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Abstract

The prototypical exciton model of two interacting Dirac particles in graphene was

analysed by Sabio et al, Phys. Rev. B 81, 045428 (2010), and it was found that in one

of the electron-hole scattering channels the total kinetic energy vanishes, resulting in

a singular behaviour [1]. We show that this singularity can be removed by extending

the quasiparticle dispersion, thus breaking the symmetry between upper and lower

Dirac cones. The dynamics of an electron-electron pair are then mapped onto that

of a single particle with negative mass and anisotropic dispersion. We show that the

interplay between dispersion and repulsive interaction can result in the formation of

bound, Cooper-pair-like, metastable states in double-layered hybrid structures. We

analyse these states by calculating their binding energies, decay rates into the free-

electron continuum and semiclassical trajectories.

We also analyse the problem of bi-electron pairing with the inclusion of the two

dominant many-body effects at zero temperature: screening of the Coulomb interaction

by the Dirac sea, and reduction of the available phase space due to Pauli blocking of

transitions into the states below the Fermi level. We show that these effects result in

strong renormalization of the binding energy, but do not destroy the metastable states.

Thus the binding energies are strongly dependent on the chemical potential owing to

the combined effects of screening and Pauli blocking. Hence, the quasibound resonances

can be tuned by electrostatic doping.
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Chapter 1

The electronic properties of

graphene, an introduction

1.1 Crystal structure and reciprocal lattice

The carbon atom has 6 electrons, with a ground state arranged in the 1s22s22p2 con-

figuration depicted in Fig. 1.1. There are two spherical l = 0 shells, 1s and 2s, each of

which hosts paired electrons. There are also three l = 1 orbitals, 2px, 2py and 2pz which

are degenerate and mutually perpendicular. Two of these orbitals are occupied, and the

electrons in them will have the same spin to minimize the electron-electron interaction.

Näıvely, the carbon atom seems divalent, but when two of them are brought together,

it is possible for their orbitals to hybridize in several different ways. One such example

is sp2 hybridization1.

The 1s electrons are close to the nucleus and, therefore, do not contribute to bond-

ing. The second shell (n = 2) can, however, restructure itself in such a way as to

minimize the energy during bonding. The 2s, 2px and 2py orbitals hybridize into three

degenerate sp2 orbitals (see the cartoon in Fig. 1.2) but the 2pz orbital remains un-

changed. The hybridized orbitals lie in plane, with angles of 2π
3

between them to min-

1We will employ the language of chemistry here to give a qualitative picture. For a more rigorous
treatment, see [2].
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Figure 1.1: The atomic orbitals of carbon in the ground state; configuration
1s22s22p2. a) a cartoon of the orbitals, and b) the first few energy levels.

imize their energies. The remaining 2pz orbital is perpendicular to this plane. When

two carbon atoms come together, there will be an “end-on” overlap of their respec-

tive sp2 orbitals resulting in a covalent σ bonding molecular orbital, with each atom

contributing a single atomic orbital to the bond [3]. There will also be a “side-on”

bonding of the atoms’ respective 2pz orbitals, thus forming the so-called π molecular

orbital. The result of this process is shown in Fig. 1.3 . During this process σ∗ and

π∗ antibonding orbitals are also formed which have higher energies than their bonding

counterparts. Following the bonding of the two carbon atoms there will be four leftover

sp2 orbitals which will typically be used to bond to other atoms of another element to

form a larger molecule (four hydrogens, in the case of ethylene, for example [3]). In the

case of graphite, however, these remaining orbitals are used to bond to other carbon

atoms, and so the process continues as a crystal is formed. In this case the process

instead forms energy bands with the same titles: π, π∗,σ and σ∗. In the case of the two

σ bands, there is a large energy gap and the electrons are tightly localized to maintain

the bonds. In the case of the π bands, however, the electrons become dislocated from

their atoms, leading to semimetallic behaviour.

If one takes these two bonded carbon atoms, and attempts to tile them into a crystal,

14



Figure 1.2: a) The sp2-hybridization of the atomic orbitals of carbon. The
result is three, degenerate sp2 orbitals in-plane and a single 2p orbital which
is perpendicular to that plane. b) Side view, and c) top view of a single sp2-
hybridized carbon atom (the nucleus and inner-most (1s) electronic orbital
are not pictured).

the structure will be determined by the lengths of the σ bonds, and the angles between

them. The result is the famous honeycomb lattice of graphene, as depicted in Fig. 1.4.

Graphene is a two-dimensional (one atom thick) structure, which can be thought of as

one of the constituent layers of graphite (the more traditional bulk material which can,

equivalently, be thought of as a van der Waals superlattice of graphene layers). The

crystal structure of bulk graphite was settled independently by Bernal [4] and Hassel [5]

in 1924. Following its isolation, scanning tunnelling microscopy images [6] confirmed

that graphene monolayers inherit the honeycomb structure of graphite. Unless oth-

erwise stated, we will deal exclusively with the case of ideal graphene. The lattice

symmetry can be broken, for example, by strain or the presence of adatoms, but such

cases are outside the scope of this work.

At first glance, one might be tempted to define the generating vectors of the direct

lattice as those which point from one atom to each of its nearest neighbours. The lattice

is not, however, invariant under translations of these vectors: the honeycomb lattice is

not Bravais. If we look at Fig. 1.4, and pretend for a moment that the “blue” atoms
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Figure 1.3: a) Before, and b) after sp2-hybridized bonding of two carbon
atoms. The π and σ molecular orbitals are labelled. The nuclei and inner-
most (1s) electronic orbitals are not pictured.

don’t exist, we notice that the remaining “red” atoms form a hexagonal lattice, which

is Bravais. It is therefore convenient to think of graphene as a hexagonal lattice with

a two-atom basis. Although the two atoms in the unit cell are both carbon, and are

physically equivalent but for their placements in the lattice, we think of them instead

as defining two sublattices A and B. In Fig. 1.4, the sublattices are coloured differently

to make this clear, and the unit cell is shown.

Every atom in graphene shares three σ-bonds with its three neighbours, all of which

belong to the opposite sublattice. The primitive lattice vectors should therefore trans-

late an atom in a given sublattice onto that same sublattice, and are given by

a1,2 =
a

2
(3,±

√
3), (1.1)

where a = 1.42Å [4, 7] is the distance between neighbouring atoms. The nearest-
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Figure 1.4: The crystal structure of graphene, with sublattices in different
colours. The dashed lines enclose the unit cell, which contains a two-atom
basis due to the sublattice structure. {ai}i=1,2 denote the primitive lattice
vectors, {δj}j=1,2,3 are the nearest-neighbour vectors and {δ′k}k=1,...,6 are the
next-nearest-neighbour vectors.

neighbour (δi) and next-nearest-neighbour (δ ′j) vectors will, however, prove useful when

we develop a tight-binding approach to the single-particle dynamics later. They are

given by

δ1 = a
2

(
1,
√

3
)

δ ′1,2 = ±a
2

(
3,
√

3
)

δ2 = a
2

(
1,−
√

3
)

and δ ′3,4 = ±a
2

(
3,−
√

3
)

δ3 = a (−1, 0) δ ′5,6 = ±a
(
0,
√

3
)
,

(1.2)

all of which are depicted in Fig. 1.4.

The primitive vectors of the reciprocal lattice (bi) are orthogonal to those of the

direct lattice by definition: ai · bj = 2πδij. Solving the resulting linear equations gives

b1 =
2π

3a
(1,
√

3) and b2 =
2π

3a
(1,−

√
3). (1.3)

Using these vectors the Brillouin zones can be constructed (the first few zones are given

in Fig. 1.5. The first Brillouin zone has several important features, which will be

made clear in the following section. Of particular interest are its corners, the so-called
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Figure 1.5: The 1st (blue), 2nd (green) and 3rd (red) Brillouin zones of
graphene. The first zone has 6 corners (empty circles) which host Dirac
valleys, two of which (K±) are inequivalent. The reciprocal lattice (filled
circles) is generated by linear combinations of the form {n1b1 +n2b2|n1, n2 ∈
Z}.

Dirac points (or charge neutrality points, or valleys). Two2 of the Dirac points are

inequivalent:

K± =
2π

3a
(1,± 1√

3
), (1.4)

and it will be these two which we refer to when we talk about “the Dirac points” from

now on, unless stated otherwise.

1.2 Beyond parabolic dispersion in solids

Many of the interesting effects which are observed in graphene can be traced to its

unusual band-structure. In the textbook example of free electrons in a solid, one treats

2The two inequivalent Dirac points are usually referred to as K,K ′ or K1,K2 in the literature.
We choose the notation K+,K− as a way of making the equations in later chapters more clear.
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a Hamiltonian of the following form:

Ĥ =
p̂2

2m∗
, (1.5)

where p̂ is the crystal momentum operator and the effective mass m∗ encodes all of

the information about the crystal potential, and can be extracted from the curvature

of parabolic bands near the band edge. Spin is left out of the picture because it is not

entangled with the motion of the particles. Instead, it enters the picture through the

Zeeman energy.

An interesting and well-known example of coupling between the spin of a particle and

its motion is provided by photons. Photons are spin-1 bosons which, unlike conventional

spin-1 particles, have their spin pointing parallel or antiparallel to the direction of

propagation. In the classical picture, these two spin projections correspond precisely to

the left and right circular polarizations of light (as noted independently by Riemann,

Majorana and Oppenheimer, see, e.g., Ref. [8]). When a beam of photons of random

relative spin projection (i.e., ‘unpolarized light’) is incident on the interface between

two dielectric media, a certain amount will be reflected and the remainder transmitted.

When the angle between incident wavevector and surface normal is equal to the so-

called Brewster angle, however, none of the light with electric field polarized in the

plane of the wavevector and surface normal will be reflected. Thus, the interface, at

the Brewster angle, filters by reflection the incident waves based on their respective

polarization. Unlike the numerous common features shared by the different species of

waves found in nature (interference, superposition, and so on), the Brewster angle is

critically dependent on polarization. It does not occur in the longitudinal modes in

gasses and liquids, for example.

One might ask if the spin of an electron can be coupled to its motion in a crystal, and

try to find an analogue to the Brewster angle phenomenon in a band theory context. The

heterojunction between a pair of semiconductors can host a two-dimensional electron

gas (2DEG) with an electric field perpendicular to the plane of the junction. The
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resulting spin-orbit interaction (SOI) is described by the Rashba Hamiltonian [9, 10],

which takes the form:

ĤR =
p̂2

2m∗
+ λ [σ × p̂] · ẑ, (1.6)

where λ is the spin-orbit coupling constant and σ = (σx, σy, σz) are the Pauli spin

matrices:

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (1.7)

This Hamiltonian lifts the spin degeneracy, leading to a momentum-dependent splitting

of the energy bands: E = p2/2m∗ ± λp. In the conventional bulk metals and semicon-

ductors, the spin-orbit coupling term is typically weak, comprising only a few percent

of the total kinetic energy. Another class of systems in which the spin-orbit interaction

plays a dominant role are the topological insulators (TI) [11, 12]. In the bulk of a 3

dimensional TI, the spin-orbit coupling leads to a mass term and resulting energy gap

so that the bandstructure is that of a traditional insulator. On the surface, however,

spin-orbital coupling dominates over the free-particle contribution to the kinetic energy,

and the resulting metallic states are well described by a massless Dirac Hamiltonian of

the form

ĤS = vF [σxp̂x + σyp̂y] , (1.8)

where vF is the Fermi velocity. Further, there has been recent interest in the so-called

Weyl semimetals, which are also topologically non-trivial but conducting in the bulk.

Low-energy excitations are described by the Weyl Hamiltonian

ĤW = vFσ · p̂ (1.9)
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which acts on a pair of spinors of opposite chirality [13,14].

Undoped graphene is another system in which the dynamics of low-energy exci-

tations are not governed by Eq. (1.5): charge carriers are instead described by the

Dirac equation in 2 + 1 dimensions with vanishing mass term. Hence charge carriers in

graphene are known as massless Dirac fermions, so that electrons in graphene behave as

if they have no mass, leading to the observation of exotic “high-energy” phenomena in

condensed matter experiments at low temperatures and even room temperature. One

example is the phenomenon of Klein tunnelling [15], in which the transmission prob-

ability of an electron incident on a tunnelling barrier increases with increasing barrier

height. Indeed, Klein tunnelling can be viewed as the electronic analogue of the Brew-

ster angle phenomenon discussed above. Another is atomic collapse [16, 17], in which

electron states spiral in toward the nucleus of a heavy atom, as opposed to the usual

stable orbits which characterize the familiar Bohr atom.

In Section 1.4, we will show how such pseudo-relativistic physics arises from the

single-particle Hamiltonian of graphene, by developing an effective theory which is valid

in a small domain of the Brillouin zone near the Dirac points. But first we explain, in

the next section, how the Hamiltonian can be derived across the whole Brillouin zone

within the tight-binding approximation.

1.3 Tight binding description of the graphene band-

structure

The entanglement in graphene is different to those other systems discussed above, which

arise due to coupling of the momentum and the true spin. In graphene, the momentum

is coupled to the pseudospin, an internal degree of freedom which arises due to the

sublattice structure. To see how this arises, we derive an effective Hamiltonian within

the tight-binding approximation (a calculation first performed by Wallace in 1947 [18]).

Explaining the origin of the pseudospin term will be the object of this section, but what
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Figure 1.6: Schematic representation of tight binding. Electrons are able to
hop from one atom to the next by tunnelling through the atoms’ potential
well. It is assumed that at any one time, the electron will be deep inside the
well, so that its wavefunction decays quickly outside of the vicinity of the
atom. Pictured is the shared double-well of two atoms, labelled A and B.
Their respective wavefunctions, X (r − rA) and X (r − rB), decay quickly
to zero in the region between the atoms.

will be really important for us in this thesis are the additional quadratic terms. We

will derive the latter in Section 1.6.

The tight-binding approximation relies on the assumption that in the vicinity of any

atom in the crystal, the crystal Hamiltonian may be approximated by the Hamiltonian

of that atom were it to be isolated and that the relevant wavefunctions are localized

(for a discussion see, for example, Ref. [19]). In view of the calculations to follow, we

note that these assumptions are equivalent to the following, which we will use more

explicitly:

• At any one time, the electron is highly localized to the vicinity of a lattice site

and its wavefunction decays quickly elsewhere, and

• electrons are able to move within the lattice from one atom to the next by tun-

nelling.

These ideas are summarized in Fig. 1.6 for the case of a one-dimensional chain, but

their extension to the geometry of graphene is straightforward.

We begin by defining the wavefunction of an electron in the 2pz orbital of an isolated
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carbon atom to be X(r − ri), where ri labels the position of the ith lattice site. Due

to the translational symmetries of the individual sublattices, A and B, each sublattice

must host a Bloch wavefunction of the form

φA(r) =
1√
N

∑
rA

eik·rAX(r − rA), (1.10)

φB(r) =
1√
N

∑
rB

eik·rBX(r − rB).

We say that when an electron is moving only on the sublattice A it is in the state

|A〉, and when it is moving only on the sublattice B it is in the state |B〉. Under what

circumstances are these two states orthogonal? Within the position representation,

where the wavefunctions in Eq. (1.10) are given by φi(r) = 〈r|i〉, we find that:

〈A|B〉 =

∫
φ∗A(r)φB(r)dr

=
1

N

∑
rA,rB

ek·(rB−rA)

∫
X∗(r − rA)X(r − rB)dr

= 0, (1.11)

where the integral vanishes because we have assumed that the wavefunctions on neigh-

bouring carbon atoms do not overlap. It therefore follows that the identity can be

resolved in these two states:

∑
i=A,B

|i〉〈i| = 1. (1.12)

The assumptions of the tight-binding approximation have therefore led us to the

definition of {|A〉 , |B〉} as a basis over which we can expand the states of electrons

in graphene, and so we will look for solutions which are a linear combination of the
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solutions for each sublattice,

|ψ〉 =
∑
i=A,B

= 〈i|ψ〉|i〉 . (1.13)

We insist that an electron in graphene must obey the following time-independent

Schrödinger equation:

Ĥ |ψ〉 = E |ψ〉 , (1.14)

and will use this, along with the tight binding approximation, to determine a matrix

representation of the Hamiltonian Ĥ within the aforementioned basis. We construct a

system of two coupled equations by pre-multiplying by 〈A| and 〈B|, and invoking Eq.

(1.13), thus obtaining:

HAAψA +HABψB = EψA, (1.15)

HBAψA +HBBψB = EψB,

where ψi = 〈i|ψ〉 is the probability amplitude for an electron in the energy eigenstate

|ψ〉 to be found on the ith sublattice following a measurement and 〈i|Ĥ|j〉 = Hij is the

matrix element of the Hamiltonian matrix between sublattices i, j. We have also used

the result of Eq. (1.11). Therefore, within the sublattice space, we will represent the

Hamiltonian by a 2 × 2 matrix, and the eigenfunctions will be represented by the 2

dimensional vector:

|ψ〉 =

 ψA

ψB

 (1.16)

For the Hamiltonian to be Hermitian, we require that its matrix representation

be equal to its own conjugate transpose: HAB = H∗BA. Further, the sublattices are

physically equivalent, so that HAA = HBB. This allows the simultaneous Eqs. (1.15)
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to be solved for the energy:

E = HAA ± |HAB|. (1.17)

The on-diagonal elements represent hopping between atoms on the same sublattice:

HAA =
1

N

∑
rA,r

′
A

e−ik·(rA−r
′
A)

∫
X∗(r − rA)ĤX(r − r ′A)dr,

= E0 +
1

N

∑
rA 6=r ′A

e−ik·(rA−r
′
A)

∫
X∗(r − rA)ĤX(r − r ′A)dr, (1.18)

where E0 is the energy of an isolated carbon atom. Meanwhile, for the off-diagonal

elements:

HAB =
1

N

∑
rA,rB

e−ik·(rA−rB)

∫
X∗(r − rA)ĤX(r − rB)dr. (1.19)

We don’t have an analytic form for the wavefunctions X(r), so they are absorbed into

the so-called hopping parameters. We define the nearest-neighbour-hopping parameter,

t, to be proportional to the transition matrix element of the Hamiltonian between the

electronic wavefunctions of neighbouring atoms. It has the dimensions of energy, and

can be interpreted as a kind of tunnelling amplitude between the atoms:

t = −
∫
X∗(r)ĤX(r − δi)dr. (1.20)

Likewise, the next-nearest-neighbour parameter characterizes hopping between nearby

atoms on the same sublattice. It is given the definition:

t′ = −
∫
X∗(r)ĤX(r + δ ′i)dr. (1.21)

We note that the form above was reached by assuming that the “red” atoms in Fig.

1.4 belong to sublattice A, so that the nearest-neighbour hopping vectors δi point from
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an A atom to a B atom. Upon absorbing the above integrals, for which no analytical

solution exists, into the definitions of the parameters t and t′, Eqs. (1.18) and (1.19)

take the following form:

HAA = E0 − t′
6∑
i=1

e−ik·δ
′
i = E0 − t′g(k), and (1.22)

HAB = −t
3∑
i=1

eik·δi = −tf(k),

where we have defined

f(k) =
3∑
i=1

eik·δi , and

g(k) =
6∑
i=1

e−ik·δ
′
i . (1.23)

In principle, the Eqs. (1.22) could be written with many more terms to account for

hopping between any pair of atoms in the direct lattice (although it would require more

hopping parameters). Thankfully, the inclusion of nearest- and next-nearest-neighbour

hopping terms is sufficient to capture the most important features of graphene’s band

structure. In fact, the contribution of same-sublattice hopping is so small at low energies

that extracting a value of t′ from experiments is non-trivial. Restricting ourselves to

the matrix elements above, we are ready to write down a matrix representation of the

tight-binding Hamiltonian of electrons in graphene:

Ĥ =

E0 − t′g(k) −tf(k)

−tf(k)∗ E0 − t′g(k)

 . (1.24)
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The vectors δi and δ ′i were given previously in Eq. (1.2) and upon their substitution

into Eqs. (1.23) we obtain:

f(k) = 2 exp

(
ikxa

2

)
cos

(√
3aky
2

)
+ exp (−ikxa) , and

g(k) = 4 cos

(
3akx

2

)
cos

(√
3aky
2

)
+ 2 cos

(√
3aky

)
. (1.25)

The eigenvalues of the Hamiltonian in Eq. (1.24) are therefore given by E± =

E0 − t′g(k)± t|f(k)|, and this band structure has been plotted in Fig. 1.7 (here k = 0

refers to the Γ-point at the centre of the first Brillouin zone). Of particular interest

is the behaviour of the bands near the Dirac points: K+ and K− (see Eq. (1.4)).

Here, we notice that E+ = E−, so that the single-particle band spectrum of graphene

is gapless. We also note the unusual conical shape of the bands near these points, as

shown in the inset.

So far our analysis has focussed on the geometry of the graphene crystal. The fact

that graphene is composed of carbon atoms enters the discussion through the use of

the wavefunctions X(r) in the definitions of the hopping parameters in Eqs. (1.20) and

(1.21). Since the eigenfunctions of the carbon atom cannot be calculated analytically,

the values of t and t′ are extracted from experimental results. For the purposes of this

thesis, we will use the widely accepted result of t = 2.8eV [7, 20]. We note in passing,

however, that the nearest-neighbour hopping parameter can be varied by substrate

engineering. Two example studies have achieved t = 2.16eV and t = 7.7eV using copper

foil [21] and quartz [20] substrates, respectively. Renormalization can also be achieved

by doping close to the Dirac points, with one study reporting t = 9.26eV for carrier

concentration n < 1010cm−2 [22]. The next-nearest-neighbour hopping parameter does

not have an accepted value [7], and an important effect of this uncertainty will be

discussed in the following chapters. Ab initio calculations [7,23] give the range 0.06eV≤

t′ ≤ 0.66eV, while cyclotron resonance [24], quantum capacitance [25] and polarization-

resolved magnetospectroscopy [26] measurements have produced t′ = 0.12eV,0.3eV and
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Figure 1.7: The energy spectrum of monolayer graphene. Inset is the conical
structure of the bands near one of the Dirac points, which is a good approx-
imation for energies of magnitude |E| . 1eV. In calculating the energies we
have assumed t = 2.8eV and t′ = 0.3eV.

