when used to
homogenise a smaller station network. Trend inhomogeneities lead to a lower detec-
tion ability for Climatol-Monthly, though they are understandably harder to detect. The
adjustment ability of Climatol-Monthly is generally not affected by the presence of trend
inhomogeneities, although its performance is worse in the South West scenario two than
scenario three. Given that scenario one of Wyoming was not correctly homogenised by
this algorithm it is difficult to quantify the effect of autocorrelations on its adjustment per-
formance. However, detection ability is degraded by the presence of autocorrelations and
the adjustment measures that could be compared also suggest that this is an area this
algorithm struggles with.

167



7. Benchmarking the Performance of Contributed Algorithms

7.3.4. DAP, HOM and SPLIDHOM

These algorithms generally do not make a large proportion of stations worse according
to most validation measures, which is commendable. However, they also suffer from a
low detection ability meaning that many stations are left completely unchanged by the
homogenisation process. Owing to this the author recommends that the primary area for
development for these algorithms is their detection methodology. Looking at the number
of stations that are changed, there are always a greater proportion improved than made
worse for all three of these algorithms for nearly all adjustment ability measures, which
is commendable. However, for station variabilities that are changed by these algorithms,
the vast majority are made worse and this was more often due to station variabilities
being wrongly increased than wrongly decreased. Therefore, this should be considered
a necessary area for algorithm improvement before these algorithms are run on any data
where higher order moments are of interest. The detection ability itself was hindered
by largely assigning change points to the first day of the year, this meant that with the
smaller window the false alarm rate was always higher than the hit rate, though this
was generally not true for the larger window size. The increase in station density from
scenario one to scenario two does not have a consistent effect, it improves hit rates,
but also increases false alarm rates; the adjustment ability is improved for Wyoming and
the South West, but not the South East and couldn’t be assessed in the North East
owing to only scenario one being homogenised. The absence of trend inhomogeneities
in scenario three relative to scenario two does not lead to a consistent change in algorithm
performance in general, which is commendable. Autocorrelations on the other hand do
noticeably affect the performance of these algorithms with fewer inhomogeneities being
detected when the autocorrelations in the underlying data were increased. Working with
autocorrelated data could therefore be considered another area of improvement for these
algorithms.

7.3.5. MAC-D

Overall MAC-D is ranked as being average with reference to most algorithm assessment
measures. It is rarely best or worst for any scenario or measure, but instead displays
a consistency that is commendable if the characteristics of the data to be homogenised
are unsure. Its performance is not unduly changed by changes in station density or
by the presence or lack of artificial trend inhomogeneities. Its ability to recover station
variabilities is one of the best of all algorithms analysed, which is praiseworthy when
it is not specifically designed to homogenise moments higher than the mean. MAC-
D’s performance is degraded by the presence of autocorrelations in the data, but this is
realised in more stations being made worse, not fewer being improved. This algorithm is
not affected substantially by a change in window size for inhomogeneity detection making
its accuracy in locating change points commendable.
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7.3.6. MASH

The performance of MASH could be classified differently depending on what the aims
of the homogenisation exercise are. MASH is commonly the algorithm most prone to
reducing station biases, RMSEs and trends, but this comes at the cost of consistently
making a non-negligible number of stations worse during the homogenisation process.
It rarely leaves any stations unchanged by homogenisation and this means that even
perfect stations are commonly corrupted by this algorithm. Looking at significant trends,
its ability to remove spurious significance present only because of inhomogeneities is
commendable. MASH does not perform well at recovering clean station variabilities,
being the most prone to making stations too variable on return for all bar the South East
scenario one and the South West scenario two. It struggles with extreme value recovery
as well, rarely being best in this area of evaluation, and being worst for all Wyoming
scenarios. Looking at the difference in scenarios MASH should be commended for not
having a performance overly dependent on underlying data characteristics. The increase
in station density from scenario one to scenario two caused no noticeable change in
algorithm performance for most regions, though the performance was better for scenario
two in Wyoming. The presence of trend inhomogeneities did not lead to a consistent
change in algorithm performance. The presence of autocorrelations in Wyoming scenario
four does lead to a slight degradation in algorithm performance, but not as substantial
as for some other algorithms. Therefore, if the underlying characteristics of data to be
homogenised are unknown and the homogeniser is prepared to sacrifice the homogeneity
of some stations for the improvement of others MASH could be considered a suitable
candidate for the effort.