0.4eV respectively.

1.4 The low-energy limit: massless Dirac fermions

in graphene

To clarify the emergence of a conical bandstructure (see Fig. 1.7) near the Dirac points,

it is useful to look for an effective low-energy matrix representation of the Hamiltonian

near the two Dirac points, which is achieved by expanding Eq. (1.24) near K±. For the

time being it will suffice to take this to first order in the momentum as it is this regime

for which graphene is most famous. We note in passing that much of the interesting
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physics in the following chapters is due to the higher order terms in the Hamiltonian

which break the symmetry between upper and lower bands near the Dirac points. Such

terms are quadratic in the momentum, and arise due to trigonal warping of the bands

and next-nearest-neighbour hopping. For further details, see Section 1.6.

Let us examine at the bandstructure near the K±-points. We define a small mo-

mentum p, which is measured relative to the Dirac point, so that p = ~k − ~K±, and

expand the Hamiltonian near p = 0. To first order in p, the Hamiltonian takes the

form:

ĤK± =

 3t′ + E0 e
i4π
3 vF (ipx ∓ py)

e
−i4π

3 vF (−ipx ∓ py) 3t′ + E0


=

 3t′ + E0 e−
iπ
6 vFpe

±iφp

e
iπ
6 vFpe

∓iφp 3t′ + E0

 (1.26)

where vF = 3at
2~ ∼ 106ms−1 is the Fermi velocity of electrons in graphene, p =

√
p2
x + p2

y

is the magnitude of the momentum and φp is the momentum-space polar angle defined

by tan(φp) = py
px

. The on-diagonal constant terms simply scale the zero-point of the

energy, and we will absorb them into the eigenvalues in what follows.

The two Dirac points are separated by a momentum scale of the order of 1/a, and

it is therefore usually sufficient to take them as decoupled. We choose the basis ψ =

[ψ+,A, ψ+,B, ψ−,A, ψ−,B]T , in which the effective Hamiltonian takes the block-diagonal

form: Ĥ = diag
(
ĤK+ , ĤK−

)
. Using the forms of Eq. (1.26), and transforming our

coordinate system such that φp → −φp − π
6
, we obtain:

Ĥ =



0 ei
5π
3 vFpe

−iφp 0 0

e−i
5π
3 vFpe

iφp 0 0 0

0 0 0 ei
5π
3 vFpe

iφp

0 0 e−i
5π
3 vFpe

−iφp 0


(1.27)
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The phase factors are due to our choice of basis, as is the seeming asymmetry between

ĤK+ and ĤK− . Let us make the unitary transformation Ĥ → ÛĤÛ †, where:

Û =



1 0 0 0

0 ei
5π
3 0 0

0 0 0 ei
5π
3

0 0 1 0


. (1.28)

In this new basis, which is given by ψ =
[
ψ+,A, e

i 5π
3 ψ+,B, e

i 5π
3 ψ−,B, ψ−,A

]T
, the effective

low-energy Hamiltonian is written:

Ĥ =



0 vF (px − ipy) 0 0

vF (px + ipy) 0 0 0

0 0 0 vF (px − ipy)

0 0 vF (px + ipy) 0


. (1.29)

To first order, the effective single-particle Hamiltonian is valley-independent, and takes

the form:

ĤK± = vfσ · p, (1.30)

where σ = (σx, σy) is a vector of the Pauli spin matrices.

The energy eigenvalues of the Hamiltonian in Eq. (1.30) are given by

E± = ±vFp, (1.31)

irrespective of the valley in question, with corresponding eigenfunctions:

|±, φp〉 =
1√
2

 e−i
φp
2

±ei
φp
2

 , (1.32)
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which is reminiscent of the mathematical formalism of spin in relativistic quantum

mechanics. Indeed, when one studies the problem of a relativistic spin-1
2

particle, one

treats the Dirac Hamiltonian in 2d, which is given by

Ĥ = cσ · p+m0c
2σz (1.33)

where m0 is the rest mass and c is the speed of light in vacuum [27]. For m0 = 0, the

above operator is equivalent to the Hamiltonian of electrons in graphene, for which vF

plays the role of a reduced speed of light. For this reason, we say that electrons in

graphene are “massless” or, more precisely, “behave as if they have zero rest mass”.

In the Dirac equation, σ arises due to the fundamental spin of the electron (which

is represented by the operator S = ~
2
σ). In the preceding sections, however, we have

not introduced the electron spin into our analysis at all. Instead, σ represents the

so-called pseudospin, an internal degree of freedom reminiscent of the “real” spin, but

which arises due to the two inequivalent sublattices discussed earlier (for a discussion,

see Ref. [2]). We know that any spinor can be decomposed into a superposition of

“spin up” (represented |↑〉) and “spin down” (represented |↓〉). Analogously, the Bloch

eigenkets we used as our basis are pseudospinors, and it will prove convenient to label

them as such in the following chapters:

|A〉 =

 1

0

 ≡ |↑〉 , and

|B〉 =

 0

1

 ≡ |↓〉 . (1.34)

This is true for the K+-point. For the K− point we instead define |A〉 = |↓〉 and

|B〉 = |↑〉. See Eq. (1.28) and the discussion thereafter.

Angle-resolved photoemission spectroscopy (ARPES) measurements have shown

that the conical approximation is robust against changes in the size and shape of single-
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grain graphene samples, as well as their orientation with respect to a substrate [21]. We

note, however, that the same study showed significant renormalization of the Fermi ve-

locity as a function of sample orientation, with results in the range 0.69 ≤ v∗F/vF ≤ 0.95

where vF = 106ms−1.

1.5 Density of states

In this section we calculate another quantity which will prove useful in the chapters to

follow: the density of states (DOS). In particular, we are interested in the number of

energy states per unit energy per unit area, which is given by:

D(E) =
1

Ω

∑
ξ

δ (E − Eξ) , (1.35)

where Ω is the area of the sample and we enumerate over all possible states of the

system. In particular, ξ ≡ {k, σ, τ, s} is the set of all quantum numbers necessary

to uniquely define a state in the system. We will restrict our analysis to the phase

space near the Dirac points, where the band structure is linear. We know from the

previous discussion that within the conical approximation states with different ‘real’

spin (σ =↑, ↓) and states residing in the two different inequivalent valleys (τ = ±) have

the same effective band-structure. Therefore, four of the terms in the summation Eq.

(1.35) are equivalent, leading to a degeneracy of N = Nσ×Nτ = 4. States with different

wavevector (k) and band index (s = ±) are not degenerate, however, which leads us to

the expression:

D(E) =
N

Ω

∑
k

[δ (E − E+(k)) + δ (E − E−(k))] ,

=
N

2π

[∫
k>0

δ (E − ~vFk) kdk +

∫
k>0

δ (E + ~vFk) kdk

]
, (1.36)
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where we have made the standard replacement
∑
k [. . . ] → Ω

(2π)2

∫
[. . . ] dk and carried

out the integration over angles. Use of the identity δ (αx) = 1
|α|δ (x), brings Eq. (1.36)

into a simple form:

D(E) =
N

2π~vF

[∫
k>0

δ

(
k − E

~vF

)
kdk +

∫
k>0

δ

(
k +

E

~vF

)
kdk

]
. (1.37)

Let us recall the definition of the Dirac delta function. If the energy E is positive, the

second integral vanishes because the magnitude of the wavevector is positive definite.

On the other hand, if E is negative, the first integral vanishes. We can summarize

these cases with the aid of the Heaviside step function, Θ(·), which is equal to unity

for positive argument and vanishes elsewhere:

D(E) =
N

2π(~vF )2
(EΘ(E)− EΘ(−E)) . (1.38)

We can write Eq. (1.38) in a more elegant form:

D(E) =
N |E|

2π(~vF )2
. (1.39)

We showed in the previous section that graphene has two bands, and is gapless. We

have defined E = 0 to be at the Dirac point, so that the state of zero energy occurs at

the point where the bands touch. Turning to Eq. (1.39), we see that D(E = 0) = 0, so

that there are no available single-particle states at the Dirac point. Undoped graphene

has a full valence band and empty conduction band, so that all states above (below)

the Dirac point are unoccupied (occupied). Thus, the DOS at the Fermi level is zero,

and graphene is a semimetal.

The single-particle DOS is critically dependant on the dimensionality of the system

and the dispersion of the particles within it. To understand this dependence, let us

first motivate Eq. (1.39) with a simple scaling argument, which will give us the correct

energy behaviour but not the numerical prefactors. The DOS is simply the number
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of states per unit energy, per unit area. The bandstructure is a global quantity (it

does not depend on the spatial coordinates of the particles) so the area must enter the

calculation as a proportionality constant. Therefore, we will not consider it. The spin

and valley indices label degenerate degrees of freedom, so those too are trivial. It is

useful to consider the domain of k-space bounded by wavevectors k and k+ ∆k, which

we denote Γ = [k, k + ∆k] as this leads to a convenient restatement of the density of

energy states:

D(E) ∼ Number of states within Γ

Energy range corresponding to Γ
≡ N

(d)
∆k

∆Ei
. (1.40)

where d is the number of spatial dimensions and i = l, p for linear and parabolic bands,

respectively. The wavevector is a discrete quantum number, so that each state has

allotted to it some non-vanishing area of k-space. Because the allowed wavevectors are

uniformly spaced, that area is a constant for all of the states. Therefore, the number

of states which occupy a wavevector domain Γ must scale like the k-space area of a

ring of thickness ∆k: N
(2)
∆k ∼ k∆k. Because the bands are linear, the energy range

corresponding to the domain Γ scales like ∆El ∼ ∆k. Thus, from Eq. (1.36), we obtain

Dl,2(E) ∼ N
(2)
∆k

∆El
∼ k ∼ |E|, (1.41)

which is the same dependence we found above in Eq. (1.39), where the subscript

reminds us that we have dealt with a particle with linear dispersion in 2 dimensions.

Now let us apply this heuristic argument to some other examples. The energy range

corresponding to an interval in k-space depends on the dispersion of the particles. At

energies very close to E = 0, the energy of a particle is less sensitive to small changes

in its velocity if it has a parabolic dispersion relation. What is the effect of this on

the density of energy states? We saw before that if the bands are linear ∆El ∼ ∆k.

If the bands are parabolic, however, we instead obtain ∆Ep ∼ k∆k. Therefore, for a
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parabolic particle in 2 dimensions, the density of energy states scales like:

Dp,2(E) ∼ N
(2)
∆k

∆Ep
= const. (1.42)

Indeed, the DOS in the E → 0 limit is larger for parabolic bands (as compared to linear

ones) regardless of dimensionality. Systems with linear dispersion simply do not host

as many low-energy states as those systems with parabolic dispersion because changing

the momentum of a particle increases its energy so quickly in that regime. The number

of states in some interval of k-space depends on the dimensionality of the system: in

2 dimensions we were concerned with the number of states which occupied a ring of

width ∆k, but in 3 dimensions we are interested in the volume of a spherical shell of

thickness ∆k. This leads to the scaling N
(3)
∆k ∼ k2∆k. Therefore, for Dirac particles in

3 dimensions, we obtain

Dl,3(E) ∼ N
(3)
∆k

∆El
∼ k2 ∼ E2, (1.43)

which vanishes faster in the E → 0 limit as does the case of graphene.

Finally, let us discuss the effects of non-linear terms in the bandstructure on the

density of energy states. No analytical solution exists which is valid throughout the

Brillouin zone when next-nearest-neighbour hopping is taken into account (t′ 6= 0) [7].

In the absence of such a solution, we provide numerical calculations of the single particle

DOS for t′ = 0 as well as t′ 6= 0 in Fig. 1.8. Away from charge neutrality, terms

which are of higher than first order in the momentum increase the magnitude of the

DOS, as compared to the conical approximation. This is the case within the interval

κ− ≤ E ≤ κ+, where κ± = −t′±t. At E = κ±, the DOS exhibits Van Hove singularities

which arise due to saddle points in the energy spectrum [28]. These saddle points occur

at the so-called M -points in graphene, which are situated between the Dirac points at
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the Brillouin zone edges. Three of them are inequivalent, and located at:

M 1 =
b1

2
, M 2 =

b1 + b2

2
, M 3 =

b2

2
. (1.44)

It was shown by Van Hove [28] that, near κ±, the DOS is logarithmically singular:

D(E → κ±) ∼ log

∣∣∣∣∣ 1

1− E
κ±

∣∣∣∣∣ , (1.45)

the finite maxima in Fig. 1.8 are due to computational limitations.

Although the conical approximation, given in Eq. (1.39), underestimates the DOS,

we note that it is of the correct order of magnitude in the low energy regime E . 1eV.

Therefore, in the chapters that follow, we will use that quantity in equations which call

for the density of energy states (e.g. the dielectric function) despite studying the effects

of non-linear terms in the Hamiltonian. We will justify this in the following chapter,

when we note that these terms play a crucial role in the kinetic energy of a pair of

particles.

1.6 Trigonal warping and electron-hole asymmetry

Graphene has received considerable attention since its discovery due, in large part, to

the massless nature of its electron states. This property has lead to the experimental

realization of long-proposed relativistic phenomena, such as Klein tunnelling [15] and

atomic collapse [16, 17]. Away from the Dirac points, however, the analogy to ultra-

relativistic dynamics breaks down in graphene. Let us dwell briefly upon the differences

between “Dirac particles” in graphene, and true relativistic particles in flat space-times.

A relativistic particle of rest mass m0 and momentum p in free, flat space-time, has

energies given by:

E± = ±
√
m2

0c
4 + p2c2, (1.46)
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Figure 1.8: The single-particle density of states per unit cell in monolayer
graphene, DU.C.(E), for (a) t

′
= 0 and (b) t

′
= 0.3eV. Insets show the

similarity between the numerical results (blue solid lines) generated using
the full bandstructure and the low energy approximation (red dashed lines)
in the low-energy regime.

where c = 3 × 108ms−1 is the speed of light in vacuum. Thus, for a particle with zero

rest mass, we recover the conical dispersion discussed previously: E± = ±cp. This is

an exact result for the case of an ultra-relativistic particle, which is not the case for

the conical bandstructure of graphene, which we derived in the limit of low energy.

Indeed, while for most purposes it is typically accepted that the conical approximation

is a good one in graphene for energies in the range |E| . 1eV [7], it is clear from Fig.

1.7 that the bands are curved away from E = 0. It is one of the aims of this thesis

to explain how that band curvature can result in new and interesting physics, and in

this section we introduce the most important non-linear terms in the Hamiltonian and

explain their impact on the bandstructure.

37



In graphene, the Fermi velocity plays the role of an effective speed of light, but

is two orders of magnitude lower [7]: vF = c/300. In analogy to the case of ultra-

relativistic particles, they behave as if they have no rest mass: m0 = 0. Unlike the

true Dirac particles, however, the fermions in graphene are electrons, and do have a

rest mass which is hidden in the theory. The Dirac Hamiltonian for ultra-relativistic

particles follows from Eq. (1.33) for m0 = 0, and is given by Ĥ = cσ · p, where the

Pauli matrices σ enter the theory due to the spin-1/2 degree of freedom of the fermions.

In graphene, however, spin does not seem to be particularly important. Indeed, spin is

a degenerate coordinate in the system. Instead, we have seen that σ is a pseudospin:

an internal degree of freedom arising due to the two-sublattice basis of the crystal.

The negative root in Eq. (1.46) lead Dirac to the concept of antiparticles, which are

analogous to vacancies in an an otherwise filled electron continuum at E < −m0c
2.

In graphene, the analogous excitations are instead holes, which can be thought of as

vacancies in the valance band for E < 0 in intrinsic graphene. For hole doped graphene,

where the Fermi level is below the neutrality point, electrons can be excited into the

valence band and have energies which are negative with respect to the Dirac point but

which are still above the Fermi level.

An often overlooked property of the bandstructure of graphene, and one which will

lay the foundations for much of this thesis, is the absence of true electron-hole symmetry

away from E = 0. This symmetry between the upper and lower cones is lifted, e.g., by a

small band curvature. We extend the kinetic energy by quadratic terms compatible with

the symmetries of the honeycomb lattice (see Refs. [2,29]). We write the single-particle

kinetic energy in the form:

Ĥ = vFσ · p− αp2 + τµ(px + ipy)
2σ+ + H.c., (1.47)

=

 −αp2 vFpe
−iφp + τµp2e2iφp

vFpe
iφp + τµp2e−2iφp −αp2

 .

38



where σ+ = 1
2

(σx + iσy), τ = ±1 for an electron in the K± valley and H.c. denotes the

Hermitian conjugate of the term preceding it. The second term in Eq. (1.47) is invariant

under all two-dimensional rotations, and arises microscopically from contributions due

to the hopping of electrons from one atom to its next-nearest-neighbour, giving α =

9a2t′

4~2 , where t′ is the next-nearest-neighbour hopping parameter [7]. The third term

(including H.c.) is invariant under rotations by 120◦. This term represents trigonal-

warping, and originates from nearest-neighbour hopping, expanded to second order in

momentum [2, 7], so that µ = 3a2t
8~2 . It is the only term in the Hamiltonian which is

different for the two valleys, due to the factor of τ which determines the sign of the

warping. The derivation of the Hamiltonian in Eq. (1.47) follows in the same way

as the conical Hamiltonian derived above, with the exception that the expansions of

f(k) and g(k) given in Eqs. (1.25) are carried to second order in p (where, as above,

p = ~k − ~K± is a small momentum measured with respect to the Dirac points).

The eigenvalues of Eq. (1.47) give the energies of the two bands:

E± = −αp2 ± vFp± τµp2 cos(3φp). (1.48)

The presence of the first term breaks the electron hole symmetry (since E+ 6= −E−)

and the final term warps the bands with the 2π/3 rotational symmetry of the lattice.

The energy surfaces, equipotential contours and some slices of the bandstructure near

the K+-point are given in Fig. 1.9. All of the plots shown would be the same for the

case of the K−-point with the exception of those containing trigonal warping due to the

valley-symmetry-breaking prefactor of τ in Eq. (1.48). The τ = −1 factor is equivalent

to the transformation φp → φp + 2π/6, so that the contours and energy surfaces in Fig.

1.9 are the same at the K−-point, up to a rotation of the momentum space.

In the following chapter, we will show how these nonlinear kinetic energy terms

can play a crucial role in the physics of two interacting Dirac particles. Indeed, in the

subspace of states annihilated by the operator σ · (p1 + p2) (so that the conical terms

are fully compensated), they are the only remaining terms in the kinetic Hamiltonian.
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Because they can be of negative sign, we will show that, in this subspace, a pair of elec-

trons interacting with formally repulsive forces (for example, the Coulomb interaction)

can form tightly bound states.
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Figure 1.9: Electron-hole symmetry breaking at the K+-point in monolayer
graphene. Left column: the conical approximation dispersion. Central col-
umn: dispersion including next-nearest-neighbour hopping. Right column:
dispersion including next-nearest-neighbour hopping and trigonal warping.
From top to bottom: energy surfaces, equipotential contours (at E = ±2eV)
and a slice of the bandstructure (along py = 0). In all images, blue (red)
surfaces and curves represent the conduction (valence) band, and dotted
black lines show the cones for comparison.
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Chapter 2

The two-body problem

2.1 Motivation

In this chapter, we study the two-body problem of a pair of interacting electrons in

graphene. We will show that, subject to certain constraints on the parameters of the

single-particle Hamiltonian, it is possible for the electrons to become tightly bound de-

spite the formally repulsive Coulomb interaction between them. We will neglect some

of the relevant many-body aspects of the problem (in particular, Pauli blocking and

interaction screening), so as to treat the simplest possible system and illuminate the

most important aspects of the pairing. Additionally, we will examine the semi-classical

trajectories of the pairs, and estimate their lifetimes.

Recent experiments with high-quality samples suggest the existence of non-trivial

correlated phases in graphene. In the Coulomb drag measurements of Ref. [30], for

example, anomalous peaks in the drag resistivity were observed when both layers were

tuned to charge neutrality (where the drag is expected to be a minimum). In finite mag-

netic field, the drag changed the sign, an effect tentatively linked to an analogous case

in traditional semiconductor double-wells, which could be explained by the formation

of an excitonic condensate. In the case of zero magnetic field, however, an enhancement

of the drag resistivity is noted, and is explained by anticorrelated electron hole puddles

in the two layers. Therefore, this experiment does not provide evidence of the zero-field
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condensate predicted theoretically [31–33]. Indeed, that has not been observed [30,34].

This has provoked significant interest in the archetypical two-body problem [1,35–38].

In previous studies of the two-body problem in graphene [1,35], the interacting pair

has been composed of Dirac quasiparticles each with linear dispersion, in monolayer

graphene. In this approximation, there is an electron-hole symmetry which causes the

two interacting particles to have equal and opposite kinetic energies: Ei = ±vFpi (as

discussed in Section 1.4), where i = 1, 2 is the particle number.

Let us relabel the momentum of particle 1, relative to the Dirac point, to be p1 ≡ p.

By defining the total momentum of the pair, K = p1 +p2, we can similarly re-write the

momentum of particle 2: p2 ≡ K − p. In the regime where the centre of mass of the

pair has no momentum (K = 0), the dynamics lead to a vanishing of the kinetic energy.

The two-particle quantum states can therefore be divided into dispersing (contributions

for states where E 6= 0) and non-dispersing (those where E = 0) sectors (see Fig. 2.1

and the discussion below for further details). This can be understood as the addition

or compensation of single-particle energies for particles in upper and lower bands. For

the example of two electrons in the upper cone E1 + E2 = vFp + vFp = 2vFp, but if

they were in opposite cones E1 + E2 = vFp − vFp = 0. The states with E = 0 can be

formed for any value of the momentum (within the limitations of the model). Thus, in

the non-dispersing sector, there is an infinitely high degeneracy due to an infinite choice

of possible momenta of the constituent particles. The contributions of such states were

disregarded in previous works [1, 35], but we will show that their inclusion leads to

anomalous electron pairing when one looks beyond the conical approximation.

Sabio et al treated the case of an interacting electron-hole pair in graphene, with

a Hamiltonian corresponding to the low energy approximation with linear momentum

terms and nearest-neighbour hopping [1]:

H = vFσ1 · p1 + vFσ2 · p2 + V (r) (2.1)
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Due to the chiral nature of Dirac fermions in graphene, the relative and centre of mass

coordinates of the pair do not decouple, and the problem is non-trivial when approached

analytically, allowing solutions for only certain circumstances. Most importantly, the

calculations were for the most part performed for the case of an exciton with zero total

kinetic energy (the centre of mass momentum K = 0, and p1 = −p2). It was shown

that in this regime some of the components of the Hamiltonian decouple, leading to

non-analytic (delta function-like) properties of the wavefunctions. In addition, there

was shown to be a class of zero-energy states which were non-normalizable, and these

states were consequently dismissed from further analysis entirely.

Is it entirely physical to neglect the states in the non-dispersing sector due to their

non-normalizability? To answer this question, let us consider the eigenvalues of Eq.

(1.48). It is clear that, in the single-particle low-energy regime, the quadratic terms

which arise due to next-nearest-neighbour hopping and trigonal warping vanish faster

than those which are linear in the momentum. The conical approximation to the band-

structure is only exact, however, precisely at the Dirac points. In that limit, one might

then argue that it is physical to neglect the non-normalizable two-particle states within

the non-dispersing sector. Recall, however, that the DOS vanishes at the Dirac points,

so there is no phase space to support such states. One must then turn to the regime

of small (but finite) single particle energies. In the non-dispersing sector, however, the

conical picture is not a good approximation: because linear terms are fully compensated

for two electrons in opposite cones and with opposite momenta (K = 0), the quadratic

terms of Eq. (1.48) become more important than the linear ones.

Let us examine the way in which higher order terms can at times reveal important

physics hidden by the conical approximation. The effect of dispersion on the excitonic

physics can be seen if one considers Dirac particles interacting via the Coulomb poten-

tial, which scales as V (r) ∼ −Ze2

εr
. In the conical approximation, the kinetic energy

scales as vFp ∼ ~vF
r

due to the uncertainty principle. In the case of a single particle

interacting with a static charge, Dirac vacuum reconstruction occurs when the potential
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energy dominates over kinetic energy [16]: Ze2

ε
> ~vF

2
. In the case of two carriers, how-

ever, a doubling of the relative velocity effectively doubles the critical charge for which

collapse is possible [1]: ZC & 2. This renders the strongly-interacting regime irrele-

vant for electron-hole physics. For a weaker, quadratic dispersion (p2 ∼ ~2
r2

), however,

bound states can form for arbitrarily small interaction strength. For this reason, the

previously neglected contribution of non-dispersing states [1, 35] can be important for

understanding the two-particle physics of graphene. To this end, the two-body prob-

lem was re-analyzed by Mahmoodian et al with the inclusion of trigonal-warping terms

which preserve the symmetry between the two cones but do not lead to non-zero kinetic

energy when the total momentum of the pair is zero [36]. In this thesis we introduce

quadratic momentum terms due to next-nearest-neighbour hopping which were ignored

by Ref. [36] and show that this leads to the finite kinetic energy necessary for bound

state formation. In particular, we will show that this leads to a new class of states

which exist regardless of the orientation in momentum space (and cannot arise due to

trigonal terms alone due to sign-indefinite kinetic energy). The formation of pairs of

particles in the same valley is allowed for the model we consider here, which was not

the case for the electron-hole case in Ref. [36].

In this chapter, we show that Cooper-pair-like states can be formed in the sub-

space of non-dispersing two-particle states. The dynamics in this sector is governed

by quadratic terms in the single-particle dispersion. We have already seen in Section

1.6 that two such contributions are possible: an isotropic term due to next-nearest-

neighbour hopping, εI ∝ p2, and an anisotropic term due to trigonal-warping, εA ∝

p2 sin(3φp), where φp is the polar angle in momentum space defined by tan(φp) = py
px

.

We show that, depending upon the relative magnitudes of these two terms, two regimes

are possible. When the isotropic contribution dominates, bound states can be formed;

otherwise it is possible to form non-dispersing quasibound states (which can leak into

the continuum). We calculate the binding energies of such states numerically, for a

double-layer configuration, and discuss the decay rate due to coupling to the contin-
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uum of dispersing states. In order to gain an intuition for the pairing, we also discuss

the semi-classical equations of motion, and resultant trajectories, of the pairs.

2.2 Effective Hamiltonian

We begin by analyzing the kinetic energy of two Dirac quasiparticles in graphene. We

have seen already that electrons in graphene can reside on two sublattices (A and B),

so that they are to be described by a two-component Dirac spinor, and that the internal

degree of freedom arising due to the presence of the sublattices is known as pseudospin.

In the low-energy approximation, the Dirac spinors for the two valleys, K+ and K−,

can be treated as fully independent. We define these spinors as ψK+ =
[
ψA
K+ , ψBK+

]T
and ψK− =

[
ψB
K−

, ψA
K−

]T
, where A and B label the probability amplitudes for the two

sublattices. In the conical approximation, the dynamics of a single particle is governed

by the Hamiltonian Ĥi = vFσi · pi, where the subscript labels the particle.

To understand the behaviour of a pair of particles in the conical regime in graphene,

we begin by neglecting the electron-electron interactions and focus on the kinetic en-

ergy of the pair. The Hamiltonian Ĥ1 of particle 1 is expressed in the pseudospin

basis {|↑1〉 , |↓1〉} (see Eq. (1.34) and preceding discussion) which spans the space H1.

Similarly, the kinetic energy of particle 2 is determined by Ĥ2 which acts on the space

H2 in the basis {|↑2〉 , |↓2〉}. The two-particle states live in the tensor product space

defined by H = H1 ⊗H2. We choose to work with the Schmidt basis, which is akin to

taking ordered pairs of the pseudospins of constituent particles: {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉},

where, e.g., |↑↓〉 = |↑1〉
⊗
|↓2〉. Within this formalism, the pair is governed by the

dispersion arising from the relative motion of its constituent particles, represented by

ĤL = Ĥ1⊕ Ĥ2 = vFσ1 · p̂1 + vFσ2 · p̂2, where σi is the pseudospin operator, subscripts

denote the particle number and p̂i is a small momentum measured with respect to the

K+- or K−-point. For clarity, we have written the pseudospin operators in compact

form (σ1 ≡ σ1 ⊗ σ0,2 and σ2 ≡ σ0,1 ⊗ σ2) because they act on the single particle
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subspaces. We focus on states with zero total momentum, such that p = p1 = −p2.

The eigenstates of ĤL are given by:

|1, φp〉 =
1√
2

[
e−iφp |↑↑〉+ eiφp |↓↓〉

]
,

|2, φp〉 =
1√
2

[|↑↓〉+ |↓↑〉] ,

|3, φp〉 =
1

2
eiφp |↓↓〉 − 1

2
e−iφp |↑↑〉+

1

2
[|↑↓〉 − |↓↑〉] ,

|4, φp〉 =
1

2
e−iφp |↑↑〉 − 1

2
eiφp |↓↓〉+

1

2
[|↑↓〉 − |↓↑〉] .

(2.2)

The states in Eq. (2.2) have corresponding eigenvalues E1,2 = 0 and E3,4 = ±2vFp.

Thus, the subspace spanned by |1, φp〉 and |2, φp〉 from Eq. (2.2) is the non-dispersing

sector. Such states are formed by electron quasiparticles in opposite cones, with the

same magnitude of momentum, so that the relative velocity of the pair vanishes. Thus,

for the remainder of this work, we will call states with configuration |1, φp〉 the ortho-

states and those with configuration |2, φp〉 the para-states, in analogy with the states of

positronium. Similarly, the subspace spanned by |3, φp〉 and |4, φp〉 forms the dispersing

sector, in which the velocities are opposite. In the absence of interactions, all states

in the non-dispersing sector are infinitely degenerate. We note that this degeneracy is

lifted if the symmetry between the upper and lower cones is broken, e.g., by a small

band curvature, as was explained in Chapter 1.

Let us recall the form of the single-particle kinetic energy which includes the effects

of trigonal warping and next-nearest-neighbour hopping:

Ĥi = vFσi · pi − αp2
i + τiµ(px,i + ipy,i)

2σ+,i + H.c., (2.3)

which is the same as Eq. (1.47), with the inclusion of the subscript i which labels the

particle. Although the quadratic terms are small in the limit p → 0, we have seen

that they are particularly important for particles in opposite cones (since E1,2 = 0 in

the non-dispersing sector). Thus, our aim is to study the effects of these terms on the

states in the subspace spanned by the ortho- and para-states: {|1, φp〉 , |2, φp〉}. This is
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Figure 2.1: A schematic of the four eigenstates of the two-particle kinetic
Hamiltonian. K = 0 in each case, and p is the same throughout. The states
can be divided into two sectors: those in which the particles are in opposite
bands (E1,2 = 0) and those in which the particles are in the same band
(E3,4 = ±2vFp). The colours of the electrons are included to distinguish
between particle 1 and particle 2.

achieved, e.g., by constructing the two-particle Hamiltonian, and projecting out states

with non-zero weights along |3, φp〉 and |4, φp〉. The Hamiltonian which acts on H and

includes the effects of these extra terms is Ĥ1,2 = Ĥ1 ⊕ Ĥ2:

Ĥ1,2 =



−2αp2 f2(−p) f1(p) 0

f ∗2 (−p) −2αp2 0 f1(p)

f ∗1 (p) 0 −2αp2 f2(−p)

0 f ∗1 (p) f ∗2 (−p) −2αp2


, (2.4)

where fi(p) = vFpe
−iφp + τiµp

2e2iφp and, as above, p = p1 = −p2. To examine the

dynamics in the non-dispersing sector, we restrict the two-particle Hamiltonian to this

subspace. We explicitly treat two distinct cases: direct pairs (when both particles are

in the same valley) and indirect pairs (opposite valleys). All ortho- and para-states are

annihilated by the operator (σ1 − σ2) · p. In calculating the matrix elements of the

kinetic energy we change to the eigen-basis defined by Eq. (2.2) and project out the
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high-energy degrees of freedom, giving the effective Hamiltonian matrix [39]:

Ĥeff
1,2 =

 − p2

2m∗
τ1,2µp

2 sin(3φp)

τ1,2µp
2 sin(3φp) − p2

2m∗

 , (2.5)

where the rows and columns correspond to states |1, φp〉 and |2, φp〉, m∗ = 1/4α is a

two-particle effective reduced mass and τ1,2 = τ1 + τ2. For further details about the

calculation of Ĥeff
1,2, see Appendix A. The eigenvalues of Eq. (2.5) are given by:

E = − p2

2m∗
± |τ1,2|µp2 sin(3φp). (2.6)

It is easily verified that these are the two eigenvalues of Eq. (2.4) corresponding to the

non-dispersing sector.

Let us clarify the meaning of the pair having “zero total momentum” for both

direct and indirect pairs. Recall that the single particle momentum pi is measured

with respect to one of the Dirac points. A schematic of what it means for p1 + p2 = 0

is given in Fig. 2.2. If we define P i to be the momentum of the particle with respect

to the Γ-point (the centre of the Brillouin zone, as in Fig. 1.5) then P i = K± + pi.

Therefore, for the case of interest, where p = p1 = −p2:

P 1 + P 2 =


2K+, for direct pairs in the K+ valley

2K−, for direct pairs in the K− valley

K+ +K−, for indirect pairs.

(2.7)

For indirect pairs, the total momentum K+ +K− is equal to a reciprocal lattice vector,

so that the dynamics are identical to the pair with P 1 +P 2 = Γ in analogy with pairs

in the Cooper channel of superconductors. For direct pairs, the situation is different:

particles lying equidistant from, and on oposite sides of, the same Dirac point have a

non-vanishing total momentum. Thus indirect pairs, with vanishing true momentum,

are most likely of greater importance in the experiment, as they can be excited by
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zero-momentum probes. We note that for all of the above cases, however, the particles

are in opposite bands, so that this momentum configuration leads to non-zero band

velocity of the pair. We will examine this in more detail in Section 2.4.

Figure 2.2: Electron momenta at the Brillouin-zone corners. Example mo-
mentum configurations for direct (indirect) pairs are represented by blue
(red) arrows. Solid (dashed) arrows correspond to the momentum of parti-
cle 1 (particle 2).

We will show that some of the features in the dynamics of two-particle states cru-

cially depend upon the signs and relative magnitudes of the quadratic terms, i.e., on the

values of m∗ and µ. It has been shown by a variety of different approaches [7,23–26] that

t and t′ have the same sign, however there is a disagreement on the precise value of t′. Ab

initio calculations [7,23] give the range 0.02t ≤ t′ ≤ 0.2t, while cyclotron resonance [24],

quantum capacitance [25] and polarization-resolved magnetospectroscopy [26] measure-

ments have produced t′ = 0.04t, 0.11t and 0.14t respectively. The full two-particle ki-

netic energy is Ĥ1,2 = Ĥ1 + Ĥ2, and so −m∗ plays the role of a two-particle reduced

mass due to the − p2

2m∗
term which arises when Ĥ1,2 is written explicitly, with the cor-

responding range of values 0.7 ≤ m∗

me
≤ 7.5. This implies that the isotropic kinetic

energy term is negative definite, which will be shown to be of crucial importance to the

spectrum of two-particle states.
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2.3 Bound states of electron pairs

To understand the dynamics of pairs described by the kinetic energy terms in Ĥ1,2, let

us first consider the simplest case of indirect pairs, where the electrons are in opposite

valleys. In this configuration τ1,2 = 0, so that the contribution of trigonal-warping van-

ishes and the only remaining kinetic term is − p2

2m∗
. The dynamics of the interacting pair

is therefore described by the Hamiltonian HI = − p2

2m∗
+U(r) for para-states, where U(r)

is the potential energy. The Hamiltonian HI describes the motion of a particle with

negative effective mass −m∗ in the external potential U(r). We note that −HI describes

the motion of a particle with a positive mass m∗ in an attractive potential. In two di-

mensions, an arbitrarily weak attractive potential exhibits at least one bound state at

negative energies for massive particles [40]. It follows, therefore, that HI will exhibit

positive energy bound states if U(r) is repulsive. This property is a direct consequence

of the negative definite kinetic energy of the pair, the dynamics of which is akin to the

motion of a hole-like state near the top of the valence band in a semiconductor: the

repulsive potential due to a negatively charged impurity is perceived as an attraction

due to negative band curvature. In the real space picture, two electrons with opposite

momenta reside in different cones and have nearly the same velocities. The repulsive

force tends to increase the momentum of one electron, and decrease the momentum of

the other. Due to the negative dispersion term, this decreases the velocity of the first

particle, and increases the velocity of the other, reducing the distance between them.

Unlike conventional bound states, these positive eigenstates are metastable. Formation

of regular (electron-hole) excitons is prohibited in this regime.

Since the effective mass (−m∗) is only about five times larger than the free electron

mass, the binding can be quite strong. For the example of a repulsive Coulomb inter-

action, U(r) = e2

εsεNr
, the problem reduces to the two-dimensional hydrogen atom [41].

(Here εN = 1 + Nπe2

8εs~vF
is the intrinsic dielectric constant [42] of graphene embedded in

a material with dielectric constant εs. For single (double) layer graphene, the number

of fermion species is N = 4 (N = 8)). The highest energy level is given by E1 = 2m∗e4

ε2sε
2
4~2

.
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Figure 2.3: A toy model of our problem: two electrons (red circles), which
are isolated in parallel graphene layers, interact via a Coulomb potential
but are electrically isolated by an intermediate dielectric spacer (green) of
relative permittivity ε2. That double-layer structure is embedded in a (in
general) different dielectric medium (blue), of relative permittivity ε2. The
in-plane distance between the electrons is r and the separation between the
layers is d.

We note that the hydrogen-like Hamiltonian HI results in binding energy E1 ∼ 1.5eV

and Bohr radius aB ∼ 2.5Å for t′ = 0.1t. At such short distances, the low-energy

approximation to the graphene band structure is not valid [43], rendering the solution

inconsistent. More importantly, the dynamics of particles at such high energies is af-

fected by Pauli blocking due to the Dirac sea. For the bound state to be observable, the

relevant phase space domain must be free from other particles. This can be achieved

by, e.g., gating, if the bound state energy is well below 1eV.

Two-particle states with smaller binding energies can be realized in double-layered

structures where the electrons in opposite layers are separated vertically by a dielectric

spacer of thickness d. We provide a schematic of such a construction in Fig. 2.3. Note

that for the case of interest here ε1 = ε2 ≡ εs, and the case of inequivalent dielectrics

(ε1 6= ε2) will become important in Chapter 4. Hexagonal boron nitride (εs = 3 − 4)

spacers have been experimentally shown to electrically isolate parallel graphene layers

at a thickness of 4 atomic layers (d = 1.3nm) [44]. This suppresses the 1
r

singularity,

yielding smaller binding energies. For a rough estimate of the binding energy we ap-

proximate the potential as V (r) ∼ e2/εsε
2
4

√
r2 + d2 (see Chapter 3). The spectrum of

the resulting shallow well can be found in the harmonic approximation, assuming r � d.

The energy of the highest bound state is E0 = −~ω + e2

εsε24d
, where ω =

√
e2

εsε24m
∗d3

is
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the oscillation’s angular frequency near the potential maximum. For example, t′ = 0.1t

gives binding energy E0 = 31meV. For the case of direct pairs the trigonal warping is

not compensated (τ1,2 6= 0), and the situation becomes more complicated. We note,

however, that if the mass m∗ is small enough the trigonal warping terms cannot change

the sign of the kinetic energy. Further, there are several momentum space orientations

for which sin(3φp) = 0. We therefore take E0 as a first approximation of the binding

energy for direct and indirect pairs.

To analyze the case of the direct pair with anisotropic dispersion, we derive its ef-

fective Hamiltonian in momentum space. The potential energy V (r) is represented by

a non-local operator proportional to its Fourier transform Ṽp,p ′ = Ṽ (|p − p ′|), while

the kinetic energy terms are given by Eq. (2.5) for τ1,2 = ±2. Restricting the potential

energy to the non-dispersing sector requires some care due to a non-trivial overlap be-

tween non-dispersing states with different momenta: 〈1, φp ′ |1, φp〉 = cos(φp−φp ′). For

the case of direct interactions, the (p,p ′) block of the Hamiltonian matrix takes the

form:

Ĥp,p ′ = δp,p ′Ĥ
eff
1,2 + Ṽp,p ′

 cos(φp − φp ′) 0

0 1

 , (2.8)

where Ĥeff
1,2 is given by Eq. (2.5). In the absence of inter-particle interaction the eigen-

values of this matrix are given by the kinetic energy terms: ε
(2)
2 = −2µp2 [η + sin(3φp)],

where we have introduced the anisotropy parameter η = 6t′

t
which is not physically

tunable (uncertainty in the value of t′ gives a range of possible values 0.12 ≤ η ≤ 1.2).

Depending on the value of η, the kinetic energy is either negative-definite (η > 1) or

sign-indefinite (η < 1).

We proceed by numerically diagonalizing the Hamiltonian given by Eq. (2.8) using

the interlayer interaction from Ref. [33]:

Vq =
vqe
−dq

1 + 2Nπα
8

+ (Nπα
8

)2[1− e−2dq]
, (2.9)
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where N = 4 is the number of Fermion flavours, α = e2/εs~vF is the Coulomb coupling

constant and vq is the bare Coulomb interaction. for a full discussion, see Sec. 3.3.

We outline the numerical procedure in Appendix B. Although it is assumed that the

relevant phase space domain is free of other particles to avoid the effect of Pauli blocking,

we will treat the case of screening at half-filling (pf = 0) as a first approximation.

Indeed, the dielectric contribution to the screening giving rise to εN occurs at scales

smaller than the Fermi wavelength (λf ), and is most important in the realistic limit

of λf � d. To visualize the resulting wavefunctions, we calculate the local density of

states (LDOS), ν(ε, x, y) =
∑

n δ(ε− εn)|ψn(x, y)|2, where x and y are the components

of the in-plane separation and n labels the eigenstates. In the isotropic regime, η > 1,

as is evidenced by Fig. 2.4a for η = 1.1, there is a formation of distinct, highly localized,

bound states at ε1 = 45meV, ε2 = 30meV and ε3 = 27meV. We note that the energy

of the highest bound state, ε1, is very similar to the value predicted in the harmonic

approximation above. This validates the further use of such an approximation in the

calculations of the transition rates that are to follow. At negative energies there is a low

intensity continuum of unbound states, which are only weakly coupled to the bound

states due to the symmetry of the Hamiltonian, resulting in their large lifetimes.

In the anisotropic regime (η < 1), there are six easy axis angles, defined by the

relation sin(3φ0) = −η, along which the dispersion is effectively suppressed despite the

broken conduction-valence symmetry. By concentrating the wavefunction along these

axes, one constructs a state qualitatively similar to the non-dispersing solutions in which

the interparticle distance takes a constant value r0: ψ(r) ∝ δ(r − r0). The energies of

these states (see Fig. 2.4b) follow the profile of the interaction potential, ε ≈ U(r0).

Further, a negative energy state dragged into the positive continuum by the interaction

potential can decay by changing its pseudospin configuration rather than by tunnelling

through a barrier. This is wholly due to the sign-indefinite kinetic energy.

54



Figure 2.4: Two-body LDOS in a graphene hybrid structure as a function
of binding energy E and interparticle distance r. The energy dependence
shows distinct bound states in the (a) isotropic regime, which peel off into
the free particle continuum in the (b) anisotropic regime (Coulomb potential
in white). In real space, the wavefunctions are those of the states at ε1 =
45meV (Fig. (c)), and ε2 = 18meV (Fig. (d)).

2.4 Semiclassical trajectories

In this section, we will examine how the pairing of two like-charged particles can be

facilitated by the Coulomb interaction, which is formally repulsive, by plotting the

semiclassical trajectories of the pairs. In classical mechanics, a deterministic theory,

one needs only the equations of motion, and initial values of the coordinates and mo-

menta, to fully determine the time evolution of a system. In other words: if we know

where a particle (or ensemble of particles) are, and we know where they are going, we

can predict where they will be at some later time and draw a picture of their path.
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This is not the case in quantum mechanics due to the canonical uncertainty principle,

which states that there is a minimum bound on the products of the uncertainties of

each coordinate and its corresponding momentum: ∆xi∆pxi ≥ ~/2.