7.4. Uncertainty remaining after homogenisation

An advantage of a benchmarking study with synthetic data is that the truth is completely
known beforehand, and thus, the uncertainty remaining in the data after homogenisation
can be quantified. In this study this was assessed by looking at the bias and RMSE
for a region between clean and returned data after homogenisation relative to bias and
RMSE for a region between clean and released data before homogenisation. It was also
assessed by comparing regional trends before and after homogenisation. The reason for
looking at regional data is that climate studies are often carried out with a focus bigger
than a single station. Therefore, although single stations may be improved or degraded
by homogenisation the overall impact on climate conclusions is likely to be at the regional
level. A further reason for focusing on the regional level is that information on a station
by station level has already been provided above to aid homogenisers in their algorithm
development and this section now aims to aid climate scientists in their climate change
conclusions.
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7.4.1. Regional Bias and RMSE

RMSE and bias allow the overall similarity of behaviour between clean and returned se-
ries’ to be assessed. Bias is advantageous as it reports the differences in means between
the clean and released and clean and returned regions, which is of interest if a change
in mean temperatures over time is being assessed and the uncertainty in that change
is being sought. However, for bias, the effects of multiple badly homogenised stations
can cancel out and for this reason regional RMSE, which must be positive, was also
investigated to allow the quantification of the magnitude of errors remaining in a series.

Figure 7.12. Plots to illustrate the reduction in regional bias, relative to the clean benchmark
data, by each algorithm for each scenario and region. Plot (a) represents the change in regional
bias in ◦C and plot (b) shows the recovery as a percentage, with a 100% recovery being perfect
and a 0% recovery meaning no change. The Y-axis in plot (b) has been restricted to only show
percentage recovery values between 0% and 200%, that is, only values that display no change
or some change for the better. Therefore if certain algorithms aren’t represented for a particular
scenario in plot (b) this means that the algorithm returned a regional bias that was more dissimilar
to the true regional bias than it was on release. X-axis labels are as follows; 1 - 4: Wyoming
scenarios one to four; 5-7: South East scenarios one to three; 8-10: North East scenarios one to
three; 11-13: South West scenarios one to three. Vertical dashed lines have been added to help
distinguish between these regions. Points outside the red lines indicate an algorithm has returned
a regional bias larger than it was on release. Black crosses represent the clean data, red crosses
represent the released data and red dashes represent the 200% recovery point, beyond which
regional biases have been moved in the right direction, but to such an extent that the regional bias
is now greater than on release.

The mean bias for a region is simply calculated as the mean of the individual station
biases. The biases across the regions and scenarios varied in magnitude, but were never
larger than 0.1◦C as can be seen in figure 7.12. It was not atypical for some regional
mean biases to be increased during homogenisation; this is why some coloured points
do not appear in 7.12 (b). This happened in Wyoming scenario one for DAP, HOM and
SPLIDHOM; MACD and ACMANT (which also changed the sign of the bias) in Wyoming
scenario four; DAP, HOM and SPLIDHOM for the South East scenario one; Climatol-Daily,
Climatol-Monthly and MASH for the South East scenario two; Climatol-Daily, MASH and
ACMANT for the South West scenario one, where the sign of the bias was also changed;
HOM in the South West scenario two and all algorithms in the South West scenario three,
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where the bias only started off as -0.003◦C. However, in only one case, ACMANT for the
South West scenario one, was the bias increased enough that its value would change
from 0◦C to 0.1◦C when reporting to the closest tenth of a degree.

The regional RMSE is calculated as RMSE =

√
n∑
i=1

(Cleani−Releasedi)2
n where n is the

number of data points in the region for which the record is not missing and Cleani and
Releasedi (or Returnedi) are the mean values on day i. This means that all stations
are effectively put into one long string of time points before this calculation takes place.
Regional released RMSEs were always between 0.55◦C and 0.80◦C, with no pattern
in where the largest regional RMSEs were found. The regional RMSEs were never in-
creased, therefore it can be concluded that the uncertainty due to inhomogeneities in the
data is, in general, lower after homogenisation than before. For the returned regional
RMSEs, values ranged from 0.10◦C to 0.77◦C. Climatol-Daily and ACMANT were the
best at reducing regional RMSEs, with values below 0.3◦C for the data these algorithms
returned in all bar two cases. HOM was the worst algorithm for reducing regional RMSE
in general. Therefore, in terms of quantifying remaining uncertainty, when using the best
algorithms the uncertainty for RMSE at least can be assumed to have been reduced by
50% in most cases, this can be seen in figure 7.9.

7.4.2. Regional Trends

Enabling the calculation of reliable climate trends is one of the primary reasons for ho-
mogenisation. Of all the regions and scenarios studied it was only in the North East
where significant trends were found in the clean data and these were between 0.236 and
0.245◦C/decade in magnitude. The data corruption process made this range increase
to 0.231 to 0.272◦C/decade, but without exception all algorithms brought the regional
trends closer to the clean trends during homogenisation in this region, thus reducing
the uncertainty remaining in the data. For the South West scenario two, the corruption
process made the regional trend significant and no algorithm managed to remove this
significance, but Climatol-Daily came closest, reducing the trend from 0.126◦C/decade to
0.106◦C/decade, though this is still 0.007◦C/decade larger than the true regional trend.
The largest difference in trends between clean and released data was 0.045◦C/ decade
found in Wyoming scenario three, this was made smaller by all homogenisation algo-
rithms. The biggest difference between a clean and returned trend is found in Wyoming
scenario one for DAP and is 0.048◦C/ decade, but this is the only time a discrepancy of
this size is found. In no case is the sign of a regional trend ever changed by homogenisa-
tion as was illustrated in figure 7.10. In general, trends are improved by homogenisation
and therefore the uncertainty in regional trends can be said to be reduced. However,
uncertainty in the significance of trends remains as the South West scenario two illus-
trates that just because all algorithms return a significant trend this does not mean that
the underlying clean data exhibits a significant trend.
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7.5. Discussion

This thesis was able to assess the eight contributed homogenisation algorithms accord-
ing to the measures defined in chapter six. This allowed the quantification of their per-
formance relative to the created clean data, which is beneficial as there was a known
answer. However, as already stated, the created data are not a perfect replication of the
real world. The author would therefore recommend that an extension to this study be
formed by applying the homogenisation algorithms to the real world data from which the
created data were formed. The evaluation framework would have to be altered, as eluded
to in section three of this chapter, but conclusions could still be drawn from the results
of applying the algorithms to the real data by comparisons with the results from applying
them to the benchmarks. For example, if a similar number of small, medium and large
inhomogeneities were found in the real world data compared to the number found in the
benchmark data, it would be reasonable to suppose that a similar proportion had also
been missed. If it could be established that a similar proportion had been missed, then
the uncertainty remaining in the real world data after homogenisation may then also be
supposed to be similar to that remaining in the benchmark data after homogenisation.

If a similar study to this were to be formed that looked only at certain algorithms then
more bespoke comparisons could be made. For example, performance could be com-
pared between the ’good’ and ’bad’ stations for MAC-D and validation measures could
be adapted to cope with series that were not homogenised to the most recent period for
MASH. Neither of these extensions were carried out here as the evaluation sought to
compare all algorithms as much as possible instead of highlighting specific ones.

Two further extensions to this study if it were to be carried out again would relate to
greater uncertainty quantification. The first would help to quantify uncertainty in the qual-
ity of the benchmarks by keeping a tally of inhomogeneities found by different algorithms.
If all algorithms found the same supposedly false alarm then it would help the bench-
mark creator to know that there may be a bug in the code. Equally multiple algorithms
getting the same hit would help to further quantify which inhomogeneities are easiest to
find. The second extension would be a lot more time consuming as it is the suggestion
that an ensemble of benchmarks be produced with the same underlying properties, but
slightly different inhomogeneities in each. For example, there could be 100 Wyoming
scenario ones, all with the three inhomogeneity types and the same number of stations,
but with a new set of inhomogeneities generated each time. This ensemble approach
would allow uncertainty estimates to be placed on the detection measures. Adjustment
measure uncertainties would still be difficult to quantify, but uncertainties could be given
for improvements in regional biases, RMSEs and trends. For example, it may be possible
to state that a hypothetical algorithm ’A’ always reduces RMSE by at least 50% whereas
algorithm ’B’ sometimes reduces it by 90%, but other times only by 10%.