One implication of the uncertainty principle is that the concept of an absolute tra-

jectory is meaningless in quantum mechanics. This can be understood with a simple

thought experiment. We imagine that there is some measurement apparatus which

will tell us, with arbitrary accuracy, the position of an electron which is constrained to

move along the x-axis. As ∆x→ 0, it is necessary that ∆px →∞ in order to preserve

the uncertainty relation. Now we know the exact position of our electron, but have no

information about where it will be even a moment later and, therefore, cannot plot the

path of the particle. This phenomenon is general, and not dependant on the chosen

constraint or the precise details of the experiment.

In order to gain some intuition for the motion of the particles, we employ a semi-

classical approximation: we determine the kinetic energies of the two particles as if

they are quantum objects, and assume that these energies can be used in a classical

Hamiltonian to determine the equations of motion. Treating the momenta as classical

variables, the time evolution of the two-particle system is then governed by Hamilton’s

equations:

dpi
dt

= −∇xiH,

dxi
dt

= ∇piH, (2.10)

where the subscript i = 1, 2 denotes the particle number.

We will restrict our discussion to the case of indirect pairs in the subspace of para-

states. In this case the kinetic energy is isotropic and there is a trivial overlap of states

with different momenta. We take as the (classical) kinetic energy the relevant eigenvalue

of the quantum Hamiltonian for each particle. These have been given previously in Eq.

(2.6), and we will assume that particle 1 (particle 2) is in the upper (lower) cone. Thus,
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we write:

H = −p
2
1 + p2

2

4m∗
+ vF (p1 − p2) +

V0√
|x1 − x2|2 + d2

, (2.11)

where pi = |pi| is the magnitude of the momentum for particle i, xi = (xi, yi) is its

position and V0 = e2

εsε2N
determines the strength of the potential. We note the importance

of retaining the linear terms in this analysis. Although we will restrict ourself to the

K = 0 channel, Hamilton’s equations (Eq. (2.10)) act on the single particle coordinates

and conjugate momenta independently of one another. Substitution of the Hamiltonian

into Eqns. (2.10) give eight first-order coupled differential equations, which will be

solved to obtain the equations of motion:

dp1,2

dt
= ± V0r12

[|r12|2 + d2]
3
2

,

dx1,2

dt
= −

p1,2

2m∗
± vF

p1,2

p1,2

. (2.12)

Due to the translational invariance of the potential, we have some extra flexibility

in the choice of our initial conditions. In particular, at t = 0, particle 1 was chosen to

reside at the origin, and particle 2 on the x-axis. The position of the second particle was

chosen so that the initial distance between the particles was equal to the expectation

value of the radial coordinate of a two-dimensional harmonic oscillator ground state

wavefunction (which, based on our previous analysis, we take to be a typical size of the

pair):

a0 ≡< r >0=

√
π~
m∗ω

∼ 1nm. (2.13)

To set the initial momenta, we note that there are only two free parameters, p and φ:

px,1 = −px,2 = p cos(φ), and

py,1 = −py,2 = p sin(φ). (2.14)
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Figure 2.5: Typical trajectories of an electron pair with zero total momentum
relative to the Dirac point, p1 = −p2, in separated graphene layers (sepa-
ration d = 1.3nm) with a hBN dielectric spacer (εs = 3.9). The constituent
particles are in different colours, and the ticks on the axes correspond to
steps of 20nm. Results were generated for the initial conditions φ(0) = 2π/3
(relative to the x-axis) and p(0) = 0.6pmax.

We know that, for the case of negative kinetic energy and repulsive potential, bound

states have positive energy, H > 0. Therefore, we restrict ourselves to the pairing

regime, which puts an upper bound on the magnitude of the momentum. We ob-

tain,from Eqn. (2.11):

pmax =

√
2m∗V0√
a2

0 + d2
∼ 1

~
nm

. (2.15)

We solved Eqns. (2.12) numerically using a 4th-order Runge-Kutta procedure for

the case of zero-total momentum of the pair relative to the Dirac point (p1 = −p2),

and a typical result is given in Fig. 2.5.
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For a pair with vanishing total momentum, p1 = −p2 ≡ p, Eqns. (2.12) define the

band velocities of the individual particles, which are given by

v1,2 = vF p̂∓
p

2m∗
, (2.16)

where p̂ is a unit vector in the direction of p. It is illuminating to consider the following

change of variables:

vcm =
1

2
(v1 + v2) = vF p̂, (2.17)

and,

vr = v2 − v1 =
p

m∗
, (2.18)

which correspond to the centre-of-mass and relative velocities, respectively. It imme-

diately follows that the trajectories of the electrons can be represented in terms of a

superposition of two motions: a fast center-of-mass motion, characterized by the Fermi

velocity, and a much slower relative motion, with velocity determined by the large ef-

fective mass m∗.

In the absence of interactions, and for small momenta, the relative velocity is suf-

ficiently small that the pair behaves as if they were a single particle, moving with

velocity vF in the direction of the momentum. This is due to the chirality of carriers

in graphene. The particles have opposite momenta of equal magnitude, but they are

in opposite cones. The pseudospin projects onto the particle momentum in opposite

directions in the two different cones, which changes the sign of the energy. Thus, the

gradient of the band (the band velocity) is the same for opposite-cone particles with

opposite momenta.

If we now switch on the inter-particle interaction, the momenta of the particles be-

come time-dependent, in accordance with Eqns. (2.12). The sign of the interaction
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is positive, but the effective forces carry opposite signs for the two particles, so that

whenever p1 is increasing, p2 must be decreasing, and vice versa. Due to the sign of the

parabolic energy term, this will cause the particle with the smaller of the two velocities

to speed up slightly, and the other particle to slow down, closing the distance between

the two particles. Therefore, the finite relative velocity implies that a repulsive force

between the two particles will increase the velocity of one particle while decreasing the

velocity of the other, causing them each to change direction slightly in such a way that

their seperation is almost constant. This causes the two particles to behave as if they

were “stuck together” despite the repulsive force.

Now let us note that the momentum p is changed by the interaction. Hence, as the

particles are orbiting around their mass center, the direction of vcm is also changing,

so that the average velocity of the pair over a long time is zero, as can be seen from

Fig. 2.5. The large value of vF , compared to vr, results in non-propagating orbits of

relatively large diameter d ∼ vF/ω where ω is the angular frequency of the orbit, which

can be estimated as ω = E0/~ (d ∼ 100nm in Fig. 2.5).

2.5 Decay into the continuum

In our analysis so far we have only considered states in the non-dispersing (E = 0)

sector. In view of any reasonable experiment, one might ask the following question:

is it possible to populate a macroscopic number of bound states in the non-dispersing

sector, or is their coupling to the continuum of dispersing states sufficiently strong so

as to deem the previous analysis invalid? In other words, is it sufficient to treat states

in the E = 0 subspace on their own, or do such states quickly decay? In this section

we provide a partial answer to this question.

Coupling to the dispersing sector could lead to the decay of the metastable states

found above, however these transitions are suppressed by momentum mismatch between

the sectors. It is instructive to analyze the decay via Fermi’s golden rule. Firstly, we
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note that such a transition can only occur if it conserves the energy. Due to the repulsive

interaction, we have found that the binding energy of the pair is positive. Therefore,

due to energy conservation the decay is only allowed into states with positive energy

E = 2vfp. States with such energy exist in the continuum of non-interacting, two-

particle dispersing states, and are given by |3, φp〉 in Eq. (2.2). Therefore the transition

results in a pair of non-interacting electrons in the upper Dirac cone. The coupling

between these two sectors occurs via trigonal-warping and potential energy terms, due

to the non-trivial overlap between states with different momenta. The relevant matrix

elements of the Hamiltonian are given by:

H1,3 =
i√
2
Ṽp,p′ sin(φp − φp ′), (2.19)

H2,3 = i
√

2µp2 sin(3φp)δp,p′ , (2.20)

where Hi,j = 〈i, φp ′| Ĥ |j, φp〉 (see Appendix A for details).

We calculate the rate of transitions from bi-electronic bound states into the contin-

uum of free states using Fermi’s golden rule:

Γ =
2π

~
|Mif |2Df , (2.21)

where Df is the density of final states and Mif is the transition matrix element:

Mif =

∫
ψf (r)∗H(r)ψi(r)dr. (2.22)

Due to the non-trivial overlap of states with different momenta, and the trigonal warping

terms, it is not straightforward to express the Hamiltonian as a function of position.

Instead, we will calculate the matrix elements in Eqn. (2.22) within the momentum-

space representation. This is achieved by transforming the wavefunctions:

ψi,f (r) =

∫
ψ̃i,f (p)ei

p·r
~

dp

(2π~)2
, (2.23)
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and substitution into Eqn. (2.22). Thus we obtain:

Mif =

∫
ψ̃∗f (p

′)Hp ′−pψ̃i(p)
dp

(2π~)2

dp′

(2π~)2
. (2.24)

We can represent the momentum-space wavefunctions in terms of a part which depends

only on the pseudspin, and another which takes the form of the wavefunction of a

massive particle ie. ψ̃i(p) = φi(p) |i, φp〉 and ψ̃f (p
′) = φf (p

′) |f, φp ′〉, for i = 1, 2 and

f = 3. It follows from Eq. (2.24) that:

Mi,f =

∫
φ∗f (p

′)Hf,iφi(p)
dp

(2π~)2

dp′

(2π~)2
. (2.25)

In keeping with the harmonic approximation used so far, we assume that the initial

wavefunctions are those of the ground state of the two dimensional harmonic oscillator:

ψi(r) =

√
2

π

1

r0

e
− r

2

r20 , (2.26)

where r0 =
√

2~/m∗ω characterises the suppression of the wavefunction at large distances.

In the momentum space picture, the wavefunction is given by the Fourier transform:

φi(p) =

∫
ψi(r)e−i

p·r
~ dr =

2
√

2π~
p0

e
− p

2

p20 , (2.27)

where p0 =
√

2m∗ω~ is the zero point momentum in the initial state. We approxi-

mate the final state wavefunctions by plane waves of wavevector pf/~, which are highly

localized in momentum space:

φf (p
′) ∼ δ(p ′ − pf ). (2.28)
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The transition matrix element due to the interaction potential, M1,3, vanishes by

symmetry if ψi(p) is an s-state. Thus, we immediately obtain the decay rate:

Γ1→3 = 0. (2.29)

Now let us turn to the kinetic energy term, H2,3, which conserves the momentum.

Therefore the decay occurs when the initial (pi) and final (pf ) momenta satisfy conserva-

tion laws: E0 = 2vFpi,f . Here E0 is the energy of the ground state of a two-dimensional

harmonic oscillator: E0 = −~ω + e2

εsε24d
which gives pi � p0. The smallness of pi results

in a small matrix element which is proportional to p2. The interaction cannot flip the

spins, and we also assume that it does not scatter particles between the valleys. Notice

that the dynamics for particles with configuration |3, φp〉 are the same as for free parti-

cles within the conical regime, subject to the replacement vf → 2vf . Thus, the density

of final states is given by Eq. 1.39, for a particle of velocity 2vf (and N = 1, to account

for the absence of spin-flipping and inter-valley scattering):

Df =
|E|

8π~2v2
F

. (2.30)

Using the wavefunctions given in Eqs. (2.27) and (2.28) and Fermi’s golden rule, we

obtain for the decay rate of particles which are initially para-states:

Γ2→3 =
µ2p4

fE0

π~v2
fp

2
0

∼ 10−10E0

~
. (2.31)

This suggests only weak coupling to the continuum, justifying our consideration of the

non-dispersing sector independently. Note that H2,3 vanishes for indirect pairs, which

do not decay by this mechanism.

These small values of the decay rate correspond to lifetimes on the order of ∼ 100µs.

Experiments with high-quality suspended devices have shown that the mean free path

of carriers in graphene can be on the order of 1µm [45]. The scattering time of carriers
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in zero-field is highly suppressed by the high Fermi velocity, however, so that such long

mean-free-paths correspond to scattering times on the order of ∼ 1ps. This implies

that the lifetime of the pair is likely to be limited by other, non-universal mechanisms,

such as impurity, phonon or electron-electron scattering. This point was emphasised

by Winkler et al, who noted that the long lifetimes of atom pairs in optical lattices

(of the order of ∼ 100ms) were enabled by the near-absence of decay channels in the

system, and would not likely be replicable in the condensed matter setting [46]. One

might suggest that decay of the pair due to scattering is suppressed, by analogy to the

traditional superconductors. The interaction potential that leads to the formation of

Cooper pairs is attractive, however, so that at low temperatures they condense to the

ground state. While the bi-electrons discussed herein may form condensates, they have

positive energies, and the state of highest energy is the most stable. Thus, the energy

of the phases would not be a minimum. This implies that there is no energy cost in

splitting a pair into the two constituent electrons, as there is in a superconductor, so

that scattering will indeed play an important roll. Thus, we reiterate that we have cal-

culated the decay rates to justify the form of the effective Hamiltonian, which ignores

the coupling between dispersing and non-dispersing sectors. Also, one has to bear in

mind that higher-order virtual transitions could lift the restriction pf = pi � p0. The

detailed analysis of this strongly depends on the properties of Ṽp,p ′ .

2.6 Repulsively bound pairs in other systems

Now that we have seen the mechanism which leads to the formation of bi-electrons in

graphene, we are in a position to briefly note some of the literature pertaining to similar

effects in other systems. In a 1971 paper, Gross et al reported anomalous optical spec-

tra of BiI3 [47]. The resonant absorption and emission lines were seen to obey the ∝ n−2

dependence of a hydrogen-like atom, but converged at long wavelengths. By fitting the

lines to known formulae for such atoms, it was found that the particles involved were
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not atoms, but rather particles with a similar effective mass to the electrons in BiI3.

Thus, the authors concluded that the anomalous lines were due to electron pairs with

negative effective reduced mass (such as those states which might exist near the top of

a band with negative curvature) [47].

Simple models of bound state formation due to a negative single-particle energy

dispersion near the top band boundary were considered in Refs. [48,49]. Mahajan et al

showed that two-body bound states of like-charged particles occur for arbitrary periodic

potentials, as long as the band gap is non-vanishing [48]. Souza et al treated the case of

particles with an on-site repulsion, and showed that they can exhibit Bloch oscillations

characteristic of doubly charged (q = −2e) pairs [49]. These studies have purported

to explain the recent observations of bi-electron peaks in the photo-double-ionization

spectra of aromatic hydrocarbons [50] and the pairing of ultracold rubidium atoms in

an optical lattice [46].

We note, however, that the origin of the negative dispersion in graphene is different:

the leading term in the single particle energy is linear, and the pair Hamiltonian arises

via the compensation between the two sub-bands. This means that the dynamics of

these pairs can be represented as a slow relative motion v ∝ p/m∗ equation superim-

posed with the fast motion of the pair, v ∝ vF .
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Chapter 3

Electron-electron interactions in

single- and double-layer

nanostructures

If one wants to study the many-electron system in graphene, one needs to take into

account the effects of the Dirac sea on the electron-electron interaction of the pair. As

an electron moves through a solid, it repels all of the other electrons in its immediate

vicinity, so that it is surrounded by a region of positive charge due to the lattice ions

which remain stationary. Many of the electric field lines of the electron terminate on

the lattice ions, with only a few leaking out to interact with other, faraway electrons

which are, in turn, dressed in their own small cloud of positive charge. For a high-

density of the electron gas, the electron-electron interactions are heavily suppressed by

this phenomenon, which is known as screening.

The simplest approach to the study of screening physics (beyond purely dielectric

screening) is the Thomas-Fermi approximation, a semiclassical approach in which one

derives the effective potential of an electron by considering its effect on the electronic

density of an ideal electron gas [19]. Although the Thomas-Fermi approximation gives

a reasonable qualitative description of traditional metals, it breaks down in graphene

because the interactions are long-ranged at charge neutrality, where it screens like an
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insulator. This can be understood by recalling that the density of states vanishes at

the Dirac points in graphene, so that any transitions have to be between the bands if

the valence band is full. Because the electron-electron interactions are long-ranged, one

can not assume that the Dirac sea is a free electron gas. The simplest approach which

accounts for the presence of an interacting Dirac sea is the Random Phase Approxi-

mation (RPA). First proposed in a series of four papers by Bohm and Pines [51–54]

and later restated diagrammatically by Gell-Mann and Brueckner [55], the RPA is a

perturbation series in rs (the so-called Wigner-Seitz radius) which includes the most

divergent bubble diagrams (see Fig. 3.1). Due to the dimensionality of graphene, and

the relativistic nature of its elementary excitations, rs is independent of the doping:

rs = e2/εs~vF [4/N]1/2 ∼ 0.5 (for graphene on a SiO2 substrate with N = 4). Thus, the

RPA is a particularly good approximation for the case of graphene [42, 56], and has

been used to analyse the dielectric function by a number of authors [42, 57–59].

In this chapter, we will study the form of the electron-electron interaction in single-

and double-layer graphene. We begin by finding the form of the dielectric function for

a graphene monolayer in Section 3.1, paying special attention to the roles of interband

and intraband transitions. In particular, it will be explained why the vanishing density

of states at the Dirac points prohibits the use of the Thomas-Fermi approximation and

leads to screening physics altogether different to conventional metals. In Sections 3.2

and 3.3 we extend this theory to account for the screening interactions between elec-

trons in parallel graphene layers. In Chapter 2, we made use of two intrinsic dielectric

constants of graphene, which do not fully incorporate the screening behaviour. We will

explain the origin of these factors in Sections 3.1 (for the single layer case) and 3.3 (for

the double layer case) below. Finally, we explain why the short range of the interac-

tions at finite doping permits us to replace the potential with a delta function as a first

approximation, and study the strength of the coupling within such an approximation.
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3.1 Screening properties of monolayer graphene

Here we will review the primary results pertaining to the screening physics of graphene

(for full details, we refer the reader to Refs. [42,57–59]). The screened electron-electron

interaction in the RPA is given by the bare-bubble diagram:

= + , (3.1)

where double interaction lines represent the screened potential (Vq), single interaction

lines represent the bare Coulomb interaction (vq) and the fermion bubble represents the

polarizability of a graphene monolayer (Π(q, ω)). The solution to Eq. (3.1) is given by:

Vq =
vq

1 + vqΠ(q, ω)
, (3.2)

where the polarizability is given by [42]:

Π(q, ω) = −N
Ω

∑
k,s,s′

ns,k − ns′,k+q

ω + Es,k − Es′,k+q + iη
Fs,s′(k, q), (3.3)

where s, s′ = ±1 are band indices, η → 0+ is a positive infinitesimal,

ns,k =
1

exp(β(Es,k − EF )) + 1
(3.4)

is the Fermi-Dirac distribution at inverse temperature β = 1/kBT and

Fs,s′(k, q) =
1 + ss′ cos(φk+q − φk)

2
(3.5)

is the overlap of wavefunctions in the bands s and s′ with wavevectors k and k + q.

For the entirety of this work, we will assume that T = 0, so that all of the states

whose energies are below (above) the Fermi energy are occupied (vacant). We will also

assume that interactions are instantaneous, because particles in graphene propagate
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Figure 3.1: The static polarizability of graphene (black) can be separated
into intrinsic (blue dashed) and extrinsic (red dashed) contributions.

much slower than light speed. This is called the static approximation, and is equivalent

to setting ω = 0 in the polarizability. Within this regime, the polarizability is known

exactly [42], and is given by Π(q, ω = 0) ≡ Πq = Π+
q + Π−q = Π0(Π̃+

q + Π̃−q ), where:

Π̃+
q =


1− πq

8kF
, q ≤ 2kF

1− 1
2

√
1− 4k2F

q2
− q

4kF
sin−1(2kF

q
), q > 2kF

, (3.6)

Π̃−q =
πq

8kF
,

and

Π0 =
N |EF |

2π(~vF )2
, (3.7)

is the density of states at the Fermi energy. This result is depicted in Fig. 3.1.

In Eq. (3.6) above, Π̃−q is due to intrinsic effects, taking account of the electrons

which fill the valence band in undoped graphene. Therefore, it is the only term which

contributes to the polarizability in the absence of doping: kF = 0. When kF 6= 0, Π̃+
q
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also plays a role, and takes into account the presence of the electrons (holes) which

reside in the conduction (valence) band when the system is doped away from charge

neutrality. Π̃−q arises due to transitions between the bands, because the phase space

available for intra-band transitions is filled for valence electrons in intrinsic graphene.

This restriction is partially lifted in extrinsic graphene, so that Π̃+
q takes into account

inter-band and intra-band transitions. We note that this point is different to that put

forward by the authors of Ref. [42], who claimed that Π̃−q and Π̃+
q arose due to inter-

band and intra-band transitions, respectively.

The screening behaviour of graphene can be pictured as partly metallic, and partly

due to the effects of polarization (as in an insulator). For undoped graphene, kF = 0

and all intra-band transitions are blocked by the Pauli exclusion principle. Thus, in this

regime, graphene screens like an insulator. This effect can be absorbed into an “intrinsic

dielectric constant” [42], which we used previously in Chapter 2. If we assume that the

graphene layer is embedded within a dielectric environment of relative permittivity εs,

then the bare Coulomb interaction (within the momentum representation) is given by:

vq =
2πe2

εsq
. (3.8)

The static dielectric function, for kF = 0, then takes the form:

ε(q) = 1 + vqΠ = 1 +
Nπe2

8εs~vF
= 1 +

Nπα

8
, (3.9)

where α = e2/~vF εs = 2.2/εs is the effective Coulomb coupling constant of graphene in a

dielectric environment characterized by εs. The single-layer screened electron-electron

interaction follows from Eqs. (3.2) and (3.8):

Vq =
2πe2

εsε4q
, (3.10)
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where we have defined εN = 1+Nπα/8 to be the intrinsic dielectric constant of graphene.

Here, as before, N denotes the number of fermion species. For a single-layer system,

N = 4 owing to the spin and valley degeneracies. In double-layered structures, N = 8

due to the extra “which-layer?” degree of freedom. We note that in the latter case,

however, the interband transitions cannot be absorbed into the potential in the same

way as they were in (3.10). This will be explained in the following sections.

From Fig. 3.1 we see that the polarizability is constant (Πq = Π0, see Eq. (3.7))

for q < 2kF . In the long wavelength limit, this leads to qualitatively similar screening

behaviour as in 2DEG’s with massive excitations [42,60]. The static dielectric function

in the long-wavelength limit (q → 0) reduces to the Thomas-Fermi dielectric function:

ε(q) = 1 +
NαkF
q

= 1 +
qs
q
, (3.11)

where qs = NαkF = 2πe2

εs
D(EF ) is the Thomas-Fermi screening wavevector. This gives,

for the statically screened potential:

Vq =
2πe2

εs
· 1

q + qs
. (3.12)

The screening length, λ = 1/qs, is particularly long in graphene. In conventional

metals, λ is of the order of 1Å. For monolayer graphene embedded in hBN doped to

|EF | = 100meV, λ = 3nm, so that interactions are long-ranged in graphene [56].

We have seen that the effective interaction takes on two different forms depending

on the doping: for intrinsic graphene, kF = 0 and we obtain Eq. (3.10), but for extrinsic

graphene, kF 6= 0, and we obtain Eq. (3.12) in the q < 2kF limit. In the position space,

the q = 0 singularity in Eq. (3.10) leads to long-ranged interactions, which are screened

as if by a dielectric:

V (r) =
e2

εsε4r
. (3.13)
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Conversely, the presence of doping means that the interaction can be screened by tran-

sitions within the same band, which enhances the polarizability at long wavelengths

and suppresses the long-range (qsr � 1) interactions:

V (r) ∼ 1

q2
sr

3
. (3.14)

Because the Fourier component of the interaction is suppressed by the monotonically

increasing polarizability for large q (see Fig. 3.1), we have assumed that the q < 2kF

regime dominates the interaction physics. In graphene, as in 2DEG’s, a discontinuity in

the polarizability leads to Friedel oscillations. This discontinuity is in the 2nd derivative

(as opposed to the 1st derivative in 2DEG systems), leading to a suppression of Friedel

oscillations, which go like ∼ cos(2kF r)/r3 in graphene. This will become important when

we include the effects of doping in our analysis of the bi-electron in Chapter 4, as it

means that we can assume the sample is homogeneously doped (rather than having

local fluctuations in the charge density which could destroy the pairing).

We note in closing that, in order to approximate the screened potential using an in-

trinsic dielectric constant, we have assumed that the graphene is undoped and ungated

(kF = 0). Therefore, there would be no available phase space to support the pairing

described in Chapter 2. On the other hand, we have assumed that Pauli blocking due

to the Dirac sea does not occur, so that the metallic screening described by Π̃+
q needs

to be taken into account. Resolving this conflict requires the treatment of an inher-

ently many-body problem, and will occupy our attention for the remainder of this work.

3.2 Bare double-layered interactions

In this section, we derive the bare electron-electron interaction potential for the double

layer nanostructure pictured in Fig. 2.3. We will see in Section 3.3 that the polarizabil-

ity of graphene discussed above and the bare interactions to be derived here completely
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define the double layer screened interaction potential. This result is not novel, indeed

it has been given previously by many authors [31–33, 61–65], but is stated incorrectly

in several of their papers [33,62,65]. Therefore, it is necessary to give a derivation here

for completeness.

As the final form of the screened double-layer potential is simply stated without

proof in most of those aforementioned papers, it is not clear at which point in the cal-

culation those authors made the error. Thus, we start from the beginning and consider

the case of two electrons which are free to move in parallel graphene monolayers. The

layers are separated by a dielectric spacer of thickness d and relative permittivity ε2.

That structure is sandwiched between a pair of semi-infinite dielectrics, each of relative

permittivity ε1. A schematic of this setup is given in Fig. 2.3. We note that in what

is to follow we assume that the z-axis points upwards in the plane of the page and is

perpendicular to the graphene layers in that figure. Due to the thinness of graphene,

it enters the picture through its screening properties only. Thus, the bare interactions

are actually determined by the problem of a pair of charges which are pinned at the

interfaces between the dielectric media, but free to move in the plane. We assume the

lower interface is at z = 0 and the upper interface is at z = d, and employ the following

naming conventions for the three regions partitioned by them: region 1 fills the space

z > d, region 2 fills the space 0 < z < d and region 3 is the remainder, z < 0.

We begin by calculating the electrostatic potential, Φ(r, z) due to the electron at

(r, z) = (0, d), where r is the polar vector. We assume that we are in the Galilean

limit so that the laws of electrostatics are valid because the Fermi velocity of charge

carriers in graphene is much less than the speed of light: vF � c [66]. As none of

the three regions contain any charge, the potential is determined by Laplace’s equa-

tion, ∇2Φ(r, z) = 0. We choose to absorb the oscillatory part of the solution into the

plane, to make the boundary conditions manageable so that in the regions j = 1, 2, 3
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we obtain:

Φj(r, z) = exp(iq · r)
(
µje

qz + νje
−qz) . (3.15)

where q is a constant arising from the separation of variables1. The constants µj and

νj are different for the three regions, and are determined from boundary conditions.

Setting the zero-point of the potential at z = ±∞ gives µ1 = ν3 = 0. Because the

electron at the lower interface will enter the problem as a test charge in the potential

energy function, the normal component of the displacement field D is continuous at

z = 0. There is a discontinuity due to the charge at z = d, however, giving two more

boundary conditions:

(D1 −D2) · ẑ|z=d = −4πeδ(r)δ(z − d) → ε2µ2e
qd + (ε1ν1 − ε2ν2)e−qd = −4πe

q
,

(D2 −D3) · ẑ|z=0 = 0 → ε2µ2 − ε2ν2 − ε1µ3 = 0, (3.16)

where we have used the standard relations Dj = εjEj and Ej = −∇Φj for the electric

field (E). We also enforce continuity of the potential across each interface, so that:

Φ3(z = d) = Φ2(z = d) → µ2e
qd + (ν2 − ν1)e−qd = 0,

Φ2(z = 0) = Φ1(z = 0) → µ2 + ν2 − µ3 = 0. (3.17)

Eqs. (3.16) and (3.17) determine the remaining constants which give us the potential

in region 2, which is valid at both of the interfaces:

Φ2(r, z) = −4πe

q
· exp(iq · r)

(ε1 + ε2)2eqd − (ε1 − ε2)2e−qd
[
(ε1 + ε2)eqz + (ε1 − ε2)e−qz

]
. (3.18)

We calculate the potential energy function by incorporating the second electron as

a test charge at z = 0 with planar position r (since we assumed the first electron was

1It becomes clear that q is the magnitude of an in-plane wavevector q when one Fourier-transforms
the separated equations.
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at r = 0): V (r) = −eΦ2(r, 0). Its Fourier transform is given by:

v12 =
2πe2

q
× ε2
f2

. (3.19)

By instead placing the test charge in the upper layer, we obtain the bare interaction

for two electrons in the same layer:

v11 =
2πe2

q
× f1

f2

. (3.20)

In Eqs. (3.19) and (3.20) above, we have defined the following functions:

f1 = exp(qd)

[
ε1 + ε2

2

]
− exp(−qd)

[
ε1 − ε2

2

]
,

f2 = exp(qd)

[
ε1 + ε2

2

]2

− exp(−qd)

[
ε1 − ε2

2

]2

. (3.21)

It follows from symmetry that v22 = v11 and v21 = v12.

In the limit where the two graphene layers are on top of each other (d → 0), the

role of the central dielectric vanishes, and we regain the single layer interaction:

v11 = v12 =
2πe2

ε1q
, (3.22)

which corresponds to the bare interaction of an electron pair for monolayer graphene in

a dielectric environment characterized by ε1. In the opposite limit (d→∞), the layers

are fully decoupled, so that the interlayer potential vanishes, and the intralayer potential

is that of a monolayer in the dielectric environment created by the two dielectrics it

separates, κ = (ε1+ε2)/2:

v12 → 0,

v11 =
2πe2

κq
. (3.23)
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In the case where all three dielectrics are of the same type (ε1 = ε2), we recover the

standard form of the intralayer potential from Eq. (3.22). The interlayer potential

takes the form v12 = v11e
−qd, which corresponds the standard double-layer Coulomb

potential in real space:

V (r) =
e2

ε1
√
r2 + d2

, (3.24)

for electrons confined to parallel layers of separation d in a homogeneous dielectric

environment.

3.3 Screened double-layered interactions

Let us now consider the effects of screening on the interlayer interaction. We begin

by assuming the two layers have different polarizabilities, Π1 and Π2, which amounts

to the layers not necessarily having the same carrier density. The presence of the two

layers can be captured by representing the Dyson equation resulting from Eq. (3.1) as

a matrix equation [62,64,67]. Thus, the screened interaction is given by

W = (1 + VΠ)−1V = V − VΠW, (3.25)

where

V =

 v11 v12

v21 v22

 (3.26)

is the bare interaction (subscripts refer to layers 1 and 2; the matrix elements of V were

all calculated in Section 3.2) and

Π =

 Π1 0

0 Π2

 (3.27)
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represents the polarizabilities. We note that both off-diagonal elements in the polar-

izability matrix vanish because tunnelling between the layers is forbidden. By direct

computation, we obtain:

W =

 v11Π1 + 1 v12Π2

v21Π1 v22Π2 + 1


−1  v11 v12

v21 v22

 (3.28)

=
1

(1 + v11Π1)(1 + v22Π2)

 v11(1 + v22Π2)− v12v21Π2 v12(1 + v22Π2)− v22v12Π2

v21(1 + v11Π1)− v11v21Π1 v22(1 + v11Π1)− v12v21Π1

 .
The off-diagonal elements of W are just the interlayer electron-electron potential. For

all structures that we consider, v11 = v22 and v12 = v21. Thus, we obtain:

W12 = W21 ≡ Uq =
v12

(1 + v11Π1)(1 + v11Π2)− v2
12Π1Π2

. (3.29)

Let us focus on the case of the homogeneous dielectric environment (so that ε1 =

ε2 ≡ εs). In that scenario, v11 = vq and v12 = vqe
−dq. We will show below that at

the relevant distances the filling of the bands is not important, so that we use the

approximation kF = 0 for both layers (where, for example, kF in layer one refers to the

momentum, relative to the Dirac point, of a state at the local Fermi energy of layer

one). Then Π ≡ Π1,2 = Nq
16~vF

(see Section 3.1 for details). Note that the Fermi energy

can be tuned by the application of a gate voltage in graphene, so we are free to assume

that the layers have equal carrier concentrations if we choose. The interaction then

takes the form:

Vq =
vqe
−dq

(1 + vqΠ)2 − v2
qΠ

2e−2dq
(3.30)

=
vqe
−dq

1 + 2Nπα
8

+ (Nπα
8

)2[1− e−2dq]
. (3.31)

Now let us turn to the determination of the intrinsic dielectric constant of graphene,

when there are two layers. To justify the choice of kF = 0 we note that the behaviour
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of V (r) at distances kF r . 1 is determined by q > kF where the exact value of kF is

not important. As we are most interested in the behaviour at small distances, kF = 0

is a reasonable first treatment of the two-body problem. This is a far more realistic

approach than näıvely using the bare interaction, which results in unrealistically high

binding energies.

At small distances, q � 1
d
, the potential takes the form:

Vq ∼
vqe
−dq

1 + 2Nπα
8

+
(
Nπα

8

)2 =
2πe2

εsε2Nq
e−dq. (3.32)

The inverse Fourier transform is then a first approximation to the inter-layer potential

in position space:

Vr ∼
e2

εsε2N
√
r2 + d2

, (3.33)

which is the form used to approximate the bound state energies in this work.

At intermediate distances d � r � λF , however, the potential takes a slightly

different form:

Vq ∼
vqe
−dq

1 + 2Nπα
8

=
2πe2

εsεNq
e−dq, (3.34)

where εN is defined in the same way as it was in the discussion above, but with N = 8.

We note the contribution of the two layers in Eq. (3.34), resulting in an extra “which-

layer” degree of freedom.

As discussed above, we have presented the derivation of the screened double-layer

interaction in full detail because it was given incorrectly in the literature [33, 62, 65].

Although the potential has been given correctly by other authors [61,63,64], the absence

of complete arguments in those papers mean that one has no immediate reason to accept

one result over another. We will now argue that the result we have given in Eq. (3.29)

is indeed the correct one.
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Firstly, Hosono et al gave a definition of the multi-component screened interaction

which was not self-consistent: W = V +VΠW = V (1−VΠ)−1 (see Eq. (8) in Ref. [62]).

Let us contrast this with the form we gave in Eq. (3.25). In principle, one can convert

our definition into theirs, V + VΠW → V − VΠW , by absorbing the extra minus sign

into the definition of the polarizability Π. We note, however, that Hosono et al did

not absorb the extra phase into the polarizability in this way (instead, they used the

polarizability of Ref. [42], as we did. See Eq. (10) in Ref. [62]). The second error arises

in the Dyson-summed form of their definition: W = V (1 − VΠ)−1. We note that this

is not equivalent to W = (1 + VΠ)−1V , even ignoring the phase we mentioned above,

because W and V do not commute for Π1 6= Π2. The form given by us in Eq. (3.25)

follows directly if one remembers that the objects involved are matrices, and obey non-

commutative algebra. Upon performing the diagrammatic expansion of Eq. (3.1) we

obtain:

= + + + ..., (3.35)

up to third order in the bare interaction. Upon performing the corresponding expansion

of our definition of the screened interaction in the algebraic form:

W = (1 + VΠ)−1 V = V − VΠV + VΠVΠV − ..., (3.36)

which correctly captures the ordering of the bare potential and the bare bubbles as in

Eq. (3.35). Expanding the definition of Hosono et al, however:

W = V (1− VΠ)−1 V + V 2Π + V 2ΠVΠ + ..., (3.37)

which does not reflect the non-commutativity of V and Π and leads to nonsensical di-

agrams. The arguments those authors gave previously, and the results obtained there-

after, were correct however, and so we assume this was a typographical error.
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Secondly, Abergel et al gave the following result (see Eq. (2) of Ref. [33]):

UA =
vqe
−qd

1 + 2vq(Π1 + Π2) + v2
qΠ1Π2(1− e−2qd)

, (3.38)

which differs from our result by the factor of 2 in the denominator. The interaction UA

effectively over-counts the number of fermion flavours. To see this, we set Π1 = Π2 and

take the harsh limit d→ 0, so that the two layers are directly on top of each other. For

our result, Eq. (3.29), as well as for Ref. [33], we obtain:

Uq =
2πe2

εsε′q
. (3.39)

where, for our result, ε′ = ε8, but for that of Abergel et al ε′ = ε16. In the correct case

N = 8 fermion species have arisen due to two projections of the real spin, two valleys

and two layers (although the layers occupy the same space in this limit they are both

there, in the formal sense). The doubling of the fermion species to N = 16 cannot be

accounted for.

Finally, Kharitonov et al gave the following result for Π1 = Π2 (see Eq. (5) in

Ref. [65]):

UK =
vqe
−qd

1 + 2vqΠ + Π2v2
q (1− e−qd)

, (3.40)

which differs from our result by the factor of two in the exponential term in the denom-

inator. One can see the error by recalling that the exponential factors arise due to the

bare inter-layer interaction. We assume those authors made the following arithmetic

error: v2
12 = (vqe

−qd)2 ?
= v2

qe
−qd.

3.4 Short-ranged interaction approximation

In this section, we will explain how the screened interaction in graphene can be modelled

by a short ranged potential V (r) = λδ(r), and determine the strength of the interaction,
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λ. We begin with the case of a graphene monolayer in an environment of dielectric

constant κ. If Π(q = 0) 6= 0, within the random phase approximation, the effective

electron-electron interaction Uq is given by Eq. (3.2). For sufficiently small momenta,

q � qs, the potential Uq can be approximated by a short-ranged potential V (r) = λδ(r),

where λ = Uq=0 and qs is the inverse screening radius. We can therefore write down

the interaction strength, λ = Uq=0, for a single-layer system:

λ =
2πvFα

qs
, (3.41)

where qs = NαpF is the Thomas-Fermi screening momentum of electrons in graphene.

Let us now turn to the case of two layers separated by a dielectric spacer of thickness

d. We assume that the device is fully embedded in the same dielectric material. The

case of a dielectric spacer between the layers with permittivity different from that of

the environment is treated below. Assuming the electrons are in opposite layers, the

potential takes the form of Eq. (3.30). We also restrict ourselves to the simplest case

where the local Fermi levels of the two layers are independently tuned to the same

value, so that Π1 = Π2 ≡ Π. Following the reasoning applied to the single-layer case

above, we obtain for the interaction strength:

λ =
πvFα

qs(1 + qsd)
. (3.42)

Let us reiterate that we have focussed our attention on the simplest case of equal

doping, when Π1 = Π2. Because the pairs reside in different bands and have opposite

momenta relative to the Dirac point, the limiting role is played by the layer which hosts

the lower-cone electron (which we will now call layer 1, without loss of generality).

Clearly Fermi statistics does not change the problem at all for any level of hole doping

in layer 2, as the necessary phase space is always free for an electron in the upper cone:

all that is required is EF,2 ≤ 0. On the other hand, the form of Eq. (3.29) suggests that

inequivalent doping might significantly change the strength of the interlayer potential.

81



Let the local Fermi energies of layers 1 and 2 be given by EF and EF−δEF , respectively,

where EF < 0 and δEF > 0. The interaction strength is then given by:

λ(δEF ) =
λ(0)

1 + δEF
|EF |

[
qsd+ 1

2

qsd+1

] . (3.43)

We therefore conclude that our results are relevant for a range of doping regimes, so

long as |EF,1 − EF,2| � |EF,1|.

In the above analysis, it was assumed that the dielectric material used to encapsu-

late the two layers was the same as that which separated them (i.e. ε1 = ε2 in Fig. 3.2).

Let us now consider the case where the inter-layer spacer (with dielectric constant ε2)

is a different material to the encapsulating dielectrics (which have dielectric constant

ε1). The device in question is shown in Fig. 2.3, for ε1 6= ε2. Let us now calculate

the interaction strength which is applicable to the results for suspended double-layered

systems, which corresponds to ε1 = 1 (the role of the outer dielectrics being played

by vacuum) and ε2 = 3.9 (for a hBN spacer). We find that the interaction strength

is governed by the permittivity of the spacer, and has the same form as it did in the

ε1 = ε2 case (see Eq. (3.42)).

The screened inter-layer interaction for the case of a non-trivial dielectric environ-

ment was given in Eq. (3.29). It is not immediately obvious which of the dielectrics is

most important in determining the screening behaviour. Taking the limit of q → 0, we

obtain the interaction strength:

λ = Uq=0 =
πe2

qb +
q2bd

ε2

, (3.44)

where qb = NαbpF is a kind of “bare screening radius” determined by the bare coupling

constant: αb = e2/vF . Thus, the material used to encapsulate the double-layered struc-

ture does not play a role in determining the strength of the momentum-independent

interaction V (r) = λδ(r). We therefore define the Coulomb coupling constant to be
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α = e2/ε2vF , which in turn implies that qs = qb/ε2, and obtain

λ =
πvFα

qs(1 + qsd)
, (3.45)

for qsd� 1. This brings λ to the form given by Eq. (3.42), so that ε2 does indeed play

the role of the effective dielectric constant.

Näıvely, one might expect the interaction strength to be determined by the outer

dielectrics, ε1, because it is through these layers that most of the electric field lines

pass in the case of bare interactions (see Fig. 3.2a). In fact, the result arises due

to metallic screening of the interaction in the two graphene layers, which leads to

charge compensation within a screening cloud of radius 1/qs ∼ 1Å, so that the in-

plane separation of the two electrons is very small: r � d. Because the charge is

compensated, almost all electric field lines will begin on one electron and terminate

on its surrounding ionic cloud. Occasionally, however, an electric field line will “leak

out” leading to a relatively weak coupling mediated through the inter-layer region,

of dielectric constant ε2 (see Fig. 3.2b). The two electrons therefore interact directly

through the middle dielectric. This can be seen by taking the limit d→ 0 in Eq. (3.45),

which formally removes the spacer from the problem. In that limit, λ does not depend

on either of the two permittivities.
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Figure 3.2: Schematic of the inequivalent dielectric double-layer. Two
graphene layers are separated by a dielectric spacer of permittivity ε2 and
thickness d. The double layer is encapsulated in a second dielectric material,
which has permittivity ε1. The layers host a pair of electrons (red circles)
which have in-plane separation r. a) In the absence of screening by the elec-
tron sea, most of the electric field lines pass through the outer dielectrics
and the interaction is mostly determined by the dielectric constant of the
environment, ε1. b) When screening is considered, the electron charge is
compensated by a positive screening cloud (yellow) within each graphene
layer. The majority of the field lines now terminate on the screening charge,
and the resulting (weak) interaction propagates through the middle dielec-
tric. Hence, the interaction becomes sensitive to the value of the dielectric
constant of the spacer, ε2.
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Chapter 4

Effects of the Dirac sea: screening

and Pauli blocking

4.1 Introduction

It is instructive to compare the interaction effects described in Chapter 2 to other,

more familiar condensed matter systems. In semiconductors at low doping, attractive

interactions result in binding between electrons near the bottom of an empty conduction

band and holes near the top of a filled valence band, separated by a gap. When the

concentrations of electrons and holes are sufficiently low, one can ignore the effects of

Fermi statistics and describe the excitons in terms of two constituent massive particles.