The overlap of algorithms with the study of Venema et al. [2012] is ACMANT, Climatol-
monthly and MASH, though it is not necessarily the exact same version of the algorithm
that was run in this study and Venema et al. [2012]. In Venema et al. [2012] detection
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ability was carried out at the annual level and both ACMANT and Climatol performed
well. The hit rates exhibited in this thesis are a little lower than those found in Venema
et al. [2012] which is to be expected because of the greater time restriction employed
here for a detection to count as a hit. Also, the false alarm rates are higher in this study,
which is once more to be expected. In terms of adjustment ability, when Venema et al.
[2012] looked at the CRMSE between clean and released and clean and returned data
they commended the performance of both ACMANT and MASH and showed plots which
suggest that neither of these algorithms showed such a tendency to make stations worse
during homogenisation at the monthly level as they did at the daily level. Although Ven-
ema et al. [2012] do note that when looking at network wide CRMSE ACMANT does not
perform as well and lags behind MASH, something not exhibited in this thesis. No com-
ment on Climatol’s performance with respect to temperature series CRMSEs could be
found. Looking at linear trend comparisons Venema et al. [2012] found that Climatol had
a tendency to greatly decrease the magnitude of any trend in temperature series; it still
reduced trend magnitudes in this thesis, but here it was right to do so as the corruption
process of the data predominantly made trends larger than they were in the clean data.
MASH outperformed ACMANT in trend recovery in Venema et al. [2012], though both
did well. In this thesis MASH and ACMANT still both performed well in trend recovery
and MASH still outperformed ACMANT in terms of the number of station trends improved
in all bar Wyoming scenario one. However, MASH did also make more trends worse
than ACMANT did. The similarities and differences between these benchmarking studies
shows the benefit of multiple homogenisation studies; they reinforce some information,
but challenge other pieces of information, they also show that at different temporal (and
spatial) scales algorithms may perform differently.

7.6. Summary

This chapter has used the validation framework laid out in chapter six to evaluate the per-
formance of the eight homogenisation algorithms contributed to this blind benchmarking
study. The results have been encouraging in that the algorithms do improve the homo-
geneity of stations in general. However, the evaluation has also shown that there is to
date, as anticipated, no algorithm that is completely reliable when seeking to homogenise
daily temperature data. The two algorithms that stand out as having the best performance
are ACMANT and Climatol-Daily, though both of these have weaknesses too.

Areas for algorithm improvement that have been identified by this study are: a greater
capacity to deal with autocorrelated data; improved detection ability for small, seasonally
varying or gradual inhomogeneities; and a need to homogenise moments higher than the
mean. The following chapter will provide the authors suggestions for areas of future work
and a summary of the conclusions from this and each of the previous chapters.
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This study has investigated the performance of homogenisation algorithms on daily tem-
perature data. Chapters one and two gave the motivations behind such a study and an
overview of previous work in the areas of homogenisation and benchmarking. Chapters
three and four introduced how realistic clean artificial data can be created, detailing the
method employed in this study. Chapter five introduced the inhomogeneity structures that
were added on to these clean data, the reasons for the specific inhomogeneity choices
and the creation of four scenarios to investigate the impacts of different data and station
network characteristics on homogenisation algorithm performance. Chapter six explained
the validation framework to evaluate algorithm performance in this work. The results of
implementing this framework on the eight homogenisation algorithms contributed to this
study were presented in chapter seven, where summaries of their performances were
also given.

This final chapter draws on the conclusions from the preceding chapters to highlight the
achievements of this study. It also draws on the conclusions and discussions from previ-
ous chapters to give an outline of where the author recommends future work in this area
should be directed and what should be done differently if the study were to be repeated.

8.1. Conclusions

This project has been the first comparison study of homogenisation algorithms on daily
temperature data. It was necessary as previous studies have focused on monthly or
annual data and have largely looked at smaller station networks than those which were
developed here for four regions in North America.

This project benefited from using a modelling approach that allowed the incorporation of
other climatic variables into the creation of daily temperature time series. The GAM is able
to model artefacts such as seasonal cycles and long term trends that in the past have
commonly had to be removed before temperature data could be modelled. The GAM
used here is also good because, as its inputs come from reanalysis data and location
variables, it can create stations where none previously existed and is not hindered by
missing data. Although the focus in this research was on North America, the methodology
of using a GAM to produce synthetic daily temperature series could be generalised to
other regions of the globe. However, if using the GAM for other regions of the globe, the
input variables should be reviewed so as to incorporate those most pertinent to the study
region.
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Another advantage of using a GAM is that realistic inhomogeneities can be created by
perturbing the inputs to the model. This can create seasonally varying inhomogeneities
and inhomogeneities which are dependent on other climatic variables, both these types of
inhomogeneity are known to be observed in reality. As well as this, the GAM does not pre-
vent the addition of constant offset inhomogeneities, allowing a consistency between this
study and previous homogenisation studies. The power of the GAM was exploited to cre-
ate four different inhomogeneity scenarios, three exploring both step and trend changes
and one exploring only step changes. Different station densities could also be investi-
gated because of the GAM’s ability to create extra stations, and series autocorrelations
were explored in scenario four that was created only for Wyoming.

Overall the change in station density was not found to impact algorithm performance to
the same extent that changes in autocorrelations were. The absence of trend inhomo-
geneities was also not found to impact algorithm performance to the same extent as
autocorrelations. However, detection ability was predominantly better in the absence of
trend inhomogeneities, as trend inhomogeneities usually fell into the category of ’small’
inhomogeneities, that were consistently less well detected.

The validation framework incorporated assessments for both algorithm detection ability,
which has been the primary focus of most studies in the past, and algorithm adjustment
ability. It is important that these two aspects are viewed as complementary and not
competitive as good performance in one aspect does not guarantee good performance
in the other.

ACMANT is commended as being the best algorithm for detecting small inhomogeneities,
though for ACMANT to have a good detection ability in any region or scenario the larger
of the two detection windows was needed, and even then a high false alarm rate was
exhibited. Climatol-Daily should also be commended for a good detection ability in gen-
eral, and for this algorithm the precision of these detections is praiseworthy with a smaller
change point window size being sufficient. Overall, these two algorithms would be upheld
as the best contributions to this study, for both detection and adjustment ability.

Climatol-Daily homogenised some stations to perfection, which no other algorithm suc-
ceeded in doing. It also consistently made very few stations worse, though it left a non-
negligible number unchanged. ACMANT on the other hand improved a great number of
stations, but made a non-negligible number worse. MASH also improved the homogene-
ity of a great number of stations, but left very few unchanged, meaning that even perfect
stations were commonly corrupted by this algorithm. DAP, HOM and SPLIDHOM had the
opposite problem and left too many stations completely unchanged. MAC-D was only
applied in Wyoming, but here displayed average performance, with a good number of
stations improved, though also a non-negligible number made worse. Climatol-Monthly’s
performance could also be described as average as it too showed a good ability to im-
prove stations, but also made a non-negligible number of them worse.

As anticipated, the conclusions in the area of algorithm improvement are that more work
is required to create or adapt homogenisation algorithms to cope with autocorrelated
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data, small and seasonally varying inhomogeneities and trend inhomogeneities.

With these conclusions, the author believes the objectives of this study have been met.
A suite of realistic benchmark datasets have been created and different inhomogeneity
structures have been explored. The homogenisation community were successfully en-
gaged and feedback on algorithms was provided to each participating homogeniser as
well as now being made available to the homogenisation community as a whole. Areas
for future work are identified below, but the author believes this study to have been an
incredibly beneficial first study into the performance of algorithms on daily temperature
data.

8.2. Discussion and Future Work

The above section gave areas for improvement of algorithms and this section details
the areas for improvement and extension of the benchmarks and validation measures.
The first of these areas correlates well with the need for algorithms that can cope with
autocorrelated data, in that there is a need for better modelling of autocorrelated data.
Scenario four of this study created data that had better autocorrelations than the rest of
the scenarios, but they were still not completely realistic. Autocorrelations really need
to match those found in observations for deseasonalised difference series, as this is the
level at which inhomogeneities are commonly sought out. However, even in scenario four,
autocorrelations tailed off too soon in these series.

A further area of improvement for the benchmarks would be to create more realistic inter-
station correlations. These were, in general, too high in the created data. However, the
highest inter-station correlations were reduced when scenario four was created. This
suggests that in a future iteration of this study it would be possible to simultaneously
improve autocorrelations and inter-station correlations. One possible way of doing this
would be to use a spatio-temporal model on top of the GAM. That is, use the GAM model
as it is to produce the mean predictions, but then create a model for the perturbations
from these means that incorporates the spatial and temporal patterns. This could, for
example, be carried out in R’s Spatio Temporal package using the differences between
the predicted means and observations as inputs to the model, along with any necessary
covariates, such as the time and location variables.

A way of expanding this benchmarking study using either the existing model formulation
or the new spatio-temporal formulation suggested above would be to look at other regions
of the globe. The four regions chosen in North America did have different climates, but
they did not explore all climates exhibited on the Earth. The author would recommend
investigating regions such as Europe, where the results could be more directly compared
to Venema et al. [2012] and also at least one region that has very little seasonal cycle or
very predictable weather patterns to see what effects these aspects have on both model
and algorithm capabilities. As stated in chapter four and in section one of this chapter,
if different areas of the globe were to be considered, the variables included in the model
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should be reviewed to ensure that the best model for each region is produced.

Even with the existing modelled regions it would be possible to expand the study by
looking at expanding the scenarios. For example, similar released scenarios could be
produced, but with changes to the underlying data. Such changes could include incorpo-
rating different variables or data from different reanalyses, downscaling from reanalyses
in a different way or exploring variants of the existing smooth functions, for example by
changing their degrees of freedom or basis functions. These changes could be carried
out individually or in varying combinations.