The resulting energy levels are dependent on dimensionality and the details of the

interaction. In contrast to this, metals admit low-energy excitations which involve

transitions between electron states near the Fermi level within the same band. Most of

these transitions are blocked due to the Pauli exclusion principle, which may result in

low-temperature anomalies and, eventually, the formation of strongly correlated phases

such as ferromagnets, charge density waves, etc. The details of such transitions depend

upon the interaction between the electrons, as well as the structure of the single particle

spectrum. In the case of a weak attractive interaction and flat density of states, the

restrictions arising from Pauli blocking can result in the formation of a bound state
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known as a Cooper pair, irrespective of the dimensionality. The many-body physics

of graphene does not fit neatly into either of the scenarios above. On the one hand,

monolayer graphene is gapless, so that elementary excitations cannot be thought of as

entirely separate from the sea of free carriers, as they can be in semiconductors. On

the other hand, the density of states is linear, and vanishes near the charge-neutrality

point. Therefore, graphene (near EF = 0) can not be considered to be a metal, either

(for a full discussion see, e.g., Ref. [56]). Further, due to the linear dispersion, the

Coulomb coupling constant is independent of the density of free carriers, and electron-

electron interactions are important irrespective of the doping. This is not the case for

a two-dimensional electron gas with parabolic dispersion [56]. It is therefore unclear

whether the two-body problem will necessarily stand on its own or, e.g., be valid for

only some (if any) doping regimes when the effects of the Dirac sea are taken into

account. Thus, it is desirable to incorporate the effects of Pauli blocking and screening

into the two-body problem of an interacting electron-electron pair.

In this chapter, we show that the electron-electron pairs which form in the subspace

of non-dispersing two-particle states have their energies renormalized by many-body

effects. We study the two most important many-body phenomena at zero temperature:

screening of the interaction by free carriers in the Dirac sea, and Pauli blocking, in

which scattering into single-particle states below the Fermi level is forbidden due to the

Pauli exclusion principle. We show that the problem admits an analytic solution when

the interaction is short-ranged (in the subspace of states where the trigonal warping

is compensated). We then treat the complete problem, with bandstructure warping

and screened interaction potential, numerically. For both single- and double-layered

structures we find good agreement between numerical results and our exact solution

which is applicable over a range of experimentally realizable doping configurations.

The rest of the chapter will have the following structure. In Section 4.2 we näıvely

impose restrictions of Pauli blocking on the wavefunction and show that this can lead

to pairing for any level of hole doping. We provide a simple heuristic model in which
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the subspace of states where trigonal warping is not important are studied. We show

that this model has an analytic solution when the interaction potential is sufficiently

short-ranged. In Section 4.3 we discuss the role of screening in determining the binding

energies, using the interaction strengths derived for single- and double-layer systems in

Section 3.4. We show that the screening is vital for accurately determining the binding

energies in systems near EF = 0, and exponentially suppresses the binding when the

system is heavily doped. We note that this approach is not fully rigorous, and is

based on a näıve (but intuitive) imposition of the phase space restriction on the pair

wavefunction. Therefore, in Sections 4.5 and 4.4 we take the more rigorous approach

by treating the Bethe-Salpeter equation in detail. In doing so, we not only develop a

more general formal theory which includes the effects of finite-ranged interactions and

trigonal warping of the dispersion, but also show that the heuristic model of Section

4.2 is nothing but a representation of the Bethe-Salpeter equation in the sector of para-

states with short-ranged interactions. In Section 4.7 we discuss the results of numerical

calculations of the binding energies of pairs, including the effects of trigonal warping

and momentum-dependent interaction neglected previously. We find that the numerical

results agree with our analytical solutions in the low-doping regime, where the binding

energies are proportional to the Fermi energy [68].

4.2 Analytical solution for short-ranged interaction

A formal treatment of electron-electron pairing which includes the effects of the Dirac

sea requires the solution of the Bethe-Salpeter equation. We will perform that calcula-

tion in detail in the sections that follow, but it is helpful to first treat a heuristic model

which incorporates the most important many-body effects in a simple way.

It is instructive to first recall the case of a two-dimensional massive particle in a

short-ranged potential V (r) of interaction radius a. For a weak potential, the bound

state is shallow, and the wavefunction is concentrated at the distances r � a. There-

fore, it is possible to approximate the potential by a delta function, V (r) ≈ λδ(r),
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where λ = 2π
∫
V (r)rdr is the interaction strength. This gives the binding energy in

the form [40]:

|E| ∼ Ec exp

{
−2π~2

mλ

}
. (4.1)

The prefactor Ec ∼ ~2/ma2 represents the energy cut-off which is determined by the

behaviour of V (r) at distances r ∼ a. Thus, it shows that the model with a delta-like

potential is incomplete, and has to be regularized at short distances in a non-universal

way. Therefore, Eq. (4.1) is only applicable for λ � 2π~2/m, so that the binding

energy is determined by the universal exponentially small factor. Since the dynamics

of the electron-electron pair is governed by quadratic kinetic energy, the bound state in

this problem has similar properties. However the regularization is now provided by the

momentum space cut-off at p = pF , rather than the interaction radius a, as explained

below.

In finding the binding energy of the pair, we begin with two natural assumptions:

(i) that the free carriers in the system screen the electron-electron interaction to the

extent that it can be considered short-ranged (see Section 3.4), and (ii) transitions into

paired states in which at least one of the electrons is below the Fermi level are blocked

by the Pauli exclusion principle [69]. In the limit of large hole doping, the interaction

is suppressed for distances rpf & 1, so as a first approximation we assume that the

electron-electron interaction takes the form V (r) = λδ (r), where λ determines the

strength of the interaction which is different for single- and double-layered systems.

We note that this is just the case treated in Section 3.4. Our second assumption is

equivalent to only allowing contributions of momenta in the range 0 < p < pF . We

will show that, subject to these assumptions, the problem admits an analytical solu-

tion. We explained above that models with a delta-like potential can be incomplete,

requiring regularization at short distances in a non-universal way. However, in this case

the regularization is provided by the momentum space cut-off p = pF , rather than the

interaction radius a. We will show below that this leads to an exact solution for the
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binding energy of the bi-electron, as opposed to the approximate solution of Eq. (4.1).

Not only does this cut-off extend the range of validity of the solution to λ & 2π~2/m, we

will show below that it is vital if one is to correctly determine the low-doping behaviour

of the system.

We note that the presence of a Fermi surface also plays an important role in super-

conducting pairing [70]. Cooper noted that a pair of electrons interacting above the

Fermi sphere with net attractive interaction (due to the presence of electron-electron

as well as electron-phonon interactions) would form a bound state with the same qual-

itative properties as the carriers in conventional superconductors [70]. In that case,

wavefunction regularization was provided by the Fermi surface and the Debye cut-off,

with the density of states near the Fermi level playing a dominant role in the determi-

nation of the binding energies. A bound state does not necessarily exist in three spatial

dimensions for a particle in a shallow well [40], so that in the superconducting case, the

Fermi surface plays a critical role in enabling the pairing. For bi-electrons in graphene,

however, we will see that the Fermi surface suppresses the pairing, especially when the

doping is low (when pF → 0 in Eq. (4.6)).

We consider the subspace spanned by para-states, so that the two-particle wave-

function is given by Ψ =
∑
|p|<pF

ψp |2, φp〉. In this case the kinetic energy is isotropic

and there is a trivial overlap of states with different momenta [37]. The Pauli exclusion

principle requires that no two electrons may occupy the same quantum state [69], so

that (at zero temperature) if the Dirac sea occupies every state of energy E < EF ,

the electrons in the pair cannot be in any configuration which requires either of the

two constituent particles to be below the Fermi level. Thus, to include the effects of

Pauli blocking by the Dirac sea, we explicitly remove all transitions which involve the

scattering of one of the particles to a state below the Fermi level. Further, we assume

that the deformation of the valence band due to trigonal warping is not important, so

the Fermi surface can be approximated by a circle of radius pF . Within the momentum

representation, the Schrödinger equation subject to this constraint takes the form (from
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now on we choose ~ = 1):

− p2

2m∗
ψp +

∫∫
|p ′|<pF

Up−p ′ψp ′
d2p′

(2π)2
= Eψp. (4.2)

Note that we also impose the restriction |p| < pF in Eq. (4.2). The short-ranged

potential is described by a momentum-independent interaction, Up−p ′ = λ, which can

be taken outside of the integral. Because the integral is independent of the momentum

p, we denote it as:

A =

∫∫
|p ′|<pF

ψp ′
d2p′

(2π)2
, (4.3)

which plays the role of a separation constant for the integral Eq. (4.2). Thus, the form

of the wavefunction ψp follows directly from Eq. (4.2):

ψp =
Aλ

E + p2

2m∗

. (4.4)

In order to determine the energy E, we note that the definition of A, Eq. (4.3), plays the

role of a self-consistency relation for the wavefunction. Therefore, we need to substitute

ψp from Eq. (4.4) into Eq. (4.3):

1 =
λ

2π

∫ pF

0

p′dp′

E + p′2

2m∗

=
λm∗

2π
ln

[
p2
F

2m∗E
+ 1

]
. (4.5)

One then needs only to rearrange Eq. (4.5) for E, giving the binding energies of the

form:

E =
p2
F

2m∗
× 1

exp
(

2π
m∗λ

)
− 1

. (4.6)

Let us note the role played by the limits of the momentum space integral in determining

the right hand side of Eq. (4.5). The integral is carried out over the interval p′ ∈
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[0, pF ] because Pauli blocking strictly forbids transitions of electrons to occupied states.

Therefore, at zero temperature, the sharpness of the Fermi surface has removed the

need for any non-universal regularization of the binding energies in position-space and

the model is exactly solvable. As discussed above, this was not the case for the result

in Eq. (4.1) [40]. For one particle in a shallow well, the solution is known by the order

of magnitude only, with the prefactor being determined by the details of the profile of

V (r) at short distances. In the presence of many-particles, however, the cut-off is given

by the Fermi-Dirac sea, and is known exactly. We can see this by identifying Eq. (4.3)

with the inverse Fourier transform of ψp, evaluated at the origin: Ψ(r = 0). Thus,

the wavefunction is regularized by the precise value r = 0 in contrast to the imprecise

length scale r ∼ a, as was the case in determining Eq. (4.1) [40]. If we remove the phase

space restriction from the definition of A we lose the self-consistency of our approach:

the integral in Eq. (4.5) diverges and one has to resort to the approach of Ref. [40], as

discussed above.

For a repulsive potential, λ > 0, the energies are positive definite. Further, the pairs

are only destroyed by many-body effects in two limits: pF → 0 (the neutrality point,

when the phase space is full and all pairing is blocked) and λ� 2π/m∗ (the limit of the

ultra-dense hole gas, in which screening fully suppresses the interaction at all length

scales). The states are therefore not destroyed for any systems of experimental interest.

We note that in the latter case, the assumption of high doping exponentially suppresses

the binding energies:

E ∼ exp

(
− 2π

m∗λ

)
, (4.7)

and we regain the behaviour of the single particle in a shallow well (see Eq. (4.1)).

This is to be expected as the limit of high (hole) doping corresponds to the removal of

the Fermi-Dirac sea.

Eq. (4.6) can be understood as the product of two factors which compete to deter-

mine the binding energy. The first factor, which scales as ∼ p2
F , arose in our calculation
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due solely to the momentum cut-off in the integral Eq. (4.2), and can therefore be

understood as the contribution of Pauli blocking to the pairing. As the system is tuned

towards the charge neutrality point from below, EF → 0−, the phase space available

to accommodate pairs in the channel p1 = −p2 shrinks, and the binding is suppressed

as pF → 0. The second factor depends on λ and is therefore governed by the strength

of the interaction. In the next section we will show that, λ ∼ p−nF , so that for both

cases of interest (monolayer (n = 1) and double-layer (n = 2) systems) it leads to an

exponential suppression of the binding energy for large pF .

4.3 Doping dependence of the binding energies

To understand the doping dependence of the binding energies from Eq. (4.6), we now

discuss the dependence of the potential strength λ ≡ λ(EF ) on the Fermi energy. We

note that only the repulsive Coulomb interaction is considered in this thesis. This is

in contrast to, e.g., the case of traditional superconductivity, in which the repulsive

Coulomb interaction is not sufficient to cause pair binding, and the Hamiltonian must

be extended by the attractive electron-phonon interaction. Because the kinetic energy

of the pair is negative-definite and parabolic in the momentum, binding occurs for an

arbitrarily weak repulsive interaction [37] in two dimensions in analogy with the case

of a massive particle in an arbitrarily shallow well, which has been shown to exhibit at

least one bound state in, e.g., Ref. [40].

We begin with the case of a graphene monolayer in an environment of dielectric

constant κ. In that scenario, λ is given by Eq. (3.41). The binding energy of the pair

is plotted in Fig. 4.1a. We see that as the doping increases the interaction strength

λ decreases, so that the binding becomes weak at large doping. Let us introduce

the crossover scale by setting the argument of the exponential factor in Eq. (4.6)

to unity. This occurs when the magnitude of the Fermi energy is of the order of

Es ≡ m∗v2
F/N ∼ 1eV. In the limit of high doping (|EF | � Es) the binding energies are
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exponentially suppressed:

E ∼ exp

(
−|EF |
Es

)
, (4.8)

but we note that this suppression would be hard to observe, due to the large doping

required: |EF | & 1eV. Hence, only the limit |EF | � Es is discussed below.

Let us now turn to the case of two layers separated by a dielectric spacer of thickness

d. We assume that the device is fully embedded in the same dielectric material. The

case of a dielectric spacer between the layers with permittivity different from that

of the environment is treated below. Here we restrict ourselves to the simplest case

where the polarizabilities of the two layers are the same: Π1 = Π2 ≡ Π. This is

equivalent to the assumption that the Fermi levels of the two layers are tuned to the

same value: EF,1 = EF,2. Under these conditions, the interaction strength is given

by Eq. (3.42). Thus, the crossover to weak binding in the double-layer case occurs

at a different Fermi energy, Ed, which for inter-layer separation d & 1nm is given

by Ed = vF/2αNd ∼ 0.1eV. The fact that Ed < Es is due to the large minimum

separation of two particles when they are confined to separate layers: even when the

in-plane distance between the electrons is zero, they are still separated by d ∼ 1nm.

In the limit of high doping (|EF | � Ed) the binding energies are again exponentially

suppressed:

E ∼ exp

(
− E2

F

EsEd

)
, (4.9)

We therefore expect screening to be the limiting factor in the binding energy for large

pF . The binding energies of the pair for such a double-layer structure are plotted in

Fig. 4.1b.

On the other hand, the Coulomb interaction is only weakly screened in graphene

doped near the neutrality point, |EF | � Ed � Es. As noted above, Pauli blocking

is particularly important in this regime, giving a contribution ∼ p2
F . Nevertheless,
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Figure 4.1: Analytic solutions for the binding energies of the pair in (a)
single-layer and (b) double-layer structures. Solid blue lines represent the
energies of Eq. (4.6). Dashed red lines represent the low-doping approxi-
mation of Eq. (4.10). In both cases, we assume the structure is embedded
in hBN (in the double-layer case the dielectric spacer is also hBN). Both
large graphs are plotted over doping range of experimental interest, and the
inset to (a) shows the exponentially suppressed energies at unrealistically
high doping. In the inset, only the solid line segment corresponds to the
experimentally realistic regime.

screening does reduce this suppression for finite negative doping, leading to binding

energies which are linear in the Fermi energy:

E =
p2
F

2m∗
· m

∗λ

2π
=

1

2Nn
|EF |, (4.10)

where n = 1, 2 is the number of graphene layers. We note the role of the exact cut-off

momenta of Eq. (4.2): they prevent the binding energies from becoming singular as

EF → 0−.
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We postpone further discussion of the analytical results obtained thus far until we

introduce the effects of finite screening length and band warping. Indeed, so far we have

assumed that the potential was delta-like and that the only effect of the Pauli exclusion

principle is to prohibit transitions to states below the Fermi level. Although the latter

seems like a reasonable assumption, we have not proved it. Further, we have limited

ourselves to the subspace spanned by the para-state. To treat the more general system,

we will need to resort to a numerical analysis. It is first necessary to extend the theory

to include the fully screened single- and double-layer electron-electron interactions,

with finite range, and also the effects of trigonal warping, not only to include the

contributions of ortho-states, but also to account for a non-circular Fermi surface and

the resulting non-trivial Pauli blocking. All of the above can be addressed by solving

the Bethe-Salpeter equation, which we will consider in the following section.

4.4 Bethe-Salpeter equation and ladder approxima-

tion

In this section, we include the effects of the Dirac sea into the problem of electron-

electron pairing in graphene, focusing on the case of zero temperature. This requires

a significant development of the theory, which will occupy our attention throughout

this section, as well as Sections 4.5 and 4.6. In the many-body theory, the two-particle

problem is studied within the formalism of the Bethe-Salpeter equation (for a discussion

see, for example, Refs. [71–74]). For example, the Bethe-Salpeter (BSE) equation can

be used to treat the case of an electron-hole pair (exciton) in the context of excitonic

condensation. The BSE is typically solved to obtain the two-particle propagator Γ, the

poles of which correspond to the bound states of the pair in the same way that the

poles of the single-particle propagator correspond to the quasiparticle excitations of the

system [71,72]. Γ is the sum over ladder diagrams, and can be written in the equivalent

and more-convenient form:
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Γ = Γ0 + Γ Γ0 . (4.11)

Let us explain the meaning of the diagrammatic elements of Eq. (4.11). The solid

arrows represent free particle propagators, which point in the same direction because

we are working in the electron-electron channel (antiparallel arrows correspond to the

electron-hole channel). The block labelled Γ is the electron-electron scattering ampli-

tude representing a sum over ladder diagrams, and plays the role of the two-particle

propagator as discussed above. Finally, the block Γ0 is the sum over all irreducible

diagrams with dressed interaction lines:

Γ0 = + + + ... (4.12)

To leading order in momentum, electrons in graphene travel with velocity vF = c/300,

and so it is sufficient to ignore retardation effects and treat the bare interaction as

instantaneous (i.e., the dielectric function takes the form ε(q, ω) = ε(q, 0)). There

could be extra retardation, however, due to a frequency dependence of the pair bubble.

Physically, such a frequency would correspond to the time it takes for the electron sea to

become polarized. We note, however, that the static limit of the polarizability is given

by ω � vF q (see, for e.g., Ref. [56]). One can motivate the static limit by assuming

that the frequency is of the order of the binding energy of the pair: ω ∼ Eb. On the

other hand, we know that the pairs have a small radius, so that we might assume a

typical momentum scale is q ∼ pF . Therefore, the static approximation is valid when

the binding energy is smaller than the Fermi energy (which is the case, see Fig. 4.1).

Therefore, we will work within the static approximation throughout. In this case, all

diagrams in Eq. (4.12) containing crossed interaction lines involve frequency integrals

with poles in the same half plane for particles of the same species, and therefore vanish

exactly. Therefore, there is only one irreducible part with non-trivial contribution in

96



Eq. (4.12), which takes the form Γ0 ∼ Up−p ′ .

The BSE in Eq. (4.11) provides a natural way to extend the theory to incorporate

the effects of the Fermi-Dirac sea: we simply interpret the electron propagators as

causal propagators (which only allow us to propagate electrons above the Fermi level)

and use the dressed interaction lines, as introduced in Eq. (4.12), to take account of

screening.

One might wonder why we do not include any other effects (such as dressed single-

particle propagators or dressed vertices) in our analysis. Let us explain why such

extensions are not important. The nature of quasiparticles in intrinsic and extrinsic

graphene has been studied by various authors (for a review see, for example, Ref. [56]).

The self energy of electrons was studied by Das Sarma et al, who found that the dressed

propagator takes the form [59]:

G+(p, ω) =
Z

ω − v∗σ · p+ iδ
, (4.13)

within the conical approximation. To leading order in the coupling constant (α), the

quasiparticle residue is given by:

Z−1 = 1 +
α

π

(
1 +

π

2

)
+O(α2), (4.14)

and the Fermi velocity is renormalized by an isotropic prefactor:

v∗

vF
= 1− α

π

[
5

3
+ ln (α)

]
+
α

4
ln

(
kc
kf

)
+O(α2), (4.15)

where kc ∼ 1/a is the momentum scale at which the conical approximation is no longer

valid [59]. We note that renormalizing the bands in this way does not break the electron-

hole symmetry, and so we will not include it in our analysis. One might also include

the effects of vertex corrections, but such effects have been shown to be irrelevant in

the weak coupling regime (α < 1) [56,75].
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We are therefore left with two dominant zero-temperature many-body effects. The

first is the screening of the Coulomb interaction by the Fermi-Dirac sea, which was

already studied in detail in Chapter 3. The second is Pauli blocking of transitions to

states below the Fermi level. This can be accounted for by using the causal propagators,

which is the final missing ingredient. Therefore, we will study in Section 4.5 the form

of the bare single-particle propagators.

4.5 Free particle propagator

In the following section, we will treat the problem of a pair of electrons interacting in

the presence of the Dirac sea in graphene by mapping the BSE onto an effective two-

particle Schrödinger equation. In order to do so, however, we first need to find the form

of the bare, single-electron propagators. Given the time-dependent Dirac equation

Ĥ1ψ = i~∂tψ, (4.16)

we seek the free particle retarded propagator for particle 1, G+
0,1(p,p ′, t′ − t). This

function is proportional to the probability amplitude that if, at some time t, the electron

is in a non-interacting system in eigenstate ψp then, at some later time t′ > t, it will

be in ψp ′ . We can use the argument t′ − t without loss of generality unless dealing

with time-dependant potentials (i.e. those which break time translational symmetry).

The retarded propagator corresponds to an electron moving forwards in time. We note

that we cannot propagate an electron below the Fermi level, so that excitations of

energy E < EF are interpreted as holes (or, formally, electrons propagating backwards

in time). Such excitations are instead described by the so-called advanced propagators.

Therefore, it is natural to incorporate the effects of the Fermi-Dirac sea by using the

language of causal propagators, which incorporate the effects of both electrons and

holes, and which reduce to retarded and advanced Green’s functions in the appropriate

phase space regime (E > EF and E < EF , respectively). We note that, given the
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(bare) retarded propagator, the form of the causal propagator can be deduced in a

straightforward way (see below). Thus, we first treat the simplest case of the retarded

propagator, for the time-being.

The propagator is a Green’s function. That is to say it is a solution to

(i~∂t − Ĥ1)G+
0,1(p,p ′, t′ − t) = δ(t′ − t). (4.17)

We begin by making an ansatz for the (p, ω)-space Green’s function, and will then

check that it’s Fourier transform satisfies Eq. (4.17). We propose that, in analogy with

the free particle problem (Ĥ0 = p2

2m
), the Green’s function takes the form (~ = 1):

G+
0,1(p,p ′, ω) = δp,p ′

[
ω − Ĥ1 + iδ

]−1

, (4.18)

where δ is a positive infinitesimal and ω is the frequency associated with the propagation

of the particle. Note that the Kronecker-δ factor explicitly conserves the momentum

for a particle in the absence of interactions. Instead of writing it explicitly, we will

now write the propagator as a function of p only and be careful to impose momentum-

conservation on the diagrams later. The Hamiltonian Ĥ1 operates on particle 1 only, but

care must be taken to remember the two-particle nature of the problem. The Hilbert

space defined in Section 2.2 is a two particle space. Thus, to capture the dynamics of

particle 1 only, we use the tensor product operator Ĥ1 = Ĥ ⊗ σ0,2, where Ĥ is given by

Eq. (1.47) and σ0,2 is the unit operator on the space of particle 2. Upon substitution
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into Eq. (4.18), we obtain:

G+
0,1(p, ω)=



ω + p2

4m∗
+ iδ 0 −f(p) 0

0 ω + p2

4m∗
+ iδ 0 −f(p)

−f ∗(p) 0 ω + p2

4m∗
+ iδ 0

0 −f ∗(p) 0 ω + p2

4m∗
+ iδ



−1

=
ω + p2

2m∗
+ Ĥ1

(ω + p2

4m∗
+ iδ)2 − |f(p)|2

, (4.19)

where fi(p) = vFpe
−iφp + τiµp

2e2iφp . As expected, the poles of the propagator in Eq.

(4.19) are located at the single-particle kinetic energies: ω± = − p2

4m∗
± |f(p)|. The

Fourier transform is then given by:

G̃+
0,1(p, t) =

∫ ∞
−∞

G+
0,1(p, ω)e−iωt

dω

2π
(4.20)

= −



i cos(F ) 0 f(p)
|f(p)| sin(F ) 0

0 i cos(F ) 0 f(p)
|f(p)| sin(F )

f∗(p)
|f(p)| sin(F ) 0 i cos(F ) 0

0 f∗(p)
|f(p)| sin(F ) 0 i cos(F )


×Θ(t)ei

p2

4m∗ t

where F = −|f(p)|t and Θ(t) is a step function which explicitly forces the electron to

propagate forwards in time. In the above, we have chosen to set t′ = 0 for simplicity,

as allowed by time translational symmetry. Substitution into Eq. (4.17) shows that it

does indeed satisfy the Schrödinger equation. Thus we conclude that Eq. (4.19) is the

(p, ω)-space bare propagator for particle 1.

For particle 2, we instead use the Hamiltonian Ĥ2 = σ0,1 ⊗ Ĥ, where Ĥ is given by

Eq. (1.47) and σ0,1 is the unit operator on the space of particle 1. The same analysis
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for particle 2 gives the Green’s function

G+
0,2(p, ω) =

ω + p2

2m∗
+ Ĥ2

(ω + p2

4m∗
+ iδ)2 − |f(p)|2

. (4.21)

In the following section, it will prove useful to express the propagators in terms of

projection operators onto the eigenstates of the Hamiltonians for particles 1 and 2. We

define the projection operator onto the state |i, λ〉 ⊗ |ψj 6=i〉 in the space of particle i:

P̂i,λ = |i, λ〉 〈i, λ| , (4.22)

where the {|i, λ〉} are the eigenstates of the single particle Hamiltonian of particle i,

with corresponding eigenvalues Ei,λ. In Appendix C we show that, for the ith particle,

the Green’s functions can be expressed in the following form:

G+
0,i(p, ω) =

∑
λ

P̂i,λ
ω − Ei,λ + iδ

. (4.23)

Because we will no longer assume the Fermi level is at charge neutrality, we must

modify the Green’s function so as to account for some states with E < 0 being va-

cant. As discussed above, these vacancies correspond to hole excitations, which can be

formally described as electrons which propagate backwards in time. This amounts to

the replacement δ → −δ in the bare free-particle propagator (for a discussion see, for

example, Refs. [71,72]). We will therefore switch to the language of the so-called causal

Green’s functions, which account for states above (ω > EF ) and below (ω < EF ) the

Fermi level. For clarity of notation, we will also drop the subscript of 0, and proceed

with the understanding that the single-particle Green’s functions are all bare (since, as

above, dressing them is not important for the purposes of this analysis). The Green’s

function of particle i = 1, 2 in the chiral representation becomes:

Gi(p, ω) =
∑
λ

P̂i,λ

ω + EF − Ei,λ + iδ
(i)
p,λ

, (4.24)
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where, for EF < 0:

δ
(i)
p,1 = δ

(i)
p,2 =


δ, for Ei,λ(p) > EF

−δ, for Ei,λ(p) ≤ EF

δ
(i)
p,3 = δ

(i)
p,4 = δ (4.25)

with δ = 0+. Note that we have suppressed the 0 subscript, usually used to denote a

free propagator because we will not calculate the single particle propagator here.

We now have all of the ingredients necessary to treat the BSE, which was given in its

diagrammatic form in Eq. (4.11). In the following section, we will map this equation

onto an effective, two-particle Schrödinger equation, and show that the poles of the

former correspond to the eigenvalues of the latter, thus giving the binding energies of

the pair.

4.6 Derivation of the effective two–particle Schrödinger

equation

In Section 4.4, we gave the form of the BSE and explained the meaning of the various

diagrammatic ingredients used in its formulation. In the momentum representation,

Eq. (4.11) takes the form of an integral equation, which is to be solved for Γ. It is

given by:

Γ(p ′Ω′,pΩ;Kω) = Vpp ′ + i

∫∫
Vp ′′p ′G1(p ′′, ε)G2(K − p ′′, ω − ε)Γ(p ′′ε,pΩ;Kω)

dp ′′

(2π)2

dε

2π
,

(4.26)

where Vpp ′ = Vp ′p = V (|p − p ′|) is the fully screened inter-layer interaction from Eq.

(3.29). The momenta in Eq. (4.28) are interpreted as follows: p(p ′) is the incoming

(outgoing) momentum of particle 1, and K is the total momentum (this is not to be

confused with the two Dirac points, which are denoted K+ and K−). We note that
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K is a constant of the motion, due to momentum conserving factors in the interaction

matrix element Uq, which arise due to translation invariance of the real-space potential:

V (r1, r2) = V (|r1−r2|). Thus, K−p (K−p ′) is the incoming (outgoing) momentum

of particle 2. In this thesis, we have focussed on the K = 0 channel, but we will

delay this restriction until the end for generality. This integral equation is general for

such a ladder approximation up to the potentials which are written with no frequency

dependence explicitly, for convenience. In fact, as Γ carries no external propagators, it

is actually only dependant on the total frequency (ω) for our problem (i.e. Ω and Ω′

are just used as convenient labels for the Γ diagram). For each term in Eq. (4.26) all

internal frequencies (those used to label the Green’s functions) are integrated out. This

is not the case for a time-dependant interaction, however. In that case the second term

in Eq. (4.26), for example, would correspond to:

−iΓ(1)(p ′Ω′,pΩ;Kω) =

∫∫
V (p ′ − p ′′,Ω′ − ε)V (p ′′ − p , ε− Ω)

×G1(p ′′, ε)G2(K − p ′′, ω − ε) dp
′′

(2π)2

dε

2π
, (4.27)

which does have an explicit dependence on Ω and Ω′ for dynamic interactions. As we

are only considering static screening in our case, we can simplify Eq. (4.26):

Γ(p ′,p;Kω) = Vpp ′ +

∫
Vp ′′p ′

[
i

∫
G1(p ′′, ε)G2(K − p ′′, ω − ε) dε

2π

]
Γ(p ′′,p;Kω)

dp ′′

(2π)2
,

(4.28)

We therefore wish to compute the following integral:

I =
i

2π

∫ ∞
−∞

G1(ε)G2(ω − ε)dε, (4.29)

which is given in the brackets in Eq. (4.28) above. The details of the calculation are

somewhat tedious, and have thus been relegated to Appendix D. There, we show that
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it is given by:

I =
1− n̂1 − n̂2

ω + 2EF − Ĥ1 − Ĥ2 + i(1− n̂1 − n̂2)δ
. (4.30)

Substitution into Eq. (4.28), gives

Γ(p ′,p;Kω) = Vpp ′ +

∫
Vp ′′p ′N̂p ′′,K

ω + 2EF − Ĥ1(p ′′)− Ĥ2(K − p ′′) + iN̂p ′′,Kδ
Γ(p ′′,p;Kω)

dp ′′

(2π)2
,

(4.31)

where we have defined N̂p ′′,K = 1− n̂1(p ′′)− n̂2(K − p ′′) from the Fermi-Dirac distri-

butions at zero temperature:

ni(p) =


0, for Ei(p) > EF ,

1, for Ei(p) ≤ EF .

(4.32)

We propose the following change of variables:

Γ(p ′,p ;Kω) =

∫
VQN̂p ′−Q,KΨ(p ′ −Q,p;Kω)

dQ

(2π)2
, (4.33)

which we take to be a definition of Ψ rather than a solution for Γ. It follows then, that

Γ(p ′′,p ;Kω) =

∫
VQ ′N̂p ′′−Q ′,KΨ(p ′′ −Q ′,p;Kω)

dQ′

(2π)2
. (4.34)

Substitution of Eqs. (4.33) and (4.34) into Eq. (4.31) gives an integral equation in Ψ:

∫
VQN̂p ′−Q,KΨ(p ′ −Q,p;Kω)

dQ

(2π)2
= Vpp ′ +

∫∫
dQ ′

(2π)2

dp ′′

(2π)2
Vp ′′p ′VQ ′×

× N̂p ′′,K

ω + 2EF − Ĥ1(p ′′)− Ĥ2(K − p ′′) + iN̂p ′′,Kδ
N̂p ′′−Q ′,KΨ(p ′′ −Q ′,p;Kω). (4.35)
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In order to map the integral equation (4.31) onto the two-particle Schrödinger equation,

we propose the following change of variables:

Ψ(p ′,p;Kω) = (2π)2δ(2)(p−p ′) +
1

ω + 2EF − Ĥ1(p ′)− Ĥ2(K − p ′) + iN̂p ′,Kδ
×

×
∫
Vq ′N̂p ′−q ′,KΨ(p ′ − q ′,p;Kω)

dq ′

(2π)2
. (4.36)

Let us examine the significance of Eq. (4.36). The frequency ω gives the energy of

the pair near the poles, and EF simply sets the zero point of the energy, so we can make

the replacement ω+2EF ≡ E. The first term in Eq. (4.36) is energy independent, while

the second term has poles which correspond to two-particle states. Near these poles,

the first term can be dropped. Further, the integrand vanishes due to N̂ whenever the

particle in the valance band is below the Fermi level. We can therefore absorb it into

the limits of the integral. Finally, this can be expressed as an effective two-particle

Schrödinger equation, where we identify Ψ as a two-particle wavefunction:

(
Ĥ1(p ′) + Ĥ2(K − p ′)

)
Ψp ′,K +

∫∫
|q ′+p ′|<pF

Uq ′Ψp ′−q ′,K
dq ′

(2π)2
= EΨp ′,K . (4.37)

In the K = 0 channel, Eq. (4.37) is equivalent to the two-particle Schrödinger equation

we presented as a heuristic model in Section 4.2 when one projects the Hamiltonian

onto the sub-space spanned by the para-state, such that Ψ =
∑
|p|<pF

ψp |2, φp〉. This

justifies the assumption of Section 4.2 in the absence of trigonal warping. To include

the warping effects, all four states have to be included in the model. The states |3, φp〉

and |4, φp〉, however, are less important than ortho-states due to energy mismatch.
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4.7 The effects of finite-range interaction and trig-

onal warping

The analytic form of the binding energies, along with the low-doping approximation, are

plotted in Figs. 4.2 and 4.3 for the cases of single- and double-layer devices, respectively.

For the two-layer case, the results were obtained for graphene in a hexagonal boron ni-

tride (hBN) environment. For the single-layer case, however, our analytical result is

entirely independent of the substrate (see Eq. 3.41). In both configurations the linear

approximation is substrate-independent, confirming that the low-doping behaviour is

dominated by momentum-space restrictions due to Pauli blocking. The points on those

plots correspond to binding energies obtained numerically (see below), and account for

contributions from the full non-dispersing sector, as well as the momentum-dependent

interaction. We have used η = 1.1 throughout.

So far we have considered a subspace of the possible bound states of the sys-

tem: those spanned by the para-state. It was shown that the isotropic dispersion

(∝ −p2/2m∗) leads to an exact solution under the assumption that the potential is

short-ranged. When we consider other states in the non-dispersing sector, however, the

effects of trigonal warping enter the problem in two ways: (i) there is an extra con-

tribution to the kinetic energy (see Eq. (2.5)), and (ii) the Fermi surface is deformed,

so that states excluded by Pauli blocking occupy a domain with a more complicated

shape. In addition, we treated an electron-electron potential of the form V (r) = λδ(r),

which tends to overestimate the interaction strength. In Chapter 2 it was shown that

the effective Hamiltonian of an electron pair in the non-dispersing sector is given by

Ĥp,p ′ = δp,p ′Ĥ
eff
1,2 + Up,p ′

 cos(φp − φp ′) 0

0 1

 , (4.38)

due to the non-trivial overlap of wavefunctions with different momenta: 〈1, φp ′|1, φp〉 =

cos(φp − φp ′). When the effects of screening (so that Up,p ′ ≡ U(|p − p ′|) is given by
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Figure 4.2: Binding energies in single-layer systems. The symbols represent
numerical results, the solid line is the analytical form of Eq. (4.6) and the
broken line corresponds to the low-doping approximation of Eq. (4.10). The
inset shows numerical results for a single-layer suspended graphene struc-
ture with trigonal warping switched on (µ 6= 0) and off (µ = 0). The small
increase in kinetic energy from the trigonal warping explains the difference
between numerical results and the analytical approximation (which was cal-
culated with isotropic kinetic energy) for the case of suspended graphene.

the potentials in Eq. (3.29)) and the warped Fermi surface are taken into account, the

problem becomes intractable. Therefore, in this section we present the results of the

numerical diagonalization of Eq. (4.38), and compare them with the analytical solution

discussed previously.

For monolayer systems, we assume the graphene lies on a substrate of dielectric

constant εs, so that κ = 1
2

(1 + εs). We present results for two common experimen-

tal systems: (i) suspended graphene (εs = 1) and (ii) graphene on a SiO2 substrate

(εs = 3.9). For double-layer systems the situation is slightly different, as the graphene

layers must be separated by a dielectric spacer in order to suppress bilayer coupling.
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Figure 4.3: Binding energies in double-layer (graphene-hBN-graphene)
structures which are suspended over vacuum (circles) or embedded in an
hBN environment (crosses). The solid line is the analytical result for the
double-layered system embedded in hBN, and the broken line is the low-
doping approximation.

We provide results for a hexagonal boron nitride (hBN) spacer. hBN has dielectric

constant εh = 3.9 and has been experimentally shown to electrically isolate parallel

graphene layers at a thickness of 4 atomic layers (d = 1.3nm) [44]. We have considered

two distinct double-layered cases: hBN-graphene-hBN structures which are (i) embed-

ded in a hBN environment (κ = εh) and (ii) suspended in vacuum (κ = 1
2

(1 + εh)).

For the double-layer case (see Fig. 4.3) there is good agreement between the numer-

ical results and the linear approximation of Eq. (4.10) for |EF | . 50meV. For higher

doping, however, the analytical solution overestimates the binding energy. Our assump-

tion that the Fermi surface is circular (i.e. ignoring trigonal warping) is asymptotically

exact in the limit pF → 0 so we expect our analytical solution from Sec. 4.2 to diverge

from the numerical results (which take account of warping) for large pF . We also note
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that the interaction potential Uq is positive definite and has a maximum at q = 0.

Therefore, using the interaction strength λ = Uq=0 is guaranteed to overestimate the

strength of the potential. The curve is peaked at EF ∼ −200meV. This is due to the

small value of Ed ∼ 0.2eV, which defines an energy scale accessible even at relatively

low doping.

For the single-layer case, the linear approximation of our analytical result agrees well

with numerical values over the whole region of experimental interest (|EF | . 400meV).

In contrast to the double-layer case, the exponential suppression of the binding is not

accessible in this range, however, due to the relatively large energy scale of the single-

layer problem: Es ∼ 5Ed.

We also note that the single-layer numerical results of Fig. 4.2 for the case of sus-

pended graphene are slightly higher than the analytic result. This is entirely due to

trigonal warping, which was not accounted for in Eq. (4.2). The effective Hamiltonian

of Eq. (2.5) has eigenvalues of the form ε = −2µp2 [η + sin(3φp)], which correspond

to the kinetic energy of the pair. Although this term is negative definite for η > 1,

the kinetic energy is suppressed for certain momentum space configurations due to the

sign-indefinite trigonal contribution. This leads to increased binding energy when in-

teractions are taken into account, an effect not accounted for in the purely isotropic

Hamiltonian used in the analytic approximation of Section 4.2. The inset of Fig. 4.2

displays the binding energies of a bi-electron in single-layer suspended graphene with

(µ 6= 0) and without (µ = 0) trigonal warping switched on. The results show that

trigonal warping tends to increase the binding energy of the pair, as discussed above.

We note that the results for µ = 0 and µ 6= 0 diverge from each other as the Fermi

energy is decreased. This is to be expected, as warping of the energy bands is only

appreciable at high energies. When the system is doped near the neutrality point, the

difference between phase-space restriction for the warped and conical cases is negligible.

Although we have obtained numerical results up to EF = 400meV, we note that

such high doping may not be practical for experiment. For the cases of monolayer
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graphene on SiO2 and double layer graphene in a hBN environment, the limiting factor

is likely to be dielectric breakdown in the region between graphene and gate. For the

example of hBN, it was found in tunnelling experiments [44] that breakdown occurs

at 3V for a 4-layer-thick spacer, so that it is possible to achieve |EF | ∼ 800meV. Due

to the large breakdown field of vacuum, other factors are expected to limit the range

of validity for suspended graphene. When not supported by a substrate, finite charge

densities of opposite sign on the gate and graphene respectively lead to deflection of the

graphene away from its usual atomically flat structure [76–78], which can result in the

electrostatic collapse of the device. As an example, we consider the device of Ref. [76]:

a square graphene sample of dimension ∼ 3µm is suspended 150nm above a 150nm

thick layer of SiO2 (which rests atop a Si substrate). When a gate voltage VG was

applied between graphene and Si, collapse occurred at VG = 20V. This corresponds to

a maximum doping of |EF | ∼ 90meV. The precise upper bound which is experimentally

accessible depends strongly on device geometry, which we do not consider here.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we have analysed the problem of an interacting electron-electron pair in

graphene. We have shown that kinetic energy terms which are of second order in the

momentum can lead to the formation of bi-electrons: bound states of two electrons,

which are facilitated by the repulsive Coulomb interaction.

In Chapter 2 we analyzed the problem of an isolated electron-electron pair, without

significant attention being paid towards many-body effects. We have shown that, in the

isotropic regime, the conduction-valence band asymmetry allows the formation of a new

kind of Cooper-pair-like bound state in the sector spanned by eigenfunctions which are

dispersionless in the conical approximation. From analysis of the local density of states,

we found that such pairs can have energies of 45meV when the constituent electrons

are spatially separated in hybrid double-layer structures. The structures we considered

were those formed by parallel graphene layers with hBN spacers with thickness of sev-

eral atomic layers. These states have positive energy and therefore do not represent

energy minima, however once created they have long lifetimes. We calculated their

transition rates and found that tunnelling into the continuum of free-particle states has

an associated lifetime of ∼ 100µs. Due to the large value of this lifetime, we note that

such tunnelling is likely not the limiting factor in the stability of the pair. Instead, they
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would have their true lifetimes determined by non-universal factors such as impurity

scattering, which we do not consider here. Finally, we applied a semiclassical approach

to the real-space dynamics of the pair in order to visualize their behaviour and develop

an intuition for the pairing mechanism from a classical perspective. We saw that a

finite relative velocity of the pair implies that a repulsive force between the two parti-

cles will increase the velocity of the slower particle, while decreasing the velocity of the

faster one. This gives a qualitative picture of the pairing in the absence of attractive

interactions, and shows how the unusual band-structure of graphene can allow us to

go beyond the conventional wisdom that ‘like charges repel’ without a fully quantised

formalism.

In Chapter 3, we calculated the bare and screened interactions for single- and double-

layered graphene structures in homogeneous and non-trivial dielectric environments.

In particular we have explained and justified the calculation of intrinsic dielectric con-

stants, which enable the incorporation of screening for in systems doped near charge

neutrality without a full treatment of the polarizability function. We also argued that,

in the presence of the Dirac sea in graphene, the most important aspects of the electron-

electron interaction can be captured by an effective delta-like potential, and calculated

the interaction strength.

In Chapter 4, we turned our attention to the problem of an electron-electron pair

in single- and double-layer graphene structures, taking into account the most impor-

tant many-body effects at zero temperature: interaction screening and the blocking of

single-particle transitions to states below the Fermi level by the Pauli exclusion prin-

ciple. We have shown that the binding energies are renormalized, but not destroyed,

by the presence of the Dirac sea. Within the range of attainable doping, the binding

energies are about an order of magnitude higher for single-layered structures, suggest-

ing that they are of the greatest experimental interest. In particular we have shown

that, for sufficiently low hole doping (|EF | . 400meV for one layer and |EF | . 50meV

for two layers) the renormalized energies are directly proportional to the magnitude of
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the Fermi energy, to a good approximation. We therefore conclude that the pairing is

tunable by a gate voltage for single- and double-layer systems, and that the results are

robust against a small doping mismatch between the layers.