As well as the possible extension from changing the underlying models, to create more
scenarios from different clean data, this study could also be extended by looking at
changes to the released scenarios. Chapter five suggested the creation of a metadata
scenario. In the present study such a scenario was not created as others were deemed
to be higher priority. However, seeing how much algorithms could use metadata, even if
only as a validation of the change points they find, would be an interesting extension to
this work. If the use of such data led to an increase in performance then it would further
highlight the need for the recovery and digitisation of old station metadata and the reliable
recording of new station metadata.

Existing scenarios could also be extended or new ones created by looking at a wider
range of inhomogeneities or a change in the size distribution of inhomogeneities. In the
present study constant offset inhomogeneities had their sizes chosen from a discrete
distribution and explanatory variables had their perturbations chosen from a discrete dis-
tribution as well. In a future study both of these distributions could be made continuous.
As the discussion section in chapter five states, having a continuous distribution, such
as a Normal distribution, for the constant offset inhomogeneities’ sizes would likely make
them more similar to the sizes of explanatory variable inhomogeneities, thus making com-
parisons between inhomogeneities added in the two different ways simpler. Specifying a
continuous distribution for urbanisation inhomogeneity sizes as a trend per year instead of
an overall trend would remove the need for the jump in allowable sizes at the urbanisation
length of fifteen years, which is not a very realistic artefact of the current study.

Still relating to urbanisation inhomogeneities, a future iteration of this study would ensure
that the bug which made all explanatory variable urbanisation inhomogeneities begin
with a step change is removed. Still in the area of inhomogeneity addition, it was found
that platform inhomogeneities, those that act over a short period and are then corrected,
were not frequent enough. Adding in more platform inhomogeneities could make the
created benchmarks more realistic, as could adding clustered inhomogeneities, which
affect multiple stations at similar times in a similar manner. A further inhomogeneity that
it would be beneficial to investigate would be negative trend inhomogeneities. Negative
trend inhomogeneities would be more likely to mask a true climate signal, so assessing
algorithm performance on the removal of such artificial trends would be beneficial.

As stated in chapter seven, a very interesting extension to this study would be to apply
the contributed homogenisation algorithms to the real world data as well. This would be
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beneficial as comparisons between the results from applying the homogenisation algo-
rithms to the real world data and the benchmark data could lead to better quantification
of the likely inhomogeneities and uncertainties remaining in the observations after ho-
mogenisation has taken place.

For the validation aspect of the study the author would recommend the comparison of
algorithm performance on long and short term variability recovery. This was designed
to have been implemented in this study by using loess smooths and then assessing the
correlations between these smooths between clean, released and returned data. Cor-
relations were found to have the possibility of being misleading as a measure, because
they could be higher for released data, that were more dissimilar to the clean data, than
for the improved returned data and, therefore, this aspect of validation was not discussed
in the study, though the results can still be seen in tables B.4, B.12, B.20, B.28, B.36,
B.44 and B.52. The author believes that the loess smooths could still be used by looking
at the RMSE between these smooths and not the correlations. RMSE removes the draw-
back that was found with correlations and could be used in conjunction with the RMSE
between the clean, released and returned series at the daily level. At the daily level the
RMSE gives an error between two series for the day to day variability, but when using the
RMSE on loess smooths it would give an error between the lower frequency variability,
as desired.

A further extension to the validation aspect of this study would be to provide some mea-
sure of uncertainty on the statistics returned that quantify algorithm performance. This
was not done in this study as the suggested manner of including uncertainties would
require that all algorithms be run multiple times on a created ensemble of the existing
scenarios. Such an ensemble would have, for example, 100 realisations of each of the
existing thirteen released station groups. The benefit of having an ensemble would be
that the hit rate, false alarm rate, regional trend recovery etc. could be recorded for each
algorithm for each ensemble member. The range that these values took could then be
used to provide uncertainty bounds on the measure in question. A variation of this was
done in chapter seven of this study where reference was given to how the same algo-
rithm performed across different regions and scenarios. However, to be able to provide
uncertainty estimates in each scenario for each region would give the algorithm creators
even more information on the reliability of their algorithm. The code that was used to
create the inhomogeneities is available on request and therefore there is no reason why
an ensemble of the existing inhomogeneous data scenarios shouldn’t be created in the
future.

Even without an ensemble of the same scenarios and regions, quantification of some
benchmark uncertainties can be provided. Uncertainties in the benchmarks arise from
whether the clean data really are clean. In the discussion section of chapter seven it
was suggested that a tally could be kept of inhomogeneities found by all the participating
algorithms. If such a tally were to be kept then it could be used to see if multiple algorithms
were finding the same ’false alarms’ and also whether they were finding the same hits.
The former would indicate possible benchmark problems, whereas the latter would give
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information on the easiest inhomogeneities to find.

Something a little like this method was carried out using the PHA, where ’inhomogeneities’
that the PHA found in the clean data were not counted as false alarms in the returned
data. It could be argued that if only one other algorithm finds the same ’inhomogeneity’
as the PHA then they are just sharing a false alarm, however, if multiple algorithms start
sharing false alarms then further investigation would be warranted.

The PHA should, of course, not be held up as the perfect algorithm. This study showed
that it had a notable false alarm rate when inhomogeneities had to be found within a
month of their true date, though Venema et al. [2012] found a low false alarm rate when
the detection simply had to be in the right year. If this study were to be carried out again
the author would therefore suggest that the inhomogeneity tallying method be carried
out as well as, or even instead of the PHA comparison when searching for any possible
problems in the clean data.

The different findings from Venema et al. [2012] about the PHA and about some points
of other algorithms used in this thesis shows that only two benchmarking studies is not
enough. More work needs to be done to continue the process of assessing and improving
homogenisation algorithms. This thesis is but one step in this direction and it is the
author’s hope that this discussion section, which draws on those from previous chapters,
has provided ideas for further steps to continue this important work.

8.3. Summary

Overall the author concludes that this study has been beneficial as the first comparison
study of algorithm performance on daily temperature benchmarks. It shows that there
are certainly differences between the currently available algorithms and has identified
areas for improvement in each of these algorithms and for algorithms in general. It has
also evaluated the created benchmark data and provided recommendations for improving
this in a future research project. All the data used for this project are freely available
at http://www.metoffice.gov.uk/hadobs/benchmarks/, where electronic appendices
giving more detailed information on the performance of each algorithm can also be found.
All the code used in this project is also available on request.
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A. Instructions to Homogenisers

This appendix contains the main emails that were sent to homogenisers when inviting
their participation in this study and then giving them further instructions on how to partic-
ipate including the location of the data.

A.1. Early October - Invitation to participate

Dear Homogeniser,

You may have met me at the Budapest workshop on homogenisation (May 2014), but if
not let me introduce myself. I am a PhD student at the University of Exeter working on
creating benchmarks for the homogenisation of daily surface temperature data. I would
like to involve as many people as possible in this work and am therefore looking for daily
homogenisation algorithm developers and users who may be able to test their chosen
algorithm on my data.

Ideally I would like a number of different algorithms to be tested on my data to maximise
the use of this blind study. I would like the homogenised version of the data to be returned
along with details of the size, timing and type (if possible) of any adjustments made. The
results of this work will form a part of my PhD thesis and therefore I am subject to time
constraints and would be grateful if you were able to return your results to me by the end
of November. If this target date would stop you participating then please do get in touch.

The benchmark series I am creating are grouped into three ’worlds’ each of which covers
the same four regions in North America and these regions range in size from 75 to 230
stations. If you would be interested in participating please respond to this email and I will
ensure that you are informed when the data are released (target 10th October 2014). The
data will be mimicking GHCN data (ASCII format), but will not contain any quality flags
as they have been created in such a manner that users should consider them to be pre-
quality controlled. These data are investigating different inhomogeneity characteristics,
but I am also hoping for a slightly later (end of October 2014) and smaller release that will
look at different climate characteristics of data.

Details of the benchmark creation, validation of algorithm performance and assessment
of the usefulness of my benchmarks will not only form my thesis, but I hope a number
of other publications in the coming years. Your participation in this process will lead to
an acknowledgement or co-authorship of any relevant publications and should you wish
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to collaborate more and co-author further papers together I would be interested to hear
from you on this matter.

Please feel free to forward this message on to anyone else you think may be interested
in this work and do not hesitate to contact me if you have any queries about the process.

I have attached a presentation similar to the one I delivered in Budapest to give you a
further overview of my research.

I look forward to hearing from you soon,

Thank you in advance,

Rachel Warren

NB – The presentation referred to in this email is not included as part of this appendix,
but detailed the data sources (GHCND, 20CR and the Australian Bureau of Meteorology);
the inhomogeneities focused on (station relocations, shelter changes and urbanisation);
the number of worlds (three at the time, though this was later increased to be four); the
notion of adding in inhomogeneities by changing model inputs or using constant offsets
and the fact that both detection and adjustment ability would be assessed.