5.2 Outlook

One important unanswered question is the nature of an experimental signature of this

pairing. The positivity of the binding energies implies that the corresponding non-

trivial correlated phase would be rather unusual: unlike the case of the more familiar

excitons, which have negative binding energies due to an attractive interaction, the

pairs described in this thesis have positive energies. Hence, their formation is not en-

ergetically favourable. It was shown in Chapter 2, however, that their decay rates are

slow. Therefore, the bi-electronic condensate, should it form, would be metastable,

and would not be a candidate for novel superconductivity. Further, because the pair is

formed of two particles of the same species, they have a net negative charge. Thus, for-

mation of the condensate would not result in a novel insulating phase. Another avenue

might be to search for a bound state using scanning tunnelling microscopy but, due

to the nature of the particles, that would require a sophisticated two-particle coherent

tunnelling experiment. Probing the pairs using optical measurements, as is common in

the excitonic phenomena, is complicated by zero dipole moment of liked-charged pairs.

Again, this is due to the total charge of the pair, which cancels for electron-hole pairs.

Perhaps the most promising route towards experimental realization is by the cou-

pling of the aforementioned graphene structures to a superconductor. As the metastable

states are akin to Cooper pairs, this would lead to a giant enhancement of the proxim-

ity effect, which has been observed in graphene recently [79–81]. The recent realization

of a graphene-based Cooper pair splitter might provide the setting for such an exper-

iment [82]. The pair splitter is coupled to a quantum dot in each of its two output

channels, and the dots can be tuned by the application of side gates so that the Cooper
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pairs can tunnel into them when on resonance. By tuning across the energy range in

which we predict bi-electrons to form, one would expect an enhancement in the occupa-

tion of the dots relative to the energy in which bi-electron pairing is not predicted. The

enhancement is due to the increased density of states predicted in Chapters 2 and 4.

We have not, however, considered the effects of finite temperature which may

be important, particularly for the case of double-layered structures where the binding

energies are rather low (0meV–5meV).
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Appendix A

Calculation of the effective

Hamiltonian Matrix

Here we explain in more detail the form of the effective Hamiltonian matrix given in

Eq. (2.5). Our goal is to construct an operator which effectively describes the dynamics

in the non-dispersing sector (two-particle states with E = 0) but neglects those states

within the dispersing sector (E 6= 0). We note that the eigenfunctions of the two-

particle Hamiltonian matrix in the conical regime (see Eq. (2.2)) form a complete basis.

Therefore, we could perform a change of basis, and write the Hamiltonian matrix with

elements Hi,j = 〈i, φp|H |j, φp〉. Let us write the resulting eigenvalue problem in block

form:  HD HC

H†C HN


 ΦD

ΦN

 = E

 ΦD

ΦN

 , (A.1)

whereHD is the Hamiltonian matrix within the dispersing sector, HN is the Hamiltonian

matrix in the non-dispersing sector and HC contains the coupling between the sectors.

In the above, if we found that HC = 0, so that there was no coupling between the

sectors, then ΦD are the states of configuration |1, φp〉+λ |2, φp〉 and ΦN are the states

of configuration |3, φp〉 + λ |4, φp〉. Thus we have block diagonalized the Hamiltonian
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matrix, and HD would be the effective operator required.

If we calculate the matrix elements in this new basis, however, we find that HC

is non-zero, and should not be neglected in general. Thus we construct the effective

Hamiltonian matrix using the approach from Ref. [39], which is akin to degenerate

perturbation theory. Let E(0) be the unperturbed energies and H(1) be the Hamiltonian

matrix which contains the details of the perturbation (ie, the nonlinear terms). Then

the effective Hamiltonian matrix is given by:

Heff
i,j = δi,jE

(0)
i + 〈i, φp|H(1) |j, φp〉 −

∑
k=3,4

〈i, φp|H(1) |k, φp〉 〈k, φp|H(1) |j, φp〉
E

(0)
k − E0

i

, (A.2)

where the summation runs over the dispersing states. From our previous analysis, we

know that E1,2 = 0 and E3,4 = ±2vfp. Those terms terms which couple the two sectors

are either vanishing or of second order in the momentum. Thus, we obtain:

Heff
i,j = 〈i, φp|H(1) |j, φp〉 − O

[
µp3

vf

]
. (A.3)

Thus we keep only terms which are of first order in the perturbation, giving the effective

Hamiltonian matrix:

Ĥeff =

 − p2

2m∗
τ1,2µp

2 sin(3φp)

τ1,2µp
2 sin(3φp) − p2

2m∗

 , (A.4)

which is the form used in Eq. (2.5) and thereafter.

The matrix elements due to the contributions of states |3, φ〉 and |4, φ〉, which were
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omitted from the form above, are as follows:

〈3, φ′j|H |1, φi〉 = 〈4, φ′j|H |1, φi〉 = −〈1, φ′j|H |3, φi〉 = −〈1, φ′j|H |4, φi〉

= − i√
2
U(|qi − p ′j|) sin(φi − φ′j) (A.5)

〈3, φ′j|H |2, φi〉 = 〈4, φ′j|H |2, φi〉 = 〈2, φ′j|H |3, φi〉 = 〈2, φ′j|H |4, φi〉

= i
√

2µq2
i sin(3φi)δij (A.6)

〈4, φ′j|H |3, φi〉 = 〈3, φ′j|H |4, φi〉 =
1

2

[
cos(φi − φ′j)− 1

]
U(|qi − p ′j|) (A.7)

〈3, φ′j|H |3, φi〉 =
1

2

[
cos(φi − φ′j) + 1

]
U(|qi − p ′j|) + 2αq2

i δij + 2λqi (A.8)

〈4, φ′j|H |4, φi〉 =
1

2

[
cos(φi − φ′j) + 1

]
U(|qi − p ′j|) + 2αq2

i δij − 2λqi (A.9)
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Appendix B

Numerical approach

Here we will briefly explain the approach used to calculate the LDOS plots given in

Section 2.3. Recall that the LDOS is given by ν(ε, x, y) =
∑

n δ(ε− εn)|ψn(x, y)|2. The

calculation of the real-space wavefunctions ψn(x, y) is straightforward when given the

momentum-space wavefunctions, following by fast Fourier transform. Thus, our main

task is to describe the diagonalization of the effective Hamiltonian matrix in momentum

space.

It is common to use one of several Brillouin zone summation schemes to sample the

most important k-points instead of naively sampling a simple mesh, to minimize com-

putational expense (see, for example, Ref. [83]). For the current purposes, however, we

are most interested in a relatively small phase-space near the Dirac points. Therefore,

the calculations utilized a simple hexagonal lattice of momentum-space sites to reflect

the symmetry of graphene’s honeycomb lattice. The grid is populated shell-by-shell

(see Fig. B.1), so there are two parameters which can vary the results. The first is the

number of shells, which we have taken to be N = 33 for all results given in this thesis

(corresponding to approximately 3400 grid points). There are a total of 3N(N + 1) + 1

grid sites for N shells, so increasing N corresponds to increasing the total number of

points, and thus reduces discretization errors. We did not obtain results for N > 33

due to hardware limitations, but the energy levels were seen to vary negligibly above

N = 20. Secondly, one can vary the cut-off momentum pmax. Decreasing pmax allows
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one to limit the phase space under consideration, hence increasing the density of sites.

The results in the body of the present text were obtained for pmax = π
3a

, thus covering

the sites of primary interest in the low-energy physics.

Figure B.1: Schematic of the momentum-space grid for the example ofN = 4
shells. Shells are coloured as follows: red (0th shell), orange (1st shell), yellow
(2nd shell), and so on. The vector shown has magnitude pmax. All results in
this thesis were generated for N = 33.

In order to find the binding energies of the electron-electron pair, we begin with the

discretized, momentum-space Schrödinger equation:

Heff(p)ψp + S0

∑
p ′

Ṽp−p ′Ap,p ′ψp ′ = Eψp, (B.1)

which has been projected onto the subspace of non-dispersing states as explained pre-

viously. We have defined S0 to be the area of a cell in the momentum space grid and

Ap,p ′ is the matrix arising due to non-trivial overlap between non-dispersing states:

Ap,p ′ =

 cos(φp − φp ′) 0

0 1

 (B.2)
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Note that Eq. (B.1) can be re-written in the equivalent form:

∑
p ′

 − p2

2m∗
δp,p ′ + S0Ṽp,p ′ cos(φp − φp ′) 2µp2 sin(3φp)δp,p ′

2µp2 sin(3φp)δp,p ′ − p2

2m∗
δp,p ′ + S0Ṽp,p ′

ψp ′
= Eψp. (B.3)

The matrix in Eq. (B.3) simply that of Eq. (2.8). We calculate the binding energies

by populating a matrix with these blocks or, equivalently, by constructing a system of

equations of the form (B.3), each of which is designated a unique momentum p. We

note that, in the calculation of the LDOS using the definition of ν(ε, x, y) given above,

we have approximated the Dirac delta function by a Poisson distribution:

δ(ε− εn) ∼ 1

π

γ

(ε− εn)2 + γ2
, (B.4)

and used the broadening factor γ = 0.1meV throughout.
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Appendix C

Free particle Green’s functions in

terms of projection operators

We look for a set of projection operators for particle 1, P̂1,λ(p), such that

P̂1,λ(p)χλ′(p) = χλ(p)δλ,λ′ , (C.1)

where λ, λ′ are the eigenstate numbers. This can be achieved by computing P̂1,λ(p) =

|χλ〉 〈χλ|, giving

P̂1,1(p) =
1

2



0 0 0 0

0 1 0 −eiθp

0 0 0 0

0 −e−iθp 0 1


,

P̂1,2(p) =
1

2



1 0 −eiθp 0

0 0 0 0

−e−iθp 0 1 0

0 0 0 0


,
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P̂1,3(p) =
1

2



0 0 0 0

0 1 0 eiθp

0 0 0 0

0 e−iθp 0 1


,

P̂1,4(p) =
1

2



1 0 eiθp 0

0 0 0 0

e−iθp 0 1 0

0 0 0 0


. (C.2)

In particular, it can be shown by substitution that

∑
λ

P̂1,λ(p) = σ0,1 ⊗ σ0,2 (C.3)

as required for projection operators.

Further, the same analysis can be completed to obtain a set of projection operators

for particle 2, P̂2,λ(p) = |ξλ〉 〈ξλ|:

P̂2,1(p) =
1

2



0 0 0 0

0 0 0 0

0 0 1 eiθp

0 0 e−iθp 1


,

P̂2,2(p) =
1

2



1 eiθp 0 0

e−iθp 1 0 0

0 0 0 0

0 0 0 0


,
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P̂2,3(p) =
1

2



0 0 0 0

0 0 0 0

0 0 1 −eiθp

0 0 −e−iθp 1


,

P̂2,4(p) =
1

2



1 −eiθp 0 0

−e−iθp 1 0 0

0 0 0 0

0 0 0 0


. (C.4)

Now we will write the Green’s function for particle 1 in terms of these projection

operators. Using the identity from Eq. (C.3), we can rewrite Eq. (4.19) in the following

form:

G+
0,1(p, ω) =

ω(P̂1,1 + P̂1,2 + P̂1,3 + P̂1,4) + p2

2m∗
+ Ĥ1

(ω + p2

4m∗
+ |f(p)|+ iδ)(ω + p2

4m∗
− |f(p)|+ iδ)

=
ω(P̂1,1 + P̂1,2 + P̂1,3 + P̂1,4) + p2

2m∗
+ Ĥ1

(ω − E1,− + iδ)(ω − E1,+ + iδ)
(C.5)

where E11 = E12 = E1,− and E13 = E14 = E1,+. From Ĥ1 = Ĥ ⊗ σ0,2, where Ĥ is given

by Eq. (1.47), we expand:

Ĥ1 +
p2

2m∗
=

p2

4m∗
+ |f(p)|



0 0 eiθp 0

0 0 0 eiθp

e−iθp 0 0 0

0 e−iθp 0 0


=

p2

4m∗
(P̂1,1 + P̂1,2 + P̂1,3 + P̂1,4) + |f(p)|(P̂1,3 + P̂1,4 − P̂1,1 − P̂1,2)

= −E1,+(P̂1,1 + P̂1,2)− E1,−(P̂1,3 + P̂1,4). (C.6)
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Substitution of this form back into Eq. (C.5) allows us to re-write the Green’s function

as an eigenvalue expansion:

G+
0,1(p, ω) =

(ω − E1,+)(P̂1,1 + P̂1,2) + (ω − E1,−)(P̂1,3 + P̂1,4)

(ω − E1,− + iδ)(ω − E1,+ + iδ)

=
∑
λ

P̂1,λ

ω − E1,λ + iδ
. (C.7)

It can also be shown in the same way that the greens function for particle 2 has an

analogous form:

G+
0,2(p, ω) =

∑
λ

P̂2,λ

ω − E2,λ + iδ
, (C.8)

as given in the main text.

125



Appendix D

Some mathematical details of the

calculation of the Bethe-Salpeter

equation

I =
i

2π

∫ ∞
−∞

G1(ε)G2(ω − ε)dε

=
i

2π

∑
λ,λ′

P̂1,λP̂2,λ′

∫ ∞
−∞

dε(
ε+ Ef − E1,λ + iδ

(1)
λ

)(
ω − ε+ Ef − E2,λ′ + iδ

(2)
λ′

)
≡ i

2π

∑
λ,λ′

P̂1,λP̂2,λ′

∫ ∞
−∞

dε

h(ε)
, (D.1)

where we have used the Green’s functions from Eq. (4.24), suppressed the momentum

variables for the time being as a matter of convenience and defined the function

h(ε) =
(
ε+ Ef − E1,λ + iδ

(1)
λ

)(
ω − ε+ Ef − E2,λ′ + iδ

(2)
λ′

)
. (D.2)

The integrand has two poles:

ε1 = E1,λ − Ef − iδ(1)
λ

ε2 = ω − E2,λ′ + Ef + iδ
(2)
λ , (D.3)
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but because the imaginary part of each is multi-valued (depending on whether the par-

ticle is above or below the Fermi level) there are many individual cases to consider. We

can immediately reduce the number of cases by a factor of 4 by utilizing the degeneracy

of the single-particle energies calculated earlier. This degeneracy leads to many copies

of the same case when calculating the integral, so instead of considering the contri-

butions of the poles for λ = {1, 2, 3, 4} we can instead consider λ = {+,−}, where

+ and − correspond to upper and lower cones respectively. We need only be careful

to associate the correct sign to the correct projection operators when substituting the

results back into I. A summary of the remaining cases is given in Table D.1. There

are in fact two more cases which we have ignored because they are unphysical: these

both correspond one electron being above the Fermi level in the lower cone and the

other electron being below the Fermi level in the upper cone (both of these cases are

impossible when the Fermi levels of the two layers are equal).

Case λ λ′ E1,λ δ
(1)
λ E2,λ′ δ

(2)
λ′

1 + + > Ef δ > Ef δ
2 < Ef −δ < Ef −δ
3 > Ef δ < Ef −δ
4 < Ef −δ > Ef δ
5 + − > Ef δ > Ef δ
6 < Ef −δ < Ef −δ
7 > Ef δ < Ef −δ
8 − + > Ef δ > Ef δ
9 < Ef −δ < Ef −δ
10 < Ef −δ > Ef δ
11 − − > Ef δ > Ef δ
12 < Ef −δ < Ef −δ
13 > Ef δ < Ef −δ
14 < Ef −δ > Ef δ

Table D.1: List of the relevant cases in the enumeration of states above (δ)
and below (−δ) the Fermi level.

We calculate the frequency integral using the calculus of residues:

I = −
∑
n

Res

(
1

h(ε)|εn

)
Wn = −

∑
n

Wn

h′(εn)
(D.4)
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Re{ε}

Im{ε}

O

×ε2

×ε1

Figure D.1: Example of the contour used for case 1 in Table D.1.

where n = 1, 2 enumerates the poles and the winding number Wn = 1 (−1) for a

pole in a contour traversed counter-clockwise (clockwise). We choose for a contour the

semicircle which follows the Re(ε)-axis from −∞ to ∞ and completes with an arc of

infinite radius by noting that the integral vanishes over the arc. Notice that in each

case at most one residue will be non-zero. For cases 3, 4, 7, 10, 13 and 14 δ(1) and δ(2)

have opposite signs and both poles will be in the same half-plane. When this is the

case we can always choose to close the contour in the other half plane, and the integral

vanishes without further analysis. In every other case the poles are on opposite sides of

the real line and we choose to close the contour in whichever half-plane is convenient.

As only one pole will be inside the contour, there is only ever one residue to calculate

for these cases. For the example of case 1, ε2 is in the upper-half plane and ε1 is in the

lower-half plane. We choose to close the contour as in Fig. D.1.

The residues for each case are given by:
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1 Res(ε2) = −1
ω+2Ef−E2,+−E1,++iδ

2 Res(ε1) = 1
ω+2Ef−E2,+−E1,+−iδ

5 Res(ε2) = −1
ω+2Ef−E2,−−E1,++iδ

6 Res(ε1) = 1
ω+2Ef−E2,−−E1,+−iδ

8 Res(ε2) = −1
ω+2Ef−E2,+−E1,−+iδ

9 Res(ε1) = 1
ω+2Ef−E2,+−E1,−−iδ

11 Res(ε2) = −1
ω+2Ef−E2,−−E1,−+iδ

12 Res(ε1) = 1
ω+2Ef−E2,−−E1,−−iδ

(D.5)

Each of the cases in Eq. (D.5) can be summarized into the following form:

−F (E1,λ, E2,λ′)

ω + 2Ef − E1,λ − E2,λ′ + iF (E1,λ, E2,λ′)δ
, (D.6)

where

F (E1,λ, E2,λ′) =


1 E1,λ, E2,λ′ > Ef

0 E1,λ > Ef ≥ E2,λ′ and E1,λ ≤ Ef < E2,λ′

−1 E1,λ, E2,λ′ ≤ Ef .

(D.7)

This function can be expressed in the simpler form

F (E1,λ, E2,λ′) = 1− n1,λ − n2,λ′ , (D.8)

where n1,λ and n2,λ′ are the Fermi-Dirac distributions, e.g.

n1,λ =
1

exp
(
E1,λ−Ef
kbT

)
+ 1

, (D.9)
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at zero temperature. We therefore have

I =
∑
λ,λ′

P̂1,λP̂2,λ′(1− n1,λ − n2,λ′)

ω + 2Ef − E1,λ − E2,λ′ + i(1− n1,λ − n2,λ′)δ
(D.10)

Recall the definition of the Hamiltonian in the tensor product space of two particles:

Ĥ1 ≡ ĤK+,1(p)⊗ σ0,2 (D.11)

We are free to write the single-particle Hamiltonian as a spectral decomposition over

it’s eigenstates {|i〉} ∈ H1 which are defined by ĤK+,1 |i〉 = E1,i |i〉:

ĤK+,1 =
∑
i

E1,i |i〉 〈i| . (D.12)

In the two-particle space H = H1 ⊗H2, then, the Hamiltonian of particle 1 becomes

Ĥ1 =
∑
i

E1,i (|i〉 〈i| ⊗ σ0,2) . (D.13)

Now we consider the factorized vector |j〉⊗|s〉 ∈ H where {|s〉} is an orthonormal basis

on H1. When we choose j = 1, 2 and s ≡↑, ↓ (i.e. {|s〉} are just the spin-1
2

eigenspinors)

we see that these four vectors are simply the eigenvectors of Ĥ1 calculated above. In

particular:

P̂1,λ = (|j〉 ⊗ |s〉) (〈j| ⊗ 〈s|) = |j〉 〈j| ⊗ |s〉 〈s| , (D.14)

where it is important to note that we have introduced the placeholder λ ≡ j, s. This
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ε ε+ ω − Ω− Ω′

p,Ω

p ′,Ω′

K − p, ω − Ω

K − p ′, ω − Ω′

Figure D.2: An example of a diagram with crossed interaction lines. Such
diagrams vanish for instantaneous interactions.

gives

P̂1,λĤ1 =
∑
i

E1,i (|j〉 〈j|i〉 〈i| ⊗ |s〉 〈s|)

=
∑
i

E1,iδi,j (|j〉 〈i| ⊗ |s〉 〈s|)

= E1,λP̂1,λ. (D.15)

By following steps analogous to those above, one can prove the same relationship be-

tween the Hamiltonian and projectors for particle 2. It follows that, for a suitably well

behaved function of the energies f(E1,λ, E2,λ′), the projectors act as P̂2,λ′f(E1,λ, E2,λ′) =

P̂2,λ′f(E1,λ, Ĥ2). We identify Eq. (D.10) as comprising such a function, and simplify:

I =
∑
λ

P̂1,λ

∑
λ′ P̂2,λ′(1− n1,λ − n̂2)

ω + 2Ef − E1,λ − Ĥ2 + i(1− n1,λ − n̂2)δ

=

∑
λ P̂1,λ(1− n̂1 − n̂2)

ω + 2Ef − Ĥ1 − Ĥ2 + i(1− n̂1 − n̂2)δ

=
1− n̂1 − n̂2

ω + 2Ef − Ĥ1 − Ĥ2 + i(1− n̂1 − n̂2)δ
, (D.16)

where we have twice used the resolution of the identity, of Eq. (C.3).

As an aside, one might notice that diagrams of the type in Fig. D.2 which should,

in general, appear in expansions of the two-particle propagator are absent from our

analysis. In the time domain, such a diagram shows an interaction “leaving” particle 1

and “arriving” at particle 2 some finite time later. Physically it therefore corresponds to

a retarded interaction. If the particles do not undergo considerable bare propagation on

the time scale of the interaction, one might assume that these diagrams are negligible
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This is the case for graphene, in which the Fermi velocity is much smaller than the

speed of light (
vf
c
≈ 1

300
). For this reason, we are free to assume that the interaction

is instantaneous, and therefore frequency independent. Now let us calculate the exact

form of Fig. D.2. We proceed as before, but this time integrating over intermediate

frequencies gives

i

2π

∫ ∞
−∞

G1(ε)G2(ε+ ω − Ω− Ω′)dε, (D.17)

the integrand of which has two poles in the complex ε-plane:

ε1 = E1,λ − Ef − iδ(1)
λ

ε2 = Ω + Ω′ + E2,λ′ − Ef − ω − iδ(2)
λ′ . (D.18)

For the electron-electron case, when δ
(1)
λ = δ

(2)
λ′ = δ, the poles are in the same half-plane

and the integral vanishes exactly for every value of λ and λ′. We therefore omit all

diagrams with crossed interaction lines from our analysis.
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