A.2. Mid October 2014 - Further instructions on participation

Dear Homogenisers,

Thank you for the interest that you have shown in running your homogenisation algorithms
on my data and for the further comments you have made to me regarding this project.

I am afraid the final stage of creating the benchmarks has taken a little longer than antic-
ipated and therefore they will now not be ready until the end of next week/ the start of the
following one (24th/27th October). As this is a delay of two weeks in the release date I
will of course change the date when I would request you return your results to me by, this
is therefore now Friday 12th December.

In the meantime I hope that the following information will aid you in any preparations you
may need to make for your algorithms:

There are three different realisations of the benchmarks - world 1, world 2 and world 3.

Each world contains four regions of North America, these regions are classified as:

1. Wyoming: Latitude: (41,45) and Longitude: (-111,-104.2), Number of stations in world
1= 75, Number of stations is worlds 2 and 3= 158 2. South East: Latitude: (25.1,33) and
Longitude: (-90,-79.7), Number of stations in world 1= 153, Number of stations in worlds
2 and 3= 210 3. North East: Latitude: (41.4,47.3) and Longitude: (-79.8,-67.3), Number
of stations in world 1= 148, Number of stations in worlds 2 and 3= 210 4. South West:
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A. Instructions to Homogenisers

Latitude: (32.6,38.5) and Longitude: (-123,-113.9), Number of stations in world 1= 151 ,
Number of stations in worlds 2 and 3= 222

The numbers of stations in these regions may be reduced very slightly as a result of final
analyses, but will remain around these values and will not increase.

To maximise the usefulness of this study if you are unable to run your algorithm on all
regions in all worlds it will be more beneficial if you use all worlds in a single region than
if you run your algorithm on just a single world. If you are choosing just a single region
please will you prioritise Wyoming with world 1 in this region being the highest priority,
then world 2 and then world 3.

If you feel able to notify me of the regions and worlds you are intending to use please do
so in order that I may know if any regions would be unused.

I attach an example data file and an example metadata file for Wyoming, both of these
are examples only, but follow the GHCND database format and are of the same format
to the data I am producing, each line begins with the station code, then the year and
the month of the observations and then the letters TMEN indicating that the variable that
has been recorded is mean temperature. The temperatures are recorded in tenths of a
degree C and missing data values are indicated by -9999.

The data will be hosted on a web page, the link to which I will give you at the time of re-
lease. If you pass this link on to anyone else you think might be interested in participating
in this work please will you inform me so that I am able to contact them.

Thank you once more for your participation in this work, I am incredibly grateful.

Best wishes,

Rachel Warren

A.3. Late October 2014 - Release of scenarios one to three

Dear All,

Thank you for your patience with the final stages of the data release. I am delighted to
announce that the data are now available for download from the following link:

http://www.metoffice.gov.uk/hadobs/benchmarks/.

Thank you for your participation in this project. All the information that you should need is
available from the above link. As I said before, if you pass this link on to anyone else you
think may be interested in this project then please will you inform me so that I am able to
contact them directly.
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A. Instructions to Homogenisers

If you encounter any problems with the data or have any further questions please do not
hesitate to contact me.

Many thanks and best wishes,

Rachel Warren

A.4. Mid December 2014 - Thanks for participation and
release of scenario four

Dear All,

Thank you very much for returning the data for all or some of the regions and worlds I
released, this is much appreciated.

For worlds one to three the deadline for the return is today - if you are planning on return-
ing data, but have not yet done so please will you contact me so that I know to expect
further contributions and what time scale I can expect these on, though I believe I already
have almost of all of what I was expecting and for this I am very grateful as it should allow
the next stage of the project to proceed on schedule.

There has also been a further update to the website, this introduces Wyoming world 4 -
it is just 75 stations (so mimics Wyoming world 1) and its aim is to explore choices within
the benchmark creation model. If you would be able to look at this world as well it would
be beneficial to the study - I will of course extend the deadline for this world until the 9th
January to allow you more time to work on it.

Thank you once more for your participation, I will keep you updated on the progress
made,

Best wishes,

Rachel
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B. Tables to summarise algorithm
performance

The numbers in the following tables for non-biased stations/ stations with zero RMSE
don’t necessarily match with the numbers of homogeneous stations in table two from
chapter five. This is because the numbers in chapter five were the number of stations with
no identifiable inhomogeneities, whereas the numbers here are the numbers of stations
with no inhomogeneities at all.
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